
Alma Mater Studiorum · University of Bologna

Department of Physics and Astronomy
Master Degree in Physics

Utilizing Global Subspace Expansion
for Time Dependent Variational

Principle on Spanning Tree Tensor
Networks

Supervisor:

Richard Milbradt, M.Sc.

Co-supervisors:

Prof. Christian B. Mendl
Prof. Elisa Ercolessi

Presented by:

Pouriya Haji Ghadimi

Academic Year 2023/2024

"Programmed by quanta, physics gave rise first to chemistry and then to life;
programmed by mutations and recombination, life gave rise to Shakespeare;
programmed by experience and imagination, Shakespeare gave rise to Hamlet."

— Seth Lloyd

i

Abstract

We adapted the Global Subspace Expansion (GSE) algorithm on tree tensor networks (TTN),
integrated it into the Time Dependent Variational Principle algorithm (GSE-TDVP), to miti-
gate the 1-site TDVP projection error, while achieving the accuracy of 2-site TDVP. We utilized
an adaptive adjustment of a truncation parameter within the GSE algorithm, to achieve stable
bond growth under controlled conditions during the evolution. Furthermore, we investigated
the representation of wave-function of 2D systems with spanning tree as an intermediate ap-
proach between Matrix Product States (MPS) and Projected Entangled-Pair Sates (PEPS). We
conducted a methodological error analysis of the GSE-TDVP algorithm across various span-
ning tree structures, and proposed a scoring metric based on TDVP performance and the
network connectivity. A significant bottleneck in the algorithm—matrix exponential approxi-
mation—was addressed by incorporating an enhanced Krylov subspace projection method with
adaptive time-stepping. Finally, we enhanced the Tensor Jump Method (TJM) by utilizing
GSE-TDVP on spanning tree and benchmarked a simple dissipative dynamics on a 2D lattice.

ii

Contents

Abstract ii

Contents iii

Introduction v

1 Tree Tensor Networks (TTN) 1
1.1 Tensor Network (TN) Methods . 1
1.2 Tree Tensor Networks (TTN) . 2

1.2.1 Tree Tensor Network State (TTNS) Ansatz 3
1.2.2 Tree Tensor Network Operators (TTNO) 5

1.3 TTN Operations . 6
1.3.1 Operator-State Contraction . 6
1.3.2 TTNO Summation . 7
1.3.3 Expectation Value . 7

1.4 Canonical Form . 9
1.4.1 1-Site Canonical Form . 10
1.4.2 QR Canonical Transformation . 12
1.4.3 SVD Canonical Transformation . 13
1.4.4 TTN Virtual Bond Truncation . 14
1.4.5 Bond Canonical Form . 15

2 Time Dependent Variational Principle (TDVP) 17
2.1 Introduction . 17
2.2 Tangent Space Approach . 18

2.2.1 Projection onto the Tangent Space . 19
2.2.2 Local and Global Projectors . 21

2.3 TDVP algorithm . 25
2.4 From MPS to TTN . 26

2.4.1 General Rules for update path Construction 28
2.4.2 Orthogonalization Path in TDVP . 29

2.5 Representation of Many-Body Wavefunctions on a Lattice 32
2.5.1 Random Spanning Tree . 33
2.5.2 Measure TTNS Connectivity . 33
2.5.3 Profiling TTNS Configurations and Bottleneck Analysis 34
2.5.4 Profiling on Random 6×6 Lattice . 35
2.5.5 Benchmark : Bose-Hubbard on 4x4 Lattice 38

iii

3 Global Subspace Expansion 41
3.1 Local Subspace Expansion . 41
3.2 Global Subspace Expansion (GSE) . 42
3.3 GSE-TDVP Algorithm . 43

3.3.1 GSE-TDVP Optimizations . 49

4 Benchmark 55
4.1 Tensor Jump Method (TJM) . 55

4.1.1 Overview . 55
4.1.2 Single Trajectory Evolution Steps . 55
4.1.3 TJM Optimization . 56

4.2 2D Transverse-Field Ising Dissipative Simulation 57
4.2.1 Experiment 1 . 58
4.2.2 Experiment 2 . 61

