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The analysis of stochastic electromagnetic fields is gaining 
more and more relevance due to the exponential growth of 
complex high-performance electronic systems. Stochastic 

electromagnetic fields are characterized by auto and cross-corre-
lation functions which can be obtained from experimental data. 
Different methods have been proposed for the numerical propaga-
tion of correlation information within the near-field region of a sto-
chastic radiator. As a guideline for general geometries, near-field 
Green’s functions combined with the method of moments can be 
used for the numerical estimation of field correlations in the near-
field surrounding a device under test. In the ray-tracing limit, a 
more insightful propagation method based on the Wigner transfor-
mation has been devised, through which it is also possible to esti-
mate the propagation of stochastic fields in the near-field. In this 
paper we report on the implementation of the proposed guide in 
the open source Python programming language, accessible 
through the IEEE Standard Association repository to ensure the 
dissemination of the standard and encourage the development of 
new versions.

Index Terms: Stochastic Field Emission, Near-Field Scan, Auto-
correlation Function, Wigner Transform.

Introduction

The growth of internet-enabled intelligent infrastructures 
requires complex, high-performance and highly integrated 
electronic systems. The amount of unwanted electromagnetic 
interference (EMI) grows with the expected increase in clock 
speed, operating frequency, and circuit density. Radiated EMI 
is caused by fast transistors due to switching and information 

transfer processes within electronic devices. EMI can be 
described by stochastic electromagnetic (EM) fields that typi-
cally originate from a sufficiently large number of statistically 
independent processes that cannot be easily predicted [1]. The 
characteristics of stochastic EM sources are a wide spatial 
extension, fast and almost random transitions in the time domain 
and a low average power of the local radiated fields [2]. Accu-
rate modeling of stochastic EM fields is essential to improve 
the design of electronic devices, taking into account their sus-
ceptibility to EMI [3]. Traditionally, potential sources of EMI are 
evaluated in the frequency domain by assuming static emis-
sions. A widely used technique for characterizing emissions is 
near-field scanning (NFS) due to its high measurement accura-
cy and reliability [4], [5]. This approach involves the measure-
ment of radiated emissions to estimate the currents flowing 
within the circuit and extract the dipole moments necessary for 
the reconstruction of the respective sources [6-9]. Despite its 
effectiveness, this technique is not valid for multifunctional 
devices with different operating modes and digital broadband 
receivers. Therefore, a new approach is needed for a standard-
ization procedure which takes full account of time-dependence 
and uncertainty. Characterization of noisy EM fields is based on 
the assessment of the statistics of the EM field source distribu-
tion using auto and cross-correlation functions or spectra [10]. 
A full characterization of stochastic EM fields also requires 
steps to reduce the complexity of handling the amount of data 
to be collected and processed [11], [12].

History and Scope

Starting from these premises, the European Cooperation in Sci-
ence and Technology (COST) action IC1407 ’Advanced charac-
terization and classification of radiated emissions in densely 
integrated technologies’ (ACCREDIT) has taken steps to fully 
address the challenges posed by the stochastic nature of 
broadband radiated EMI in current and future complex multi-
functional systems, through an international research program. 
This program is specifically aimed at creating efficient behav-
ioral models of propagation and interaction of stochastic fields 
starting from experimental methods. These methods involve 
measurements for EMI in the time or frequency domain using 
broadband near-field probes [13]. To this end, COST action IC1407 
has played a key role in intensifying a broad collaboration 
between various researchers of universities and industries that 
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involves the study of stochastic EM fields. Techniques pro-
posed in existing standards do not facilitate an accurate pre-
diction of the evolution of the spectral power density in the 
vicinity of a device under test (DUT) if the radiated emission 
are due to sources with arbitrary degrees of correlation. The 
collaboration within COST action IC1407 triggered an effort 
towards standardization of characterization techniques for 
radiated stochastic EM fields, taking measurement and subse-
quent modeling techniques into account. This effort led to the 
formation of a working group within the IEEE Standards Associ-
ation: P2718 - Guide for Near Field Characterization of Uninten-
tional Stochastic Radiators. The goal of the P2718 working 
group was to propose a novel approach, which is able to esti-
mate the propagation of stochastic fields emitted by statistical 
EM sources and which takes full account of field correlations. 
The aim was to write a useful guide to assist near and far-field 
predictions, source reconstruction, and emission source 
microscopy. This new approach is based on the propagation of 
correlation information of the near field data, measured by NFS 
techniques, using a propagator based on Green’s functions or 
the so-called Wigner transformation, both also investigated 
in [14]. The latter method provides a spatial representation of 
the waves in phase space of position and direction of propaga-
tion [15], allowing one to obtain an accurate and precise esti-
mate of the propagation of stochastic fields. The Green’s-func-
tion-based approach also allows for near and far-field consid-
erations of the evolved energy density and can be implemented 
for numerical Green’s functions, extracted for more complex 
geometries. The aim of these works was not limited to an 
approach that goes beyond the limitations of previous models 
but also provides an open source automatic algorithm capable 
of assessing the propagation of stochastic EM fields in the 
near and far-field with improved accuracy, starting from experi-
mental data obtained in the near-field. While the information 
content of EM near-field correlation matrices can be very rich, 
the correlation matrix evolves into toeplitz structure in the far-
field [16]. Data reduction on acquired and computed near-field 
correlation data can be performed for example by applying 
principal component analysis [12], [17].

