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Abstract: Propensity to psychiatric disease involves the
contribution of multiple genetic variants with small indi-
vidual effects (i. e., polygenicity). This contribution can be
summarized using polygenic scores (PGSs). The present
article discusses the methodological foundations of PGS
calculation, together with the limitations and caveats of
their use. Furthermore, we show that in terms of using ge-
netic information to address the complexities of mental
disorders, PGSshavebecomea standard tool in psychiatric
research. PGS also have the potential for translation into
clinical practice. Although PGSs alone do not allow reli-
able disease prediction, they have major potential value
in terms of risk stratification, the identification of disor-
der subtypes, functional investigations, and case selection
for experimental models. However, given the stigma asso-
ciated with mental illness and the limited availability of
effective interventions, risk prediction for commonpsychi-
atric disorders must be approached with particular cau-
tion, particularly in the non-regulated consumer context.

Keywords: polygenic, score, psychiatric disorders, predic-
tion, risk

Introduction

Propensity to psychiatric disease and related quantitative
traits involves the contribution of multiple genetic vari-
ants with small individual effects (i. e., polygenicity). This
contribution can be summarized using polygenic scores
(PGSs). PGS have thus become a standard tool in psychi-
atric research. PGSs also have the potential for translation
into clinical practice. Here, we provide an overview of the
conceptual foundations of PGSs, examples of their suc-
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cessful application in research, and possible future appli-
cations in clinical psychiatric practice.

What are polygenic scores?
Genome-wide association studies (GWAS) have identified
a large number of common single nucleotide polymor-
phisms (SNPs) that influence risk for a variety of psychi-
atric diseases, including schizophrenia (SCZ) [1, 2], bipo-
lar disorder (BD) [3], andmajor depressive disorder (MDD)
[4, 5]. The significantly associated variants, together with
many other associated variants that do not (yet) fulfill the
strict significance criteria applied in GWAS, constitute the
polygenic component of psychiatric disorders and related
quantitative traits. The individual polygenic load of these
variants can be summarized using PGSs.

How are PGSs generated? In general, PGSs use infor-
mation, e. g., effect sizes and P-values, from a large GWAS
training dataset to predict phenotypic outcomes in an in-
dependent test dataset. For the calculation of PGSs, the
allele count of each variant that is associated with dis-
ease risk or a quantitative trait in GWAS is multiplied with
the effect size of the respective SNP (Fig. 1). For quantita-
tive traits, this effect size is the linear regression β coeffi-
cient. For case/control analyses, the effect size is the natu-
ral logarithm of the odds ratio. The weighted allele counts
of all associated variants are then summed to compute the
PGS. In general, genotype information frommicroarrays –
which typically test for 500,000 to one million SNPs – is
enhanced by imputation. Here, the genotype probabilities
of millions of variants are estimated using haplotype ref-
erence panels in order to account more comprehensively
for frequent genetic variants in a given population. For im-
puted SNPs, the allelic dosage, i. e., the additive probabil-
ity of carrying theminor allele, is used instead of the allele
count in the formula shown in Fig. 1. The allelic dosage is
calculated as follows: dosage = 2×probabilityhomozygous +
1 × probabilityheterozygous, where both probabilities refer to
the minor allele.

PGSs are thus a quantitative measure of the additive
genetic burden for a particular disease or trait and can be
used to assess individual genetic load. A practical appli-
cation of a simple PGS is the prediction of eye color us-
ing only six SNPs [6]. In the case of the biologically much
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Figure 1: (A) Common psychiatric disorders and traits are influenced by the additive effects and interactions of multiple genetic variants
and environmental factors. (B) Polygenic scores (PGSs) are typically calculated by summing the weighted allele counts of independent (i. e.,
uncorrelated) single nucleotide polymorphisms (SNPs) found to be associated with a trait or disorder in a genome-wide association study
(GWAS). For quantitative traits, the weights are the linear regression effect sizes, i. e., the β coefficients. For case/control phenotypes, the
weights are the natural logarithm of the odds ratio, ln(OR).

more complex and heterogeneous psychiatric diseases,
however, many more variants contribute to disease devel-
opment and, therefore, must be incorporated in order to
render the PGS meaningful. SNPs are typically selected
based on their GWAS association strength, i. e., P-values.
In GWAS, the effective P-value is dependent on the statis-
tical power, and is thus influenced by the sample size and
allele frequency. It can therefore be assumed that many of
the variants that fail to reach formal genome-wide signif-
icance (P < 5×10−8) in a GWAS would surpass the signifi-
cance threshold if larger sample sizes were used. In fact,
the phenotypic variance explained by psychiatric PGSs in-
creases when more than just the genome-wide significant
variants are included.