Final Discussion and Outlook 65

Acknowledgements 66

Bibliography 67

iv

Introduction

The study of quantum many-body systems lies at the heart of modern theoretical physics,
offering insights into fundamental questions about the nature of quantum entanglement with
practical challenges in simulating complex quantum phenomena ranging from superconductiv-
ity to quantum phase transitions. These systems, characterized by a vast number of interacting
particles, present a formidable challenge: their complexity grows exponentially with size, mak-
ing exact solutions computationally infeasible beyond small scales. Over the past few decades,
researchers have turned to innovative numerical tools to represent quantum states efficiently
by breaking them into manageable pieces—tensors—connected in a network, allowing scientists
to simulate systems that were once out of reach. Researchers have developed various network
shapes—some like chains, others like grids or trees—to simulate quantum system dynamics
over time or understand the state of system at the lowest possible energy. This thesis enters
this landscape with a focus on loop-free tree networks, by addressing their shortcomings and
tailoring them to practical quantum simulation.
Tensor Network (TN) Time-evolution algorithms face several difficulties. Traditional ap-
proaches often suffer from large truncation errors, poor scalability with long-range interactions,
or rapid entanglement growth. A promising alternative is the Time-Dependent Variational
Principle (TDVP) [1], which projects the Schrödinger equation onto the tangent space of a
fixed-rank tensor network. TDVP not only preserves unitarity more reliably over long times but
can also incorporate adaptive bond-dimension growth to manage rising entanglement. However,
a fundamental trade-off emerges: 1-site TDVP is computationally cheaper but may undershoot
the true entanglement growth, whereas 2-site TDVP explores a larger variational space by
increasing bond dimensions—albeit at a substantially greater computational cost. The main
focus of this thesis is to address this challenge by constructing a global correction space, in-
formed by the entire network, and incorporating it into the TDVP algorithm within .
In chapter 1, we introduce the fundamental concepts of tensor networks along with the essential
tools needed for implementing Tree Tensor Networks (TTN). Chapter 2 presents TDVP algo-
rithm and details the practical steps for its adaptation to the TTN framework. At the end of
this chapter, we investigate the representation of 2D Many-Body Wave-functions on spanning
tree structures. Building on this, in chapter 3, we introduce Global Subspace Expansion (GSE)
[2] algorithm, providing practical implementation guidelines within the TTN framework. Next,
by utilizing GSE, we propose a stable strategy for enlarging the 1-site tangent space during
TDVP evolution (GSE-TDVP) and address computational bottlenecks in matrix exponentia-
tion through enhanced Krylov strategy, thereby improving the overall scalability of the method.
Finally, Chapter 4 integrates the developed GSE-TDVP with the Tensor Jump Method (TJM)
[3] and extends the simulation to two-dimensional systems via a spanning tree structure. This
integration enhances TJM’s robustness for simulating dissipative dynamics in larger lattices,
as demonstrated by benchmarks on a 2D Transverse-field Ising model.
By focusing on three key areas—enhancing the TDVP with Global Subspace Expansion (GSE),
exploring spanning tree structures, and improving the Tensor Jump Method (TJM)—this work
contributes to the ongoing effort to make TN simulations more accurate and practical.

v

1. Tree Tensor Networks (TTN)

Tensor network (TN) methods are taking a central role in modern computational quantum
physics [4–6]. They can provide an efficient approximation to certain classes of quantum states,
with graphical representation that can simplifies complex calculations by visually encoding
tensor contractions, making it easier to understand and manipulate quantum circuits, chan-
nels, protocols, open systems, and various transformations, evolutions, and interactions that
quantum states undergo.

1.1 Tensor Network (TN) Methods
Solving the Schrödinger equation for many-body Hamiltonians in the presence of interactions
poses a fundamental and complex challenge due to the presence of an exponentially large num-
ber of degrees of freedom. This growth leads to both increasing memory requirements to store
exponentially many complex values and computational times to perform the operations needed
to simulate their dynamics. To get some perspective about the degree of complexity, we can
recall that the exact numerical solution for a tiny nanoscale piece of material would already
require a computer with a hard disk containing more bits than atoms present in the entire
universe.
Early solutions mostly relied on approximative and effective theories where the properties of
the interacting system can be adequately described in a single-particle picture with interac-
tions only entering at a perturbative level such as the Hartree-Fock approximation (which
employed a mean-field approach) [7], many-body perturbation theory (which treated interac-
tions as small deviations from a solvable reference system) [8], the Configuration Interaction
(CI) method (which expanded the wavefunction in a basis of many-particle configurations) [9],
and Kohn-Sham Density Functional Theory (DFT) (which recast the problem into an effective
single-particle framework) [10]. Although their approximative nature only accounts for weak
quantum correlations, strong interactions that give rise to these intriguing quantum effects
and phases of matter including Mott insulators [11], high-Tc superconductivity [12], frustrated
quantum magnetism [13], the fractional quantum Hall effect [14], or quantum critical phases of
matter [15] and so on, lead to a breakdown of any perturbative ansatz and as a result, the full
many-body wave-function has to be taken into account.
The most straightforward way of tackling the many-body wave-function numerically is to gen-
erate the full many-body Hamiltonian of the system and use Exact Diagonalization (ED) to
obtain all or a subset of its eigenvectors [16]. The complexity to perform the full diagonalization
scales as O(d3N), where N represents the number of sites in the lattice system and d is the
local dimension, limiting its applicability especially in the context of many-body systems with
long correlation lengths [16]. Another set of approaches are series expansion techniques, which
expand a specific quantity in terms of a power series of one or more parameters [17]. The main
limitation of these techniques is achieving high enough expansion orders to get the convergence
of quantity of interest. This is particularly difficult at or below a thermal phase transition