The Developed Guide

The measurement of stochastic fields in a transverse plane 
requires the measurement of the field correlation over a geo-
metrical plane close to the DUT’s surface, as illustrated in Fig-
ure 1. In order to sample the field correlations, two identical 
moving near-field probes that independently scan across this 
plane are required. Due to the unavailability of a stable phase 
or time reference for synchronization, a single probe measure-
ment is not possible and it is necessary to perform the mea-
surement using two probes. The relative position of the two 
probes is important to determine the correlation length as the 
decay of the correlation can be seen in the correlation matrix 
as the probe moves away from the strong field sources on the 
board. The scanning resolution required depends on the 
probe’s spatial resolution and sensitivity and the receiver 

dynamic range. The field amplitude is sampled in the time 
domain using a high-speed digital oscilloscope or similar 
device and can then be converted to the frequency domain by 
Fast Fourier Transformation. The location of the probes needs 
to be also recorded by the data acquisition system. The probe 
position can be found from the actuator encoders or a laser 
tracking system could be incorporated. Near-field scanning is 
sensitive to the position accuracy because the spatial distribu-
tion can rapidly vary. Errors caused by imprecise sampling and 
their correction have been studied by several authors for deter-
ministic fields [14], [18]. The scanner position accuracy should 
be at least 1/10-th of the smallest probe dimensions. Keeping 
the probes stationary during the sampling period is also essen-
tial to maximize the accuracy. Thus, the probes should be only 
moved between sampling periods. The velocity profile of the 
probe movement should be such that this is ensured (i.e. there 
should be no mechanical vibrations induced by the scanning 
process). Also mechanical rigidity of the scanner structure and 
position repeatability should be taken care of. The motor and 
control system adopted for the scanner movements should be 
also be checked in terms of radiated emissions in the adopted 
frequency band prior to scanning, to avoid any interference 
with the DUT. In case of emissions having stochastic nature, 
where some unpredicted and random emissions would occur, 
we can substitute the VNA by a digital oscilloscope with ade-
quate sampling rate and channel memory, so that frequency 
domain data can be achieved by a FFT. A good practice might 
be to perform a complete preliminary sampling procedure with 
the DUT switched off, to check for residual environment and 
motor emissions affecting the noise floor. 

Fig. 1. Near field scanning using two different probes. The experiment 

set up includes the reference and the scanning probes connected by 

amplifiers to the 8GHz KEYSIGHT DSOS804a Digital Oscilloscope. 

The oscilloscope is able to capture all the on board events and processes 

of significance from each probe with 20GSa/s max sample rate and 50 

Mpts/channel of standard memory.

In the next chapter, we will go deeper into the implemented 
algorithm.
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Fig. 2. Correlation functions at 1 cm from the planar surface. On the left, the full size correlation 
function, on the right, the lite version after data reduction, are reported. 
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Open Source Code

