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Abstract: Damage induced by repetitive freezing and thawing processes is one of the critical factors
that affect concrete durability in cold climates. This deterioration process manifests as surface scaling
and internal damage. The damage processes are governed by physicochemical mechanisms that
are active across multiple scales. In this contribution, we present a novel multiscale theoretical
framework for estimating the critical pressure required for microcrack initiation during freezing
and thawing of cementitious mortar. Continuum micromechanics and fracture mechanics is used to
model the phenomena of microcrack initiation and growth. Damage at the microscale is upscaled to
the level of the specimen using multilevel homogenization. The critical pressure is estimated using
poromechanics at the microscopic scale. A theoretical analysis shows that in the frozen state, the
material can resist higher pressures. As a consequence, the material is more susceptible to damage
during thawing. The micromechanical predictions are within the range of the predictions obtained
by electrokinetic theory.
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1. Introduction

By 2050, 70% of the world’s population is projected to live in urban areas [1]. This
would require enormous investments in infrastructure made of concrete. Given the carbon
footprint associated with the construction of concrete infrastructure, the recent focus has
been on increasing the sustainability of concrete infrastructure. Increasing the service life
of concrete infrastructure is one of the essential components in improving sustainability.
Damage of concrete due to frost is an important factor that negatively affects the durability
of concrete in cold climates. One familiar example is the freeze–thaw induced damage
of concrete pavements during winter. Two types of material deterioration attributed
to freeze–thaw loads are the scaling of the surface and the internal microcracking that
is driven by physicochemical mechanisms such as phase-change, transport and hygro-
thermomechanical stresses acting over multiple scales. Seminal contributions to our current
understanding of freeze–thaw induced deterioration of cement-based materials include the
work of Powers and Helmuth (osmotic pressure) [2], Scherer (crystallization pressure) [3,4],
Coussy and Monteiro (poromechanics) [5], Setzer (thermal equilibrium/micro-ice lens) [6]
and Zhao (nanofluidic salt-trapping) [7]. The aforementioned theories have been the basis
for the development of a variety of analytical and computational models for a model-
based characterization of freeze–thaw induced damage of cementitious materials. For
further reading, Guo et al. [8] provides a detailed state-of-the art review on the damage
mechanisms and modeling approaches. The most recent theory that explains the origins
of the high pressures during freezing and thawing is the work of Zhao et al. [7]. This is a
physics-based theory that explains freeze–thaw damage as a consequence of trapped ions.
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It must be noted that the pore-fluid is not pure water but contains dissolved ions due to
the material composition and depending on the environment, such as concrete pavements
saturated with deicing salts. According to Zhao et al., the large disjoining pressures
generated by trapped ions cause material damage. This theory, based on electrokinetics,
predicts pressures up to 30 MPa . Durability of a material is determined by the interplay
of attack (due to external factors—in our case, temperature) and resistance (the material
characteristics). While this electrokinetic theory focuses on the attack, an analysis of the
resistive aspect of the material to freeze–thaw loads is required. In other words, what are
the pressures required for damage of the cementitious material? To provide insight into this
question, we use a micromechanical approach [9] to estimate the range of critical pressures
required for damage of mortar specimens. The paper is structured as follows: First, we
review the methodological basis of the model in Section 2. In Section 3, we develop the
model, and in Sections 4 and 5 we discuss the model predictions and implications of the
study presented in this paper. Finally, we summarize the paper and provide conclusions in
Section 6.

2. Fundamentals of Continuum Micromechanics

Cementitious building materials are heterogeneous across the scales. Concrete, the
most common cementitious material, is made by mixing coarse aggregates (e.g., basalt,
limestone) of size > 4 mm in a mortar matrix. The mortar also has a heterogeneous material
structure consisting of fine aggregates (e.g., sand) with sizes in the range of 0.125 –4 mm
that are embedded in a cement matrix. Cement paste is the binder material and is in
itself also heterogeneous, containing partially saturated pores with sizes ranging from a
few nanometers to millimeters in size. The behavior of a heterogeneous material such
as concrete or mortar can be described using the concept of a representative elementary
volume (REV). An REV describes a volume (length scale L) containing heterogeneities
(length scale l). The size of the REV is chosen such that l << L. As the name suggests, the
REV represents the averaged behavior of the heterogeneous microstructure within the REV.
Using the concept of an REV, the properties of heterogeneous materials such as concrete or
mortar can be homogenized, i.e., if the microscale properties of the individual constituents
in the REV are given, the corresponding macroscale property can be obtained. This allows
for a homogenization of material properties across multiple scales using appropriate
representative elementary volumes across the scales. The homogenized property is also
often denoted as an effective property of the REV. In general, the stiffness (henceforth, the
fourth order tensor of elasticity will be called the stiffness) of a material with n different
components with n different stiffness properties can be estimated using the following
expression [10,11]:

Ce f f =
n

∑
i=1

φiCi : Ai (1)

In the above expression, Ce f f is the overall, homogenized and effective stiffness of the
material; Ci is the stiffness; and φi the volume fraction of ith component. The tensor Ai
is the so-called localization tensor that specifies geometrical information corresponding
to the ith material component. The localization tensor can be approximated by several
methods [11,12]. Classical continuum micromechanics schemes can be broadly divided
into methods that characterize materials either with or without a clear host-inclusion
morphology. In case of a clear matrix inclusion morphology, the homogenized stiffness
tensor can be written as follows:

Ce f f = Ch +
ninc

∑
i=1

ni,geo

∑
j=1

(Ci −Ch)φj : Ai,j : F (2)

Ai,j =
(
I+ Pj : (Ci −Ch)

)−1 (3)

Pj = Sj : C−1
h (4)
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The subscript h denotes the host material. The subscript i denotes the inclusion
type, i.e., the inclusion that has a unique property different to that of the host. Inclusions
themselves, having a common stiffness, can have different geometries. This is denoted
by the subscript j. Thus, ninc is the total number of inclusions having a unique stiffness.
ni,geo is the number of different inclusion geometries that belong to the ith inclusion. Pj
is the polarization tensor and Sj is the Eshelby tensor. The simplest approximation when
computing the localization tensor ignores the interaction of the inclusions with each other.
The tensor F characterizes the interaction. If there is no interaction (i.e., according to the
Dilute-Scheme), then

F = I (5)

One of the classical methods in which interactions between the inclusions can be
approximately taken into account is the Mori–Tanaka scheme [13,14]. Here, the tensor F is
defined as follows:

F =

[
φhI+

ninc

∑
i=1

ni,geo

∑
j=1

φj : Ai,j

]−1

(6)

In case there is no clear host-inclusion morphology, the cascade micromechanics
model [10], which replicates the self-consistent scheme asymptotically, can be applied.
While the Mori–Tanaka scheme is explicit, the cascade micromechanics model has to be
iteratively computed. At the asymptotic limit, the self-consistent scheme is recovered.

Cn+1
e f f =

ninc

∑
i=1

ni,geo

∑
j=1

Ciφj : An
i,j :

(
ninc

∑
i=1

ni,geo

∑
j=1

φjAn
i,j

)−1

(7)

An
i,j =

(
I+ Pj :

(
Ci −Cn

e f f

))−1
(8)

Pj = Sj :
(
Cn

e f f

)−1
(9)

3. Multiscale Model for Freezing Mortar

Having briefly discussed the fundamentals of continuum micromechanics in the pre-
vious section, we apply the continuum micromechanics techniques for homogenization
in conjunction with fracture mechanics to estimate the critical pressure that leads to mi-
crocrack initiation in saturated freezing mortar specimens. To this end, the following
ingredients are required: (a) a model to simulate microcracking of mortar; (b) a model
to describe the evolution of stiffness of mortar as a function of the ice saturation degree;
(c) a poromechanics model of partially frozen mortar. Combining the aforementioned
models, we obtain a model for microcracking of partially frozen mortar due to internal
pressure in the microcracks. Figure 1 shows the multiscale approach used for modeling
microcracking of freezing mortar. The specific details of the approach will be discussed in
the following subsections.



Appl. Mech. 2022, 3 1291

2w
a

a
2a

Mortar Specimen

 < 10cmL

Microcrack

Microcracks in Mortar 

L <  0.5mm

ice
liquid

ThawingFreezing

ice

liquid

Figure 1. Schematic of the multiscale approach for modeling freezing mortar showing the choice of
the representative elementary volumes. Also shown is the ellipsoidal microcrack that is filled with
partially saturated liquid-ice mixture (light blue color denotes ice and dark blue color denotes the
liquid phase), and the representative elementary volume of partially saturated liquid-ice mixture
during freezing and thawing.