1

and for strongly correlated ground-state phases, where long-ranged correlations dominantly
determine the physical properties of a system [18]. Quantum Monte-Carlo (QMC) techniques
[19] are widely applied to study strongly correlated systems stochastically, by sampling the
partition function of the full interacting system. For a vast number of systems, QMC can be
implemented to treat very large system sizes of hundreds of sites or even directly working in the
thermodynamic limit with only polynomial cost scaling. However, for most frustrated magnets
and models of itinerant fermions, the computation time of the algorithms grows exponentially
with the system size due to the so-called sign problem [20].
TN approaches, on the other hand, where the wave-function of a quantum many-body system is
parametrized in terms of a set of interconnected tensors, are at the forefront of classical tools for
scalable quantum simulation. Although these ansatz by construction only work efficiently (i.e.,
with polynomial cost scaling) for a specific set of lowly-entangled states in the Hilbert space,
they turn out to be excellent representations of many low-energy wave-functions of strongly
correlated systems [21]. Therefore, the main motivation of using TN include the absence of
a sign problem, their non-perturbative character, and their ability to treat large system sizes.
TN methods have been extensively explored and opened up various new research directions
towards understanding non-equilibrium [22], finite temperature [23] and topological properties
[24] of low-dimensional quantum systems and offer promising approaches in the context of two-
dimensional correlated systems such as single- and multi-band Hubbard and t-J models [25].
Beyond condensed matter physics, TN methods keep generating impact, particularly in high-
energy physics and quantum chemistry. In high-energy physics, TN have been instrumental in
studying lattice gauge theories, providing an alternative to traditional Monte Carlo methods
[26]. Additionally, TN have been applied in holography and quantum gravity, offering insights
into the AdS/CFT correspondence through the study of entanglement structures in many-body
systems [27]. In quantum chemistry, TN techniques have been leveraged to efficiently approx-
imate wave-functions of molecular electronic structures, enabling high-precision computations
of strongly correlated electrons in complex molecular systems [28].
Beyond physics, TN have emerged as powerful tools in machine learning, where they enable
efficient parameterization of deep learning models and reduce computational complexity. In su-
pervised learning, tensor-based models have achieved high classification accuracy with reduced
computational cost [29]. In natural language processing, TN have been employed in proba-
bilistic sequence modeling, providing innovative approaches for structured text generation and
inference [30]. In medical imaging, TN have demonstrated competitive performance in image
classification tasks while requiring fewer computational resources than deep learning models
[31]. Furthermore, TN have found applications in cognitive science and decision-making, where
they have been used in planning and active inference to model probabilistic decision-making
[32].

1.2 Tree Tensor Networks (TTN)
In the simulation of quantum many-body systems, an effective variational ansatz must satisfy
two primary conditions: it should yield a highly accurate representation of the imaginary and
real time-evolved target state, and it must permit the efficient computation of key physical
quantities, including local observables and their corresponding correlation functions.
At the foundation of TN methods, Matrix Product States (MPS) were first successfully ap-
plied in the Density Matrix Renormalization Group (DMRG) to efficiently capture the ground
states of one-dimensional quantum systems with high accuracy [33]. Over time, MPS have been
extended beyond static ground-state properties to finite-temperature physics [34], quantum dy-