Following the theoretical formulation [19] of the model and 
experimental comparison, we moved towards the development 
of the open source algorithm capable of evaluating the propaga-
tion of stochastic EM fields in the far field starting from experi-
mental data through the Wigner Transform approach [19], [20]. 
The code was written entirely in the open source programming 
language Python (version 3.9.7) in the Jupyter Notebook inter-
active development environment. The notebook, in addition to 
reporting the lines of code with the relative comments, shows 
the theoretical formulation from which the algorithm was 
obtained. This allows to understand both the meaning of the 
execution cells as well as the proposed analytical procedure. 
The notebook in question reports an example of evaluation of 
the propagation of stochastic fields generated by an extended 
planar source. In particular, starting from the measurements of 
the fields H at a distance of 1 cm from the source, we estimat-
ed the propagation of the stochastic fields at a distance of 10 

cm from the source itself. Following the loading of all the nec-
essary libraries, the measurements of the magnetic fields H at 
3 GHz at 1 cm from the source are loaded into the calculation 
environment. The dataset consists of an array of complex 
floats, from which the autocorrelation matrix (ACM) is calculat-
ed at a distance of 1 cm. To calculate the ACM from the mea-
surement data, a machine with at least 16 GB of RAM is 
required. To make simulation possible for any machine and also 
speed up execution times, the ACM is already supplied at a dis-
tance of 1 cm from the source. Therefore it is enough to simply 
import it, without having to calculate it. If you are still interest-
ed in calculating it, just execute the relative execution cell. Fur-
thermore, since the ACM is 1 cm in size (60,60,60,60), to reduce 
the computational cost of the entire simulation, the data reduc-
tion of the dataset has been performed. The reduction foresees 
the decrease of the resolution of the ACM without loss of the 
information content, passing from a matrix of the dimension of 
(60,60,60,60) to the dimension of (20,20,20,20). For the visualiza-
tion of the data, instead, quadratic interpolation was carried 
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Fig. 3. Wigner function at heights of 1 cm (on the left) and 10 cm (on the right) obtained from the 
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out to increase the resolution again at the moment of visualiza-
tion. This allows to greatly minimize the calculation times and 
still obtain high resolution results. Although it is possible to cal-
culate a reduced version of the ACM, the notebook offers the 
freedom to start the simulation using the maximum size ACM. In 
this case, however, the machine must have at least 16 GB of 
RAM. Otherwise, it is possible to run the code even on 
machines with RAM of less than 8 GB. In Figure 1, the full size 
(left) and reduced (right) ACM graphs are shown. The mathe-
matical expression by which the ACM was obtained is defined 
as follows (1):

           (1)

where < H>  is an appropriate ensemble average, H the magnetic 
field, xa and xb two different spatial locations and t the time 
from 0 to T. For more details, refer to [19]. Following the evalua-
tion of the ACM at 1 cm from the source, an appropriate 
change of variables with respect to the variables x and y of the 
ACM was performed. Subsequently, the Wigner transform (WT) of 
the ACM at 1 cm was calculated. The WT is obtained as follows:

          (2)

where Γz is the representation of the CF at frequency domain 
(by the Fourier transform):

          (3)

where k is the constant wavenumber coordinates (x,s) related 
to  (xa,xb) by the transformation:

          (4)

so that x is the average position and s is the difference in posi-
tions of a pair of measured fields. More explicitly, s = (sx,sy) 
represents, in the NFS of planar sources, the in-plane displace-
ment (for fixed z) between measurement positions. The conju-
gate momentum vector p = (px,py) takes the geometrical mean-
ing of the components of the wavevector parallel to the source 
plane. The WT of the ACM at 1 cm is shown in Figure 3. For the 
calculation of the propagation of the stochastic fields at a dis-
tance of 10 cm from the source, on the other hand, the Froben-
ius-Perron approximation relative to the WT of the ACM at 1 cm 
was performed. More specifically, individual tangent vector 
components of the in-plane magnetic field have been measured 
and used to guide and verify the approximate transport equations. 
Starting from the momentum space, the propagation of ACM along 
the normal direction to the source is defined as follows:

          (5)

where

          (6)

The Frobenius Perron transport equation for the WT can then 
be found by inserting (5) into (2)

          (7)

where

          (8)

and 1 is the unit dyadic. This procedure made it possible to 
obtain the WT of the ACM at a distance of 10 cm. In Figure 3, 
the WT at 1 cm (left) and the WT at 10 cm (right) are shown. 
After an appropriate change of variables with respect to the 
variables x and y, as previously done for the ACM at 1 cm, 
the inverse Wigner Transform of the propagated ACM has 
been obtained. In this way, the propagation of the stochastic 
EM fields is obtained at a distance of 10 cm starting from the 
measurement data of the fields at 1 cm from the planar 
source. Figure 4 shows the ACM at 1 cm (left) obtained from 
the experimental data and the ACM at 10 cm (right) estimat-
ed following the procedure just described. Using a Green’s 
function based propagator for correlation functions or spec-
tra, we can accurately compute the evolution of the sto-
chastic EM field in near and far-field. The propagator can be 
formulated based on analytical or numerical Green’s func-
tion, both in frequency or time domain [21], [22]. These cir-
cumstances make this method very versatile in different 
application scenarios. 