3.1. Microcracking of Mortar

The resistance to fracture of mortar is governed by the tensile strength and compressive
strength of the material. Damage of mortar subjected to tensile or compressive loadings
starts with microcrack propagation and, later, coalescence of these microcracks that lead to
crack localization. Recently, a multiscale micromechanics model for fracture of concrete and
mortar was proposed in [9]. According to this approach, tensile and compressive failure
of the mortar and concrete specimens is modeled in terms of the microcrack initiation
and growth that is governed by linear elastic fracture mechanics [15,16]. Assuming that
there are three orthogonal families of microcracks [9], which are oblate spheroidal in shape
(i.e., penny shaped), microcrack initiation and stable microcrack propagation of the jth
microcrack family are given by

Gj − Gcj ≤ 0 (10)

ε̇j ≥ 0 (11)

(Gj − Gcj)ε̇j = 0 (12)

Here, Gj is the energy release rate associated with the propagation of the jth microcrack
family. Gcj is the critical fracture energy release rate and is a material property. εj is the
microcrack density parameter defined as εi = Nja3

j , where Nj is the total number of
microcracks of the family j per unit volume and aj is the microcrack size—which, assuming
penny-shaped ellipsoidal microcracks, denotes the radius of the microcrack. The fracture
energy release rate for the propagation of the jth microcrack family is given as

Gj = −
∂Ψ
∂εj

= −1
2
E :

∂C
∂εj

: E (13)
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Here, Ψ is the potential energy. The critical fracture energy release rate is given
by [9,16]

Gcj =
2π

3
g f

aj
(14)

where g f is the microscopic fracture energy release rate. According to Equation (13), given
an applied strain E, microcrack growth can be simulated if we have a formula for C (which
is the stiffness of the material) as a function of the crack-density parameter εj. Using
continuum micromechanics, we can approximate the stiffness of mortar with distributed
microcracks as follows:

C = Cint

(
I−

3

∑
j=1

φj : Aj : F
)

(15)

F =

[
(1−

3

∑
j=1

φj)I+
3

∑
j=1

φjAj

]−1

(16)

Aj =
(
I+ Pj : (−Cint)

)−1 (17)

Pj = Sj : C−1
int (18)

In the above equations, φj = Nj
4
3 πa3

j X denotes the total volume fraction of the
microcrack family j. X is the aspect ratio andNj is the number of cracks per unit volume of
the jth microcrack family. In terms of the crack density parameter, we can write this also as
φj =

4π
3 εjX. Let φcr = ∑3

j=1 φj be the total microcrack volume fraction in mortar. The initial
microcrack volume fraction is φcr0. The theoretical stiffness of the ‘intact’ mortar material
‘without microcracks’ is denoted as Cint.

In order to simulate microcrack growth, an estimation of the initial microcrack parame-
ters (geometry and volume fraction), the theoretical stiffness of mortar without microcracks
Cint and the microscopic fracture energy release rate g f is required. These parameters need
to be either assumed (ad-hoc) or if possible calibrated using experimental data. In general,
it is also preferable to calibrate the parameters at least partially using easily available
experimental measurements. To this end, we use the measurements of Young’s modulus
and the compressive strength of two different mortar mixes. The details of the mortar
compositions are given in Table 1. Both compressive strength and Young’s Modulus were
measured on cylindrical specimens with a diameter of 10 cm and a height of 20 cm. The
compressive strength was determined according to DIN EN 12390-3:2009. The resulting
values were then used as input values for determination of Young’s Modulus according
to DIN EN 12390-13:2013, where one-third of the compressive strength is applied to the
specimens over the course of three repeating loading cycles. The experimental data and the
calibrated quantities are listed in Table 1.