2

namics [35], and open quantum systems [36, 37]. And recent advancements leverage MPS in
hybrid quantum-classical simulations [38] and adaptive quantum circuits [39].
While MPS is suited to deal with non-critical, short-range, one-dimensional Hamiltonians, their
applicability is limited in higher-dimensional systems and critical states, where entanglement
grows beyond what a low-bond-dimension MPS can efficiently capture [40, 41].
The Projected Entangled Pair States (PEPS) was later introduced as a natural generalization of
MPS to two- and higher-dimensional lattice systems [41]. PEPS represents the wave-function
as a network of tensors arranged on a lattice, where each site is connected to its neighbors
via virtual bonds, allowing for an efficient encoding of quantum correlations and entanglement
structure of higher-dimensional ground states, making them a powerful tool for studying two-
dimensional quantum spin systems, the Hubbard model, and frustrated magnets [42]. However,
the computational cost of contracting PEPS grows exponentially with system size, typically
scaling with bond dimension as O(χ10) or higher, making their numerical implementation sig-
nificantly more demanding than MPS [43]. Recent advances in tensor contraction techniques
and variational optimization have improved the efficiency of PEPS methods, enabling studies
of larger systems and more complex quantum phases [44, 45].
The Multi-scale Entanglement Renormalization Ansatz (MERA) was introduced as an alterna-
tive TN structure specifically designed to efficiently describe critical systems and scale-invariant
quantum states [46]. Additionally, MERA has been instrumental in studying conformal field
theories and holographic dualities by providing a TN realization of the AdS/CFT correspon-
dence [47].

1.2.1 Tree Tensor Network State (TTNS) Ansatz
Tree Tensor Networks (TTN) provide an alternative TN architecture designed to efficiently
represent quantum many-body states by arranging tensors in a hierarchical tree-like structure
[48]. Unlike MPS, which follows a linear connectivity pattern, TTN employs a branching struc-
ture that enables a more flexible representation of quantum correlations, making it well-suited
for capturing long-range entanglement in higher-dimensional systems [49]. In quantum chem-
istry, TTN provides an efficient description of molecular systems with complex entanglement
structures [50]. TTN has been shown to outperform MPS in DMRG calculations for complex
molecular systems in [51]. A substantial advantage of TTNS is that at a finite bond dimension,
it is able to capture algebraically decaying correlation functions. This in contrast to MPS which
is only able to represent exponentially decaying correlations [52]. Tree-like TNS with uniform
binary-tree structures naturally exhibit power-law two-body correlations [53], making TTN ef-
fective in addressing challenges posed by critical long-range correlations and interactions [54].
Consider a quantum system with N degrees of freedom, each associated with a physical ba-
sis |σi⟩ with local physical dimension d. The wave-function can be expressed as a high-order
tensor Ψσ1σ2···σN , belonging to the exponentially large Hilbert space H = (Cd)⊗N , which makes
direct computations with Ψ impractical. The Tree Tensor Network State (TTNS) ansatz ad-
dresses this challenge by approximating Ψ, i.e., the full wave-function is factorized into N
multi-dimensional arrays (tensors). Therefore, the wave-function is expressed as a contraction
of N low-rank tensors connected with a set of virtual bonds Bi for each local tensor T [i] at
site i, where Bi = {bj : bj is connected to node i} represents all virtual bonds connecting tensor
T [i] to its neighbors in the tree structure. This is given by

|Ψ⟩ =
∑

{b},{σ}
T [1]σ1

B1T [2]σ2
B2 · · ·T [N]σN

BN
|σ1σ2 · · · σN⟩ , (1.1)

3

(a) Matrix Product State (MPS). (b) Perfect Binary Tree.

Figure 1.1: Examples of Tensor Network Structures.

where {b} = {b1 · · · bL} denotes the set of all virtual indices and {σ} represents the set of
physical indices. The contraction between local tensors T [i] is organized according to a tree
structure through the Bi collective indices. Denoting the virtual bond dimension of bi by χi

and the physical dimension of σi by di, each local tensor T [i] has a shape determined by its
set of virtual indices Bi and its physical index. In general, if Bi = {bj1 , bj2 , . . . , bjk}, then the
tensor T [i] has the shape

(
χj1 , χj2 , . . . , χjk , di

)
, where k is the number of its neighbors (parent

and children).
The TTN structure can be naturally encoded with a graph G = (V,E), where each tensor
corresponds to a vertex i ∈ V , and each virtual bond between tensors corresponds to an edge
(i, j) ∈ E.

Example 1: MPS. MPS could be considered as a maximal unbalanced binary tree where the
structure is a simple chain of N tensors, as illustrated in Figure 1.1(a), consisting of :

• Root node T [1]: With no parent index, a single child index b1 (connecting to T [2]), and
one physical index σ1. One could also choose a tensor in the middle as the root. This does
however, make implementation unnecessarily complicated.

• Intermediate nodes T [2], . . . , T [N − 1]: Each has two virtual (bond) indices, the parent
index bi−1 (shared with the preceding tensor T [i − 1]) and the child index bi (connecting
to T [i+ 1]). Each tensor also has one physical index σi.

• Leaf nodes T [N]: Has only a parent index bN−1, carries the physical index σN , and has no
child index, as it is the end of the chain.

