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Abstract

Multiple imputation is a statistical framework for analyzing incomplete data sets. The
basic idea is to impute an incomplete data set several times considering the observed
dependence structure, analyze each of these completed data sets separately, and then
combine the results. So far, only a few exceptions in the literature focus on the gen-
eration of the imputations with vine copulas, although vine copulas are highly flexible
models for multidimensional dependence. In this thesis, we propose a novel multiple
imputation method based on the fully conditional specification approach using D-vine
quantile regression models. We conduct a simulation study to evaluate the performance
of this vine based method and compare it to well-established multiple imputation meth-
ods. Our findings indicate that, under certain conditions, the D-vine quantile regression
approach can yield enhanced performance. Furthermore, we present a real-data ap-
plication in finance concerning the determination of ESG scores, where our approach
demonstrates superiority over other methods.
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1 Introduction

In recent years, environmental, social and governance (ESG) criteria have increasingly
become an important aspect in responsible investing. Thus, many data providers have
established in this field publishing metrics that shall make companies comparable in the
view of ESG criteria. However, for various reasons, there may be discrepancies in the
availability of ESG-related data from one company to another resulting in missing data.
Among others this situation might be caused by:

1. Lack of regulatory and standardization: Kotsantonis and Serafeim (2019) state
that the lack of regulation and standardization for ESG disclosures leads to differ-
ences in the data availability across different companies.

2. Different corporate cultures: For Chinese companies, Bai, Shang, and Huang
(2024) observe a relationship between corporate culture and and data availability.

3. Varying company sizes: According to the study of Drempetic, Klein, and Zwergel
(2020) bigger companies have in general more data available. A reason might be
that they have more resources to provide ESG data.

Missing data can be a serious problem making the comparison and statistical analysis
of ESG scores more difficult and less reliable (Sahin et al. 2022). One way of dealing
with missing data in general is so-called multiple imputation. Multiple imputation is a
statistical framework for analyzing incomplete data sets first considered and developed
by Rubin under Bayesian considerations (Rubin 1978; Rubin 1987). Such a specific
framework is necessary since missing values introduce an additional source of uncertainty
in the data. This uncertainty in turn has to be taken into account if any statistical results
shall be valid. Otherwise, the uncertainty in the data is possibly underestimated.

The core idea behind the multiple imputation framework is to impute an incomplete
data set multiple times, accounting for the observed dependence structure, analyze each
completed data set separately, and then combine the results. Although several methods
exist for leveraging the dependence structure in data when generating imputations, vine
copulas have not been widely explored in the imputation context, despite their high
flexibility in modeling multidimensional dependence. The goal of this thesis is to intro-
duce a novel method for generating imputations using vine copulas and to compare its
performance with that of well-established multiple imputation techniques. Furthermore,
we aim to explore whether multiple imputation can improve the accuracy of ESG score
calculations.

1



1 Introduction 2

Chapter 2 discusses the modeling of incomplete data sets within a Bayesian framework.
In Chapter 3, we provide an overview of the general concept of multiple imputation, dis-
cuss how to generate imputations and review widely used imputation methods. Chapter
4 introduces a novel multiple imputation method based on the fully conditional speci-
fication approach using D-vine quantile regression models. In Chapter 5, we compare
this vine based imputation method with other well-established imputation methods in a
simulation study. Chapter 6 presents an application of multiple imputation to ESG data
in connection with the ESG score calculation. Finally, Chapter 7 provides a summary
of the results and offers a brief outlook on future research.

Throughout this thesis we will use the following basic notation: Random variables are
denoted by italic capital letters such as Y , random vectors by bold capital letters such
as Y and other collections of random variables, i. e. random matrices or random sets,
with bold capital letters sans serifs such as Y. In general, for realizations of random
quantities the base symbols are changed from capital letters to the corresponding small
letters, i. e. for the quantities defined above we would have y, y and y. Parameter
random vectors and their realizations are denoted analogously but with Greek letters,
i. e. Θ and θ. Independent of the types of the variables, we will denote both, densities
and probability mass functions, with f(·) and their conditional versions with f(·|·). Even
if we do not restrict ourselves to absolutely continuous random variables, we will always
speak of a density for the sake of simplicity. Throughout the thesis, 1{·} denotes the
indicator function that takes value 1 if the event in braces occurs and 0 otherwise. All
computations in this thesis are performed using the R programming language (R Core
Team 2023).



2 Incomplete Data Sets: Modeling
and Bayesian Analysis

2.1 Bayesian Inference and Prediction in a Nutshell

As already mentioned in the introduction, the concept of multiple imputation builds on
Bayesian considerations. In order to embed the situation of incomplete data sets in a
Bayesian context, we first introduce a general Bayesian framework following Gelman,
Carlin, et al. (2013, pp. 6–7), which is then applied to incomplete data sets. To this

end, let X and X̃ be possibly dependent collections of random variables representing
observed and unobserved data. In the context of Bayesian inference and prediction,
the data (X, X̃) depends on a parameter vector Ψ which is assumed to be random.

This leads to a joint probability model for (X, X̃,Ψ) expressed by the joint density
fX,X̃,Ψ(x, x̃,ψ). By definition of the conditional density, we can model this joint density
as the product of the marginal density fΨ(ψ) of Ψ (prior density) and the conditional

density fX,X̃|Ψ(x, x̃ | ψ) of (X, X̃) given Ψ (sampling density):

fX,X̃,Ψ(x, x̃,ψ) := fΨ(ψ)fX,X̃|Ψ(x, x̃ | ψ).

The prior density can be seen as an initial guess how Ψ is distributed. The sampling
density describes how the data is generated given the model parameters.

In Bayesian inference, the goal is to update the initial guess for the distribution of Ψ
based on the observed data. One is therefore interested in the conditional density
fΨ|X(ψ | x) of Ψ given X, called posterior density. It calculates as

fΨ|X(ψ | x) =
fX,Ψ(x,ψ)

fX(x)
=
fΨ(ψ)fX|Ψ(x | ψ)

fX(x)
,

where both the marginal sampling density fX|Ψ(x | ψ) of X,

fX|Ψ(x | ψ) =

∫
fX,X̃|Ψ(x, x̃ | ψ) dx̃,

and the marginal density fX(x) of X,

fX(x) =

∫ ∫
fX,X̃,Ψ(x, x̃,ψ) dx̃ dψ =

∫
fΨ(ψ)

∫
fX,X̃|Ψ(x, x̃ | ψ) dx̃ dψ,

3



2 Incomplete Data Sets: Modeling and Bayesian Analysis 4

can be expressed solely in terms of the prior and the sampling density. The posterior
density is analyzed to make inference about the parameter vector Ψ.

Often, not only Ψ itself but other quantities Q̃ := Q̃(Ψ) related to Ψ are of interest.

Thus we define the conditional distribution of Q̃ given X via

P(Q̃ ∈ B | X = x) :=

∫
{ψ : Q̃(ψ)∈B}

fΨ|X(ψ | x) dψ,

where B is a set of possible values of Q̃. The corresponding conditional density fQ̃|X(q̃|x)

we call posterior density of Q̃. Since the posterior density of Ψ equals the posterior
density of Q̃ when setting Q̃ = Q̃(Ψ) = Ψ it is enough to consider the posterior density

of Q̃ for Bayesian inference.

Standard estimates in Bayesian inference include (Rubin 1987, pp. 59–62):

(a) Highest posterior density regions: Let 1 − α ∈ (0, 1) be fixed. Then a set C of

possible values of Q̃ is a highest posterior density region of coverage 1− α if

(i) P(Q̃ ∈ C | X = x) = 1− α and

(ii) fQ̃|X(q̃1 | x) > fQ̃|X(q̃2 | x) for every q̃1 ∈ C and q̃2 /∈ C,

that is the posterior probability that C contains Q̃ equals 1 − α and every point
in C has higher posterior density than every point outside C.

(b) Significance levels – p-values: Let P(fQ̃|X(Q̃ | x) > fQ̃|X(q̃0 | x)) = 1− α be the

posterior probability that Q̃ has higher posterior density than a fixed null value q̃0.
Then α is called the significance level or p-value of the null value q̃0.

(c) Point estimates of Q̃ are calculated as the posterior mode, mean or median.

The highest posterior density region and p-values for a normally and t-distributed Q̃ are
given in the following example (Rubin 1987, pp. 60–61).

Example 2.1.1.

(a) Suppose the posterior distribution of Q̃ given X = x follows a k̃-dimensional
multivariate normal distribution with mean vector m and variance matrix v, i. e.
(Q̃ | X = x) ∼ N (m, v). Then the highest posterior density region with coverage
1− α is the set of all q̃ such that

(q̃−m)v−1(q̃−m)> < χ2
k̃
(α),

where χ2
k̃
(α) is the α-quantile of the chi-squared distribution on k̃ degrees of free-

dom. The significance level or p-value of the null value q̃0 is given by

P
(
χ2
k̃
> (q̃0 −m)v−1(q̃0 −m)>

)
,

where χ2
k̃

is a chi-squared distributed random variable on k̃ degrees of freedom.
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(b) Suppose the posterior distribution of Q̃ given X = x follows a k̃-dimensional mul-
tivariate t-distribution with location l, scale matrix s1/2 and ν degrees of freedom,
i. e. (Q̃ | X = x) ∼ tν(l, s). Then the highest posterior density region with coverage
1− α is the set of all q̃ such that

(q̃− l)s−1(q̃− l)>

k̃
< Fk̃,ν(α),

where Fk̃,ν(α) is the α-quantile of the F -distribution on k̃ and ν degrees of freedom.
The significance level or p-value of the null value q̃0 is given by

P
(
Fk̃,ν >

(q̃− l)s−1(q̃− l)>

k̃

)
,

where Fk̃,ν is an F -distributed random variable on k̃ and ν degrees of freedom. 4

In Bayesian prediction, the goal is to make inference about the unobserved data X̃ based
on the observed data X. Thus, one is interested in the conditional density fX̃|X(x̃ | x)

of X̃ given X, called posterior predictive density. It calculates as

fX̃|X(x̃ | x) =

∫
fX̃,Ψ|X(x̃,ψ | x) dψ =

∫
fX̃|X,Ψ(x̃ | x,ψ)fΨ|X(ψ | x) dψ,

where the conditional distribution of X̃ given X,

fX̃|X,Ψ(x̃ | x,ψ) =
fX,X̃|Ψ(x, x̃ | ψ)

fX|Ψ(x | ψ)
=

fX,X̃|Ψ(x, x̃ | ψ)∫
fX,X̃|Ψ(x, x̃ | ψ) dx̃

,

can be expressed solely in terms of the sampling density.

2.2 Incomplete Data Sets: A Mathematical Description

To transfer our previous considerations to the situation of incomplete data sets, we first
need to model incomplete data sets via collections of random variables. To this end,
let Y := (Yij)i=1,...,n, j=1,...,d be a n× d random matrix representing our (hypothetically)
complete data set. We denote the jth column of Y by Y:j := (Y1j, . . . , Ynj)

>. Similarly,
the ith row of Y is denoted by Yi: := (Yi1, . . . , Yid). We assume that the data set Y is
an i. i. d. sample of a d-dimensional random vector Y := (Y1, . . . , Yd) such that the rows
Y1:, . . . ,Yn: of Y are independent and identically distributed as Y. We restrict the
random variables Y1, . . . , Yd to be either absolutely continuous or discrete. If a variable
Y1, . . . , Yd is discrete it has to be at least ordinally scaled.

To decide which data has been observed or not, we define the n × d random matrix
R := (Rij)i=1,...,n, j=1,...,d, the response matrix, consisting of indicator random variables

Rij :=

{
1 if Yij has been observed

0 otherwise
.
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Analogously to Y, for R its jth column is denoted by R:j := (R1j, . . . , Rnj)
> and its ith

row by Ri: := (Ri1, . . . , Rid). We assume that for each row Yi: of Y at least one value
has been observed, that is for all i = 1, . . . , n we have Ri: 6= 0. Also, it is reasonable to
assume that for each column Y:j of Y at least one value has been observed, that is for
all j = 1, . . . , d we have R:j 6= 0>. Together, (Y,R) forms a model for an incomplete
data set of dimension n× d.

Remark 2.2.1 (Response Pattern). From the definition of R it follows that its rows
R1:, . . . ,Rn: always map into to the set R := {0, 1}d \ {0}. A vector r ∈ R we call
response pattern. Thus, R is the set of all possible response patterns. 4

With the help of the response matrix R we distinguish the observed part Yobs of Y as

Yobs := {Yij : Rij = 1}i=1,...,n, j=1,...,d,

and the missing part Ymis as

Ymis := {Yij : Rij = 0}i=1,...,n, j=1,...,d.

From here we can decompose Y as Y = (Yobs,Ymis).

Example 2.2.2. We consider an incomplete realized data set (y, r) with n = 15 obser-
vations. The hypothetically complete data set y is simulated from the random vector
Y = (Y1, Y2, Y3) of dimension d = 3 distributed according to the D-vine with marginals
given in Table 2.1 and vine copula shown in Figure 2.1 (for an introduction to D-vines
see Section 4.1).

Variable Distribution

Y1 N (4, 1)
Y2 N (6, 1)
Y3 P(Y3 = F) = 1

2
= P(Y3 = T)

Table 2.1: Marginal distributions of the data generating vine in Example 2.2.2.

1 3 2
C1,3 = Gaussian(0.95) C2,3 = Gaussian(0.81)

1, 3 2, 3
C1,2;3 = Gaussian(−0.59)

T1:

T2:

Figure 2.1: Vine copula of the data generating vine in Example 2.2.2.

Especially, the third variable Y3 is discrete and takes the two values F and T. The
missing data is generated missing at random (see Definition 2.3.1).

The realizations y and r are given as
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y =

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 7.38 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 5.93 T
4.51 6.61 T
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 F
2.32 4.40 F





, r =

1 1 1
1 1 1
1 1 1
1 0 1
1 1 1
1 1 1
1 1 1
1 0 1
1 0 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 0
1 1 1





.

For y, the observed part yobs is marked by a gray background while the missing part
ymis is marked by a red background. For better visualization the realized response r is
colored accordingly.

For r, from the possible seven response patterns

r ∈ R = {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)},

four response patterns occurred, namely the response patterns

r ∈ {(1, 1, 1), (1, 0, 1), (1, 1, 0), (1, 0, 0)}. 4

Remark 2.2.3. Similarly to the observed part Yobs and the missing part of Ymis of Y, we
define the observed part Y:j,obs of column Y:j as

Y:j,obs := {Yij : Rij = 1}i=1,...,n,

and the missing part Y:j,mis as

Y:j,mis := {Yij : Rij = 0}i=1,...,n,

such that we can decompose column Y:j as Y:j = (Y:j,obs,Y:j,mis). 4

Notation 2.2.4. Let r = (rij)i=1,...,n, j=1,...,d ∈ {0, 1}n×d be a realization of the response
matrix R. Let J ⊆ {1, . . . , d} and the vector j be an arbitrary permutation of J .

(a) We define the set

Iobs
r (j) := {i ∈ {1, . . . , n} : rij = 1 for all j ∈ j}

which indexes all observations with observed values at the positions defined by j.
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(b) Analogously, the set

Imis
r (j) := {i ∈ {1, . . . , n} : rij = 0 for all j ∈ j}

indexes all observations with missing values at the positions defined by j. 4

A special case of Notation 2.2.4 is the situation where j = j ∈ {1, . . . , d}. Then, the
set Iobs

r (j) indexes exactly those observations with an observed value for variable Yj. On
the other hand, the set Imis

r (j) indexes all observations for which the value for variable Yj
is missing. Therefore, given a realized incomplete data set (y, r) we can also express the
observed part y:j,obs of column y:j as y:j,obs = {yij : i ∈ Iobs

r (j)} and the missing part
y:j,mis as y:j,mis = {yij : i ∈ Imis

r (j)}.

2.3 Bayesian Inference and Prediction for Incomplete
Data Sets

To embed Y = (Yobs,Ymis) and R in the Bayesian setting from the previous section we
consider a parameter vector (Θ,Φ) for (Y,R), where Θ is the parameter vector governing
the data model Y and Φ is the parameter vector governing the model for the response
mechanism R. The joint model of (Y,R,Θ,Φ) is defined in terms of densities as the
product of the prior density fΘ,Φ(θ,φ) and the sampling density fY,R|Θ,Φ(y, r | θ,φ):

fY,R,Θ,Φ(y, r,θ,φ) := fΘ,Φ(θ,φ)fY,R|Θ,Φ(y, r | θ,φ).

In the terminology of the previous section, Ymis corresponds to X̃, (Yobs,R) corresponds
to X and (Θ,Φ) corresponds to Ψ. Consequently, the posterior density is given as

fΘ,Φ|Yobs,R(θ,φ | yobs, r) =
fΘ,Φ(θ,φ)fYobs,R|Θ,Φ(yobs, r | θ,φ)

fYobs,R(yobs, r)
,

with the marginal sampling density

fYobs,R|Θ,Φ(yobs, r | θ,φ) =

∫
fY,R|Θ,Φ(y, r | θ,φ) dymis

of (Yobs,R) and the marginal density

fYobs,R(yobs, r) =

∫ ∫
fΘ,Φ(θ,φ)

∫
fY,R|Θ,Φ(y, r | θ,φ) dymis dφ dθ.

of (Yobs,R). Since our focus lies on the data generating process, instead of the full
posterior density, we are interested in the marginal posterior density of Θ,

fΘ|Yobs,R(θ | yobs, r) =

∫
fΘ,Φ|Yobs,R(θ,φ | yobs, r) dφ.
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The relevant posterior predictive density is

fYmis|Yobs,R(ymis | yobs, r).

In the context of multiple imputation, it is usually assumed that the missing data is
missing at random. If the missing data is missing at random, the response mechanism
may depend on the observed data but not on the missing data. This assumption is
formally defined in Little and Rubin (2020, Equation (6.51)) as follows.

Definition 2.3.1 (Missing at Random). The missing data is missing at random at (yobs, r)
if for all ymis and φ the equation

fR|Y,Φ(r | y,φ) = fR|Yobs,Φ(r | yobs,φ)

holds, where fR|Y,Φ(r | y,φ) denotes the conditional density of R given Y and Φ and
fR|Yobs,Φ(r | yobs,φ) denotes the conditional density of R given Yobs and Φ. 4

The following theorem shows that, if the missing data is missing at random at (yobs, r)
and Θ and Φ are a priori independent, for Bayesian inference and prediction it is suf-
ficient to omit R and Φ. This means that in this specific situation one could work
based on a joint model only for (Y,Θ) with corresponding posterior density fΘ|Yobs

and
posterior predictive density fYmis|Yobs

.

Theorem 2.3.2. Assume the missing data is missing at random at (yobs, r) as well as Θ
and Φ are a priori independent, that is we have fΘ,Φ ≡ fΘfΦ. Then:

(a) fΘ|Yobs,R(θ | yobs, r) = fΘ|Yobs
(θ | yobs) and

(b) fYmis|Yobs,R(ymis | yobs, r) = fYmis|Yobs
(ymis | yobs).

Part (a) of the Theorem 2.3.2 is presented as Corollary 6.1B in Little and Rubin (2020)
while part (b) is discussed in Rubin (1987, p. 53).

Proof.

(a) The sampling density fY,R|Θ,Φ factorizes as

fY,R|Θ,Φ(y, r | θ,φ) = fR|Y,Θ,Φ(r | y,θ,φ)fY|Θ,Φ(y | θ,φ)

= fR|Y,Φ(r | y,φ)fY|Θ(y | θ)

= fR|Yobs,Φ(r | yobs,φ)fY|Θ(y | θ), (2.1)

where the second equality follows since Θ has no direct influence on R and Φ has
no direct influence on Y, and the third equality follows since the missing data
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is missing at random at (yobs, r). Consequently, the marginal sampling density
fYobs,R|Θ,Φ can be written as

fYobs,R|Θ,Φ(yobs, r | φ,θ) =

∫
fY,R|Θ,Φ(y, r | θ,φ) dymis

=

∫
fR|Yobs,Φ(r | yobs,φ)fY|Θ(y | θ) dymis

= fR|Yobs,Φ(r | yobs,φ)

∫
fY|Θ(y | θ) dymis

= fR|Yobs,Φ(r | yobs,φ)fYobs|Θ(yobs | θ).