Fig. 4. Estimated correlation function at 10 cm from the source. 

EM field correlations between the observation points xa and xb 
are obtained for field correlations evaluated on a surface con-
taining the EM source distribution at coordinates xa' and xb' . 
The field dyadic correlation spectrum ΓF can be obtained using 
the source-field dyadic Green’s function GFJ as {10}, [21}: 

          (9)

Here, ΓJ denotes the source current correlation dyadic, 
obtained from

         (10)

𝒞𝒞𝑧𝑧(𝐱𝐱𝑎𝑎, 𝐱𝐱𝑏𝑏; 𝜏𝜏) = [
𝐶𝐶𝑧𝑧𝑥𝑥𝑥𝑥 𝐶𝐶𝑧𝑧𝑥𝑥𝑥𝑥 𝐶𝐶𝑧𝑧𝑥𝑥𝑧𝑧
𝐶𝐶𝑧𝑧𝑥𝑥𝑥𝑥 𝐶𝐶𝑧𝑧𝑥𝑥𝑥𝑥 𝐶𝐶𝑧𝑧𝑥𝑥𝑧𝑧
𝐶𝐶𝑧𝑧𝑧𝑧𝑥𝑥 𝐶𝐶𝑧𝑧𝑧𝑧𝑥𝑥 𝐶𝐶𝑧𝑧𝑧𝑧𝑧𝑧

] = ⟨𝐇𝐇(𝐱𝐱𝑎𝑎, 𝑧𝑧; 𝑡𝑡 + 𝜏𝜏)𝐇𝐇(𝐱𝐱𝑏𝑏, 𝑧𝑧; 𝑡𝑡)⟩
  (1) 

where ⟨⟩ is an appropriate ensemble average, 𝐻𝐻 the magnetic field, 𝑥𝑥𝑎𝑎 and 𝑥𝑥𝑏𝑏 two different spatial 
locations and 𝑡𝑡 the time from 0 to T. For more details, refer to . Following the evaluation of the ACM 
at 1 cm from the source, an appropriate change of variables with respect to the variables 𝑥𝑥 and 𝑦𝑦 
of the ACM was performed. Subsequently, the Wigner transform (WT) of the ACM at 1 cm was 
calculated. The WT is obtained as follows: 

𝒲𝒲𝑧𝑧(𝐱𝐱, 𝐩𝐩) = ∫ e−i𝑘𝑘𝐩𝐩⋅𝐬𝐬𝛤𝛤𝑧𝑧 (𝐱𝐱 +
𝐬𝐬
2 , 𝐱𝐱 −

𝐬𝐬
2) d𝐬𝐬    (2) 

where 𝛤𝛤𝑧𝑧 is the representation of the CF at frequency domain (by the Fourier transform): 

𝛤𝛤𝑧𝑧(𝐱𝐱𝑎𝑎, 𝐱𝐱𝑏𝑏;𝜔𝜔) = ∫ e−𝑖𝑖𝑖𝑖𝑖𝑖∞
−∞ 𝐶𝐶𝑧𝑧(𝐱𝐱𝑎𝑎, 𝐱𝐱𝑏𝑏; 𝜏𝜏)𝑑𝑑𝜏𝜏    (3) 
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�̃�𝛤𝑧𝑧(𝐩𝐩𝑎𝑎′, 𝐩𝐩𝑏𝑏) = ei𝑘𝑘𝑧𝑧[𝑇𝑇(𝐩𝐩𝑎𝑎)−𝑇𝑇∗(𝐩𝐩𝑏𝑏)]�̃�𝛤0(𝐩𝐩𝑎𝑎′, 𝐩𝐩𝑏𝑏)    (5) 

where 

𝑇𝑇(𝐩𝐩) = {√1 − 𝑝𝑝2  for 𝑝𝑝2 ≤ 1
𝑖𝑖√𝑝𝑝2 − 1  for 𝑝𝑝2 > 1

     (6) 