The full MPS wave-function reads:

|Ψ⟩ =
∑

b1,...,bN−1

T [1] σ1
b1 T [2] σ2

b1,b2 . . . T [N] σN
bN−1
|σ1 σ2 · · · σN⟩. (1.2)

Example 2: Perfect Binary Tree. A perfect binary tree of depth M is labeled by i =
1, . . . , 2M − 1 tensors consisting of:

• Root node T [1]: Has no parent index and exactly two child indices b2 and b3, connecting
it to T [2] and T [3].

4

• Internal nodes 2 ≤ i ≤ 2M−1 − 1: Each has one parent index (shared with node ⌊i/2⌋) and
two child indices, namely b2i and b2i+1, connecting it to T [2i] and T [2i+ 1].

• Leaf nodes i > 2M−1 − 1: These have no children, so each leaf node T [i] has just one parent
index b⌊i/2⌋.

When all the virtual (bond) indices bi are summed (contracted) over, the full TTNS wavefunc-
tion is:

|Ψ⟩ =
∑
{σ}

∑
b2, b3, ..., b2M −1

T [1]σ1
b2,b3

×
2M−1−1∏
i=2

T [i]σi
b⌊i/2⌋, b2i, b2i+1

2M −1∏
j=2M−1

T [j]σj

b⌊j/2⌋
|σ1 σ2 . . . σ2M −1⟩.

(1.3)

A perfect binary tree with depth M = 3, as illustrated in Figure 1.1(b), has 23 − 1 = 7 nodes
and takes the form:

|Ψ⟩ =
∑

σ1,...,σ7

∑
b2,b3,b4,b5,b6,b7

T [1]σ1
b2,b3 T [2]σ2

b2,b4,b5 T [3]σ3
b3,b6,b7

× T [4]σ4
b4 T [5]σ5

b5 T [6]σ6
b6 T [7]σ7

b7

∣∣∣σ1σ2 . . . σ7
〉
.

(1.4)

1.2.2 Tree Tensor Network Operators (TTNO)
If one thinks of TTN as parameterizing a large “vector” in a high-dimensional space, then TTNO
is the generalization to the case of a “matrix” acting in the same space. The construction of the
TTNO representation of the Hamiltonian and observables is an essential starting point of the
most TN-based quantum simulations such as Density Matrix Renormalization Group (DMRG)
[55], Time-Dependent Variational Principle (TDVP) [1], and Basis Update and Galerkin In-
tegrator (BUGI) [56]. For sufficiently small systems, we can construct the complete matrix
presentation of a Hamiltonian and, from there, obtain a TTNO by using singular value decom-
positions (SVD). The resulting TTNO will then have the minimal possible bond dimension due
to the truncation of zero-valued singular values. However, carrying out full SVDs becomes in-
feasible for larger systems, motivating the development of more scalable construction schemes.

In the context of Matrix Product Operator (MPO) several methods have been explored for con-
structing tensor network operator representations. A widely used approach is based on finite
state automata [57], where Hamiltonians with structured interactions can be systematically
converted into MPO representations. Other approaches involve bipartite graph theory [58],
compression methods [59] and canonical orthogonalization [60] also have been utilized.
Adapting such ideas to tree topologies has recently led to TTNO construction algorithms
founded on state diagrams, which yields a TTNO that often exhibits near-optimal bond dimen-
sions when benchmarked against the fully SVD-compressed version. These techniques have been
applied to nearest-neighbor, long-range, and open-system Hamiltonians—such as spin chains
coupled to bosonic bath sites—where a tree connectivity can substantially lower the overall
bond dimension of the Hamiltonian compared to linear MPO representations [61]. More re-
cent work [62] has advanced this approach by integrating bipartite graph theory with Symbolic
Gaussian elimination (SGE) preprocessing step, which preserves the symbolic nature of the
Hamiltonian while enabling the algorithm to handle cases with uniform coefficients—scenarios
where the original method was suboptimal. Demonstrated through experiments on random
Hamiltonians, lattice models, and a realistic cavity-molecule system, SGE-enhanced approach

5

consistently achieves optimal bond dimensions. In this thesis, we employ this method as a key
tool for constructing TTNO representations of quantum Hamiltonians.
Just as the TTNS expresses a quantum state as a contraction of low-rank tensors, a quantum
operator Ô can be represented as:

Ô =
∑

{b},{σ},{σ′}
W [1]σ

′
1,σ1
B1 W [2]σ

′
2,σ2
B2 · · · W [N]σ

′
N ,σN

BN

∣∣∣σ′
1 σ

′
2 · · · σ′

N

〉〈
σ1 σ2 · · · σN

∣∣∣, (1.5)

where each tensor W [i] is expanded in the basis |σi⟩ and carries two physical indices σ′
i (output)

and σi (input). For each operator tensor W [i], let Bi = {bj1 , bj2 , . . . , bjk} denote the set of
virtual bonds attached to node i, with corresponding bond dimensions χj1 , χj2 , . . . , χjk . Then
the tensor W [i] has the shape

(
χj1 , χj2 , . . . , χjk , diout, d

i
in

)
. The physical indices (diout, d

i
in)

contract according to the standard quantum mechanical rules for operators.