Together with the a priori independence of Θ and Φ this leads to

fΘ|Yobs,R(θ | yobs, r) =

∫
fΘ,Φ|Yobs,R(θ,φ | yobs, r) dφ

=

∫
fΘ,Φ(θ,φ)fYobs,R|Θ,Φ(yobs, r | θ,φ) dφ

fYobs,R(yobs, r)

=

∫
fΘ(θ)fΦ(φ)fR|Yobs,Φ(r | yobs,φ)fYobs|Θ(yobs | θ) dφ

fYobs,R(yobs, r)

= fΘ(θ)fYobs|Θ(yobs | θ) ·
∫
fR,Φ|Yobs

(r,φ | yobs) dφ

fYobs,R(yobs, r)

= fΘ(θ)fYobs|Θ(yobs | θ) ·
fR|Yobs

(r | yobs)

fYobs,R(yobs, r)

=
fΘ(θ)fYobs|Θ(yobs | θ)

fYobs
(yobs)

= fΘ|Yobs
(θ | yobs).

(b) From the definition of the conditional density the posterior predictive density is

fYmis|Yobs,R(ymis | yobs, r)

=
fY,R(y, r)

fYobs,R(yobs, r)

=

∫ ∫
fY,R|Θ,Φ(y, r | θ,φ)fΘ,Φ(θ,φ) dθ dφ∫ ∫ ∫

fY,R|Θ,Φ(y, r | θ,φ)fΘ,Φ(θ,φ) dθ dφ dymis

(2.1)
=

∫ ∫
fR|Yobs,Φ(r | yobs,φ)fY|Θ(y | θ)fΘ(θ)fΦ(φ) dθ dφ∫ ∫ ∫

fR|Yobs,Φ(r | yobs,φ)fY|Θ(y | θ)fΘ(θ)fΦ(φ) dθ dφ dymis

=

∫
fR|Yobs,Φ(r | yobs,φ)fΦ(φ) dφ∫
fR|Yobs,Φ(r | yobs,φ)fΦ(φ) dφ

·
∫
fY|Θ(y | θ)fΘ(θ) dθ∫ ∫

fY|Θ(y | θ)fΘ(θ) dθ dymis

=
fY(y)

fYobs
(yobs)

= fYmis|Yobs
(ymis | yobs).
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Assumption 2.3.3. The missing data is missing at random at (yobs, r) and Θ and Φ are
a priori independent. 4

Let Q := (Q1, . . . , Qk) denote a k-dimensional vector of quantities of interest depending
on Θ, i. e.Q = Q(Θ). We define the conditional distribution of Q given Yobs via

P(Q ∈ B | Yobs = yobs) :=

∫
{θ : Q(θ)∈B}

fΘ|Yobs
(θ | yobs) dθ,

where B is a set of possible values of Q. The conditional density fQ|Yobs
(q | yobs)

corresponding to this conditional distribution we call posterior density of Q given Yobs.



3 Multiple Imputation

3.1 Basic Mechanism

Suppose for a moment that Y would be completely observed. From a frequentist per-
spective, for making inference one would typically define a point estimator Q̂ := Q̂(Y)

for Q as well as an estimator Ŵ := Ŵ(Y) for the variance of Q̂ under the sampling den-

sity fY|Θ and then rely on the assumption that the distribution of Q− Q̂ given Θ = θ
can be approximated by a k-dimensional normal distribution, that is(

Q− Q̂
∣∣ Θ = θ

) a∼ N
(
0, Ŵ

)
for large sample sizes n.

For the purpose of multiple imputation, the before given normal approximation is inter-
preted from a Bayesian perspective as(

Q− Q̂
∣∣ Y = y

) a∼ N
(
0, Ŵ

)
for large sample sizes n,

implicitly assuming that Q̂ and Ŵ well approximate the posterior mean EfQ|Y [Q | y]
and the posterior variance VarfQ|Y [Q | y] of Q given Y = y (Schafer 1997, pp. 107–108).

Within this setup, multiple imputation consists of three parts (Rubin 1987, p. 67):

1. Imputation: Generate M ≥ 2 imputations Y(m)
mis := {Y (m)

ij : Rij = 0}i=1,...,n, j=1,...,d,
m = 1, . . . ,M , from the posterior predictive density fYmis|Yobs

, which gives M

completed data sets Y(m) := (Yobs,Y
(m)
mis ), m = 1, . . . ,M .

2. Analysis: For each m = 1, . . . ,M , apply the estimators Q̂ and Ŵ to the imputed

data set Y(m) giving Q̂(m) := Q̂(Y = Y(m)) and Ŵ
(m)

:= Ŵ(Y = Y(m)).

3. Pooling: Combine Q̂(1), . . . , Q̂(M) and Ŵ
(1)
, . . . , Ŵ

(M)
into

Q := Q(Y(1), . . . ,Y(M)) :=
1

M

M∑
m=1

Q̂(m),

an estimator of the posterior mean EfQ|Yobs
[Q | Yobs] of Q given Yobs, and

T := T(Y(1), . . . ,Y(M)) := W + B +
B

M
,

12
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an estimator of the posterior variance VarfQ|Yobs
[Q | Yobs] of Q given Yobs. Here,

the total variance T is composed of the within-imputation variance W,

W := W(Y(1), . . . ,Y(M)) :=
1

M

M∑
m=1

Ŵ
(m)
,

and the between-imputation variance B,

B := B(Y(1), . . . ,Y(M)) :=
1

M − 1

M∑
m=1

(Q̂(m) −Q)>(Q̂(m) −Q).

The above pooling rules are also called Rubin’s rules.

The definition of Q and T is based on the following Theorem 3.1.1 (Rubin 1987, Re-
sults 3.1 and 3.2) and Corollary 3.1.2 (Rubin 1987, Equations (3.2.8) and (3.2.8)). They

imply that, if we generate multiple imputations Y(m)
mis , m = 1, . . . ,M , from the poste-

rior predictive density fYmis|Yobs
and if the estimators Q̂ and Ŵ well approximate the

posterior mean of Q given Y in the complete-data case, one indeed obtains

Q ≈ EfQ|Yobs
[Q | Yobs] and T ≈ VarfQ|Yobs

[Q | Yobs].

This means that in the situation of incomplete data with Q and T we can reliable
estimate the posterior mean and variance of Q given the observed data Yobs.

Theorem 3.1.1. The following identities hold:

(a) fQ|Yobs
(q | yobs) =

∫
fQ|Y(q | ymis, yobs)fYmis|Yobs

(ymis | yobs) dymis,

(b) EfQ|Yobs
[Q | Yobs] = EfYmis|Yobs

[
EfQ|Y [Q | Y]

∣∣ Yobs

]
and

(c) VarfQ|Yobs
[Q|Yobs]=EfYmis|Yobs

[
VarfQ|Y [Q|Y]

∣∣Yobs

]
+VarfYmis|Yobs

[
EfQ|Y [Q|Y]

∣∣Yobs

]
.

Proof.

(a) Using the law of total probability it holds that

fQ|Yobs
(q | yobs) =

fQ,Yobs
(q, yobs)

fYobs
(yobs)

=

∫
fQ,Y(q, ymis, yobs) dymis

fYobs
(yobs)

=

∫
fQ|Y(q | ymis, yobs)fY(ymis, yobs) dymis

fYobs
(yobs)

=

∫
fQ|Y(q | ymis, yobs)fYmis|Yobs

(ymis | yobs) dymis.
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(b) Let Yobs = yobs be arbitrary but fixed. Using (a) we get

EfQ|Yobs
[Q | yobs] =

∫
qfQ|Yobs

(q | yobs) dq

=

∫
q

(∫
fQ|Y(q | ymis, yobs)fYmis|Yobs

(ymis | yobs)

)
dymis dq

=

∫ (∫
qfQ|Y(q | ymis, yobs) dq

)
fYmis|Yobs

(ymis | yobs) dymis

= EfYmis|Yobs

[
EfQ|Y [Q | Ymis, yobs]

∣∣ yobs

]
.

Since Yobs = yobs was chosen arbitrary the statement follows.

(c) First we recognize that analogously to the proof of (b) we can derive that

EfQ|Yobs
[Q>Q | Yobs] = EfYmis|Yobs

[
EfQ|Y [Q>Q | Y]

∣∣ Yobs

]
.

by replacing the first q in the integrand with q>q (but not the q in the density).
Then, together with the shortcut formula for the variance it follows that we can
decompose

EfYmis|Yobs

[
VarfQ|Y [Q | Y]

∣∣ Yobs

]
= EfYmis|Yobs

[
EfQ|Y [Q>Q | Y]

∣∣ Yobs

]
− EfYmis|Yobs

[
EfQ|Y [Q | Y]>EfQ|Y [Q | Y]

∣∣ Yobs

]
= EfQ|Yobs

[Q>Q | Yobs]− EfYmis|Yobs

[
EfQ|Y [Q | Y]>EfQ|Y [Q | Y]

∣∣ Yobs

]
.

On the other hand, again using the shortcut formula for the variance, we get the
variance decomposition

VarfYmis|Yobs

[
EfQ|Y [Q | Y]

∣∣ Yobs

]
= EfYmis|Yobs

[
EfQ|Y [Q | Y]>EfQ|Y [Q | Y]

∣∣ Yobs

]
− EfYmis|Yobs

[
EfQ|Y [Q | Y]

∣∣ Yobs

]>EfYmis|Yobs

[
EfQ|Y [Q | Y]

∣∣ Yobs

]
= EfYmis|Yobs

[
EfQ|Y [Q | Y]>EfQ|Y [Q | Y]

∣∣ Yobs

]
− EfQ|Yobs

[Q | Yobs]
>EfQ|Yobs

[Q | Yobs].

Summing up the last two equations completes the proof:

EfYmis|Yobs

[
VarfQ|Y [Q | Y]

∣∣ Yobs

]
+ VarfYmis|Yobs

[
EfQ|Y [Q | Y]

∣∣ Yobs

]
= EfQ|Yobs

[Q>Q | Yobs]− EfQ|Yobs
[Q | Yobs]

>EfQ|Yobs
[Q | Yobs]

= VarfQ|Yobs
[Q | Yobs].

From the strong law of large numbers it follows that

Q∞ := Q∞(Yobs) := lim
M→∞

Q = lim
M→∞

1

M

M∑
m=1

Q̂(m) = EfYmis|Yobs
[Q̂ | Yobs], (3.1)
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W∞ := W∞(Yobs) := lim
M→∞

W = lim
M→∞

1

M

M∑
m=1

Ŵ
(m)

= EfYmis|Yobs
[Ŵ | Yobs], (3.2)

B∞ := B∞(Yobs) := lim
M→∞

M − 1

M
· B

= lim
M→∞

1

M

M∑
m=1

(Q̂(m) −Q)>(Q̂(m) −Q)

= VarfYmis|Yobs
[Q̂ | Yobs]. (3.3)

Additionally define

T∞ := T∞(Yobs) := W∞ + B∞. (3.4)

Corollary 3.1.2. Suppose Q̂ = EfQ|Y [Q | Y] and Ŵ = VarfQ|Y [Q | Y], then

(a) Q∞ = EfQ|Yobs
[Q | Yobs] and

(b) T∞ = VarfQ|Yobs
[Q | Yobs].

Proof.

(a) From Theorem 3.1.1 part (b) we have

Q∞ = EfYmis|Yobs
[Q̂ | Yobs] = EfYmis|Yobs

[
EfQ|Y [Q | Y]

∣∣ Yobs

]
= EfQ|Yobs

[Q | Yobs].

(b) From Theorem 3.1.1 part (c) we have

T∞ = W∞ + B∞

= EfYmis|Yobs
[Ŵ | Yobs] + VarfYmis|Yobs

[Q̂ | Yobs]

= EfYmis|Yobs

[
VarfQ|Y [Q | Y]

∣∣ Yobs

]
+ VarfYmis|Yobs

[
EfQ|Y [Q | Y]

∣∣ Yobs

]
= VarfQ|Yobs

[Q | Yobs].

Given a realized data set (y, r), under the large sample normal approximation and gen-
erating theoretical infinitely many imputations, it then holds that(

Q−Q∞
∣∣ Yobs = yobs

) a∼ N (0,T∞) (3.5)

for large sample sizes n. Rubin (1987) shows that in the case of a finite number of M

realized imputations, i. e. y(1)
mis, . . . , y

(M)
mis , the normal distribution must be replaced by

a t-distribution. With a refinement of the degrees of freedom of this t-distribution,
Barnard and Rubin (1999) argue that Q approximately fulfills(

Q−Q
∣∣ Yobs = yobs,Y

(1)
mis = y(1)

mis, . . . ,Y
(M)
mis = y(M)

mis

) a∼ tN
(
0,T) (3.6)
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for large sample sizes n, with the estimator of the degrees of freedom N defined as

N := N(Y(1), . . . ,Y(M)) :=
N ′Nobs

N ′ +Nobs

,

where

Nobs :=
νcom + 1

νcom + 3
· νcom(1− Λ), N ′ :=

M − 1

Λ2
, Λ :=

(
1 +

1

M

)
tr(BT−1)

k

and νcom are the degrees of freedom for the estimation of Q with Q̂ from the hypotheti-
cally complete data set Y. In the original version, Rubin (1987) estimates the degrees of
freedom of the t-distribution using N ′. From the posterior distributions given in Equa-
tions (3.5) and (3.6), point estimates, interval estimates and significance levels can be
derived as given in Example 2.1.1.

Example 3.1.3.

(a) Under the model of Equation (3.5) the highest posterior density region with cov-
erage 1− α ∈ (0, 1) is the set of all Q such that

(Q−Q∞)T−1
∞ (Q−Q∞)> < χ2

k(α),

where χ2
k(α) is the α-quantile of the chi-squared distribution on k degrees of free-

dom. The p-value of the null value q0 is given by

P
(
χ2
k > (q0 −Q∞)T−1

∞ (q0 −Q∞)>
)
,

where χ2
k is a chi-squared distributed random variable on k degrees of freedom. In

the special case k = 1, a 100(1− α) % interval estimate of Q is given as[
Q∞ − z

(α
2

)√
T∞,Q∞ + z

(α
2

)√
T∞
]
, (3.7)

where z(α
2
) is the α

2
-quantile of the standard normal distribution, and the signifi-

cance level associated with the null value q0 is given by

P
(
χ2

1 >
(q0 −Q∞)2

T∞

)
.

(b) Under the model of Equation (3.6) the highest posterior density region with cov-
erage 1− α ∈ (0, 1) is the set of all Q such that

(Q−Q)T−1(Q−Q)>

k
< Fk,N(α),
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where Fk,N(α) is the α-quantile of the F -distribution on k and N degrees of free-
dom. The p-value of the null value q0 is given by

P
(
Fk,N >

(q0 −Q)T−1(q0 −Q)>

k

)
,

where Fk,N is an F -distributed random variable on k and N degrees of freedom.
In the special case k = 1, a 100(1− α) % interval estimate of Q is given as[

Q− tN
(α

2

)√
T,Q + tN

(α
2

)√
T
]
, (3.8)

where tN(α
2
) is the α

2
-quantile of the t-distribution with N degrees of freedom, and

the significance level associated with the null value q0 is given by

P
(
F1,N >

(q0 −Q)2

T

)
. 4

Remark 3.1.4 (Element-wise multiple imputation procedure). In some situations it is
reasonable to determine interval estimates and p-values for the individual quantities of
interest collected in Q = (Q1, . . . , Qk) (Buuren 2018, p. 49). In these cases, we need
a slightly adopted procedure and notation. Especially, for each l = 1, . . . , k we define
a separate complete-data estimator Q̂l := Q̂l(Y) for Ql as well as a separate complete-

data estimator Ŵl := Ŵl(Y) for the variance of Q̂l under the sampling density fY|Θ. As
before, the multiple imputation procedure consists of three parts:

1. Imputation: Generate M ≥ 2 imputations Y(m)
mis := {Y (m)

ij : Rij = 0}i=1,...,n, j=1,...,d,
m = 1, . . . ,M , from the posterior predictive density fYmis|Yobs

, which gives M

completed data sets Y(m) := (Yobs,Y
(m)
mis ), m = 1, . . . ,M .

2. Analysis: For each l = 1, . . . , k and m = 1, . . . ,M , apply Q̂l and Ŵl to the imputed
data set Y(m) giving Q̂

(m)
l := Q̂l(Y = Y(m)) and Ŵ

(m)
l := Ŵl(Y = Y(m)).

3. Pooling: For each l = 1, . . . , k, combine Q̂
(1)
l , . . . , Q̂

(M)
l and Ŵ

(1)
l , . . . , Ŵ

(M)
l into

Ql := Ql(Y
(1), . . . ,Y(M)) :=

1

M

M∑
m=1

Q̂
(m)
l , (3.9)

an estimator of the posterior mean EfQl|Yobs
[Ql | Yobs] of Ql given Yobs, and

Tl := Tl(Y
(1), . . . ,Y(M)) := W l +Bl +

Bl

M
, (3.10)

an estimator of the posterior variance VarfQl|Yobs
[Ql | Yobs] of Ql given Yobs. Here,

the total variance Tl is composed of the within-imputation variance W l,

W l := W l(Y
(1), . . . ,Y(M)) :=

1

M

M∑
m=1

Ŵ
(m)
l ,
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and the between-imputation variance Bl,

Bl := Bl(Y
(1), . . . ,Y(M)) :=

1

M − 1

M∑
m=1

(Q̂
(m)
l −Ql)

2.

Then, given an incomplete data set (y, r) and realized imputations y(1)
mis, . . . , y

(M)
mis , for

each l = 1, . . . , k the quantity of interest Ql approximately fulfills(√
Tl(Ql −Ql)

∣∣ Yobs = yobs,Y
(1)
mis = y(1)

mis, . . . ,Y
(M)
mis = y(M)

mis

) a∼ tNl
(0, 1)

for large sample sizes n with the estimator of the degrees of freedom Nl defined as

Nl := Nl(Y
(1), . . . ,Y(M)) :=

N ′lNl,obs

N ′l +Nl,obs

, (3.11)

where

Nl,obs :=
νcom + 1

νcom + 3
· νcom(1− Λl), N ′l :=

M − 1

Λ2
l

, Λl :=

(
1 +

1

M

)
Bl

Tl

and νcom are the degrees of freedom for the estimation of Q1, . . . , Qk with Q̂1, . . . , Q̂k

from the hypothetically complete data set Y. Interval estimates and p-values are derived
analogously to the one-dimensional case in Example 3.1.3. 4

3.2 Generating the Imputations

3.2.1 The Original Approach: Joint Models

In the previous section, we have left it open how to generate concrete imputations
Y(m)

mis = y(m)
mis given a realized incomplete data set (y, r). In the following, we will fur-

ther investigate how to sample them from the posterior predictive distribution of Ymis

given Yobs. In the original multiple imputation framework, for this purpose Rubin (1987,
Chapter 5.2) distinguishes three tasks.

1. Modeling task: A density

fY(y) =

∫
fY|Θ(y | θ)fΘ(θ) dθ

for Y has to be specified, where fY|Θ denotes the conditional probability of Y
given Θ and fΘ denotes the prior density of the parameter vector Θ.
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2. Imputation task: The posterior predictive density

fYmis|Yobs
(ymis | yobs) =

∫
fYmis|Yobs,Θ(ymis | yobs,θ)fΘ|Yobs

(θ | yobs) dθ

of the missing part Ymis of the data given the observed part Yobs of the data has to
be derived from fY, where fYmis|Yobs,Θ denotes the conditional density of the missing
part Ymis given the observed part Yobs and the parameter vector Θ, and fΘ|Yobs

denotes the posterior density of Θ given Yobs.