In Table 1, the provided microcrack size and microcrack aspect ratio are obtained from
thin-slice microscopy of concrete slices. These values should be interpreted in an averaged
sense and are only representative of the microcrack state. The experimental details of
the microcrack geometry characterization will be presented in a subsequent publication
and are beyond the scope of this paper. Within the context of this paper, these values can
be interpreted as model assumptions. Omitting these details will not in any way affect
the main conclusions and the presented model methodology. Finally, Cint is a theoretical
value and is not easy to compute. This is also a quantity that cannot be experimentally
measured. If an accurate value for φcr0 is available, Cint can be computed. One option to
compute Cint is using multiscale homogenization [17]. Using multiscale homogenization,
we obtain a Young’s Modulus of 35.1 GPa and 48.4 GPa for M-40 and M-55, respectively,
at complete hydration. Please note that this is a theoretical estimate and further detailed
analysis and research is required for an accurate characterization of this quantity. Now that
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we have a theoretical estimate, we can easily compute the necessary microcrack density
that needs to be introduced into the mortar Cint to obtain the experimentally measured
Young’s Modulus. Having developed a model for the stiffness of mortar, subsequently,
microfracture mechanics can be used to simulate damage. The macroscopic stress–strain
behaviors of both mortar mixes are provided in Figure 2.

Table 1. Experimental data for model calibration.

Property M-40 M-55

Cement type CEM I

Water-to-Cement ratio (w/c) 0.4 0.55

Cement content 680 kg/m3 560 kg/m3

Water content 272 kg/m3 308 kg/m3

Fine aggregate content 1360 kg/m3 1312 kg/m3

Young’s Modulus 34.5 GPa 30.15 GPa

Compressive strength 78.90 MPa 54.9 MPa

Microcrack size 100 µm

Microcrack aspect ratio (w/a) 0.1

Calibrated Model Parameters

φcr0 0.073 [-] 0.025 [-]

g f 0.22 N/m 0.09 N/m

-20

-0.006 -0.004 -0.002 0

8.2 MPa

-78.9 MPa

-54.9 MPa

4.5 MPa

0.002

-40

Strain [-]
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S
tr

es
s 

[M
P

a]

-60

-80

0

Figure 2. Micromechanics model calibration using data from compressive strength measurements
for two different concrete compositions: w/c = 0.40 and w/c = 0.55. Also shown is the predicted
tensile strength.

3.2. Stiffness of Partially Frozen Mortar

As mortar freezes, the stiffness of mortar also changes. In order to model the stiffness
of mortar as a function of the ice saturation, we use the Mori–Tanaka method. During
freezing of a liquid in a microcrack, the freezing front approaches the center from the
surface to the interior. During thawing, the melting front starts from the exterior to the
interior. To approximate this mechanism, we can model the stiffness evolution as a function
of the ice saturation during freezing as follows:

Cl→s = Cs + (Cl −Cs)φl : Al : Fl→s (19)
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Fl→s = [φsI+ φl : Al ]
−1 (20)

where Cl→s denotes the stiffness of a freezing liquid, Cl = 0 is the stiffness of the liquid
and Cs is the stiffness of the solid ice. φs is the ice-saturation degree and φl is the liquid-
saturation degree. We assume fully saturated microcracks such that φs + φl = 1. In case
of partial saturation, this expression has to be modified to accommodate the unsaturated
volume. During thawing, the host material is assumed to be the liquid phase and the
inclusion the ice phase. In this case,

Cl←s = Cl + (Cs −Cl)φs : As : Fl←s (21)

Fl←s = [φlI+ φs : As]
−1 (22)

The solid ice is assumed to be isotropic with a Young’s modulus of 10 GPa and a
Poisson ratio of 0.3. Having specified the evolution of the properties of the saturated liquid
during freezing and thawing, we can now model the evolution of the mortar stiffness
during freezing and thawing. We assume that during freezing and thawing the microcracks
are saturated with liquid and, hence, can be interpreted as inclusions in a mortar matrix.
Analogous to the expressions presented in Equation (15), we obtain

C = Cint +
3

∑
j=1

(Cl↔s −Cint)φj : Aj : F (23)

F =

[
(1−

3

∑
j=1

φj)I+
3

∑
j=1

φjAj

]−1

(24)

Aj =
(
I+ Pj : (Cl↔s −Cint)

)−1 (25)

Pj = Sj : C−1
int (26)

Having modeled the stiffness of mortar with microcracks whose properties evolve
during freezing and thawing, we can compute the internal critical pressure required for
microcrack growth. To this end, a micro-poromechanical model of partially saturated
mortar is required. This is the topic of discussion in the next subsection.