1.3 TTN Operations

1.3.1 Operator-State Contraction
For a single site i, when the operator tensor W [i] acts on the state tensor T [i], the input physical
index of W [i] (with dimension diin) contracts with the physical index of T [i].

(
W [i]T [i]

)σ′
i

B′′
i

=
∑
σi

W [i]σ
′
i,σi

B′
i

T [i]σi
Bi
, (1.6)

Assuming T [i]’s shape:
(
χj1 , χj3 , . . . , χjk , di

)
and W [i]’s shape:

(
χ′j1 , χ′j3 , . . . , χ′jk , diout, d

i
in

)
,

the shape of the result W [i] · T [i] is:
(
χ′j1 · χj1 , χ′j3 · χj3 , . . . , χ′jk · χjk , diout

)
.

Figure 1.2: Local Operator-State Contraction.

If the TTNO structure have the same tree topology as the TTNS, i.e., corresponds to the same
graph G, the TTNO can be applied to the TTNS by contracting all local tensors. So that the
new state is given by

|Ψnew⟩ = Ô |Ψ⟩ =
∑

{b′′},{σ′}

(
N∏
i=1

∑
σi

W [i]σ
′
i,σi

B′
i
T [i]σi

Bi

)σ′
i

B′′
i

|σ′
1 σ

′
2 · · · σ′

N⟩ . (1.7)

6

In the MPS framework, naively applying an MPO (with same bond dimensions ω for all bonds)
to an MPS (with same bond dimension χ for all bonds) without any intermediate compression,
all bonds increase from χ to χω, and then restoring them back to ≤ χ at each site by SVD costs
O(N(χωd)3). By contrast, the Density Matrix Compression algorithm [63] treats Ô|Ψ⟩ as a
large TN and builds partial-trace density matrices, using iterative methods (e.g., Lanczos) that
only require applying ρ to vectors without storing or processing a full chain of dimension (χω)
everywhere at once. Sweeping bond by bond in this fashion yields an optimal MPS approxi-
mation of Ô|Ψ⟩ with leads to costs more akin to DMRG sweeps. This DMRG-like approach
could be adapted to TTN, to increase efficiency and scalability of this operation. However, in
our study, the only situation that we need to perform this contraction is in constructing few
Krylov basis, where the cost of contraction is managed by an approximation strategy.

1.3.2 TTNO Summation
To construct the addition of two TTNOs with the same network topology, let us say TTNO3 =
TTNO1 + TTNO2, each local tensor of TTNO3 is formed by contracting the corresponding
physical indices of W1[i] and W2[i] with two rank-3 Kronecker delta tensors :

W3[i]
σ′

3i,σ3i

B3i = W1[i]
σ′

1i,σ1i

B1i W2[i]
σ′

2i,σ2i

B2i δ
(3)
σ′

1i,σ
′
2i,σ

′
3i
δ(3)
σ1i,σ2i,σ3i

. (1.8)

The first Kronecker delta, δ(3)
σ′

1i,σ
′
2i,σ

′
3i

, connects the output physical indices of W1[i], W2[i], while
the second Kronecker delta, δ(3)

σ1i,σ2i,σ3i
, connects the input physical indices of W1[i], W2[i].

Figure 1.3: Local TTNO Summation.

Each local tensor of TTNO3 is constructed by combining the corresponding local tensors of
TTNO1 and TTNO2 through four contractions (two for the bra indices and two for the ket
indices).
AssumingW1[i]’s shape:

(
χj1 , χj3 , . . . , χjk , diout, d

i
in

)
andW2[i]’s shape:

(
χ′j1 , χ′j3 , . . . , χ′jk , diout, d

i
in

)
,

the shape of the result W3[i] is
(
χ′j1 + χj1 , χ′j3 + χj3 , . . . , χ′jk + χjk , diout, d

i
in

)
.