3. Estimation task: The posterior density

fΘ|Yobs
(θ | yobs) =

fYobs|Θ(yobs | θ)fΘ(θ)∫
fYobs|Θ(yobs | θ)fΘ(θ) dθ

of Θ given Yobs has to be derived that random draws can be made from it.

Finally, form = 1, . . . ,M and given the observed realized values yobs, the imputation y(m)
mis

can be generated compositionally:

(a) Draw a parameter vector θ(m) from fΘ|Yobs
(· | yobs).

(b) Draw y(m)
mis from fYmis|Yobs,Θ

(
·
∣∣ yobs,θ

(m)
)
.

This procedure gives M draws from the distribution of (Ymis,Θ | Yobs = yobs). By
simply ignoring the drawn values of Θ one obtains M draws from the posterior predictive
distribution (Rubin 1987, p. 162).

At this point, one might ask why the posterior distribution of Q(Θ) is not estimated di-

rectly by sampling with the above procedure, i. e. generate y(m)
mis compositionally and then

derive q(m) as the estimate Q(y(m)) based on the imputed data set y(m) = (yobs, y
(m)
mis ).

The reason is that in general it needs a large number of estimates q(m) to estimate the
posterior distribution by sampling even in the case of a normal distribution while the
multiple imputation procedure just needs a small number of draws (Little and Rubin
2020, pp. 232–233).

Nevertheless, it is not an easy task to draw from the posterior density fYmis|Yobs
. One

possibility is the data augmentation (or imputation posterior) method of Tanner and
Wong (1987), a Markov chain Monte Carlo approach. Another option is to use simpler
methods that approximate draws from fYmis|Yobs

. Little and Rubin (2020, pp. 238–241)
propose the following alternatives:

(A1) Improper multiple imputation: Use an estimate θ̂ of Θ, i. e. the maximum like-
lihood estimate or an easy-to-compute estimate such as that from the complete
units, and draw y(m)

mis from

fYmis|Yobs,Θ

(
· | yobs, θ̂

)
.

Rubin (1987, Chapter 4) shows that this approximation does not provide valid
frequentist inferences in general, since the uncertainty about Θ is not propagated
and thus calls it improper.
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(A2) Use the posterior distribution of Θ given a subset of the data: We draw θ(m)

from the posterior distribution of Θ not given the full observed data Yobs but given
a subset of Yobs. For instance, one might use the posterior distribution of Θ given
the complete cases Ycc for which all variables have been observed:

(a) Draw a parameter vector θ̃
(m)

from fΘ|Ycc(· | ycc).

(b) Draw y(m)
mis from fYmis|Yobs,Θ

(
·
∣∣∣ yobs, θ̃

(m)
)

.

In contrast to improper multiple imputation, this method does propagate uncer-
tainty about Θ but not all available information are used. This can be useful if
the posterior distribution of Θ has a simple form given only the complete cases.

(A3) Use the asymptotic normal distribution of the maximum likelihood estimator:

Suppose the maximum likelihood estimate θ̂ML of Θ is available, together with an
estimate of its large-sample covariance matrix Var

(
θ̂ML

)
. Then θ(m) can be drawn

from the asymptotic normal posterior distribution of Θ̂ML:

(a) Draw a parameter vector θ̃
(m)

from N
(
θ̂ML,Var

(
θ̂ML

))
.

(b) Draw y(m)
mis from fYmis|Yobs,Θ

(
·
∣∣∣ yobs, θ̃

(d)
)

.

(A4) Refining approximate draws using importance sampling: Assume we are using
only an approximating prior density gΘ(θ) to sample from Θ but the conditional
density of Ymis given Yobs and Θ is correctly specified as it is the case in the two
methods before. A refinement is obtained by generating a substantial set of draws{
θ̃

(m)
: m = 1, . . . ,M∗, M∗ �M

}
and then selecting a subset of size M from this

set with probability of the selection of draw θ̃
(m)

proportional to

wm ∝
fΘ

(
θ̃

(m)
)
· fYobs|Θ

(
yobs

∣∣∣ θ̃(m)
)

gΘ

(
θ̃

(m)
) .

This method is a version of sampling importance resampling algorithm (see for
example Gelfand and Smith 1990).

(A5) Use maximum likelihood estimates from bootstrapped samples of the in-
complete data set: Let

(
(yi:, ri:)

)
i=1,...,n

be the realized incomplete data set ex-

pressed as the collection of its n observations. Generate a bootstrapped sample
(yboot,(m), rboot,(m)) of (y, r) by sampling n observations from {(yi:, ri:)}i=1,...,n with
replacement. Then:

(a) Set θ̃
(m)

= θ̂ML

(
yboot,(m)

obs

)
.

(b) Draw y(m)
mis from fYmis|Yobs,Θ

(
·
∣∣∣ yobs, θ̃

(m)
)

.
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A special situation arises when so-called monotone missingness is present in the
incomplete data. Monotone missingness is present if we can find a permutation
σ : {1, . . . , d} → {1, . . . , d} such that for all i = 1, . . . , n the following holds true (Little
and Rubin 2020, p. 11): If there is a j1 ∈ {1, . . . , d} with Rij1 = 0 then Rij2 = 0 for all
j2 ∈ {1, . . . , d} with σ(j2) > σ(j1). In this case, the posterior density fΘ|Yobs

may have a
simple (or at least simpler) form (see for example Little and Rubin 2020, Chapter 7.4).
This fact motivates two more approximation methods (Little and Rubin 2020, p. 239):

(A6) Use the posterior distribution of Θ given a subset of the data with monotone
missingness: We draw θ(m) from the posterior distribution of Θ given the observed
part Ymm

obs of a subset Ymm ⊆ Y close to the full data with monotone missingness:

(a) Draw a parameter vector θ̃
(m)

from fΘ|Ymm
obs

(· | ymm
obs ).

(b) Draw y(m)
mis from fYmis|Yobs,Θ

(
·
∣∣∣ yobs, θ̃

(m)
)

.

(A7) Filling in data to create monotone missingness: If monotone missingness is
destroyed by only a small number of observations impute some values by single
imputation to gain monotone missingness. Draw θ(m) from the posterior distribu-
tion of Θ given the observed part Yaug−mm

obs of this augmented data set Yaug−mm:

(a) Draw a parameter vector θ̃
(m)

from fΘ|Yaug−mm
obs

(· | yaug−mm
obs ).

(b) Draw y(m)
mis from fYmis|Yobs,Θ

(
·
∣∣∣ yobs, θ̃

(m)
)

.

So far, in the presented original approach and its approximations the joint probabil-
ity fY formed the overall starting point for the generation of the imputations. Imputa-
tion methods which formulate such a complete joint probability model to generate the
imputations from we will refer to as methods using the joint model approach.

3.2.2 Fully Conditional Specification Approach and Extensions

One point of criticism that is repeatedly leveled at the joint model approach is the
lack of flexibility to account for important features of the data (see for instance Buuren
2007, p. 222). To overcome these limitations, another widely used approach has been
developed that bypasses the modeling of a joint distribution, the so-called fully condi-
tional specification approach. It is based on the core idea to generate the imputations
variable-by-variable. More precise, if Y:jc := (Y:1, . . . ,Y:j−1,Y:j+1, . . . ,Y:d) denotes the
data set Y with removed jth column Y:j, for each j = 1, . . . , d a posterior predictive
distribution for the missing part Y:j,mis of column Y:j given the observed part Y:j,obs of
column Y:j and the remaining data Y:jc is defined, here represented by the density

fY:j,mis|Y:j,obs,Y:jc
(y:j,mis | y:j,obs, y:jc)

=

∫
fY:j,mis|Y:j,obs,Y:jc ,Θj

(y:j,mis | y:j,obs, y:jc ,θj)fΘj |Y:j,obs,Y:jc
(θj | y:j,obs, y:jc) dθj,
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which is based on a random parameter vector Θj. Also, similarly to the estimation task
of the joint model approach, for each l = 1, . . . , k the posterior density

fΘj |Y:j,obs,Y:jc
(θj | y:j,obs, y:jc) =

fY:j,obs,Y:jc |Θj
(y:j,obs, y:jc | θj)fΘj

(θj)∫
fY:j,obs,Y:jc |Θj

(y:j,obs, y:jc | θj)fΘj
(θj) dθj

of Θj given Y:j,obs and Y:jc has to be derived that random draws can be made from it.

Then, an imputation y(m)
mis is generated by iteratively sampling from the posterior pre-

dictive densities fY:j,mis|Y:j,obs,Y:jc
. Similarly to the joint model approach, each draw from

a posterior predictive density fY:j,mis|Y:j,obs,Y:jc
is composed of a draw from the posterior

density fΘj |Y:j,obs,Y:jc
and the conditional density fY:j,mis|Y:j,obs,Y:jc ,Θj

. Taken together, we

obtain the following procedure to generate an imputed data set y(m) = (yobs, y
(m)
mis ) (Little

and Rubin 2020, p. 242; Buuren and Groothuis-Oudshoorn 2011, pp. 6–7).

1. Complete the observed data yobs with plausible values y(m,0)
mis to generate an initial

complete data set y(m,0) = (yobs, y
(m,0)
mis ). One possibility is to draw y(m,0)

mis from the
observed marginals (Buuren and Groothuis-Oudshoorn 2011, p. 6).

2. Run a (pseudo-)Gibbs sampler for T iterations. That is the tth iteration, draws

θ
(m,t)
1 from fΘ1|Y:1,obs,Y:1c

(
·
∣∣∣ y:1,obs, y

(m,t−1)
:2 , . . . , y(m,t−1)

:d

)
,

y(m,t)
:1,mis from fY:1,mis|Y:1,obs,Y:1c ,Θ1

(
·
∣∣∣ y:1,obs, y

(m,t−1)
:2 , . . . , y(m,t−1)

:d ,θ
(m,t)
1

)
,

...

θ
(m,t)
j from fΘj |Y:j,obs,Y:jc

(
·
∣∣∣ y:j,obs, y

(m,t)
:1 , . . . , y(m,t)

:j−1 , y
(m,t−1)
:j+1 , . . . , y(m,t−1)

:d

)
,

y(m,t)
:j,mis from fY:j,mis|Y:j,obs,Y:jc ,Θj

(
·
∣∣∣ y:j,obs, y

(m,t)
:1 , . . . , y(m,t)

:j−1 ,

y(m,t−1)
:j+1 , . . . , y(m,t−1)

:d ,θ
(m,t)
j

)
,

...

θ
(m,t)
d from fΘd|Y:d,obs,Y:dc

(
·
∣∣∣ y:d,obs, y

(m,t)
:1 , . . . , y(m,t)

:d−1

)
,

y(m,t)
:d,mis from fY:d,mis|Y:d,obs,Y:dc ,Θd

(
·
∣∣∣ y:d,obs, y

(m,t)
:1 , . . . , y(m,t)

:d−1 ,θ
(m,t)
d

)
,

where y(m,t)
:j is the jth column of the mth imputation in iteration t.

The imputed data set y(m) is then composed as

y(m) =
(

yobs, y
(m,T )
:1,mis , . . . , y

(m,T )
:d,mis

)
.

To obtain M imputed data sets we run M independent chains. Buuren and Groothuis-
Oudshoorn (2011, p. 7) note that from their experience the number of iterations T can
often be chosen small in the range of 10 to 20.
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Remark 3.2.1.

(a) The approximations (A1) to (A7) which we presented for the sampling from
fYmis|Yobs

can also be applied to the sampling from fY:j,mis|Y:j,obs,Y:jc
.

(b) The fully conditional specification approach is also known under a variety of other
names (Buuren 2007, p. 227): stochastic relaxation, variable-by-variable imputa-
tion, regression switching, sequential regressions, ordered pseudo-Gibbs sampler,
partially incompatible Markov chain Monte Carlo, iterated univariate imputation,
chained equations. 4

The fully conditional specification approach is more flexible than the joint model ap-
proach, but the conditional models taken together – even if each of it is a completely
specified probability model – do often not correspond to a proper joint distribution for Y
(Murray 2018, p. 152). A compromise between those two approaches is to formulate a
joint model via a sequential approach motivated by the relationship

fY(y) = fY:1(y:1) · fY:2|Y:1(y:2 | y:1) · . . . · fY:d|Y:1,...,Y:d−1
(y:d | y:1, . . . , y:d−1).

Here, if the conditional models are proper probability models, they result in a proper
joint probability model. The substantial question in this approach is how to choose
the order of the variables in the sequence since different orderings will in general lead
to different joint distributions (Murray 2018, p. 153). Thus, the sequential approach is
particularly reasonable if the missing data pattern is monotone because then the question
about the order of the variables is obsolete.

In the remainder, we will refer to procedures which generate imputations for Ymis

given Yobs generally as (multivariate) imputation methods. If missingness occurs
only in one column Y:j, we refer to procedures which generate imputations for Y:j,mis

given Y:j,obs and Y:jc as univariate imputation methods. It is obvious that every mul-
tivariate imputation method can also be used as a univariate imputation method.

3.3 Literature Review of Imputation Methods and their
Implementation in the R Programming Language

3.3.1 Univariate Imputation Methods

As seen in the previous section, univariate imputation methods form the basis for the
fully conditional specification approach by combining them during the quasi-Gibbs sam-
pling. Therefore, in what follows, we will review typical univariate imputation methods
applied in the the fully conditional specification approach. Most of them are imple-
mented in the R-packages mice (Buuren and Groothuis-Oudshoorn 2011) and mi (Su et
al. 2011) which provide multiple imputation based on the fully conditional specification
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approach. We therefore refrain from listing all individual R-functions of the individual
methods. Essentially, two approaches are widely used in practice to form univariate
imputation methods: sampling from (approximated) Bayesian generalized linear models
and using nearest neighbor methods.

(Approximated) Bayesian Generalized Linear Models

For imputing continuous variables, Rubin (1987, pp. 166–167) proposes to draw the im-
putations from a linear regression model where the model parameters follow the Jeffreys
prior. While this approach is fully Bayesian, Buuren (2018, p. 67) just takes the max-
imum likelihood estimates as regression parameters which corresponds to approxima-
tion (A1) from Section 3.2.1. Heitjan and Little (1991), however, expand this procedure
by using a bootstrapped sample of the original data for each imputation to estimate the
regression parameters from. This corresponds to approximation (A5) from Section 3.2.1.
Gelman, Jakulin, et al. (2008) impute dichotomous variables by sampling from a logistic
regression model where the model parameters are estimated via maximum-a-posterior
placing Student-t priors on the regression coefficients. This corresponds to approxima-
tion (A1) from Section 3.2.1. Rubin (1987, pp. 169–170) proposes a logistic regression
model where the posterior distribution of the model parameters equals the asymptotic
normal distribution of the maximum likelihood estimates which corresponds to approx-
imation (A3) from Section 3.2.1. This method can easily be extended to polytomous
case, i. e. with the multinomial logit model (Brand 1999, Appendix 4.B) or the ordered
logit (also proportinal odds) model (Buuren 2018, p. 88). Albert and Chib (1993) use
a fully Bayesian (polytomous) probit regression model together with a normal prior for
the regression coefficients. For count data, Raghunathan et al. (2001) propose the Pois-
son regression model where the posterior distribution of the parameters is approximated
by the asymptotic normal distribution of the maximum likelihood estimates. This cor-
responds to approximation (A3) from Section 3.2.1. For semi-continuous variables,
Rubin (1987, p. 180) presents a two stage approach combining the logistic regression
model with a multivariate normal approximation of the parameters and the linear re-
gression model with the Jeffreys prior from above. Su et al. (2011) extend the approach
of Gelman, Jakulin, et al. (2008) for other generalized linear models.

Nearest Neighbor Methods / Hot Deck Methods

Nearest neighbor methods (or hot deck methods) are typically based on an implicit prob-
ability model. In general, nearest neighbor methods impute missing values by sampling
from a pool of already observed values of “nearby” complete observations (Murray 2018,
p. 148), called donors. To find the nearby observations, the nearest neighbor methods
define a distance metric. A well known nearest neighbor method is the predictive mean
matching (Rubin 1987; Heitjan and Little 1991; Schenker and Taylor 1996). Here, the
distance between two observations is defined as the difference of the predictive means
from a linear regression model. Murray (2018, p. 148) mentions that instead of the
traditional linear regression other methods could be used to make this prediction.
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Other Methods

The Bayesian bootstrap (Rubin 1981) and the approximate Bayesian bootstrap (Ru-
bin and Schenker 1986) are Bayesian resampling methods. The Bayesian bootstrap
samples the imputations with probabilities drawn from a Dirichlet distribution. In the
approximate Bayesian bootstrap the Dirichlet distribution is replaced by a scalded multi-
nomial distribution. The local residual draw proposed by (Rubin 1987; Schenker and
Taylor 1996) mixes the classical prediction of a linear regression model and the predictive
mean matching. Each missing value is imputed by the sum of its predicted mean and an
error term where the error term gets sampled from the residuals of the predicted means
and the observed values of the donors. The pool of donors is determined in the same
way as for predictive mean matching. In addition, machine learning algorithms can be
used. Reiter (2005) and Burgette and Reiter (2010) propose multiple imputation based
on classification and regression trees (Breiman et al. 1984). For a detailed treatment
of these and other univariate imputation methods, see Buuren (2018, Chapter 3).

The standard multiple imputation function mice() of the mice R-package (Buuren and
Groothuis-Oudshoorn 2011) uses the predictive mean matching for numeric variables,
logistic regression models for binary variables, the multinomial logit model for unordered
categorical data and the ordered logit model for ordered categorical data. For all meth-
ods, the parameter uncertainty in the regression parameters is generated by sampling
from the asymptotic normal distribution of the maximum likelihood estimates which
corresponds to approximation (A3) from Section 3.2.1.

3.3.2 Multivariate Imputation Methods

Methods Based on the Multivariate Normal Distribution

There exist several methods based on the multivariate normal distribution. Schafer
(1997, chapter 5) developed a fully Bayesian method putting the normal inverted-
Wishart prior on the parameters of the multivariate normal distribution. This approach
is implemented in the R-package norm (Novo and Schafer 2023). King et al. (2001)
approximate the uncertainty in the model parameters applying the asymptotic normal
distribution of the maximum likelihood estimates as well as importance sampling as de-
scribed in the approximations (A3) and (A4) of Section 3.2.1. In contrast, Honaker and
King (2010) are using maximum likelihood estimates of the parameters based on boot-
strapped samples corresponding to approximation (A5) of Section 3.2.1. This method
is implemented in the R-package Amelia (Honaker, King, and Blackwell 2011). For high
dimensional data, the fully Bayesian approach of Audigier, Husson, and Josse (2016) is
based on a principal component analysis in conjunction with a normal prior.
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Methods Based on Other Parametric Distributions

Often methods based on the multivariate normal distribution are also used for discrete
variables by just rounding the continuous imputations based on some threshold. Nev-
ertheless, it is more preferable to use methods with appropriate probability models for
the different types of variables. For purely discrete variables log-linear models (Schafer
1997, Chapter 8) or latent class models (Vermunt et al. 2008; Gebregziabher and De-
Santis 2010) have been used for multiple imputation. To generate imputations for mixed
continuous and discrete variables the general location model (Olkin and Tate 1961; Lit-
tle and Schluchter 1985; Schafer 1997, Chapter 9.2) and extensions of it (Liu and Rubin
1998) can be applied. For an overview of other multivariate parametric probability
models used in imputation methods, see Murray (2018, p. 150).