The Frobenius Perron transport equation for the WT can then found by inserting (5) into (2) 
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𝒲𝒲𝑧𝑧(𝐱𝐱, 𝐩𝐩) = ∫ e−i𝑘𝑘𝐩𝐩⋅𝐬𝐬𝛤𝛤𝑧𝑧 (𝐱𝐱 +
𝐬𝐬
2 , 𝐱𝐱 −

𝐬𝐬
2) d𝐬𝐬    (2) 

where 𝛤𝛤𝑧𝑧 is the representation of the CF at frequency domain (by the Fourier transform): 
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approximation relative to the WT of the ACM at 1 cm was performed. More specifically, individual 
tangent vector components of the in-plane magnetic field have been measured and used to guide 
and verify the approximate transport equations. Starting from the momentum space, the 
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𝒲𝒲𝑧𝑧(𝐱𝐱, 𝐩𝐩) = ∫ e−i𝑘𝑘𝐩𝐩⋅𝐬𝐬𝛤𝛤𝑧𝑧 (𝐱𝐱 +
𝐬𝐬
2 , 𝐱𝐱 −

𝐬𝐬
2) d𝐬𝐬    (2) 

where 𝛤𝛤𝑧𝑧 is the representation of the CF at frequency domain (by the Fourier transform): 

𝛤𝛤𝑧𝑧(𝐱𝐱𝑎𝑎, 𝐱𝐱𝑏𝑏;𝜔𝜔) = ∫ e−𝑖𝑖𝑖𝑖𝑖𝑖∞
−∞ 𝐶𝐶𝑧𝑧(𝐱𝐱𝑎𝑎, 𝐱𝐱𝑏𝑏; 𝜏𝜏)𝑑𝑑𝜏𝜏    (3) 

where k is the constant wavenumber coordinates (𝐱𝐱, 𝐬𝐬) related to (𝐱𝐱𝐚𝐚, 𝐱𝐱𝐛𝐛) by the transformation: 

{𝐱𝐱 = (𝐱𝐱𝑎𝑎 + 𝐱𝐱𝑏𝑏)/2
𝐬𝐬 = 𝐱𝐱𝑎𝑎 − 𝐱𝐱𝑏𝑏       (4) 

so that 𝐱𝐱 is the average position and 𝑠𝑠 is the difference in positions of a pair of measured fields. 
More explicitly, 𝐬𝐬 = (𝑠𝑠𝑥𝑥, 𝑠𝑠𝑥𝑥) represents, in the NFS of planar sources, the in-plane displacement (for 
fixed z) between measurement positions. The conjugate momentum vector 𝑝𝑝 = (𝑝𝑝𝑥𝑥, 𝑝𝑝𝑥𝑥) takes the 
geometrical meaning of the components of the wavevector parallel to the source plane. The WT of 
the ACM at 1 cm is shown in Figure [fig2]. For the calculation of the propagation of the stochastic 
fields at a distance of 10 cm from the source, on the other hand, the Frobenius-Perron 
approximation relative to the WT of the ACM at 1 cm was performed. More specifically, individual 
tangent vector components of the in-plane magnetic field have been measured and used to guide 
and verify the approximate transport equations. Starting from the momentum space, the 
propagation of ACM along the normal direction to the source is defined as follows: 

�̃�𝛤𝑧𝑧(𝐩𝐩𝑎𝑎′, 𝐩𝐩𝑏𝑏) = ei𝑘𝑘𝑧𝑧[𝑇𝑇(𝐩𝐩𝑎𝑎)−𝑇𝑇∗(𝐩𝐩𝑏𝑏)]�̃�𝛤0(𝐩𝐩𝑎𝑎′, 𝐩𝐩𝑏𝑏)    (5) 

where 

𝑇𝑇(𝐩𝐩) = {√1 − 𝑝𝑝2  for 𝑝𝑝2 ≤ 1
𝑖𝑖√𝑝𝑝2 − 1  for 𝑝𝑝2 > 1
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The Frobenius Perron transport equation for the WT can then found by inserting (5) into (2) 