1.3.3 Expectation Value
The evaluation of expectation value for a 2D lattice wave-function represented by PEPS requires
summing over an exponentially large configuration space, making the exact contraction a #P-
hard problem. The intermediate tensor dimensions grow exponentially with the bond dimension

7

Figure 1.4: Expectation value contraction scheme for simple TTN with 4 Sites, where site 1
and 2 are leaf nodes, sites 3 is an internal node, and site 4 is the root..

and system size, necessitating the use of approximate methods such as boundary-MPS or corner
transfer matrix techniques [64]. In contrast, loop-free topology enable TTNS to be contracted
sequentially, which prevents exponential growth in intermediate dimensions, allowing for exact
and efficient computation of expectation values in polynomial time.
Given a TTNS |Ψ⟩ and a TTNO Ô (both sharing the same topology), the expectation value is
computed as

⟨Ψ|Ô|Ψ⟩ =
∑

{b},{b′},{b′′}

N∏
i=1

∑
σi,σ′

i

T †[i]σ
′
i

Bi
W [i]σ

′
i,σi

B′
i

T [i]σi

B′′
i

 , (1.9)

where the summation runs over all virtual bond indices.

As illustrated in a simple example of a TTN with 4 sites in Figure 1.4, the contraction is per-
formed successively from the leaf nodes to the root. The contraction scheme can be summarized
as follows:

1. At a Leaf Node l:
E[l]bl,b

′
l
,b′′

l
=

∑
σl,σ

′
l

T †[l]σ
′
l

bl
W [l]σ

′
l,σl

b′
l

T [l]σl

b′′
l
, (1.10)

8

where node l connects to its parent with virtual bonds bl .

2. At an Internal Node i: Let the child nodes of i be denoted by c ∈ children(i) and
Bc→p ≡ {b ∈ Bc | b is the bond connecting node c to its parent}.

E[i]Bi,B′
i,B

′′
i

=
∑
Bc→p

B′
c→p

B′′
c→p

∑
σi,σ′

i

T †[i]σ
′
i

Bi
W [i]σ

′
i,σi

B′
i

T [i]σi

B′′
i

∏
c∈children(i)

E[c]Bc,B′
c,B

′′
c

 , (1.11)

3. At the Root Node r: The final contraction yields the scalar expectation value:

⟨Ψ|Ô|Ψ⟩ =
∑
Bc→p

B′
c→p

B′′
c→p

∑
σr,σ′

r

T †[r]σ
′
r

Br
W [r]σ

′
r,σr

B′
r

T [r]σr
B′′

r

∏
c∈children(r)

E[c]Bc,B′
c,B

′′
c

 (1.12)

Remark. Given two TTNS, |Ψ1⟩ and |Ψ2⟩, with the same tree structure, their inner product :

⟨Ψ2|Ψ1⟩ =
∑

{b},{b′}

N∏
i=1

∑
σi,σ′

i

(T [i]†)σ
′
i
Bi
T [i]σi

B′
i

 (1.13)

can be computed by following the same scheme without the operator tensors W [i].

1.4 Canonical Form
The representation of a quantum state as a Tensor Network State (TNS) is inherently non-
unique, i,e., each virtual bond b between two tensors T [i] and T [j] in the network can be
multiplied by an arbitrary invertible matrix G on and its inverse G−1, leaving the global con-
traction unchanged [65]. Formally,

T [i] −→ T [i] ·G T [j] −→ G−1 · T [j] (1.14)

where G is χd × χd (the dimension of bond d). Such transformations, known as gauge trans-
formations, reflect the many equivalent ways of factorizing the same global tensor Ψσ1...σN .
In practice, one fixes the gauge frequently through QR or Singular Value Decomposition (SVD)
by imposing orthogonality condition on local tensors. Such transformations facilitate the com-
putation of linear equations that arise in variational algorithms by eliminating many degrees
of freedom through distribution of singular values, thus stabilizing iterative algorithms [66].
Moreover, gauging TNS into a canonical form speeds up tensor contractions, minimizes bond
dimensions via systematic truncations, and provides direct access to Schmidt decompositions
across sub-tree bipartitions [67].
The canonical form representation of a TN state relies on the ability to split a tensor via a
Schmidt decomposition, which is not straightforward in PEPS due to the presence of loops.
Cutting a single bond in PEPS does not divide the network into two independent pieces, mak-
ing it non-trivial to define orthonormal basis states simultaneously for all bond indices [68]. On
the other hand, TTNS are loop-free, allowing the tensors to be transformed into a canonical
form, where the tensors satisfy orthogonality conditions.