Bayesian Non-Parametric Methods

While the methods mentioned so far are based on parametric probability models, there
also exist methods exploiting Bayesian non-parametric models: Paddock (2002) presents
a non-parametric approach based on Pólia trees. For categorical data, Si and Reiter
(2013) and Manrique-Vallier and Reiter (2014) make use of the Dirichlet process mix-
ture of product multinomials. For continuous data, truncated Dirichlet process mix-
ture of multivariate normal distributions can be used (Kim et al. 2014). Combining
the latter two models it is even possible to impute mixed, continuous and categorical
variables (Murray and Reiter 2016; DeYoreo, Reiter, and Hillygus 2017). The method
of Murray and Reiter (2016) is implemented in the R-package MixedDataImpute. More
Bayesian non-parametric methods can be found in Murray (2018, pp. 150–151).

Methods Based on Copulas

Recently, methods for the multiple imputation of continuous variables have been devel-
oped where the joint distributions are modeled via copulas. Di Lascio, Giannerini, and
Reale (2015) consider multivariate Gaussian, t-, Gumbel, Clayton and Frank copu-
las. The estimation of the margins and the copula is done by a inference for margins
approach using all the observed data. The imputations are sampled from the respective
conditional distributions which are derived for each of the appearing response patterns
via Bayes rule. This method is implemented in the CoImp R-package (Di Lascio, Gatto,
and Giannerini 2024) with an extension to the rotated Gumbel copula and a non-
parametric copula. The method also works for exclusively discrete variables. A fully
Bayesian approach is presented by Hollenbach et al. (2021) who consider joint models
based on Gaussian copulas and the inverted-Wishart prior. The sampling of the im-
putations is done by a Gibbs sampler. This method can even handle continuous and
discrete variables at the same time making use of the rank likelihood. Hasler, Craiu, and
Rivest (2018) use a D-vine copula construction for the multiple imputation of missing
data with monotone missing patterns where all variables are continuous. They use a
semi-parametric approach for the estimation of the margins and the copula parameters.
Chapon, Ouarda, and Hamdi (2023) also use D-vine copulas to model the underlying
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joint distributions. The selection of the involved pair-copulas and the adjustment of
their parameters is done jointly via an reversible jump Markov chain Monte Carlo al-
gorithm based on the work of Min and Czado (2011) which samples of the posterior
distribution. The imputations are sampled from the conditional distributions available
from the D-vine but get additionally disturbed by a normally distributed error.

3.4 Randomization Valid Inference

Even if the theory in Section 3.1 presents a Bayesian approach for deriving point esti-
mates, interval estimates and p-values for Q, it is common to evaluate the performance
of imputation methods from a frequentist perspective. This change of perspective is
reasonable because, under weak conditions, Bayesian inference corresponds to frequen-
tist inference and vice verse (Rubin 1987, Section 2.10). To this end, let the parameter
vectors Θ = θ and Φ = φ be fixed at their true values. In this situation we also
know the true value q := Q(θ) of Q since we chose the quantity of interest to be a
function of Θ. Following Rubin (1987), an imputation method is suitable if the result-
ing repeated-imputation inference is randomization valid for Q = q. Rubin (1987)
formulates randomization validity in the following way.

Definition 3.4.1 (Randomization validity). Let Θ = θ and Φ = φ be fixed at their true
values and let the estimators Q∞ and T∞ be defined as in Equations (3.1) and (3.4). The
repeated-imputation inference is randomization valid for Q = q if, under the probability
model defined by fY,R|Θ,Φ(·, · | θ,φ), the estimator Q∞ is normally distributed with
mean

EfY,R|Θ,Φ[Q∞ | θ,φ] = q,

and the variance of Q∞ is well approximated by the estimator T∞ in the sense that

EfY,R|Θ,Φ
[T∞ | θ,φ] = VarfY,R|Θ,Φ

[Q∞ | θ,φ]. 4

Remark 3.4.2. Rubin (1987, Chapter 4.2) and Rubin (1996) further divide randomization

validity of Q∞ into two conditions: (a) Randomization validity of Q̂ and (b) Properness
of the imputation model. The first condition holds – under the assumption of asymptotic
normality – if

EfY|Θ [Q̂ | θ] = q,

EfY|Θ [Ŵ | θ] = VarfY|Θ [Q̂ | θ].

On the other hand, omitting some other but technical conditions that are generally not
relevant in practice (Rubin 1996), the imputation model is proper if

EfR|Y,Φ
[Q∞ | Y,φ] = Q̂,
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EfR|Y,Φ
[W∞ | Y,φ] = Ŵ,

EfR|Y,Φ
[B∞ | Y,φ] = VarfR|Y,Φ

[Q∞ | Y,φ],

where Q∞, W∞ and B∞ are defined in Equations (3.1), (3.2) and (3.3). If both, ran-

domization validity of Q̂ and properness of the imputation model are fulfilled, Q∞ is
randomization valid (Rubin 1987, Result 4.1; Rubin 1996). Essentially, it holds that
(Rubin 1996, p. 478):

EfY,R|Θ,Φ
[Q∞ | θ,φ] = EfY|Θ

[
EfR|Y,Φ

[Q∞ | Y,φ]
∣∣ θ] = EfY|Θ [Q̂ | θ] = q

and

EfY,R|Θ,Φ
[T∞ | θ,φ]

(3.4)
= EfY,R|Θ,Φ

[W∞ | θ,φ] + EfY,R|Θ,Φ
[B∞ | θ,φ]

= EfY|Θ

[
EfR|Y,Φ

[W∞ | Y,φ]
∣∣ θ]+ EfY|Θ

[
EfR|Y,Φ

[B∞ | Y,φ]
∣∣ θ]

= EfY|Θ [Ŵ | θ] + EfY|Θ

[
VarfR|Y,Φ

[Q∞ | Y,φ]
∣∣ θ]

= VarfY|Θ [Q̂ | θ] + EfY|Θ

[
VarfR|Y,Φ

[Q∞ | Y,φ]
∣∣ θ]

= VarfY|Θ

[
EfR|Y,Φ

[Q∞ | Y,φ]
∣∣ θ]+ EfY|Θ

[
VarfR|Y,Φ

[Q∞ | Y,φ]
∣∣ θ]

= VarfY,R|Θ,Φ[Q∞ | θ,φ]. 4

If randomization validity holds, then from the frequentist perspective the 100(1− α) %
interval estimate given in Equation (3.7) is indeed a 100(1 − α) % confidence interval
(Rubin 1987, Section 4.2). Thus, in the case of k = 1, a procedure to investigate the
randomization validity of a given method for a specific quantity of interest Q = q is
given as follows (Buuren 2018, Chapter 2.5): Sample repeatedly from fY,R|Θ,Φ(·, · | θ,φ)
to generate incomplete data sets. Complete each incomplete data set M times and apply
Rubin’s rules to get point estimates and interval estimates of a certain level 1− α of q
for each originally incomplete data set. If the average point estimates are close to q and
the interval estimates contain q in roughly 100(1−α) % of the cases this would support
randomization validity. For k > 1, Buuren (2018, Chapter 2.5) suggests to repeat the
above procedure element by element applying Remark 3.1.4.

By definition, randomization validity is not a general property of an imputation method
but, in theory, potentially has to be verified individually for each data model, each quan-
tity of interest and each concrete parameter realization. Since this is almost impossible,
it has become established in practice to test randomization validity only in a few and
often simple situations. If in these situations randomization validity does not hold for a
specific imputation method it is generally assumed that this imputation is not a suitable
imputation method. Conversely, if randomization validity is fulfilled in these situations,
this serves as an indication of randomization validity in other, more general situations.
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D-Vine Based Quantile Regression

4.1 A Refresher on D-Vines and D-Vine Copulas

A d-dimensional copula C is a multivariate distribution function on the d-dimensional
unit hypercube [0, 1]d for which the marginals are uniformly distributed. The importance
of copulas is based on the following fundamental representation theorem for multivariate
distributions proved by Sklar (1959).

Theorem 4.1.1. For every random vector Y = (Y1, . . . , Yd) with joint distribution func-
tion F and marginal distribution functions F1, . . . , Fd, there exists a d-dimensional cop-
ula C, such that

F (y) = C
(
F1(y1), . . . , Fd(yd)

)
. (4.1)

In the case of an absolutely continuous Y, the copula in the above decomposition is
unique. In addition, its joint density f can then be decomposed similarly into

f(y) =
d∏
j=1

fj(yj) · c
(
F1(y1), . . . , Fd(yd)

)
, (4.2)

where c(v1, . . . , vd) := ∂d

∂v1···∂vd
C(v1, . . . , vd) is the copula density and f1, . . . , fd are the

marginal densities.

Let us provisionally assume, until stated otherwise, that Y is absolutely continuous. In
Equation (4.1) the probability integral transform is applied to the marginals: Uj :=
Fj(Yj), j = 1, . . . , d. Since Y is absolutely continuous all Uj are uniformly distributed
and consequently the joint distribution function of the random vector U := (U1, . . . , Ud)
is the copula C associated with Y. In the following, we denote the index set of Y and U
with D := {1, . . . , d}. Additionally for an arbitrary j ∈ D we define D−j := D \ {j}.

Notation 4.1.2. Let j1, j2, j ∈ D and J ( D with j, j1, j2 /∈ J . Then:

(a) The copula associated with the conditional distribution of (Yj1 , Yj2) given YJ = yJ
is denoted by CYj1 ,Yj2 ;YJ

(·, ·; yJ). The corresponding copula density is denoted by
cYj1 ,Yj2 ;YJ

(·, ·; yJ). We abbreviate both by Cj1,j2;J(·, ·; yJ) and cj1,j2;J(·, ·; yJ).

29
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(b) The conditional distribution of the random variable Yj given YJ = yJ is denoted
by FYj |YJ

(· | yJ). We abbreviate this by Fj|J(· | yJ).

(c) The conditional distribution of the random variable Uj given UJ = uJ is denoted
by CUj |UJ

(· | uJ). We abbreviate this by Cj|J(· | uJ).

(d) We define the h-functions associated with a pair-copula Cj1,j2;J as

hj1|j2;J(uj1 | uj2 ; uJ) :=
∂Cj1,j2;J(uj1 , uj2 ; uJ)

∂uj2
,

hj2|j1;J(uj2 | uj1 ; uJ) :=
∂Cj1,j2;J(uj1 , uj2 ; uJ)

∂uj1
. 4

Notation 4.1.3. Let J ⊆ D with |J | = s̃ and let j = (j1, . . . , js̃) be an arbitrary
permutation of J . For two indices s1 ≤ s2 ≤ s̃, we define js1:s2 := {js1 , . . . , js2}. 4

The following theorem shows that the copula density in Equation (4.2) can be replaced
by a product of exclusively (conditional) bivariate copula densities (Kraus and Czado
2017, Equation (2.1)).

Theorem 4.1.4 (Drawable vine (D-vine) density). Let Y = (Y1, . . . , Yd) be an absolutely
continuous random vector with joint density f and let ` = (`1, . . . , `d) be an arbitrary
permutation of the index set D. Then f can be decomposed as

f(y) =
d∏

k=1

f`k(y`k) ·
d−1∏
i=1

d∏
j=i+1

c`i,`j ;`i+1:j−1

(
F`i|`i+1:j−1

(y`i | y`i+1:j−1
),

F`j |`i+1:j−1
(y`j | y`i+1:j−1

); y`i+1:j−1

)
.

The distribution associated with this decomposition is called a drawable vine (D-vine)
with order `. If all margins are uniform one speaks of a D-vine copula with order `.

D-vines build a subclass of the more general pair-copula construction called regular
vines (R-vines) for which Bedford and Cooke (2002) introduced a graphic theoretic
representation. A general D-vine in this representation is shown in Figure 4.1. It is worth
mentioning that all the conditional distributions F`i|`i+1:j−1

and F`j |`i+1:j−1
appearing in

the D-vine density can be expressed using only the pair-copulas already specified in the
decomposition. This can be reached by applying the following recursion, which was first
stated by Joe (1996) and follows directly from the chain rule of differentiation.

Theorem 4.1.5 (Recursion for conditional distribution functions). Let Y be absolutely
continuous. Additionally, let J ( D, i ∈ D \ J , l ∈ J and J−l := J \ {l}. Then,

Fi|J(yi | yJ) =
∂Ci,l;J−l

(
Fi|J−l

(yi | yJ−l
), Fl|J−l

(yl | yJ−l
); yJ−l

)
∂Fl|J−l

(yl | yJ−l
)

= hi|l;J−l

(
Fi|J−l

(yi | yJ−l
), Fl|J−l

(yl | yJ−l
); yJ−l

)
. (4.3)



4 Multiple Imputation via Iterated D-Vine Based Quantile Regression 31

` 1
` 2

` 3
` 4

` 5
` d

` 1
,`

2
` 2
,`

3
` 3
,`

4
` 4
,`

5

` 1
,`

2
` 2
,`

3
` 3
,`

4
` 4
,`

5
` d
−

1
,`
d

` 1
,`

3
;`

2
` 2
,`

4
;`

3
` 3
,`

5
;`

4

` 1
,`

3
;`

2
` 2
,`

4
;`

3
` 3
,`

5
;`

4
` d
−

2
,`
d
;`
d
−

1

` 1
,`

4
;`

2
:3

` 2
,`

5
;`

3
:4

` 1
,`

4
;`

2
:3

` 2
,`

5
;`

3
:4

` d
−

3
,`
d
;`
d
−

2
:d
−

1

` 1
,`

5
;`

2
:4

. . .

` 1
,`
d
−

1
;`

2
:d
−

2
` 2
,`
d
;`

3
:d
−

1

` 1
,`
d
;`

2
:d
−

1

T
1

T
2

T
3

T
4 . . .

T
d
−

1

F
ig

u
re

4
.1

:
G

ra
p
h

th
eo

re
ti

c
D

-v
in

e
re

p
re

se
n
ta

ti
on

of
a

D
-v

in
e

w
it

h
or

d
er
`

=
(`

1
,.
..
,`
d
).



4 Multiple Imputation via Iterated D-Vine Based Quantile Regression 32

When working with D-vines it is common to assume that the copulas Cj1,j2;J associ-
ated with conditional distributions do not depend on the conditioning value yJ , i.e.
Cj1,j2;J(·, ·; yJ) ≡ Cj1,j2;J(·, ·). This assumption is called the simplifying assumption
(for a further discussion of the simplifying assumption see Czado and Nagler 2022). It
also implies that the h-functions are independent of uJ . Especially, it holds that

hj1|j2;J(uj1 | uj2 ; uJ) =
∂Cj1,j2;J(uj1 , uj2)

∂uj2
= Cj1|j2;J(uj1 | uj2),

hj2|j1;J(uj2 | uj1 ; uJ) =
∂Cj1,j2;J(uj1 , uj2)

∂uj1
= Cj2|j1;J(uj2 | uj1).

Assumption 4.1.6. The simplifying assumption holds. 4

4.2 Sampling From Conditional Distributions Using
D-Vines Copulas

In the previous section, we have seen how to express the joint distribution F of Y =
(Y1, . . . , Yd) in terms of its marginal distribution functions F1, . . . , Fd and a copula C.
Now, for the purpose of multiple imputation based on the fully conditional specification
approach, given a fixed but arbitrary j ∈ D, we are primary not interested in F but
in the conditional distribution function Fj|D−j

of Yj given the remaining variables YD−j

and how to sample from it during the quasi-Gibbs sampling. Sampling from Fj|D−j
can

be done via the conditional quantile function of Yj given YD−j
:

qj(α | yD−j
) := F−1

j|D−j
(α | yD−j

), α ∈ (0, 1).

As shown in Kraus and Czado (2017, p. 3), using the probability integral transforms Uj
and UD−j

, the conditional distribution function of Yj given YD−j
can be expressed in

terms of the conditional distribution function of Uj given UD−j
:

Fj|D−j
(yj | yD−j

) = P(Yj ≤ yj | YD−j
= yD−j

)

= P(Uj ≤ uj | UD−j
= uD−j

)

= Cj|D−j
(uj | uD−j

).

Inverting the last equation yields an expression for qj(α | yD−j
) in terms of the inverse

marginal distribution function F−1
j of Yj and the conditional quantile function C−1

j|D−j

of Uj given UD−j
:

qj(α | yD−j
) = F−1

j

(
C−1
j|D−j

(α | uD−j
)
)
.

If we construct C as a D-vine copula with order ` = (`1, . . . , `d) where ` is an arbitrary
permutation of D with `1 = j the conditional distribution function Cj|D−j

(uj | uD−j
)
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can be derived from the conditional pair-copula Cj,`d;`2:d−1
(uj, u`d) involved in the copula

construction. Especially, the recursion given in Equation (4.3) allows to express the
conditional distribution function Cj|D−j

(uj | uD−j
) in a closed form as a composition

of h-functions. Consequently, the conditional quantile function C−1
j|D−j

(α | u−j) can be

expressed in a closed form as a composition of inverse h-functions.

Of course there is no need to predict Yj by conditioning on all of the remaining vari-

ables YD−j
. One can take any subset D̃ ⊆ D fulfilling j ∈ D̃ resulting in the conditional

quantile function of Yj given YD̃−j
as

qj(α | yD̃−j
) := F−1

j|D̃−j
(α | yD̃−j

) = F−1
j

(
C−1

j|D̃−j
(α | uD̃−j

)
)
, (4.4)

where D̃−j := D̃ \ {j}. As before, now constructing a D-vine copula for UD̃ with order˜̀ := (˜̀1, . . . , ˜̀d̃) where ˜̀ is an arbitrary permutation of D̃ with ˜̀1 = j and d̃ := |D̃| is

the cardinality of D̃, we can derive the conditional quantile function C−1

j|D̃−j
(α | uD̃−j

) in

a closed form. Since we derive qj(α | yD̃−j
) from a D-vine copula we also refer to it as a

D-vine quantile regression model with response Yj and covariates YD̃−j
.

As outlined in Kraus and Czado (2017, p. 3), estimating the marginal distribution

functions Fj, j ∈ D̃, and the conditional distribution function Cj|D̃−j
gives an estimate

of qj(α | yD̃−j
) by plugging them into Equation (4.4):

q̂j(α | yD̃−j
) := F̂−1

j

(
Ĉ−1

j|D̃−j
(α | ûD̃−j

)
)
, (4.5)

where ûD̃−j
:= (ûj)j∈D̃−j

and ûj := F̂j(yj) is the estimated probability integral trans-

form of yj for all j ∈ D̃−j. Further, Kraus and Czado (2017, p. 4) state, that this
representation of q̂j(α | yD̃−j

) allows to divide the estimation process into two steps:
the estimation of the marginal distribution functions and the estimation of the D-vine
copula that specifies the pair-copulas needed to evaluate Ĉ−1

j|D̃−j
(α | ûD̃−j

).

In the following, we present the estimation of a D-vine quantile regression model in-
cluding a selection algorithm for the appropriate choice of the set D̃ together with an
order ˜̀ to construct the model D-vine copula. We follow the approach of Kraus and
Czado (2017) adapted to the situation of missing data given a realized incomplete data
set (y, r) of dimension n× d where y = (yij)i=1,...,n, j=1,...,d.

First Step: Estimation of the Marginals

Kraus and Czado (2017, p. 5) fit the marginal distribution functions using the below
defined estimator which is derived from the kernel density estimator (Parzen 1962).

Definition 4.2.1 (Kernel estimator of a univariate cumulative distribution function). Let

(Xi)i=1,...,n be an i. i. d. sample of a random variable X. The kernel estimator F̂X(x) of
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the cumulative distribution function FX(x) of X is defined as

F̂X(x) :=
1

n

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R,

where K(x) :=
∫ x
−∞ k(t) dt with k(·) being a symmetric probability density function and

h > 0 a bandwidth parameter. 4

In the present situation, for each j = 1, . . . , d we must take into account that the sample
y:j = (y1j, . . . , ynj)

> of Yj may have missing values. To estimate the marginal distribution
function Fj we can only use the observed values y:j,obs = {yij}i∈Iobsr (j). Appropriately
adjusting the formula for the kernel estimator we thus obtain the estimate

F̂j(yj) :=
1

|Iobs
r (j)|

∑
i∈Iobsr (j)

K

(
yj − yij

h

)
.