𝒲𝒲𝑧𝑧(𝐱𝐱, 𝐩𝐩) = ∬ 𝒢𝒢𝑧𝑧(𝐱𝐱, 𝐩𝐩, 𝐱𝐱′, 𝐩𝐩′) ⋅ 𝒲𝒲0(𝐱𝐱′, 𝐩𝐩′)d𝐱𝐱′d𝐩𝐩′    (7) 
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2
𝛿𝛿(𝐩𝐩 − 𝐩𝐩′)𝟏𝟏 ⋅

⋅ ∫ ei𝑘𝑘(𝐱𝐱−𝐱𝐱′)⋅𝐪𝐪+𝑖𝑖𝑘𝑘𝑧𝑧(𝑇𝑇(𝐩𝐩+𝐪𝐪/2)−𝑇𝑇∗(𝐩𝐩−𝐪𝐪/2))d𝐪𝐪
     (8) 

and 1 is the unit dyad. This procedure made it possible to obtain the WT of the ACM at a distance 
of 10 cm. In Figure [fig3], the WT at 1 cm (left) and the WT at 10 cm (right) are shown. After an 
appropriate change of variables with respect to the variables 𝑥𝑥 and 𝑦𝑦, as previously done for the 
ACM at 1 cm, the inverse Wigner Transform of the propagated ACM has been obtained. In this way, 
the propagation of the stochastic EM fields is obtained at a distance of 10 cm starting from the 
measurement data of the fields at 1 cm from the planar source. Figure 2 shows the ACM at 1 cm 
(left) obtained from the experimental data and the ACM at 10 cm (right) estimated following the 
procedure just described. Using a Green’s function based propagator for correlation functions or 
spectra, we can accurately compute the evolution of the stochastic EM field in near and far-field. 
The propagator can be formulated based on analytical or numerical Green’s function, both in 
frequency or time domain. These circumstances make this method very versatile in different 
application scenarios.  
 

 
Fig. 4. Correlation function at height of 1 cm from the source obtained from the measurement data 
(on the left), and the estimated one at height of 10 cm (on the right). 
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Fig. 7. Spatial energy distribution at z'=100 mm by the method of moments. 

EM field correlations between the observation points 𝑥𝑥𝑎𝑎 and 𝑥𝑥𝑏𝑏 are obtained for field correlations 
evaluated on a surface containing the EM source distribution at coordinates 𝑥𝑥𝑎𝑎′ and 𝑥𝑥𝑏𝑏′. The field 
dyadic correlation spectrum 𝛤𝛤F can be obtained using the source-field dyadic Green’s function 𝐺𝐺FJ 
as:  

Γ𝐹𝐹(𝑥𝑥𝑎𝑎, 𝑥𝑥𝑏𝑏) = ∬𝐺𝐺𝐹𝐹𝐹𝐹(𝑥𝑥𝑎𝑎 − 𝑥𝑥𝑎𝑎′ ) × Γ𝐹𝐹(𝑥𝑥𝑎𝑎′ , 𝑥𝑥𝑏𝑏′ )𝐺𝐺𝐹𝐹𝐹𝐹† (𝑥𝑥𝑏𝑏 − 𝑥𝑥𝑏𝑏′ )𝑥𝑥𝑏𝑏′ 𝑥𝑥𝑏𝑏′   (9) 

Here, 𝛤𝛤J denotes the source current correlation dyadic, obtained from 

𝛤𝛤J(𝑥𝑥𝑎𝑎, 𝑥𝑥𝑏𝑏) = ⟨J𝑒𝑒,𝑚𝑚(𝑥𝑥𝑎𝑎, 𝜔𝜔)J𝑒𝑒,𝑚𝑚
† (𝑥𝑥𝑏𝑏,𝜔𝜔)⟩     (10) 

accounting for either electric or magnetic source current terms, given by the indices 𝑒𝑒,𝑚𝑚. The 
formula for propagating the EM field correlation ([eqnProp]) can be treated numerically by 
concept of the Method of Moments (MoM) and thus, to transfer ([eqnProp]) into a set of linear 
algebraic equations. This is being accomplished by introducing a set of vectorial basis functions 
which are first used for the expansion of the field and source current functions into these basis 
functions. Furthermore, these expansion functions are being used, along with a set of testing 
functions, latter are possibly also identical with the former set, to establish the moment matrix 
from above Green’s function based integral formula. The resulting set of algebraic equations is 
given by 