3.3. Pressure Required at Microcrack Initiation

According to micro-poromechanics [16,18], the fracture energy release rate of a fluid-
saturated porous material with an internal pore pressure Pj is given as

Gj = −
∂Ψ
∂εj

= −1
2
E :

∂C
∂εj

: E+
P2

j

2
∂N−1

∂εj
+ Pj

∂B
∂εj

: E ≤ Gcj (27)

The quantities B and N are poroelastic constants [16]. The expressions ∂N−1

∂εj
and ∂B

∂εj

can be written as follows:

∂N−1

∂εj
= −1 : Dint :

∂C
∂εj

: Dint : 1 (28)

∂B
∂εj

= − ∂C
∂εj

: Dint : 1 (29)

In the above expressions, 1 is the second-order unit tensor. Simplifying the above
equations, the expression for the pressure in the microcracks can be obtained at the state
when the microcracks initiate, i.e., Gj = Gcj:
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Pj =

√√√√ −4πg f

3aj(1 : D : ∂C
∂εj

: D : 1)
(30)

Mortar Microcracks in mortar Partially frozen ice

Pj

Figure 3. Illustration depicting partially frozen ice generating an internal pressure Pj, which leads
to microcrack growth. The blue colored inclusions correspond to microcracks that are filled with
partially saturated ice and the grey color corresponds to the mortar matrix material. The arrows
illustrate the expansive pressure acting on the mortar matrix.

Figure 3 shows an illustration of the internal pressure acting on the mortar matrix.
In Equation 30, Pj is the pressure inside the jth microcrack family at microcrack growth
initiation. It can be seen that this pressure depends on the microcrack size, the microscopic
fracture energy g f , the compliance of partially frozen mortar D and the rate of change of
the stiffness of partially frozen mortar as a function of the non-dimensional microcrack
density parameter. It must be noted that the compliance in Equation (30) is the compliance
of the partially frozen, microcracked mortar. This compliance is different to the compliance
in Equations (29) and (28), which correspond to that of the theoretical intact material.
During simplification, this term is eliminated. The aim of this contribution is to estimate
the pressure required for microcrack initiation. Using Equation (30), these critical values
can be estimated. This pressure we denote as the freeze–thaw resistance and can also be
interpreted as the freeze–thaw ’strength’ of the material.

3.4. Air-Pores Reduce the Internal Pressure

If we require the pressure in the pores, we can simplify the Equation (30) assuming just
one family of inclusions with a spherical shape. Moreover, the derivative of the elasticity
tensor with respect to ε can be transformed to the derivative with respect to the pore-size a.
After introducing the simplification, we obtain the following expression:

P =

√
−4πg fN a

1 : D : ∂C
∂a : D : 1

(31)

This equation can explain, using a purely micromechanical approach, that if the size
of the pores increase or if the density of the pores increase, the resistance also increases
irrespective of the ice-saturation content. It must be noted that g f here refers to the
fracture energy release rate associated with the increase in pore-size due to cracking around
the pore.

4. Results

The predictions of the multiscale micromechanics model for the in situ critical pressure
required for microcrack growth is shown in Figure 4. The critical pressure is the same in all
three microcrack families; hence, no differentiation is made with regards to the microcrack
orientation. The microcrack orientation will be relevant in case additional mechanical
loadings or constraints are applied. In this particular case, we assume free expansion of a
mortar REV without any constraints.

At zero ice saturation, i.e., when the microcracks are fully saturated with pure liquid,
the pressure required for microcrack initiation is slightly larger than the tensile strength of
the unsaturated (i.e., empty microcracks) material, depending on the material composition
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(w/c = 0.4 or w/c = 0.55). The mortar with w/c = 0.55 requires a lower critical pressure
build-up in the microcracks to initiate microcrack growth when compared to the mortar
with w/c = 0.4. During freezing, as the ice saturation increases, the critical pressure required
to initiate microcracking also increases in a non-linear fashion, reaching a maximum of
approximately 17 MPa and 24 MPa for w/c = 0.55 and w/c = 0.4, respectively. This is a
consequence of the increasing overall stiffness of the freezing mortar due to ice formation.
During thawing, as soon as the ice saturation reduces infinitesimally, there is a drastic
drop in the critical pressure required for microcracking. This drop in the critical pressure
is also a consequence of the drop in the overall stiffness of freezing mortar due to the ice
melting within the microcracks. As soon as the ice starts melting within the microcracks,
the melting front proceeds from the microcrack surface inward. As the liquid phase that
forms an interface between the partially frozen ice and mortar does not posses stiffness,
the overall stiffness drops drastically. During thawing, until full recovery of the liquid
phase in the microcrack, the critical pressure remains constant. Shown in a shaded green
background is the predictions of the electrokinetic theory [7] where the pressure generated
is attributed to nanofluidic salt trapping.