With the help of the estimates F̂j, j = 1, . . . , d, the data y is then transformed to pseudo

copula data û = (ûij)i=1,...,n, j=1,...,d where ûij := F̂j(yij). The incomplete pseudo copula
data (û, r) is used as an approximately i. i. d. sample from the random vector U.

Second Step: Estimation of the D-Vine Copula

Analogous to the procedure of Kraus and Czado (2017, p. 5), we iteratively select the
most influential covariates. Starting without any covariate, at each step that covariate
is added to the model which results in the greatest improvement to the model’s fit. The
model’s fit is assessed using a weighted conditional log-likelihood, which is based on the
estimated D-vine copula with order ˜̀, pair-copula families F̂ and the corresponding
copula parameters θ̂, all given the pseudo copula data û. It is defined as

cll
(˜̀, F̂ , θ̂; û, r

)
:=

n

|Iobs
r (˜̀)| ∑

i∈Iobsr (˜̀)

log cj|D̃−j

(
ûij

∣∣∣ ûiD̃−j
; ˜̀, F̂ , θ̂), (4.6)

where ûiJ := (ûij)j∈J for any subset J ⊆ D and Iobs
r (˜̀) indexes the observations for

which all variables Yj and thus Uj, j ∈ ˜̀, have been observed. For complete data
sets, Equation (4.6) equals the conditional log-likelihood of Kraus and Czado (2017,

Equation (3.7)) since then Iobs
r (˜̀) = {1, . . . , n} for all possible orders ˜̀. As given in

Kraus and Czado (2017, p. 5), cj|D̃−j

(
ûij

∣∣∣ ûiD̃−j
; ˜̀, F̂ , θ̂) can be expressed as the product

of densities over all pair-copulas of the estimated D-vine copula which contain Uj:

cj|D̃−j

(
ûij

∣∣∣ûiD̃−j
;˜̀,F̂ ,θ̂)=cj,˜̀2

(
ûij,ûi˜̀2 ;F̂j,˜̀2 ,θ̂j,˜̀2

)
·
d̃∏

m=3

cj,˜̀m ;̃`2:m−1

(
Ĉj |̃`2:m−1

(ûij|ûi˜̀2:m−1
),Ĉ˜̀

m |̃`2:m−1
(ûi˜̀m|ûi˜̀2:m−1

);F̂j,˜̀m ;̃`2:m−1
,θ̂j,˜̀m ;̃`2:m−1

)
where F̂• and θ̂• denote the family and the family parameter(s) of a pair-copula C• of
the estimated D-vine copula.
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Remark 4.2.2. Note that all occurring pair-copulas are estimated on the maximal avail-
able information. For bivariate copulas Cj1,j2 this means that they are estimated on
the observations indexed by i ∈ Iobs

r

(
(j1, j2)

)
, that is Yj1 and Yj2 have been observed.

For conditional bivariate copulas Cj1,j2;j this means that they are estimated on the ob-
servations indexed by i ∈ Iobs

r

(
(j1, j2, j)

)
where all variables {Yj}j∈{j1,j2,j} have been

observed. 4

The selection algorithm now works as follows (Kraus and Czado 2017, p. 5): Assume that
at the beginning of the tth iteration of the algorithm the current optimal D-vine copula

has order ˜̀(t)
= (˜̀(t)1 , . . . , ˜̀(t)t ) where ˜̀(t)1 = 1. For each of the remaining variables U`

that have not been selected yet, so ` ∈ D \ {˜̀(t)m }m=1,...,t, the necessary pair-copulas

to extend the current copula to a D-vine copula with order (˜̀(t)1 , . . . , ˜̀(t)t , `) are fitted
and the conditional log-likelihood of the resulting D-vine quantile regression model is
computed. The current D-vine copula is updated by adding the variable that yields the
highest conditional log-likelihood, which completes iteration t. If during iteration t none
of the remaining variables is able to improve the model’s fit, the algorithm terminates

and returns the model based on the non-extended D-vine copula of order ˜̀(t)
.

If one wants to account for the number of parameters |θ̂| used in the construction
of the D-vine copula, the AIC-corrected conditional log-likelihood cllAIC or the BIC-
corrected conditional log-likelihood cllBIC can be considered instead of the conditional
log-likelihood (Kraus and Czado 2017, p. 5):

cllAIC(˜̀, F̂ , θ̂; û, r) := −2cll(˜̀, F̂ , θ̂; û, r) + 2|θ̂|,
cllBIC(˜̀, F̂ , θ̂; û, r) := −2cll(˜̀, F̂ , θ̂; û, r) + log(n)|θ̂|.

In this thesis we will only consider the AIC-corrected conditional log-likelihood cllAIC.

Remark 4.2.3. In general, the estimation of the D-vine copulas within the algorithm is
better the more observations can be used for it. Thus, it is reasonable to correct the
conditional log-likelihood of Equation (4.6) taking into account the proportion of all n
observations the conditional log-likelihood is based on. We make the proposal to correct
the conditional log-likelihood as follows: For a fixed α ≥ 0 set

cllcorrected(˜̀, F̂ , θ̂; û, r) := cll(˜̀, F̂ , θ̂; û, r)−

(
n

|Iobs
r (˜̀)|

)α

+ 1.

This means that the greater α is chosen the more influence non-usable observations
have. For α = 0 there is no correction. Analogously, the AIC-corrected and BIC-
corrected versions can be additionally corrected with respect to the proportion of the
observations the conditional log-likelihood is based on:

cllAIC(˜̀, F̂ , θ̂; û, r) := −2cllcorrected(˜̀, F̂ , θ̂; û, r) + 2|θ̂|,
cllBIC(˜̀, F̂ , θ̂; û, r) := −2cllcorrected(˜̀, F̂ , θ̂; û, r) + log(n)|θ̂|.
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Since in the later quasi-Gibbs sampling for the estimation of the D-vine quantile re-
gression models missing values will only occur in the response variable and thus the
conditional log-likelihoods are calculated and compared on the same set of observations
for all possibly added covariates, this correction is not necessary in the following. 4

Schallhorn et al. (2017) extended the approach of Kraus and Czado (2017) to mixed
continuous and discrete variables by using suitable differences instead of derivatives in
the h-functions. Thus, the provisional assumption of the absolute continuity of Y can
be removed from this point onwards.

Our implementation of the above presented procedure including discrete variables uses
the function kde1d() of the R-package kde1d (Nagler and Vatter 2022) to fit the marginal
distributions. The estimation of the pair-copulas during the construction of the optimal
D-vine copula is based on the bicop() function of the rvinecopulib R-package (Nagler
and Vatter 2023). We are also using the functions dbicop() and hbicop() of the
same package to evaluate pair-copula densities and h-functions. Our implementation is
an extension of the vinereg() function of the R-package vinereg (Nagler and Kraus
2024) for which only the complete observations enter the estimation of a D-vine quantile
regression model. The resulting D-vine quantile regression models can be evaluated by
the predict.vinereg() function of the vinereg R-package (Nagler and Kraus 2024).

Example 4.2.4. Let (y, r) be given as in Example 2.2.2 and assume that we want to fit
a D-vine quantile regression model with response Y1 and possible covariates Y2 and Y3.
Below, we demonstrate the algorithm for choosing the AIC-optimal D-vine copula.

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 T
4.51
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44
2.32 4.40 F

(yobs, r)

Iteration 1: For the two possible D-vine copulas with order (1, 2) and (1, 3) the AIC-

optimal copulas Ĉ1,2 and Ĉ1,3 are estimated. For the estimation of Ĉ1,2 we can use all
observations that are simultaneously complete for Y1 and Y2 given by the index set

Iobs
r

(
(1, 2)

)
= {1, 2, 3, 5, 6, 7, 10, . . . , 15}.
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Analogously, Ĉ1,3 is fitted based on all observations with observed variables Y1 and Y3:

Iobs
r

(
(1, 3)

)
= {1, . . . , 8, 10, . . . , 13, 15}.

The resulting pair-copulas are the BB7 copula with parameters 2.62 and 2.51 and a log-
likelihood of 8.11 (Ĉ1,2) and the Clayton copula with parameter 3.25 and a log-likelihood

of 4.88 (Ĉ1,3). Since we used 12 observations for the estimation of Ĉ1,2 and 13 for Ĉ1,3,
the AIC-corrected conditional log-likelihoods calculate as

−2 · 15

12
· 8.11 + 2 · 2 ≈ −16.28 and − 2 · 15

13
· 4.88 + 2 · 1 ≈ −9.26.

Consequently, the algorithm decides for Y2 as the first variable to construct the D-vine
copula since it minimizes the AIC-corrected conditional log-likelihood.

Iteration 2: There is only one variable left to possibly extend the current AIC-optimal
D-vine copula with order (1, 2) to a D-vine copula with order (1, 2, 3). To construct

this D-vine copula the pair-copulas Ĉ2,3 and Ĉ1,3;2 have to be fitted. The copula Ĉ2,3 is
estimated based on the observations given by the index set

Iobs
r

(
(2, 3)

)
= {1, 2, 3, 5, 6, 7, 10, . . . , 13, 15}

resulting in a Gaussian copula with parameter 0.77. For the estimation of the copula
Ĉ1,3;2 we can only use the observations where all the variables involved in the copula,

Y1, Y2 and Y3, have been observed. Thus, Ĉ1,3;2 is fitted using the observations from

Iobs
r

(
(1, 3, 2)

)
= {1, 2, 3, 5, 6, 7, 10, . . . , 13, 15}.

The resulting copula Ĉ1,3;2 equals the Gumbel copula with parameter 1.47. Now, the
AIC-corrected conditional log-likelihood is calculated also using only the 11 observations
of Iobs

r

(
(1, 3, 2)

)
. For Ĉ1,2 we obtain a log-likelihood of 7.40 while for Ĉ1,3;2 the log-

likelihood equals 1.36. Thus, the AIC-corrected conditional log-likelihood of the D-vine
quantile regression model with order (1, 2, 3) calculates as

−2 · 15

11
· (7.40 + 1.36) + 2 · 4 ≈ −15.89.

Since this value is greater than the AIC-corrected conditional log-likelihood of the model
with order (1, 2) the algorithm stops not extending the D-vine copula. Thus, the final

D-vine copula consists of the BB7 copula Ĉ1,2 with parameters 2.62 and 2.51. 4

4.3 An Imputation Method Based on the Fully
Conditional Specification Approach Using D-Vine
Quantile Regression Models

In the previous section we constructed the centerpiece of our imputation method: A
D-vine quantile regression model can be used as the posterior predictive distribution in



4 Multiple Imputation via Iterated D-Vine Based Quantile Regression 38

a univariate imputation method. Therefore, we can apply the fully conditional specifi-
cation approach to develop a D-vine quantile regression based multivariate imputation
procedure. The last missing component to run the quasi-Gibbs sampler of the fully spec-
ification approach is the selection of appropriate initial values. While we could simply
sample the missing values for each variable from their observed values, as mentioned in
Section 3.2.2, we discard this approach in order not to loose the information given by the
dependencies between the variables. Instead, for each missing value we will determine
K > 1 nearest neighbors, based on Gower’s dissimilarity coefficient as a distance mea-
sure, from which we sample the initial values. Gower’s dissimilarity coefficient has been
originally introduced by Gower (1971) and extended particularly for ordinal variables
by Kaufman and Rousseeuw (1990, pp. 35–36). The following definition transfers the
extension of Kaufman and Rousseeuw (1990) to the case of incomplete data sets and is
realized in the gower.dist() function (StatMatch R-package, D’Orazio 2024) which we
use for the implementation of our imputation method.

Definition 4.3.1 (Gower’s dissimilarity coefficient). Let (yi1:, ri1:) and (yi2:, ri2:) be two
observations of the incomplete data set (y, r) and λ = (λ1, . . . , λd) be a d-dimensional
vector of non-negative weights for each variable Y1, . . . , Yd. Then, Gower’s dissimilarity
coefficient for the observations (yi1:, ri1:) and (yi2:, ri2:) calculates as

d(i1, i2,λ) :=

∑d
j=1 d(yi1j, yi2j) · δ(ri1j, ri2j) · λj∑d

j=1 δ(ri1j, ri2j) · λj
,

where δ(ri1j, ri2j) is defined as

δ(ri1j, ri2j) :=

{
0, if ri1j = 0 or ri2j = 0

1, else
.

For numeric variables the distance d(yi1j, yi2j) is defined as

d(yi1j, yi2j) :=
|yi1j − yi2j|

Rj

,

where Rj := maxi∈Iobsr (j)yij − mini∈Iobsr (j)yij is the range of the observed values in the
jth column y:j. For ordinal scaled variables, the ranks corresponding to the ordered
categories of the jth variable are used instead of yij. In the situation of d(i1, i2,λ) = 0

0

we set d(i1, i2,λ) := 1. 4

Determining the K nearest neighbors of a missing value yij

Suppose for an index pair (i, j) ∈ {1, . . . , n}×{1, . . . , d} we have a missing value yij, that
is rij = 0. Let |ρS(y:j, y:j∗)| denote the absolute value of the sample Spearman’s rank
correlation coefficient between the columns y:j and y:j∗ of y which is calculated using all
pairwise complete observations and averaging possible ties. Note that we have assumed
that the variables are at least ordinal scaled such that Spearman’s rank correlation
coefficient can always be calculated. Then we determine the K nearest neighbors Nij

of yij in the following way:
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1. For each i∗ ∈ Iobs
r (j), that is for every observation where the variable Yj has been

observed, calculate Gower’s dissimilarity d(i, i∗,λ) as defined in Definition 4.3.1
with λ := λ(j) :=

(
|ρS(y:j, y:j∗)|

)
j∗=1,...,d

and collect these dissimilarities in the

vector d := d(i, j) :=
(
d(i, i∗,λ)

)
i∗∈Iobsr (j)

.

2. Let d(K) be the Kth element of an ascending permutation of the vector d for a
K > 1. Then, we define the K nearest neighbors Nij of yij as the vector

Nij := (yi∗j)i∗∈Iobsr (j) : d(i,i∗,λ)≤d(K)
.

It can happen that the vector Nij has more than K elements. Nevertheless, for the sake
of simplicity we refer to Nij as the K nearest neighbors of yij.

Example 4.3.2. We determine the K = 5 nearest neighbors for each of the missing
values y4,2, y8,2, y9,2, y9,3 and y14,3 of the incomplete data set (y, r) from Example 2.2.2.

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 T
4.51
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44
2.32 4.40 F

(yobs, r)

We take a closer look at the missing value y4,2 with index pair (i, j) = (4, 2). The
observations with observed value for variable Y2 are given by the index set

Iobs
r (2) = {1, 2, 3, 5, 6, 7, 10, . . . , 15}.

To calculate Spearman’s rank correlation coefficients we transform the discrete vari-
able Y3 setting F = 1 and T = 2. Then, the needed absolute values of the sample Spear-
man’s rank correlation coefficients equal

• |ρS(y:2, y:1)| = 0.73 between column y:2 and column y:1,

• |ρS(y:2, y:2)| = 1 between column y:2 and column y:2 and

• |ρS(y:2, y:3)| = 0.69 between column y:2 and y:3.
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Thus, the vector of weights is given as λ = (0.73, 1, 0.69). Now, we can proceed calcu-
lating Gower’s dissimilarity coefficients according to Definition 4.3.1. We have

d(4, 1,λ) =

|5.51−4.93|
5.51−2.32

· 1 · 0.73 + 0 + |2−2|
2−1
· 1 · 0.69

1 · 0.73 + 0 + 1 · 0.69
≈ 0.0935.

Similarly, we obtain

d(4, 2,λ) ≈ 0.8550, d(4, 3,λ) ≈ 0.9774, d(4, 5,λ) ≈ 0.8888,

d(4, 6,λ) ≈ 0.1821, d(4, 7,λ) ≈ 0.0500, d(4, 10,λ) ≈ 0.2562,

d(4, 11,λ) ≈ 0.9404, d(4, 12,λ) ≈ 0.6938, d(4, 13,λ) ≈ 0.2949,

d(4, 14,λ) ≈ 0.3824, d(4, 15,λ) = 1.0000.

Sorting those values ascending we get

0.0500 ≤ 0.0935 ≤ 0.1821 ≤ 0.2562 ≤ 0.2949 ≤ . . . ≤ 1.0000.

Consequently, for K = 5, the nearest neighbors N4,2 of y4,2 are

N4,2 = (yi,2)i∈{1,2,3,5,6,7,10,...,15} : d(4,i,λ)≤0.2949

= (y1,2, y6,2, y7,2, y10,2, y13,2)

= (7.58, 5.41, 7.66, 6.93, 6.46).

Analogously, for the other missing values we get the nearest neighbors

N8,2 = (7.58, 5.41, 6.93, 6.46, 6.44), N9,2 = (7.58, 5.41, 6.93, 6.14, 6.44),

N9,3 = (T,T,T,T,F), N14,3 = (T,T,T,F,T). 4

Imputation Procedure

We now describe a multivariate imputation method based on the fully conditional spec-
ification approach using D-vine quantile regression models (for a detailed code, see Al-
gorithm 1). The parameter uncertainty is generated according to approximation (A5)
from Section 3.2.1 via bootstrapping.

Let be given a realized incomplete data set (y, r) where y is a sample from the random
vector Y = (Y1, . . . , Yd) with observed part yobs and missing part ymis. Assume that we
aim to generate M imputed data sets from (y, r). Initially, for each missing data point
yij ∈ ymis, the K nearest neighbors Nij are identified. Then, for each of the M imputed
data sets which we want to generate we run a separate quasi-Gibbs sampling chain. By
running M independent chains of the quasi-Gibbs sampler, we generate M imputed data
sets in total. In the following, we focus on a single chain of this process:

• Initialization of the quasi-Gibbs sampler: To initialize the quasi-Gibbs sampler,
for each missing data point yij ∈ ymis, we uniformly sample a value from its K
nearest neighbors Nij. The observed values yobs are carried over. Together, we
obtain an initial completed data set.
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Algorithm 1: Multivariate imputation method based on the fully conditional
specification approach using D-vine quantile regression models

Input: Incomplete data set (y, r) of dimension n× d, number of imputed data
sets M , number of iterations T , number of nearest neighbors K.

1 /* Determining the K nearest neighbors */

2 foreach yij ∈ ymis do
3 Determine the K nearest neighbors Nij of yij;

4 for m = 1, . . . ,M do
5 /* Setting the initial values */

6 (y(m)
obs , r

(m))← (yobs, r);
7 foreach yij ∈ ymis do
8 y ← Sample from discrete Unif(Nij);

9 (y
(m)
ij , r

(m)
ij )← (y, 1);

10 /* Quasi-Gibbs sampling */

11 for t = 1, . . . , T do
12 for j = 1, . . . , d do
13 if Imis

r (j) 6= ∅ then
14 foreach i ∈ Imis

r (j) do

15 r
(m)
ij ← 0;

16 Ĩ ← n-dimensional sample from discrete Unif({1, . . . , n});
17 (ỹ, r̃)←

(
y(m)
i: , r(m)

i:

)
i∈Ĩ ;

18 Estimate an optimal D-vine quantile regression model q̂j(· | yD̃−j
)

from (ỹ, r̃) as presented in Section 4.2 where D̃ ⊆ {1, . . . , d} and

D̃−j = D̃ \ {j};
19 foreach i ∈ Imis

r (j) do
20 α← Sample from Unif(0, 1);

21
(
y

(m)
ij , r

(m)
ij

)
←
(
q̂j
(
α
∣∣ yD̃−j

= (y
(m)
ij∗ )j∗∈D̃−j

)
, 1
)

;

22 return y(1), . . . , y(M);
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• Iterative process of the quasi-Gibbs sampler: At the beginning of each itera-
tion t, a completed data set is provided. Starting with Y1, we sequentially update
each variable Yj as follows. If the original data set (y, r) contains missing values
for variable Yj we remove the corresponding data points yij of this variable from
the last completed data set, yielding an incomplete data set. On a bootstrapped
sample of this incomplete data set with the same size as the original incomplete
data set (y, r), we fit an AIC-optimal D-vine quantile regression model with Yj
as the response variable. The incomplete data set is then completed by sampling
from the corresponding quantile function, where the quantiles α ∼ Unif(0, 1) are
randomly selected for each missing value, resulting in a completed data set again.
After updating Yj, the process moves to the next variable Yj+1 and repeats the
same steps. The process continues until the data set has been updated for all
variables Y1, . . . , Yd, completing the tth iteration.