In most cases, therefore, the P-value threshold for the
inclusion of variants into PGSs is determined empirically.
A range of PGSs are calculated, each incorporating vari-
ants below a different P-value threshold [2, 7]. Association
of each PGS with the disease or trait is tested in an inde-
pendent cohort, and the PGS at the P-value threshold with
the highest predictive capability is selected. To avoid over-
fitting, i. e., the generation of prediction models that are
suitable for the test dataset but which do not replicate in
other data, the selection of P-value thresholds either via
(nested) cross-validation or in a third, independent vali-
dation dataset is recommended. Research has shown that
for most psychiatric disorders, thresholds of P < 0.01 or P
< 0.05 have the best signal-to-noise ratio for disease pre-

diction [1–5]. Some tools, e. g., PRSice [8], calculate thou-
sands of PGS at different thresholds, and the optimal PRS
is then selected automatically. However, unless carefully
applied, such approaches may increase the risk of overfit-
ting and generate problems in terms of effective correction
for multiple testing.

A second issue to be considered in the selection of
variants for PGS calculation is linkage disequilibrium
(LD). GWAS typically analyze 7–9 million variants, and
most are imputed based on the presence of LD, rather
than being directly genotyped. However, the PGS should
be shaped by independently associated genetic loci and
not by correlated markers. Moreover, studies differ in the
choice of microarray types and imputation reference pan-
els. The latter are provided by sources such as the 1000
Genomes and Haplotype Reference consortia. Thus, even
with imputed data, the training and test datasets often dis-
play only a partial overlap of variants.

Typically, these issues of LD and SNPmatching are ad-
dressed using LD clumping. For each locus, the variant in
the test dataset that shows the highest correlationwith the
top-associated SNP from the training data is determined
and used to calculate the PGS. Variants in LD with the
top SNP are discarded. Similarly to choosing the P-value
threshold, the parameters used for LD clumping can be de-
termined empirically. However, problems arise when the
ethnic background – and thus the LD pattern – differs be-
tween the training and test data [9].Moreover, standard LD
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Figure 2: Polygenic scores typically follow a normal dis-
tribution on a population level. The distributions of cases
and controls show a clear overlap. Thus, meaningful risk
predictions can be only expected for extreme quantiles at
the top and bottom of the PGS distributions.

clumping does not perform well in regions showing long-
range, complexLD, e. g., themajor histocompatibility com-
plex (MHC) region on chromosome 6. To circumvent this
issue, PGS calculation often involves only the single top-
associated SNP within the MHC region. This type of ap-
proach has been used by the Psychiatric Genomics Con-
sortium, e. g., for SCZ PGSs [2].

Several algorithms have been proposed to improve the
selection and weighting of variants for PGSs, e. g., LDpred
and PRS-CS [10, 11]. These algorithms, usually based on a
Bayesian regression framework, directly model LD within
PGS by shrinking effect sizes according to the LD. Their
prediction performance surpasses that of PGSs calculated
by P-value thresholding and LD clumping. Methods have
also been developed to combine data from several GWAS
into a single PGS, an approach that is particularly useful
for analyses of psychiatric disorders that show a strong ge-
netic correlation [12, 13].

Limitations of polygenic scores

Two critical restrictions of classical PGSs, i. e., their de-
pendence on P-value thresholds and LD clumping, can be
circumvented using advanced tools such as PRS-CS. How-
ever, not all GWAS are suitable for calculation of the PGSs.
First, training GWAS should be as large as possible to en-
sure that the effect sizes in the GWAS sample are a rea-
sonable estimate of the true effect sizes in the population.
Second, training and test samples must be independent
to ensure unbiased effect sizes [14]. Since most training

GWAS data are generated by large international consortia,
obtaining independent test data can be challenging.

PGSs typically aggregate hundreds or thousands of
variants with small individual effect sizes and thus follow
a normal distribution on a population level (Fig. 2). This
distribution has important consequences for the sensitiv-
ity and specificity of PGS-based predictions.

The assessment of mean PGS differences between
cases and controls often generates highly significant
P-values. Nevertheless, the absolute differences in mean
PGS between groups are small, and the respective PGS dis-
tributions show a clear overlap. Therefore, PGSs only have
substantial predictive value for individuals in the top and
bottompercentiles of the distribution [15]. Moreover, abso-
lute PGS values have no objective meaning. Instead, they
should be interpreted in comparisonwith the PGSs of indi-
viduals with known case/control status. Systematic differ-
ences in allele frequencies and LD patterns between train-
ing and test subjects impair PGS-based predictions. Train-
ing and test datasetsmust thus bematched in terms of eth-
nic background, and, ideally, also regarding the genotyp-
ing technology and imputation method. Even differences
in demographic characteristics and socio-economic sta-
tus between training GWAS and test subjects can affect
the prediction results [16]. These requirements limit the
application of PGSs for individual prediction. An out-of-
context PGS value for any single individual is thus non-
interpretable.