Ice Saturation [-]

w/c 0.40

w/c 0.55

Pressures predicted by 
electrokinetic theory

10

20

Micromechanics Model
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Figure 4. Pressure in the microcracks required for initiation of microcrack growth (damage) according
to the theoretical predictions of the micromechanics model for two different mortar compositions. The
dotted horizontal lines denote the tensile strength of the unsaturated (i.e., empty microcracks) mortar
specimens. The green region shows the range of pressures predicted by the multiscale electrokinetic
theory [7].

5. Discussion

The following discussion mainly pertains to the theoretical estimate of the critical
pressure shown in Figure 4. The predictions of the model are within the range of pressures
predicted by the electrokinetic theory [7]. It can be seen that the material becomes ‘stronger’
when frozen, i.e., the critical pressure required for microcracking when the microcracks are
completely frozen is approximately three times the value when the microcracks are in a
thawed state. Furthermore, the critical pressure is path-dependent. During freezing, higher
critical pressures are required. It can be concluded that the material is more susceptible to
damage during thawing rather than during freezing. This could also potentially explain
why the hydraulic pressure theory that attributes damage as a consequence of expansion
of water during freezing has been discarded. Evidently, when frozen, the material has a
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higher resistance to damage as a result of the increased stiffness from ice. Finally, the critical
pressure required for microcrack initiation at zero ice saturation is slightly higher than
the theoretical tensile strength of the material (when the microcracks are not saturated).
This is similar for both mortar types. Based on this observation, increasing the tensile
strength should increase the freeze–thaw durability of the material. A holistic simulation of
damage due to freeze–thaw, taking into account also the influence of temperature and ion
composition, requires coupling the electrokinetic model with the micromechanical model
presented in this paper. A hysteretic critical pressure curve will be obtained as the number
of freeze–thaw cycles increase if the microcrack sizes are updated.

Before we conclude, we would like to briefly discuss the major simplifying assump-
tions considered in the model. For the sake of keeping the model simple, the microcrack
network in the mortar material is assumed to be represented by three orthogonal families
of ellipsoidal geometries. Ellipsoidal geometries have been assumed so that the analytical
expressions [19] for the Eshelby tensors can be used for the homogenization procedure.
As the stiffness is available analytically, computation of the derivative of the fourth-order
tensor with respect to the microcrack density becomes easier. In this paper, the complex-
step derivative is used to compute the derivatives. Secondly, the theoretical estimate of
the stiffness of mortar without microcracks is assumed to be obtained from a multiscale
model. The accuracy of this estimate can be improved by using data from hydration mod-
eling. In addition to the aforementioned major assumptions, minor model assumptions
such as the Mori–Tanaka model for the stiffness of ice-saturated liquid–solid phase can
be replaced by a more accurate model. Moreover, the geometry of the microcracks can be
considered as a distribution instead of averaged values. Finally, as we use the concept of
the REV for the analysis, the spatial homogeneity requires that the model be implemented
at the Gauss-Point level of a finite element code for taking into account gradients. Such a
multiscale analysis can provide quantitative predictions of the critical pressure required
for microcracking depending on the temperature profile. The accuracy of the model can
further be improved by considering partially saturated conditions for the liquid phase. A
holistic analysis of the influence of temperature and ion composition in the pore-fluid on
damage is possible by coupling a kinetics model with the presented multiscale model.

6. Conclusions

The theoretical critical pressure required for freeze–thaw induced damage in mortar
has been analyzed with a multiscale micromechanics model using the framework of con-
tinuum micromechanics, microfracture mechanics and micro-poromechanics. The main
conclusions of the analysis are listed below:

• Multiscale modeling using a combination of micromechanics, fracture mechanics and
poromechanics provides a deeper insight into the mechanism of damage and failure
of cementitious materials such as concrete and mortar during freezing and thawing.

• All parameters in the model are physical and can be measured experimentally.
• Microcrack initiation occurs when the internal pressure is above the unsaturated

tensile strength of the material.
• The critical pressure for microcrack initiation depends on path history, i.e., for the

same state of ice saturation, higher pressures are required for microcrack growth
during freezing than during thawing.
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