• Completion of the imputed data set: The quasi-Gibbs sampler runs for T iter-
ations. The final completed data set after the update of variable Yd in iteration T
forms the imputed data set.

In our R-implementation, the imputations are saved in a mids object from the mice

package (Buuren and Groothuis-Oudshoorn 2011). This allows to apply all processing
and diagnostics functions of the package to the resulting imputations. Even though our
implementation allows for D-vine quantile regression models with non-parametric pair-
copulas, we will restrict ourselves exclusively to parametric pair-copulas in this thesis.

Example 4.3.3. We illustrate Algorithm 1 for the incomplete data set (y, r) from Ex-
ample 2.2.2 generating M = 1 imputed data set. The quasi-Gibbs sampler runs T = 2
iterations. We consider the K = 5 nearest neighbors.

Initial Values (Figure 4.2): The algorithm starts with uniformly sampling the initial
values for the missing data points y4,2, y8,2, y9,2, y9,3 and y14,3 from their K = 5 nearest
neighbors N4,2, N8,2, N9,2, N9,3 and N14,3 which were determined in Example 4.3.2. We
obtain a completed data set with y4,2 = 7.66, y8,2 = 6.93, y9,2 = 5.41 and y9,3 = y14,3 = T.

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 T
4.51
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44
2.32 4.40 F

N4,2 = (7.58, 5.41, 7.66, 6.93, 6.46)

N8,2 = (7.58, 5.41, 6.93, 6.46, 6.44)

N9,2 = (7.58, 5.41, 6.93, 6.14, 6.44)

N9,3 = (T,T,T,T,F)

N14,3 = (T,T,T,F,T)

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 7.66 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 6.93 T
4.51 5.41 T
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 T
2.32 4.40 F

Figure 4.2: Sampling the initial values in Example 4.3.3.



4 Multiple Imputation via Iterated D-Vine Based Quantile Regression 43

Quasi-Gibbs Sampler:

• Iteration 1, imputing variable Y2 (Figure 4.3): From the last completed data
set the original missing values y4,2, y8,2 and y9,2 of variable Y2 are removed giving
an incomplete data set. On a bootstrapped sample of this incomplete data set an
AIC-optimal D-vine quantile regression model with response Y2 is fitted: While Y2

is coupled with Y1 via a 180 degrees rotated Joe copula with parameter 1.8, variable
Y3 has not been selected as a covariate. The incomplete data set is then completed
by sampling from the quantile function with quantiles α ∼ Unif(0, 1) randomly
selected for each missing value resulting in y4,2 = 6.66, y8,2 = 6.09 and y9,2 = 6.46.

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 7.66 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 6.93 T
4.51 5.41 T
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 T
2.32 4.40 F

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 T
4.51 T
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 T
2.32 4.40 F

3.01 6.60 F
5.51 T
4.29 6.44 T
4.38 5.41 T
4.51 T
3.92 6.93 T
2.69 5.17 F
3.01 6.60 F
2.46 4.78 F
2.69 5.17 F
4.51 T
4.22 6.14 F
4.51 T
4.51 T
3.68 6.46 T

Y2 Y1

Joe180(1.8)

0.0

0.2

0.4

0.6

0 3 6 9

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 6.66 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 6.09 T
4.51 6.46 T
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 T
2.32 4.40 F

Figure 4.3: Imputation of variable Y2 in iteration 1 of Example 4.3.3.

• Iteration 1, imputing variable Y3 (Figure 4.4): From the last completed data
set the original missing values y9,3 and y14,3 of variable Y3 are removed giving an
incomplete data set. From a bootstrapped sample of this incomplete data set an
AIC-optimal D-vine quantile regression model with discrete response Y3 is fitted:
While Y3 is coupled with Y2 via a Gaussian copula with parameter 0.93, variable Y1

has not been selected as a covariate. The incomplete data set is then completed
by sampling from the quantile function with quantiles α ∼ Unif(0, 1) randomly
selected for each missing value resulting in y9,3 = F, y14,3 = F.

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 6.66 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 6.09 T
4.51 6.46 T
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 T
2.32 4.40 F

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 6.66 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 6.09 T
4.51 6.46
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44
2.32 4.40 F

5.20 7.66 T
3.92 6.93 T
4.51 6.46
4.29 6.44
2.46 4.78 F
5.51 6.66 T
4.29 6.44
4.93 7.58 T
2.69 5.17 F
5.20 7.66 T
3.01 6.60 F
4.22 6.14 F
2.32 4.40 F
3.92 6.93 T
3.68 6.46 T

Y3 Y2

Gaussian(0.93)

0.0

0.2

0.4

0.6

F T

0.0

0.2

0.4

0.6

2 4 6 8 10

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 6.66 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 6.09 T
4.51 6.46 F
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 F
2.32 4.40 F

Figure 4.4: Imputation of variable Y3 in iteration 1 of Example 4.3.3.
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• Iteration 2, imputing variable Y2 (Figure 4.5): From the last completed data
set the original missing values y4,2, y8,2 and y9,2 of variable Y2 are removed giving
an incomplete data set. On a bootstrapped sample of this incomplete data set an
AIC-optimal D-vine quantile regression model with response Y2 is fitted: While Y2

is coupled with Y1 via a Joe copula with parameter 2.6, variable Y3 has not been
selected as a covariate. The incomplete data set is then completed by sampling
from the quantile function with quantiles α ∼ Unif(0, 1) randomly selected for
each missing value resulting in y4,2 = 7.91, y8,2 = 5.64 and y9,2 = 7.25.

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 6.66 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 6.09 T
4.51 6.46 F
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 F
2.32 4.40 F

4.93 7.58 T
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Figure 4.5: Imputation of variable Y2 in iteration 2 of Example 4.3.3.

• Iteration 2, imputing variable Y3 (Figure 4.6): From the last completed data
set the original missing values y9,3 and y14,3 of variable Y3 are removed giving an
incomplete data set. From a bootstrapped sample of this incomplete data set an
AIC-optimal D-vine quantile regression model with discrete response Y3 is fitted:
While Y3 is coupled with Y1 via a Gaussian copula with parameter 0.88, variable Y2

has not been selected as a covariate. The incomplete data set is then completed
by sampling from the quantile function with quantiles α ∼ Unif(0, 1) randomly
selected for each missing value resulting in y9,3 = T, y14,3 = F.
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Figure 4.6: Imputation of variable Y3 in iteration 2 of Example 4.3.3..

The last completed data set forms the final imputed data set y(1).
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The imputation process with all interim completed data sets is summarized as a whole
in Figure 4.7. Here, if a data set has cells half colored grey and half colored red this
means, that for incoming arrows the data set is complete and for outgoing arrows the
data set is incomplete with missing values for those cells. The original incomplete data
set (y, r) with the missing values y4,2, y8,2, y9,2, y9,3 and y14,3 is given in the upper left
panel. The final imputed data set y(1) is given in the upper right panel. 4
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5 Comparison of Different Imputation
Methods: A Simulation Study

5.1 Design

Imputation Methods

Withing the simulation study we compare the following four imputation methods:

1. The method Mv is equivalent to the vine based method given in Algorithm 1.
We set the number of nearest neighbors to K = 5. The quasi-Gibbs sampler is
running for T = 20 iterations.

2. The methodMm stands for the imputation with the function mice() of the mice

R-package (Buuren and Groothuis-Oudshoorn 2011). As for the method Mv, the
number of iterations for the quasi-Gibbs sampling is set to T = 20. Apart from
that the standard settings are applied.

3. The methodMa denotes the imputation with the function amelia() of the Amelia
R-package (Honaker, King, and Blackwell 2011) with standard settings but discrete
imputation for discrete variables.

4. The methodMc is a slightly adopted version of the imputation with the function
CoImp() of the CoImp R-package (Di Lascio, Gatto, and Giannerini 2024). Since the
standard version of CoImp() cannot handle a mixture of continuous and discrete
variables, we are treating the discrete variables in the same way amelia() does:
An appropriately scaled version of the initially continuously valued imputation is
used as the probability of success in a binomial distribution. The draw from this
binomial distribution is then translated back into one of the original discrete values.

With all methods we are generating M = 10 imputations.

Data Generating Distribution

The data on which the simulation study is based is generated from an R-vine of dimension
d = 5 with mixed continuous and discrete marginal distributions. The marginal distri-
butions together with their means and standard deviations are summarized in Table 5.1.
The vine copula consisting of the vine structure and the pair-copula parametrizations

47
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with corresponding (un-)conditional Kendall’s τ ’s is shown in Figure 5.1. Overall, there
is a strong dependency between the variables.

We randomly selected the vine copula and the marginals from the following procedure:

• The marginals were drawn uniformly from the set of the univariate distributions
{Binom(4, 0.5),N (0, 1),LN (0, 0.69)}. In the case that either all marginals were
chosen from a continuous distribution or all marginals were chosen from a discrete
distribution, we repeated the drawing process of the marginal distribution family.
This ensured that at least one marginal distribution was chosen continuous as well
as that at least one marginal distribution was chosen discrete.

• The vine copula structure was selected uniformly from all possible regular vine
structures of dimension d = 5 using the function rvine matrix sim() of the
rvinecopulib R-package (Nagler and Vatter 2023).

• The pair-copula families were sampled uniformly from the Gaussian copula, the
t-copula with 3 degrees of freedom, the Gumbel copula and the 90 degrees rotated
Gumbel copula. The (remaining) pair-copula parameters were set via inversion of
Kendall’s τ where the Kendall’s τ of each pair-copula itself was randomly selected:
The absolute value of τ in the first tree was drawn from Unif(0.7, 0.9), in the second
tree from Unif(0.5, 0.7), in the third tree from Unif(0.3, 0.5) and in the forth tree
from Unif(0.1, 0.3). Kendall’s τ was assigned a positive value with probability 0.7
and a negative value with probability 0.3.

Quantities of Interest

We choose the k = 20 quantities of interest Q1, . . . , Q20 to be the (conditional)
Kendall’s τ ’s defined by the pair-copulas of the data generating vine as well as the
theoretical means and standard deviations of its marginal distributions. The true values
q1, . . . , q20 of the quantities of interest Q1, . . . , Q20 are given in Table 5.2.

For the later application of Rubin’s rules of Remark 3.1.4 we have to define a complete-
data estimator Q̂l(Y) for each quantity of interest Ql:

• For the Kendall’s τ ’s Q1, . . . , Q10 the estimators are defined as follows: For a com-
plete data set an AIC-optimal R-vine is fitted, applying vine() of rvinecopulib
(Nagler and Vatter 2023), which has the same same vine structure as the data
generating vine. Then the theoretical Kendall’s τ ’s calculated by inverting the
pair-copula parameters of the fitted vine serve as estimators Q̂1(Y), . . . , Q̂10(Y).

• For the means Q11, . . . , Q15 and the standard deviations Q16, . . . , Q20 we sim-
ply take the sample means and sample standard deviations as estimators
Q̂11(Y), . . . , Q̂15(Y) and Q̂16(Y), . . . , Q̂20(Y).

Additionally, we need variance estimators Ŵl(Y) for each estimator Q̂l(Y). Here, for all

variance estimators Ŵ1(Y), . . . , Ŵ20(Y) we take the bootstrap variance estimator based
on 200 bootstrapped samples.
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q1 q2 q3 q4 q5

Reference parameter τ1,2 τ4,5 τ1,3 τ1,4 τ2,3;1

Value 0.88 -0.80 0.76 0.78 0.53

q6 q7 q8 q9 q10

Reference parameter τ1,5;4 τ3,4;1 τ2,4;1,3 τ3,5;1,4 τ2,5;1,3,4

Value 0.59 0.51 0.32 -0.45 0.23

q11 q12 q13 q14 q15

Reference parameter µ1 µ2 µ3 µ4 µ5

Value 0 2 1.27 0 1.27

q16 q17 q18 q19 q20

Reference parameter σ1 σ2 σ3 σ4 σ5

Value 1 1 1 1 1

Table 5.2: True values q1, . . . , q20 of the quantities of interest in the simulation study.

Response Mechanism

The missing values are generated under the MAR assumption by applying the ampute()
function of the mice R-package (Buuren and Groothuis-Oudshoorn 2011). For each
observation, ampute() uses a two step sampling approach: In a first step it is randomly
decided with probability p whether the observation contains missing values or not. In the
case of missing values, in a second step the concrete response pattern (see Remark 2.2.1)
is randomly assigned to the observation from a given set of admissible response patterns
together with their probabilities of occurrence. We restrict ourselves to the response
patterns with at most three missing values. All admissible response patterns for the
simulation study together with their probabilities of occurrence are given in Table 5.3.

Type Possible response patterns Occurrence probability

Per pattern Per type

One missing value (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), 1
15

1
3

(1, 1, 1, 0, 1), (1, 1, 1, 1, 0)
Two missing values (0, 0, 1, 1, 1), (0, 1, 0, 1, 1), (0, 1, 1, 0, 1), 1

30
1
3

(0, 1, 1, 1, 0), (1, 0, 0, 1, 1), (1, 0, 1, 0, 1),
(1, 0, 1, 1, 0), (1, 1, 0, 0, 1), (1, 1, 0, 1, 0),
(1, 1, 1, 0, 0)

Three missing values (0, 0, 0, 1, 1), (0, 0, 1, 0, 1), (0, 0, 1, 1, 0), 1
30

1
3

(0, 1, 0, 0, 1), (0, 1, 0, 1, 0), (0, 1, 1, 0, 0),
(1, 0, 0, 0, 1), (1, 0, 0, 1, 0), (1, 0, 1, 0, 0),
(1, 1, 0, 0, 0)

Table 5.3: Admissible response patterns in the simulation study.
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The above setup also determines the proportion of missing values. Depending on the
missingness probability p we have an expected proportion of missing values of

E[Proportion of missing values] =
1 · 1

3
+ 2 · 1

3
+ 3 · 1

3

5
· p ≈ 0.4p.

In the simulation study we investigate the missingness probabilities p ∈ {0.1, 0.3, 0.5}.
These result in the following expected proportions of missing values:

Missingness probability p E[Proportion of missing values]

0.1 0.04
0.3 0.12
0.5 0.20

Table 5.4: Investigated missingness probabilities in the simulation study.

Procedure

From the data generating R-vine of dimension d = 5, for all response mechanisms which
are characterized by the missingess probabilities p ∈ {0.1, 0.3, 0.5} we are generating
S = 200 incomplete data sets with n = 500 observations. These are then imputed
M = 10 times with each methodM∈ {Ma,Mc,Mm,Mv}. Finally, Rubin’s rules of of
Remark 3.1.4 are applied to derive posterior distributions for the quantities of interest
{ql}l=1,...,20. The exact procedure is given in Algorithm 2.

Algorithm 2: Procedure of the simulation study

1 for p ∈ {0.1, 0.3, 0.5} do
2 for s = 1, . . . , S do
3 Generate an incomplete n× d data set (y(p,s), r(p,s)) from the data

generating distribution and the response mechanism;
4 foreachM∈ {Ma,Mc,Mm,Mv} do
5 Impute M times to obtain the imputed data sets

y(p,s,M,m) = (y(p,s)
obs , y

(p,s,M,m)
mis ), m = 1, . . . ,M ;

6 /* Applying Rubin’s rules of Remark 3.1.4 */

7 for l = 1, . . . , k do
8 for m = 1, . . . ,M do

9 q̂
(p,s,M,m)
l := Q̂

(m)
l (y(p,s,M,m)), ŵ

(p,s,M,m)
l := Ŵ

(m)
l (y(p,s,M,m));

10 q
(p,s,M)
l := Ql(y

(p,s,M,1), . . . , y(p,s,M,M)) (see Equation (3.9));

11 t
(p,s,M)
l := Tl(y(p,s,M,1), . . . , y(p,s,M,M)) (see Equation (3.10));

12 ν
(p,s,M)
l := Nl(y(p,s,M,1), . . . , y(p,s,M,M)) (see Equation (3.11));
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In the above algorithm, for the calculation of each ν
(p,s,M)
l we have to slightly deviate

from Equation (3.11). In Equation (3.11) we actually need the number of degrees of
freedom νcom which would result if we were to estimate the quantities of interest for the
hypothetically complete data sets y(p,s) from Q̂1(Y), . . . , Q̂20(Y). Typically, νcom equals
the number of observations n reduced by the number of parameters that have to be
estimated for the estimation of the quantities of interest which is often known in advance.
In our situation, for the estimation of Kendall’s τ ’s via fitting an R-vine, the number of
parameters of the marginal kernel densities as well as the number of parameters of the
pair-copulas is not known beforehand since we have incomplete data. Instead, we know
the number of parameters we needed for the estimation of {q̂(p,s,M,m)

l }l=1,...,20 from every
completed data set y(p,s,M,m). Thus, we also know the corresponding number of degrees
of freedom which we denote as ν

(p,s,M,m)
com . For every p, s andM we define the estimator

ν̂(p,s,M)
com :=

1

M

M∑
m=1

ν(p,s,M,m)
com

which we use instead νcom for the calculation of ν
(p,s,M)
l .

All parameters choices for the simulation study are summarized once again in Table 5.5.

Parameter Description

p ∈ {0.1, 0.3, 0.5} Missingness probability
M = 10 Number of imputations
M ∈ {Mv,Mm,Ma,Mc} Imputation method
S = 200 Number of samples per missingness probability p
T = 20 Number of iterations for the quasi-Gibbs sampler
K = 5 Number of nearest neighbors
d = 5 Number of variables
n = 500 Number of observations
k = 20 Number of quantities of interest

Table 5.5: Summary of the parameters used in the simulation study.

Evaluation Criteria

In Section 3.4 we introduced the concept of randomization valid inference as a desirable
property of imputation methods and gave a procedure to investigate it. There, without
explicitly naming, we already described the raw bias and the coverage rate verbally
which serve as evaluation criteria for randomization validity (Buuren 2018, pp. 52–53).
For each p ∈ {0.1, 0.3, 0.5}, M∈ {Mv,Mm,Ma,Mc} and l = 1, . . . , k we define:

(a) Raw bias:

RB
(p,M)
l :=

1

S

S∑
s=1

q
(p,s,M)
l − ql, (5.1)
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(b) Coverage rate for the confidence interval at level 1− α:

CR
(p,M)
α,l :=

1

S

S∑
s=1

1{ql ∈ CI
(p,s,M)
α,l }, (5.2)

where the confidence interval CI
(p,s,M)
α,l is calculated based on Equation (3.8) as

CI
(p,s,M)
α,l :=

[
q

(p,s,M)
l − t

ν
(p,s,M)
l

(α
2

)√
t
(p,s,M)
l , q

(p,s,M)
l + t

ν
(p,s,M)
l

(α
2

)√
t
(p,s,M)
l

]
and t

ν
(p,s,M)
l

(
α
2

)
is the α

2
-quantile of the t-distribution on ν

(p,s,M)
l degrees of freedom.

