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Abstract—Hybridization schemes for the systematic, general
and efficient evaluation of electromagnetic fields are discussed.
The computational space is subdivided in various subregions
where different analytical and numerical methods are employed.
These methods may also be combined in the frame of the same
subregion. The application of such methods to stochastic EM
fields and in quantum computing algorithms is also outlined.

I. INTRODUCTION

Many applications in modern electronics rely on electro-
magnetic (EM) field computations in complex structures. The
availability of steadily increasing computing facilities has not
lessened the need for efficient methods of EM field compu-
tation, since in the design of modern electronic components
operating at microwave frequencies success relies on efficient
techniques for the modeling of complex EM structures. Since
the problems exhibit various geometrical features and scales,
frequency ranges, and materials, no single method is best
suited for dealing with them. Hybridizing field theoretical, net-
work theoretical, and circuit theoretical methods can increase
the efficiency of full-wave analysis of EM structures [1]–[4].
We revisit the development of methods for calculating EM
fields through network methods.

II. NETWORK MODELS OF EM STRUCTURES
a(a) (b)

Fig. 1. (a) Foster equivalent circuit, (b) Canonical Connection circuit.

In network theory lumped element circuits are separated into
the circuit elements and the connection circuit containing only
connections and ideal transformers. This methodology can also
be applied to EM structures. The segmentation of the prob-
lem in subdomains establishes substructures which define the
pertinent circuit elements and boundary surfaces across which
the substructures are connected [1]–[10]. Lossless subdomain
structures can be represented by canonical Foster equivalent
circuits as shown in Fig. 1 (a). The canonical connection
circuit shown in Fig. 1 (b) represents the coupling of the
substructures. Lossy EM structures can be modeled by adding
resistors to the Foster equivalent circuits [11] or by using
Brune equivalent circuits [12]. Radiation modes can be de-
scribed by canonical Cauer networks (Fig. 2) [10], [13], [14].

Analytic methods, e.g. Green’s function or numerical methods
in connection with system identification techniques [15] allow
the synthesis of lumped element models [16]–[19].

Fig. 2. Equivalent circuits of (a) TMmn and (b) TEmn spherical waves.

III. THE TRANSMISSION LINE MATRIX (TLM) METHOD

EM wave propagation is modeled in the TLM method
by wave pulses propagating in a Cartesian mesh and being
scattered in the mesh nodes [20]–[23]. The EM field is
described by the 12n–dimensional state vector |a〉k, where n
is the number of nodes and k is the discrete time index. The
TLM scheme [24], [25] is given by

|a〉k+1 = ΓS|a〉k, (1)

where the matrix S describes the scattering of the wave pulses
in the TLM nodes and the connection matrix Γ describes
the propagation of the wave pulses to the neighboring node.
The TLM scheme has been derived from Maxwell’s equations
by method of moments [25] or ab initio from symmetry and
conservation laws [22]. The TLM method is optimally suited
to model broadband and transient EM phenomena.

Microwave circuits containing distributed as well as lumped,
and also nonlinear subcircuits can be modeled by simulation
with models generated by system identification applied to the
results of TLM simulation [8], [16]–[19], [26]. Combining the
TLM method with integral equation methods and applying
discrete Green’s functions yields tools for the modeling of
complex EM structures separated by large distances [27]–[30].

IV. STOCHASTIC EM FIELDS

To describe noisy EM fields we use the auto- and cross
correlation spectra of the field components [31], [32]. Autocor-
relation spectra are assigned to each field component at a point
in space. Cross-correlation spectra exist between different field
components at a point in space and between field components
at different points in space. The stochastic electric field is
described by the correlation dyadic
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where ET (xa, ω) is the electric field amplitude spectrum time-
windowed in the interval [−T, T ] and bracket 〈〈·〉〉 denotes the
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forming of an ensemble average [31]. The correlation dyadic
of electric field component originating from noise sources
described by the correlation dyadic ΓJ(x′

a,x
′
b, ω) is
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The Correlation Transmission Line Matrix (CTLM) method
allows the time-domain computation of the auto- and cross
correlation functions (ACFs and CCFs) of stationary stochastic
EM fields. These ACFs and CCFs are computed from the
Johns matrices, i.e. the discrete time TLM Green’s functions
and are directly related to the EMI power spectra [33].

V. QUANTUM COMPUTING OF EM FIELDS

Quantum computing (QC) is based on the expression of
the computer program by the Hamiltonian of a quantum
system [34]. The Hilbert space formulation of the TLM
method [24], [25] allows to interpret the the product of the
TLM scattering and time evolution operators as the Hamil-
tonian of a quantum computing system [35]. Due to the
quantum parallelism of QC a large number of EM structures
is simulated simultaneously. Using QC the design problem
can be formulated as follows: Given the initial condition and
the desired final field distribution, find the EM structures that
cause this transformation. The problems to be solved for the
implementation of a QTLM simulator are discussed in [36].
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