PGSs assume a simplified genetic model of disease
and only incorporate the additive effects of common vari-
ants, typically with minor allele frequencies above 1%.
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Therefore, they do not account for non-additive inheri-
tancemodels, epistasis, or rare variants. The latter include
copy number variants (CNVs) and themany rare point mu-
tations in the genome that confer risk but havenot yet been
identified. These limitations are likely to contribute to the
observation that current PGSs for psychiatric disorders ex-
plain only a small proportion of phenotypic variance. On
a liability scale, phenotypic variances explained by pub-
lished PGSs were 6–7% for SCZ, 4% for BD, and 2–3% for
MDD [1–5]. These low values and the small areas under the
receiver operating curves of the prediction models imply
that PGSs are not yet suitable for the reliable prediction of
a future psychiatric disorder.

The specific variants analyzed in a GWAS explain only
a part of the broad-sense heritability of any given disor-
der or quantitative trait. In general, this SNP-based heri-
tability constitutes an upper limit for the predictive capa-
bility of the respective PGS. Interestingly, for body height
– another highly polygenic human trait – the complete es-
timated heritability may be explained when both common
and rare variants are included in the analysis [17]. It is thus
expected that prediction models for psychiatric disorders
will improve when rare variants are incorporated into the
respective PGSs.

Finally, PGSs can only be applied to the populations
in which the training GWASwere conducted [18]. This lim-
itation poses a problem for psychiatric research in non-
European populations, for which large-scale GWAS suit-
able for use as training data are lacking. In terms of fu-
ture psychiatric clinical practice, the inability to calculate
meaningful PGSs in non-European populations may ag-
gravate existing differences in access to optimal medical
care [19].

Polygenic scores as a powerful
research tool

The PGS approach is a highly effective tool in medical
research. For example, PGSs can be used to investigate
whether disease subtypes have differing underlying ge-
netic burdens. As anticipated, research into psychiatric
diseases, including SCZ, BD, and MDD, has identified
higher PGSs in more severe disease subtypes [3, 20, 21].
PGS can also be used to determine whether – and if so,
to what extent – different diseases have common genetic
causes. Cross-disorder psychiatric studies have shown
that the genetic overlap between schizophrenic and affec-
tive disorders, in particular, is very large (approx. 34%

with MDD and 70% with BD), and that certain SNPs con-
tribute to the development of psychiatric diseases across
all diagnoses [22, 23]. Combined analyses of subtypes and
genetic effects across different diagnoses have shown that
in BD cases, SCZ PGSs were particularly high in patients
diagnosed with BD type I, in patients presenting with psy-
chotic features, and in early-onset BD cases. In contrast,
BD type II patients showed a higher MDD PGS [3, 20]. In
SCZ cases, a higher BD PGS was associated with manic
symptoms [24].

PGS have also been used to demonstrate that psy-
chiatric multiplex families – a phenomenon traditionally
thought to be caused by rare variants of large effects – can
display an increased load of common genetic risk variants
(e. g., [25]). This finding does not, of course, exclude an ef-
fect of rare variants in these families. However, it suggests
that family aggregation is unlikely to be caused by rare
variants alone.

Interestingly, PGS have also been used to determine
resilience to disease, e. g., to development of schizophre-
nia [26]. The study of genetic factors that counteract an in-
dividual’s risk may be particularly helpful in elucidating
mechanisms that can be modulated to reverse pathophys-
iological processes.

To generate a functional understanding of psychi-
atric disease, the analysis of endophenotypes is consid-
ered helpful, and a large number of endophenotypes have
been proposed, e. g., quantitative neurocognitive and neu-
rophysiological measures and structural and functional
neuroimaging data [27]. In this context, the application of
PGSs allows the relationship between proposed endophe-
notypes and disease to be redefined on an etiological level
[28–31].

PGS can also be used to provide biological insights on
the gene or pathway level [32]. For example, investigations
of the association between PGSs and gene expression in
single tissues and at specific time points can improve our
understanding of the molecular etiology of pathological
processes [33, 34].