If the raw biases are close to zero and the coverage rates are close to the chosen confidence
level 1− α it is likely that the imputation methods are randomization valid.

Rubin’s rules are designed to make statistical inference about the quantities of interest
generating only a handful of imputations. They rely on the assumption that the posteri-
ors of the quantities of interest follow normal distributions. If this normality assumption
is severely violated the application of Rubin’s rules is not reasonable. In that case, a
more adequate alternative is to generate a sufficiently large amount of imputations to
make inference about the quantities of interest from the empirical posterior. Within
the simulation study, for each p ∈ {0.1, 0.3, 0.5} and M ∈ {Mv,Mm,Ma,Mc} an ap-

propriate empirical posterior cumulative distribution function F̂
(p,M)
l for the quantity of

interest Ql can be defined using the independent sample
{
q̂

(p,s,M,m)
l

}
s=1,...,S, m=1,...,M

as

F̂
(p,M)
l (q) :=

1

S ·M

S∑
s=1

M∑
m=1

1{q̂(p,s,M,m)
l ≤ q}.

To compare these posterior cumulative distribution functions for different p ∈
{0.1, 0.3, 0.5} and M ∈ {Mv,Mm,Ma,Mc} we will use two so-called scoring rules:
the interval score and the continuous ranked probability score (Gneiting and Raftery
2007). Scoring rules typically asses the quality of forecast distributions. Here, we con-
sider the posterior distribution as a forecast distribution.

Definition 5.1.1 (Interval Score, Continuous Ranked Probability Score). Let Q denote a
real-valued quantity of interest distributed according to the posterior cumulative distri-
bution function FQ. Let q be the true value of Q. Then:

(a) The interval score ISα(FQ, q) at level 1− α is defined as

ISα(FQ, q) = (u− l) +
2

α
(l − q)1{q < l}+

2

α
(q − u)1{q > u},

where l := F−1
Q (α

2
) and u := F−1

Q (1− α
2
) denote the α

2
- and (1− α

2
)-quantile of Q.
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(b) The continuous ranked probability score is defined as

CRPS(FQ, q) :=

∫
R
(FQ(q̃)− 1{q ≤ q̃})2 dq̃. 4

Using the empirical posterior cumulative distribution functions F̂
(p,M)
l in the above defi-

nition, for every p ∈ {0.1, 0.3, 0.5},M∈ {Mv,Mm,Ma,Mc} and l = 1, . . . , k we define
the evaluation criteria:

• sample interval score at level 1− α:

ÎS
(p,M)

α,l := ISα(F̂
(p,M)
l , ql), (5.3)

• sample continuous ranked probability score:

ĈRPS
(p,M)

l := CRPS(F̂
(p,M)
l , ql). (5.4)

The lower ÎS
(p,M)

α,l and ĈRPS
(p,M)

l the better the empirical posterior distribution F̂
(p,M)
l

predicts the true value ql. The sample interval score and the sample continuous ranked
probability score are calculated via the wis() and crps sample() functions from the
R-packages scoringutils (Bosse et al. 2024) and scoringRules (Jordan, Krüger, and
Lerch 2019).

5.2 Analysis of the Results

Computation Time

Figure 5.2 shows box plots comparing the different imputation methods M ∈
{Mv,Mm,Ma,Mc} with regard to the computation time needed to impute a data set
M = 10 times on a single core (Intel® Xeon® Processor E5-2690 v3, CPUSs@2.6 GHz).
To understand the figure it is important to know that we limited the computation time
for all methods together to 24 hours. We imputed the data sets with the different meth-
ods in the orderMv,Mm,Ma andMc. The methodsMv,Mm andMa always finished
in time. The method Mc only finished 154 times for p = 0.1, 178 times for p = 0.3
and 186 times for p = 0.5. Since the other methods together took a maximum time of
approximately 177 minutes in those cases the method Mc would have needed at least
1263 minutes to complete the imputation.

The method Ma was the fastest of all methods. The imputation time mostly ranges
from approximately 0.15 seconds to approximately 0.4 seconds with some outliers up
to 0.85 seconds. With increasing missingness probability p also the computation times
increased. The second fastest methods wasMm with computation times from 10.5 to 12
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Figure 5.2: Box plots of the computation time (in seconds) needed to impute a data
set M = 10 times using a single core applying the imputation methods Ma, Mc, Mm

and Mv depending on the missingness probability p ∈ {0.1, 0.3, 0.5} with the number
of completely imputed data sets in parentheses.

seconds. Here the computation time decreased with increasing missingness probability p.
We observed the longest computation times for the methods Mv and Mc. While the
median times forMc are relatively low with approximately 132 seconds for p = 0.1, 243
seconds for p = 0.3 and 352 seconds for p = 0.5, there are several extreme outliers up to
21 hours. Overall, the method Mc is very unstable and not very reliable. For Mv, the
computation time is high but stable and ranges from approximately 141 minutes to 177
minutes. For higher p the computation times decreased. This is reasonable since the
estimation of the copulas fastens the less observations have to be taken into account.

Convergence of the Methods Applying a Quasi-Gibbs Sampler

For the two methods Mv and Mm that make use of a quasi-Gibbs sampler we investi-
gate the convergence by comparing the so-called Gelman-Rubin statistics proposed by
Gelman and Rubin (1992), which allows a statement about the convergence in Markov
chain Monte Carlo simulations. A Gelman-Rubin statistic close to 1 indicates conver-
gence. Gelman, Carlin, et al. (2013, p. 287) suggest accepting convergence when the
value of the Gelman-Rubin statistic is below 1.1. We used the convergence() func-
tion of the mice R-package (Buuren and Groothuis-Oudshoorn 2011) to calculate the
Gelman-Rubin statistics. Figure 5.3 gives box plots of the Gelman-Rubin statistics per
variable for both methods distinguished by the missingness probability p. For Mv the
convergence is much better compared toMm. Especially for the variables Y2 and Y3 the
Gelman-Rubin statistics are almost always below the threshold of 1.1. For method Mv

as well as for method Mm, the most problematic variables are Y4 and Y5.
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Figure 5.3: Box plots of the Gelman-Rubin statistics of the individual variables sep-
arated according to the missingness probability p ∈ {0.1, 0.3, 0.5} for the imputation
methods Mm and Mv.

Randomization Validity

The raw biases are given in Figure 5.4. The methods Mv, Mm and Ma perform very
similar. For the means and standard deviations the raw biases are almost zero. Also
for the unconditional Kendall’s τ ’s the raw biases are close to zero. For the conditional
Kendall’s τ ’s, the raw biases tend to deviate more from zero the more conditioning
variables they include. This is realistic, as the Kendell’s τ ’s of the higher trees are based
on the lower trees and estimation errors therefore accumulate. It is worth mentioning
that the methodMa noticeable differs from the methodsMv andMm precisely for the
quantities of interest that relate to the discrete variable Y2. This effect increases the
larger p is. One possible explanation for this behavior might be that the methodMa is
originally intended for continuous variables since it is based on the multivariate normal
distribution, while the other two methods have been developed also for discrete variables.
For methodMc it is clear that the raw biases do not equal zero for most of the quantities
of interest. The higher p the higher the absolute deviation from zero.

The coverage rates for a nominal coverage rate 1−α = 0.95 are summarized in Figure 5.5
on page 58. For all methods the coverage rates of the means and standard deviations
are clearly closer to the nominal level of 0.95 than the coverage rates of Kendall’s τ ’s,
whereby here a higher coverage rate tends to be achieved for the unconditional Kendall’s
τ ’s. As before, this seems reasonable since the Kendell’s τ ’s of the higher trees are based
on the lower trees and estimation errors therefore sum up. Striking but not surprising,
all methods react negatively on increasing missingness probability p with worse coverage
rates.

Nevertheless, there are also noticeable differences between the individual methods.
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Figure 5.4: Raw biases RB
(p,M)
l as defined in Equation (5.1) of the quantities of inter-

est Ql, l = 1, . . . , 20, depending on the missingness probability p (p = 0.1: top panel,
p = 0.3: middle panel, p = 0.5: bottom panel) and the imputation method M (Ma:
red circle, Mc: blue square, Mm: green diamond, Mv: purple triangle).
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Again, Mc performs clearly worse than the other methods. For many cases the cov-
erage rate equals even zero. For the other methods the situation is somewhat more
differentiated. For p = 0.1 and p = 0.3 the method Mv performs similarly good or,
for Kendall’s τ ′s even better than method Mm. For p = 0.5 and the coverage rates of
Kendall’s τ ’s this situation changes since the methodMv reacts more to the increasing
missingness probability p than Mm. Except for the quantities of interest that relate to
the discrete variable Y2 the method Ma almost always performs equal or better than
methodsMv andMm. Also, except for quantities of interest that relate to the discrete
variable Y2 the method Ma reacts less strongly on an increasing p.

Taking both criteria into account, we see that the method Mc is definitively not ran-
domization valid. Ignoring the discrete variable Y2 the methodMa seems the closest to
randomization validity. Taking Y2 into account, for p = 0.1 and p = 0.3 the methodMv

seems the closest to randomization validity. For p = 0.5 and under consideration of Y2

the method Mm performs best.

Sample Interval Scores and Continuous Ranked Probability Scores

Comparing the sample interval scores and continuous ranked probability scores shows
a similar picture as the analysis of the raw biases and coverage rates. The sample
interval scores are given in Table 5.6. The sample continuous ranked probability scores
can be found in Table 5.7 on page 61. For both scores, independent of the missingness
probability p, the method Mc is almost always inferior by a wide margin to the other
methods. In addition, both scores increase sharply with increasing p. For the remaining
methods Mv, Mm and Ma one has to differentiate between (a) the parameters which
only concern the continuous variables Y1, Y3, Y4 and Y5 and (b) the parameters which
also concern the discrete variable Y2.

(a) Looking at the parameters which only concern the continuous variables, the three
methods Mv, Mm and Ma perform on a same level. Nevertheless, across all
parameters and for all missingness probabilities p, in the most cases the sample
interval scores ofMm are slightly lower. Concerning the sample continuous ranked
probability scores, for the means and standard deviations the methodMa performs
marginally better than the methods Mv and Mm while for Kendall’s τ ′s the
method Mm shows minor advantages over the methods Mv and Ma.

(b) Looking at the parameters which also concern the discrete variable Y2, it becomes
apparent that the methodMa is noticeable worse than the methodsMv andMm.
This effect increases the larger p is.

Overall, the empirical cumulative distribution function derived from the imputations
with method Mc is the least suitable to describe the true values of the quantities of
interest. Compared to the other methods, Ma only gives suitable empirical cumulative
distribution functions for the parameters exclusively concerning the continuous variables.
The methodsMv andMm result in the most suitable empirical cumulative distribution
functions over all quantities of interest.
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Summary

Within the simulation study, the methodMc is not a suitable imputation method. This
is mainly due to the poor performance with raw biases, coverage rates, interval scores
and continuous ranked probability scores. However, the method is also computationally
unreliable with a large variation in the calculation time. In contrast, the methodMa is
computationally very fast and generates appropriate imputations to reliable estimate the
quantities of interest as long as they are concerned to continuous variables. The methods
Mv andMm are the best imputation methods for estimating the quantities of interest,
independently of a continuous or discrete distribution of the individual variables, with
slightly better results forMm. WhileMm is much faster, the methodMv shows better
convergence for the quasi-Gibbs sampler.



6 Application: Imputation of ESG
Data to Obtain ESG Subpillar Scores

6.1 Calculation Procedure of the ESG Score

The ESG data we will use has been provided by the London Stock Exchange Group
(LSEG 2023). At the heart of this data is the ESG score. On an annual basis, it
summarizes the ESG-related data published by a company in one single number and is
intended to make different companies comparable. The ESG score is based on a multi-
level summary of the ESG-related data: On the top level, it is calculated as a weighted
sum of scores of three pillars: the Environmental (E), Social (S) and Governance (G)
pillar. Each of those pillar scores is again the weighted sum of subpillar scores. To
this end, the Social pillar is divided into four subpillars whereas the Environmental and
Governance pillar are divided into three subpillars each – giving a total of ten subpillars.
The connection between ESG score, pillar scores and subpillar scores is summarized in
Figure 6.1 based on Benuzzi et al. (2024, Figure 2).
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Figure 6.1: Flowchart of LSEG (2023) methodology for the ESG score.
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The subpillar scores are in turn made up on more than 630 raw ESG-related indicators.
For each company specific indicators are selected depending on the industry and the
country of the company. From this subset of so-called scoring variables, for each of the
subpillars the relevant scoring variables are selected. After this selection, the subpillar
score is derived via a two level percentile ranking which compares companies of the same
industry or the same country. For subpillars of the Environmental and Social pillar the
companies operating withing the same industry are compared. For subpillars of the
Governance pillar the companies of the same country serve as the benchmark. At first,
the scoring variables are transformed into so-called indicator variables via percentile
ranking. The final subpillar score is then derived via another percentile ranking applied
to the sum of the indicator variables leading to a score between 0 and 100 percent. The
derivation of the subpillar scores is summarized in Figure 6.2 based on Benuzzi et al.
(2024, Figure 3).

Subpillar Score

Sum of Subpillar Indicator Variables

Indicator
Variable 1

Indicator
Variable 2

· · · Indicator
Variable d

Scoring
Variable 1

Scoring
Variable 2

· · · Scoring
Variable d

Subpillar Scoring Variables

Industry and Country Scoring Variables

630+ Raw ESG-Related Indicators

Percentile ranking

Percentile ranking Percentile ranking Percentile ranking

If relevant for specific subpillar

If relevant for specific industry and country

Figure 6.2: Flowchart of the LSEG (2023) methodology for the subpillar scores.

The problem of missing data occurs at the level of the scoring variables. As a consequence
of the calculation procedure, the missing values then affect the subpillar scores, the pillar
scores and the ESG scores of potentially all companies even if companies report data for
all scoring variables. From the perspective of the data provider, it would be reasonable
to soften this problem by imputing the missing values in the scoring variables and to
recalculate the subpillar, pillar and ESG scores afterwards on the basis of the completed
data. A direct imputation of the scores for companies for which missing values occurred
in the scoring variables is not possible since the other scores are affected by the missing
values as well, such that potentially all scores have to be recalculated.
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In practice, not only the overall ESG score is of interest but also the pillar scores and
subpillar scores. For example, a fund manager could be restricted in his investments
to companies for which the Emissions subpillar score lies above a defined threshold.
For computational reasons, as seen in the simulation study the vine based method is
computationally expensive, we will concentrate on the recalculation of a single subpillar
score. To this end, let the random variables Y1, . . . , Yd denote the d relevant scoring
variables of the subpillar. The reported values of the scoring variable for the n companies
of the considered industry or country are collected in the n×d incomplete data set (Y,R).

LSEG (2023) distinguishes between two types of scoring variables Yj: numeric ones and
boolean ones taking the values T(rue) and F(alse). Additionally, for each scoring variable
Yj a polarity is defined which compares each two possible values of the scoring variable.
Mathematically spoken the polarity is nothing else than a total order 4j on the value
set of Yj. For numeric variables there are two possible polarities respective total orders
either preferring larger values (4j=≤) or preferring smaller values (4j=≥). For boolean
scoring variables either the value F is preferred over T (4j is induced by T ≺j F) or
the value T is preferred over F (4j is induced by F ≺j T). Before we continue, we have
to translate the above vague description of the subpillar score into a mathematical one.
For this reason, we shortly recap how LSEG (2023) defines percentile ranks.

Definition 6.1.1 (Percentile Rank).

(a) Let Yj be a numeric scoring variable with order 4j. Then the percentile rank

PR
4j

Y:j
(Yij) of Yij ∈ Y:j = (Y:j,obs,Y:j,mis) with respect to Y:j and 4j is defined as

PR
4j

Y:j
(Yij) :=


∑

Ylj∈Y:j,obs
1{Ylj≺jYij}+ 1

2

∑
Ylj∈Y:j,obs

1{Ylj=Yij}
|Y:j,obs|

Yij ∈ Y:j,obs

0 Yij ∈ Y:j,mis

.

(b) Let Yj be an ordered boolean scoring variable with levels F and T where the

order 4j is induced by F ≺j T [T ≺j F]. Then the percentile rank PR
4j

Y:j
(Yij) of

Yij ∈ Y:j = (Y:j,obs,Y:j,mis) with respect to Y:j and 4j is defined as

PR
4j

Y:j
(Yij) :=

{∑
Ylj∈Y:j,obs

1{Ylj=F}+ 1
2

∑
Ylj∈Y:j,obs

1{Ylj=T}+|Y:j,mis|
n

Y:j,obs 3 Yij = T

0 elsePR
4j

Y:j
(Yij) :=

{∑
Ylj∈Y:j,obs

1{Ylj=T}+ 1
2

∑
Ylj∈Y:j,obs

1{Ylj=F}+|Y:j,mis|
n

Y:j,obs 3 Yij = F

0 else

.
4

Let O := {4j}j=1,...,d denote the set of the orders of the scoring variables. Then the
calculation of the subpillar scores can be described mathematically as follows:
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1. For each company i, the calculation of the subpillar score starts with determining
the percentile ranks Pij := PR

4j

Y:j
(Yij) of the company’s observation Yij of the jth

scoring variable Yj with respect to the observations Y:j from Yj of all n companies
over all scoring variables Y1, . . . , Yd. We collect the percentile ranks Pij for the n
companies and d scoring variables in the random matrix

P := P(Y,R,O) := (Pij)i=1,...,n, j=1,...,d ∈ [0, 1)n×d.

2. Then, for each company i, we sum up its single percentile ranks Pij over all scoring

variables to Pi :=
∑d

j=1 Pij and collect these sums in the random vector

P := P(Y,R,O) := (Pi)i=1,...,n ∈ Rn
≥0.

3. Finally, for each company i, we calculate the percentile rank of Pi with respect
to P resulting in the subpillar score Si := PR≤P

(
Pi
)
. The subpillar scores for all n

companies are collected in the random vector

S := S(Y,R,O) := (Si)i=1,...,n ∈ (0, 1)n×d.

Example 6.1.2. We consider the realized incomplete data set (y, r) from Example 2.2.2.
Additionally, we assume that the set of orders O = {41,42,43} is defined as follows:
For Y1 the order 41:=≤ applies while for Y2 the reverse order 42:=≥ applies. For the
boolean variable Y3 the order 43 is induced by F ≺3 T. Under these conditions we get
the percentile ranks and the subpillar scores as given in Figure 6.3.

4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 T
4.51
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44
2.32 4.40 F

(yobs, r)

0.8333 0.1250 0.7667
0.3000 0.7917 0.0000
0.1000 0.8750 0.0000
0.9667 0.0000 0.7667
0.2333 0.2917 0.0000
0.7000 0.6250 0.7667
0.9000 0.0417 0.7667
0.3667 0.0000 0.7667
0.7667 0.0000 0.0000
0.5000 0.2083 0.7667
0.1667 0.7083 0.0000
0.5667 0.5417 0.0000
0.4333 0.3750 0.7667
0.6333 0.4583 0.0000
0.0333 0.9583 0.0000

P(y, r,O)

1.7250
1.0917
0.9750
1.7333
0.5250
2.0917
1.7083
1.1333
0.7667
1.4750
0.8750
1.1083
1.5750
1.0917
0.9917

P(y, r,O)

0.8333
0.4000
0.2333
0.9000
0.0333
0.9667
0.7667
0.5667
0.1000
0.6333
0.1667
0.5000
0.7000
0.4000
0.3000

S(y, r,O)

Figure 6.3: Calculation of the percentile ranks and subpillar scores for the incomplete
data set of Example 2.2.2.