𝐶𝐶𝑉𝑉(𝜔𝜔) = Z(𝜔𝜔) 𝐶𝐶𝐼𝐼(𝜔𝜔) Z†(𝜔𝜔),     (11) 
where 𝐶𝐶𝑉𝑉  is the correlation matrix of the expansion coefficients, termed generalized voltages, of 
the electric field expansion, while 𝐶𝐶𝐼𝐼  is the correlation matrix of the expansion coefficients of the 
source current distribution. Z is the moment matrix . The Green’s function, if not available 
analytically, can be obtained numerically from conventional EM full wave solvers for deterministic 
scenarios. Time-domain formulations, analytical and numerical, are discussed in . Figures 3, 4, and 
5 show the measured spatial energy density in the source plane as well as measured and 
numerically propagated, latter based on the measured source plane data, spatial energy density in 
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accounting for either electric or magnetic source current 
terms, given by the indices e,m. The formula for propagating the 
EM field correlation (9) can be treated numerically by concept 
of the Method of Moments (MoM) and thus, to transfer (9) into 
a set of linear algebraic equations. This is being accomplished 

by introducing a set of vectorial basis functions which are first 
used for the expansion of the field and source current func-
tions into these basis functions. Furthermore, these expansion 
functions are being used, along with a set of testing func-
tions, latter are possibly also identical with the former set, to 
establish the moment matrix from above Green’s function 
based integral formula. The resulting set of algebraic equa-
tions is given by

            (11)

where CV is the correlation matrix of the expansion coeffi-
cients, termed generalized voltages, of the electric field expan-
sion, while CI is the correlation matrix of the expansion coeffi-
cients of the source current distribution. Z is the moment matrix 
[21], [23]. The Green’s function, if not available analytically, can be 
obtained numerically from conventional EM full wave solvers for 
deterministic scenarios. Time-domain formulations, analytical and 
numerical, are discussed in [22], [24], [25]. Figures 5, 6, and 7 show 
the measured spatial energy density in the source plane as well 
as measured and numerically propagated, latter based on the 
measured source plane data, spatial energy density in the obser-
vation plane. In this example, the field correlation data has been 
propagated using the method of moments approach.

More Information

Although the notebook reports an example starting from our 
measurement data, the algorithm is applicable to any incoming 
dataset and to any dimension. This implies the algorithm does 
not remain bound only to sample datasets of such dimensions, 
but allows the user to run the code on their datasets by appro-
priately modifying the lines of code of interest and entering the 
size of their data. In fact, the notebook initializes various 
parameters that can be changed based on the information on 
measurement data obtained, and will be able to calculate the 
stochastic fields at any distance. This allows the user to modify 
and update the code having all the tools necessary to bring the 
guide to better and future versions. In addition to the notebook 
version, the code has been reported in a python script that can 
be executed directly from the terminal without the need to open 
and run the Notebook. In addition to the files previously 
described, a function for converting the dataset from .mat to .pt 
has been included, giving the user the possibility to process 
data from .mat files as well. All the material including the data-
sets, scripts and the Notebook are stored in the IEEE Standard 
Association repository, where the user can access, download 
the contents, execute the code and possibly propose changes. 
In order to open and run the Notebook it is not strictly neces-
sary to install Jupyer Notebook or Jupyter Lab, but it is possi-
ble to access platforms such as Google Colab that allow the 
user to load the notebook and run it without the need to down-
load any library in Python. An example of the open source code 
written on Jupyter Notebook can be found on the repository 
available at the following link: https://stangards.ieee.org/
ieee/2718/6983/ in “additional resources”.
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Fig. 5. Spatial energy distribution at z’=10 mm.
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Fig. 6. Spatial energy distribution at z’=100 mm. Fig. 6. Spatial energy distribution at z’=100 mm.

 
Fig. 7. Spatial energy distribution at z'=100 mm by the method of moments. 
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accounting for either electric or magnetic source current terms, given by the indices 𝑒𝑒,𝑚𝑚. The 
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concept of the Method of Moments (MoM) and thus, to transfer ([eqnProp]) into a set of linear 
algebraic equations. This is being accomplished by introducing a set of vectorial basis functions 
which are first used for the expansion of the field and source current functions into these basis 
functions. Furthermore, these expansion functions are being used, along with a set of testing 
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given by 
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analytically, can be obtained numerically from conventional EM full wave solvers for deterministic 
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functions. Furthermore, these expansion functions are being used, along with a set of testing 
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