Finally, PGSs offer new possibilities for the func-
tional investigation of disease mechanisms in experimen-
tal models. Particularly in experimental approaches that
are restricted to a limited number of participants, the ran-
dom selection of patients and controls with varying ge-
netic burdens can obliterate group-level differences. For
the investigation of induced pluripotent stem cells, for ex-
ample, this problem has been addressed by selecting cell
donors on the basis of PGS stratification [35].
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Paths to clinical translation in
psychiatry

Atpresent, thepower of PGSs topredict the futuredevelop-
ment of a psychiatric disorder is very limited [36]. Predic-
tionswill be improvedby theuse of larger trainingdatasets
with 100,000 or more cases, such as those targeted by
the Psychiatric Genomics Consortium [37]. However, the
fact that rare genetic variants and non-genetic factors also
make a significant contribution to psychiatric disease de-
velopment will continue to preclude any reliable predic-
tion of psychiatric disease when based on PGS alone. Nev-
ertheless, clinical medicine provides compelling exam-
ples in which the identification of individuals with an in-
creased disease risk (i. e., risk stratification), followed by
targeted screening and prevention measures, led to a sub-
stantial reduction inmorbidity andmortality. In principle,
PGSs may be used for risk stratification of this nature and
for improving procedures already established in the clin-
ical setting [15, 38, 39]. In the case of psychiatric disease,
no preventive measures have yet been established in clin-
ical practice that could be routinely applied to individuals
with increased disease risk, e. g., thosewith a positive fam-
ily history. It is evenpossible that communication of the in-
dividual risk for a psychiatric disorder may result in a self-
fulfilling prophecy [40]. Therefore, the effects of risk strati-
fication and intervention strategies should first be demon-
strated in studies involving comprehensive risk–benefit
analyses.

The first use of PGSs in psychiatric diagnostics might
be considered for carriers of CNVs that are associated with
an increased risk for specific disorders, and forwhich odds
ratios of up to 50 have been reported [41]. Since the poly-
genic background influences the penetrance of psychiatric
disease in CNV carriers [42], the use of PGSs would im-
prove individual risk estimates. Experience from clinical
genetics shows that in general, the parents of children car-
rying CNVswish to be informed about the potential pheno-
typic spectrum of their children.

Another potential application of PGSs in future psy-
chiatric clinical practice is the identification of more ho-
mogeneous patient subgroups [20, 43, 44]. The hetero-
geneous nature of psychiatric diseases is apparent since
the currently used clinical diagnosis is not based on an
etiological foundation (see the accompanying articles).
In principle, the establishment of PGSs for specific, bio-
logical pathways or networks corresponding to individual
disease etiology would allow the identification of patients
with a pathway-specific risk load. This would provide the
foundation for an etiology-based, stratified approach to

the diagnosis and clinical management of psychiatric dis-
ease.

Efforts are also underway to establish PGSs for drug re-
sponses and propensity to side effects for currently avail-
able pharmacological psychiatric therapies (e. g., the In-
ternational Consortium on Lithium Genetics, ConLiGen),
as has been performed previously for other medical disor-
ders [45]. However, large samples will be required for the
establishment of meaningful prediction models.

When developing PGSs, a critical ethical considera-
tion must be their potential application within the non-
regulated consumer context [46]. For cardiovascular dis-
orders, e. g., coronary artery disease, mobile applications
that calculate PGSs and provide lifestyle and dietary rec-
ommendations already exist [47]. This approach can facil-
itate thepreventionof cardiovascular disease via apositive
influence on risk behavior.

Only weeks after the publication of a GWAS on same-
sex behavior, PGSs generated from this study that ex-
plained hardly any (<1%) of the variance of the exam-
ined phenotype were misused for homosexuality predic-
tion by a commercial direct-to-consumer genetic testing
provider, leading to a backlash from the lesbian, gay, bi-
sexual, and transgender community [48]. For psychiatric
disease, themisuse of PGSs developedwithin the research
context could have serious ethical consequences, given
the high degree of stigma that is still associated with men-
tal illness in the global society.

Conclusions for research and
clinical practice

– Polygenic scores (PGSs) are an effective tool for the
quantification of the polygenic contribution to psychi-
atric disorders at the individual level.

– In psychiatric research, PGSs are now applied on
many levels, from obtaining insights into biological
mechanisms to understanding the relationship be-
tween different diseases.

– Although the generation of PGSs requires large
datasets (training sample), PGSs can be applied to
much smaller datasets in subsequent studies (test
sample).

– Theapplicationof PGSs for diseaseprediction remains
limited, since, in addition to frequent genetic variants,
rare variants and non-genetic factors also play an im-
portant role.
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– Potential future clinical applications include the iden-
tification of etiology-based disease entities for the de-
velopment of new therapeutic strategies and the pre-
diction of drug responses and side effects for currently
available pharmacological therapies.
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