Imaging now the data would have been completely observed for all companies. The
resulting percentile ranks and subpillar scores are given in Figure 6.4. For 12 of the 15
companies the subpillar scores differ. As previously indicated, this also affects companies
for which no missing values occurred. On the other hand, of the three companies for
which the subpillar score remains unchanged, for one company not all scoring variables
have been reported. 4
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4.93 7.58 T
3.22 5.06 F
2.46 4.78 F
5.51 7.38 T
3.01 6.60 F
4.38 5.41 T
5.20 7.66 T
3.64 5.93 T
4.51 6.61 T
3.92 6.93 T
2.69 5.17 F
4.22 6.14 F
3.68 6.46 T
4.29 6.44 F
2.32 4.40 F

(y, 1)

0.8333 0.1000 0.7333
0.3000 0.8333 0.0000
0.1000 0.9000 0.0000
0.9667 0.1667 0.7333
0.2333 0.3667 0.0000
0.7000 0.7000 0.7333
0.9000 0.0333 0.7333
0.3667 0.6333 0.7333
0.7667 0.3000 0.7333
0.5000 0.2333 0.7333
0.1667 0.7667 0.0000
0.5667 0.5667 0.0000
0.4333 0.4333 0.7333
0.6333 0.5000 0.0000
0.0333 0.9667 0.0000

P(y, 1,O)

1.6667
1.1333
1.0000
1.8667
0.6000
2.1333
1.6667
1.7333
1.8000
1.4667
0.9333
1.1333
1.6000
1.1333
1.0000

P(y, 1,O)

0.6667
0.3667
0.2000
0.9000
0.0333
0.9667
0.6667
0.7667
0.8333
0.5000
0.1000
0.3667
0.5667
0.3667
0.2000

S(y, 1,O)

Figure 6.4: Calculation of the percentile ranks and subpillar scores for the hypothetically
complete data set of Example 2.2.2.

6.2 Recalculation of the Emission Score

Data exploration

In the following we want to impute incomplete data for a specific subpillar and recalculate
the subpillar score. For reasons of data availability we do not know exactly which scoring
variables are needed for the single subpillars in the different industries. Therefore, we
work only with a selection of scoring variables we could uniquely identify from an example
of LSEG (2023) for the Emissions subpillar. We consider n = 520 companies of the
machinery sector with data from the year 2021. The selected d = 12 scoring variables
Y1, . . . , Y12 are given in Table 6.1. Eight out of the twelve scoring variables are boolean.

Description Values Missing Order

Y1 Policy Emissions {F, T} 0% F ≺ T
Y2 Targets Emissions {F, T} 0% F ≺ T
Y3 Total CO2 Equivalent Emissions To Revenues USD in million [0,∞) 34, 62% ≥
Y4 Climate Change Commercial Risks Opportunities {F, T} 0% F ≺ T
Y5 VOC or Particulate Matter Emissions Reduction {F, T} 0% F ≺ T
Y6 Total Waste To Revenues USD in million [0,∞) 52, 50% ≥
Y7 Waste Recycled To Total Waste [0, 1] 61, 92% ≤
Y8 Total Hazardous Waste To Revenues USD in million [0,∞) 61, 35% ≥
Y9 Environmental Restoration Initiatives {F, T} 0% F ≺ T
Y10 Staff Transportation Impact Reduction {F, T} 0% F ≺ T
Y11 Environmental Expenditures Investments {F, T} 0% F ≺ T
Y12 Environmental Partnerships {F, T} 0% F ≺ T

Table 6.1: Scoring variables Y1, . . . , Y12 for the recalculation of the Emissions score.

From the remaining four numeric variables three variables take positive values while one
variable takes values between 0 and 1. Only four out of the twelve variables, namely the
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numeric ones, contain missing values. It is striking that if a variable has missing values
the percentage of missing values is quite high with even more than 50% in three out of
the four cases. Figure 6.5 shows the response patterns which are present in the ESG
data (see Remark 2.2.1). Only 133 observations are complete. For 154 observations we

1 1 0 1 1 0 0 0 1 1 1 1
1 1 0 1 1 0 0 1 1 1 1 1
1 1 0 1 1 0 1 0 1 1 1 1
1 1 0 1 1 1 0 0 1 1 1 1
1 1 1 1 1 0 0 0 1 1 1 1
1 1 0 1 1 1 0 1 1 1 1 1
1 1 0 1 1 1 1 0 1 1 1 1
1 1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 0 1 0 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1 1
1 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

154
9
2
1

88
7
1

13
7

17
6

33
49

133

Response pattern r Count

Figure 6.5: Present response patterns in the ESG data and their counts.

have the maximal number of four missing values. Figure 6.6 shows bar plots for the
boolean variables and histograms for the non-boolean variables. We transformed the
numeric scoring variables via log(·) and logit(·) to bring them on unbounded support.
Most of the boolean scoring variables are one-sided.
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Figure 6.6: Bar plots and histograms of the scoring variables with their number of
observed observations in parentheses.
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Imputation Methods

We compare the following imputation methods:

• We apply the methodsMv andMm from the simulation study with their previous
parameter choices, that is for Mv the number of nearest neighbors equals K = 5
and for both methods the quasi-Gibbs sampler is running for T = 20 iterations.
We decided for those two methods since the majority of the scoring variables are
discrete andMv andMm performed best in the simulation study regarding mixed
continuous and discrete variables.

• By default the methodsMv andMm impute the scoring variables Yj with missing

values in the order of increasing j which here is Y3, Y6, Y7, Y8. The methods M̃v

and M̃m describe the modifications of Mv and Mm where the imputation order
equals Y7, Y6, Y3, Y8. Nonetheless, the initial values for the quasi-Gibbs sampler are
the same for both methods M̃v andMv as well as for both methods M̃m andMm.

• Additionally we consider an independent imputation method Mi which samples
the imputed values from the observed values of the marginals. The output of this
method equals the initial values for the methods Mm and M̃m.

With each method we generate M = 100 imputed data sets.

Procedure

Since the original ESG data is incomplete we do not know the true Emissions scores
which would have realized in the complete-data case. In order to be able to make a
realistic comparison, we need to generate a complete data set that is still comparable to
the original ESG data. To this end, we fitted an R-vine to the original ESG data with
appropriately log- and logit-transformed numeric scoring variables (the transformations
have no influence on the Emissions score since strictly increasing transformations do not
affect the percentile rank) using the vine() function of the rvinecopulib R-package
(Nagler and Vatter 2023). This function handles missing values in the same way as
we described in Remark 4.2.2 (Nagler and Vatter 2023, p. 32). This means that all
observed values are used in the estimation process and not only the values of the complete
observations. The resulting vine structure with the corresponding Kendall’s τ ’s is given
in Figure 6.7. From this vine we generated a complete data set y with observations for
n = 520 companies. Afterwards, we combined y with the original realized response r
to obtain the incomplete data set (y, r) which we will work with in the following steps.
Let s := (si)i=1,...,n := S(y, 1,O) be the vector of the true Emission scores derived from
the hypothetical complete data set y. The emission scores which LSEG (2023) would

calculate are denoted by s(LSEG) := (s
(LSEG)
i )i=1,...,n := S(y, r,O).

With each imputation method M ∈ {Mv,M̃v,Mm,M̃m,Mi} we impute M times to
obtain the completed data sets

y(M,m) = (yobs, y
(M,m)
mis ), m = 1, . . . ,M.
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Then we calculate the corresponding Emissions score vectors

s(M,m) := (s
(M,m)
i )i=1,...,n := S(y(M,m), 1,O), m = 1, . . . ,M.

An element s
(M,m)
i is the Emissions score of company i derived via imputation methodM

from the mth imputed data set.

Analysis of the Results

For each imputation method M ∈ {Mv,M̃v,Mm,M̃m,Mi} and each company i =

1, . . . , n, based on the Emissions scores s
(M,1)
i , . . . , s

(M,M)
i derived from the imputations,

we can define an empirical posterior cumulative distribution function

F̂
(M)
i (s) :=

1

M

M∑
m=1

1{s(M,m)
i < s}

for the true Emissions score. As in the simulation study, we can therefore compare the
imputation methods on the basis of sample continuous ranked probability scores here
defined as

ĈRPS
(M)

i := CRPS(F̂
(M)
i , si).

In order to also make the LSEG (2023) methodology comparable via the sample con-
tinuous ranked probability score, for each company i we define the degenerate empirical
posterior cumulative distribution function

F̂
(LSEG)
i (s) := 1{s(LSEG)

i < s}.

The corresponding sample continuous ranked probability score we denote with

ĈRPS
(LSEG)

i := CRPS(F̂
(LSEG)
i , si).

Box plots of the realized sample continuous ranked probability scores are given in Fig-
ure 6.8. In addition to the sample continuous ranked probability score across all com-
panies, we also consider the sample continuous ranked probability score separately for
companies with the same number of non-reported scoring variables. Regardless of how
many values are missing per company, there is a clear difference in the sample continuous
ranked probability scores between the LSEG (2023) methodology and the imputation
methods: Proceeding as LSEG (2023) is worse than applying any of the imputation
methods. Especially in the group without missing values, the LSEG (2023) methodol-
ogy does not seem suitable for predicting the true Emissions scores. For the imputation
methods visually no big differences are recognizable. Nevertheless, it seems that the
methodsMv, M̃v,Mm and M̃m outperform the methodMi over all companies as well
as for the companies with three missing values. Also Mv and M̃v seem to outperform
Mm and M̃m for companies for which one scoring variable has not been reported.
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Comp. with 3 miss. values (#100) Comp. with 4 miss. values (#154) All companies (#520)
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Figure 6.8: Box plots of the sample continuous ranked probability scores ĈRPS
(M)

i per

imputation method M ∈ {Mv,M̃v,Mm,M̃m,Mi,LSEG} across different groups of
companies with the same number of missing values and across all companies.

Remark 6.2.1. In Figure 6.8, for notational simplicity, we refer to the LSEG (2023)
methodology as an imputation methodM = LSEG even if no imputations are generated.
We will proceed in the same way below. 4

To statistically underpin our visual analysis, we perform paired t-tests. For any two
methodsM1,M2 ∈ {Mv,M̃v,Mm,M̃m,Mi,LSEG} we consider the differences in the
sample continuous probability score per company i:

∆ĈRPSi(M1,M2) := ĈRPS
(M1)

i − ĈRPS
(M2)

i .

We are testing the hypotheses

H0 : µ
∆ĈRPS(M1,M2)

≥ 0 against H1 : µ
∆ĈRPS(M1,M2)

< 0,

or, formulated less formally,

H0 : M1 is worse than M2 against H1 : M1 is better than M2

with regard to the continuous ranked probability score.

The results are given as p-values in Table 6.2. We are interpreting the p-values for a
significance level α = 0.1. In this case a p-value less than 0.1 means that method M1

is better than M2. Indeed, there is statistical evidence that some imputation methods
outperform others. The most important findings can be summarized as:
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• The methodology of LSEG (2023) is outperformed by all real imputation methods
across all groups of companies. Any imputation always significantly improves the
continuous ranked probability score.

• The methods Mv and M̃v as well as the methods Mm and M̃m outperform the
method Mi across most of the groups of companies. Especially considering all
companies together the differences in the sample continuous ranked probability
scores are significant. The main difference of the four first mentioned methods
and the methodMi is that they consider the the dependencies between the single
variables while Mi ignores it. This suggests that an imputation method that
considers the dependencies between the variables should be preferred.

• The vine based methods Mv and M̃v outperform the methods Mm and M̃m in
some cases. Especially considering all companies, the method Mv is superior to
the methods Mm and M̃m. This supports the statement that the vine based
methods form the best imputation methods in this application.

• Considering only the both vine based methods,Mv outperforms the method M̃v.
This suggest that the order in which the variables are imputed matters. In our
case,Mv imputes the variables in a very natural order: the variables are imputed
in increasing order of the missingness fraction.

Summarizing the p-values concerning the methodMv, we see that the vine based method
with natural imputation order outperforms all other methods even on higher significance
levels. The results are given in Table 6.3.

M̃v Mm M̃m Mi LSEG

Companies without missing values (#133) 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.690 0.000∗∗∗

Companies with one missing value (#88) 0.652 0.002∗∗∗ 0.007∗∗∗ 0.000∗∗∗ 0.000∗∗∗

Companies with two missing values (#45) 0.225 0.236 0.175 0.065∗ 0.001∗∗∗

Companies with three missing values (#100) 0.263 0.074∗ 0.082∗ 0.000∗∗∗ 0.000∗∗∗

Companies with four missing values (#154) 0.054∗ 0.514 0.468 0.234 0.000∗∗∗

All companies (#520) 0.021∗∗ 0.016∗∗ 0.018∗∗ 0.000∗∗∗ 0.000∗∗∗

Table 6.3: p-values for testing H0 : µ
∆ĈRPS(Mv,M)

≥ 0 against H1 : µ
∆ĈRPS(Mv,M)

< 0

for the imputation methods M ∈ {M̃v,Mm,M̃m,Mi,LSEG} in groups of companies
with the same number of missing values and for all companies with marked significance
levels (∗: 0.1, ∗∗: 0.05, ∗∗∗: 0.01).

Final Emissions Scores

Let M ∈ {Mv,M̃v,Mm,M̃m,Mi} be an arbitrary but fixed imputation method. So
far, for each company i = 1, . . . , n, we only have the collection of Emissions scores
{s(M,m)

i }m=1,...,M calculated from the single imputed data sets. From the data provider’s
point of view, however, it could be reasonable to summarize these different scores in
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a final score s
(M)
i per company in order to publish them or use them to continue with

the calculation of the ESG score. To generate such final Emissions scores we propose
the following procedure which results, as in the original approach of LSEG (2023), in
a valid percentile rank as the Emissions score for each company. For all companies
i = 1, . . . , n, we sum up the single Emissions scores {s(M,m)

i }m=1,...,M to the values

s
(M,+)
i :=

∑M
m=1 s

(M,m)
i and collect them in the vector

s(M,+) := (s
(M,+)
i )i=1,...,n ∈ Rn

≥0.

Then, we apply the percentile ranking giving the final Emissions score for a company i:

s
(M)
i := PR≤

s(M,+)(s
(M,+)
i ) ∈ (0, 1).

The final Emissions scores s
(M)
i for all methods M ∈ {Mv,M̃v,Mm,M̃m,Mi,LSEG}

and companies i = 1, . . . , n in comparison to the true Emissions scores si are given in
Figure 6.9. The most important finding is that the LSEG (2023) methodology strongly
overestimates the Emissions scores of companies that have no missing values. In a less
strong form this trend is also visible for companies with one missing value. On the other
hand, for companies with three or four missing values the LSEG (2023) methodology
systematically underestimates the Emissions score. For the Emissions scores derived
from any real imputation method this is not the case: Especially for companies which
reported all scoring variables, the final Emissions scores are almost identical with the
true Emissions scores.

For companies without missing values, the independent imputation methodMi seems to
perform better than the other real imputation methods. Also the methodsMm and M̃m

seem to give more precise Emissions scores than the vine based methods Mv and M̃v.
While it is challenging to make a definitive judgment based solely on visual inspection,
for the other groups, i. e. for companies with missing values, the vine-based methods
appear to outperform the other imputation methods. This suggests that the vine based
methods could be superior on the overall level when considering all companies with and
without missing values.

To statistically compare the final Emissions scores resulting from the vine based method
Mv to the final Emissions scores from the other methods, we perform paired t-tests.
More precise, for any two methods M1,M2 ∈ {Mv,M̃v,Mm,M̃m,Mi,LSEG} let

∆si(M1,M2) := |s(M1)
i − si| − |s(M2)

i − si|

be the difference of the absolute errors of Emissions scores derived from methods M1

and M2 for company i. We are testing the hypotheses

H0 : µ∆s(Mv,M) ≥ 0 against H1 : µ∆s(Mv,M) < 0,

or, formulated less formally, regarding the final Emissions score

H0 : Mv is worse than M against H1 : Mv is better than M.
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Figure 6.9: Emissions scores s
(M)
i per company i calculated by imputation method

M∈ {Mv,M̃v,Mm,M̃m,Mi,LSEG} compared to the true Emissions scores si grouped
by companies with the same number of missing values.
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M̃v Mm M̃m Mi LSEG

Companies without missing values (#133) 0.007∗∗∗ 0.993 0.999 1.000 0.000∗∗∗

Companies with one missing value (#88) 0.683 0.005∗∗∗ 0.040∗∗ 0.000∗∗∗ 0.000∗∗∗

Companies with two missing values (#45) 0.338 0.345 0.179 0.059∗ 0.113
Companies with three missing values (#100) 0.414 0.125 0.068∗ 0.000∗∗∗ 0.000∗∗∗

Companies with four missing values (#154) 0.086∗ 0.378 0.383 0.277 0.000∗∗∗

All companies (#520) 0.071∗ 0.096∗ 0.121 0.000∗∗∗ 0.000∗∗∗

Table 6.4: p-values for testing H0 : µ∆s(Mv,M) ≥ 0 against H1 : µ∆s(Mv,M) < 0 for the

imputation methodsM∈ {M̃v,Mm,M̃m,Mi,LSEG} in groups of companies with the
same number of missing values and for all companies with marked significance levels (∗:
0.1, ∗∗: 0.05, ∗∗∗: 0.01).

The results of the paired t-tests are given in Table 6.4. They confirm our conclusions from
the visual analysis. For companies without missing values, methodMv is outperformed
by the methods Mm, M̃m and Mi. However, if one considers all companies together,
the vine based methodMv with natural imputation order is statistically superior to the
other methods at significance level 0.1, except to method M̃m. In comparison to the
original LSEG (2023) methodology and the independent imputation Mi, method Mv

even performs better for the majority of categories at significance level 0.01.

Summary

Multiple imputation of the incomplete scoring variable data using any of the considered
real imputation methods yields Emissions scores which are notably closer to the true
Emissions scores compared to those derived from the original LSEG (2023) methodology.
It has been shown that the LSEG (2023) methodology systematically overestimates
the true Emissions scores for companies without missing values, while the scores for
companies with several missing values are systematically underestimated. Both effects
do not occur if multiple imputation is applied. Among the real imputation methods,
the vine based method with a natural imputation order statistically outperforms the
other methods in both the sample continuous ranked probability scores and the final
Emissions scores.



7 Conclusion

This thesis is concerned with multiple imputation using vine copulas. We presented a
novel imputation method that generates the imputations via sampling from a sequence of
D-vine quantile regression models based on the fully conditional specification approach.
In a simulation study, the comparison to other, well established methods with regard
to randomization valid inference as well as with regard to the interval score and the
continuous ranked probability score has shown that our vine based method can improve
the quality of the imputations in certain situations. While it performed similarly to
the imputation with mice(), it outperformed the imputation with amelia() in view of
the mixture of continuous and discrete variables. The other considered copula-based
method, the imputation with CoImp(), was inferior to all other methods. Nevertheless,
the vine based imputation is computationally much more complex than the compara-
ble performing imputation method using mice(). Thus, for high-dimensional data our
approach is not yet practicable.

Further, we applied our imputation method on real ESG-data to recalculate the Emis-
sions scores of companies in the machinery sector. We compared the resulting Emissions
scores to the scores derived from other imputation methods and to the original approach
of LSEG (2023) where missing values are not imputed. Our method significantly im-
proved the Emissions scores and especially overcame two shortfalls of the LSEG (2023)
methodology, namely the systematic overestimation of the Emissions scores for compa-
nies which reported values for all scoring variables and the systematic underestimation
of the Emissions scores for companies for which several values were missing.

Future work could examine the performance of the presented approach when non-
parametric pair-copulas are allowed. Additionally the effect of replacing the D-vine
quantile regression models with C-vine quantile regression models could be investigated.
To speed up the vine based imputation we suggest to truncate the D-vine quantile re-
gression models to a smaller number of allowed covariates. For a general speed up an
implementation on GPU’s would be useful.
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