9

1.4.1 1-Site Canonical Form
Consider a TTN state

|Ψ⟩ =
∑

{σ},{b}
Tr(

∏
i

T [i]σi
Bi

)|{σ}⟩ (1.15)

Let Bi denote the set of bond indices connecting node i to its neighbors. If we single out one
bond αi as the orthogonality direction and collect all other bonds (together with the physical
index σi) into Γi = {σi} ∪

(
Bi \ {αi}

)
, then the local tensor T [i] is regarded as a linear map

T [i] :
⊗
x∈Γi

Vx −→ Vαi
, (1.16)

where Vx is the vector space associated with each index x ∈ Γi and Vαi
is the vector space

corresponding to the orthogonality direction αi. We say that T [i] is orthogonalized toward αi
if it satisfies the following condition:∑

Γi

T [i]∗αi,Γi
T [i]Γi α′

i
= δαi, α′

i
, (1.17)

Equivalently, when T [i] is reshaped as a matrix with row indices corresponding to Γi and col-
umn index αi, we have T [i]† T [i] = IVαi

, ensuring that the columns of T [i] form an orthonormal
set in Vαi

.

Graphical Notation : The orthogonalized tensors are depicted by triangle where the line con-
necting from vertex shows the orthogonality direction. In this example, the T tensor is or-
thogonalized, as the contraction of the tensor with its conjugate transpose yields the identity
matrix.

Figure 1.5: Graphical Notation of Orthogonalized Tensor.

We now describe how to transform a local tensor T [i] into an orthogonalized form along a
chosen linking bond αi↔j connecting node i to a neighboring node i. In what follows, let Bi be
the set of all virtual bond indices at node i and define Γi = {σi} ∪

(
Bi \ {αi→j}

)
,

The procedure, as illustrated in Figure 1.6, consists of the following steps:

1. Reshape the tensor T [i] into a matrix M [i] with row indices corresponding to Γi and column
index corresponding to αi→j.

2. Perform a QR decomposition on M [i] and unfold Q[i] back into its higher-order tensor
form with new index r that runs over the intermediate dimension:

T [i] Γi, αi→j
= Q[i] Γi, r R[i] r, αi→j

(1.18)

10

Figure 1.6: Imposing Orthogonality Condition Steps

Then, by construction, Q[i] satisfies the orthogonality condition:∑
Γi

Q[i]∗r,Γi
Q[i]Γi, r′ = δr, r′ . (1.19)

Thus, update the tensor T [i] with Q[i].

3. Contract the matrix R[i] with the neighboring tensor T [j] along the linking bond:

T̃ [j] =
∑
bi↔j

R[i]r, bj→i
T [j]bj→i,Γj

, (1.20)

where Γj = {σj} ∪
(
Bj \ {αj→i}

)
.

Finally, update T [j] with T̃ [j].

Note that, choosing a particular bond as the orthogonality direction determines the specific
partitioning of the tensor’s indices and hence the direction in which orthogonality is enforced.

Definition 1.4.1. A TTN is in 1-site canonical form [69] with orthogonalization center at node
c if all other tensors T [i] satisfy the orthogonality constraint toward the node c.

11

Example. To clarify the concept, let us consider the norm of the state that is preserved after
transformation to canonical form and can be simply computed as the norm of the orthogonality
center tensor T [c].

⟨Ψ|Ψ⟩ = Tr(T [c]† · T [c]) (1.21)

Figure 1.7: TTN Inner Product in 1-Site Canonical Form.

1.4.2 QR Canonical Transformation
The canonical transformation exploits gauge freedom, by imposing Orthogonality constraint
through a so-called pulling-through approach [70] which proceeds with sequential QR decom-
positions through the network, i.e, moving from the leaves toward a chosen orthogonalization
center c. The following algorithm describes this procedure :

Algorithm 1: Transform TTN to 1-Site Canonical Form
Input: TTN with tensors T [i] for nodes i = 1, . . . , N , orthogonality center c
Output: 1-Site Canonical Form with orthogonality center c

1 distance← Compute distances from all nodes i to c such that distance[i] = distance from node i to c
2 Maximum distance in the tree = D ← maxi distance[i]
3 for d← D to 1 do
4 foreach node i with distance[i] = d do
5 Neighbor with smallest distance = j ← arg mink∈neighbors(i) distance[k]
6 Let Γi = {σi} ∪ (All virtual bond indices of T [i] \ {bi→j})
7 M [i]← T [i].reshape(

∏
x∈Γi

x, bi→j)

8 Q[i]Γi, r, R[i]r, bi→j
← QR(M[i]) and unfold Q to T’s original shape

9 Update T [i]← Q[i]Γi,r

10 Let Γj = {σj} ∪ (All virtual bond indices of T [j] \ {bj→i})
11 Update T [j]←

∑
bi↔j

R[i]r, bj→iT [j]bj→i,Γj // new bond index is now r

12 end
13 end
14 The TTN is now in 1-site canonical form with orthogonality center c.

Definition 1.4.2. The distance of two nodes in a tree is the number of edges in the unique
simple path between the nodes.

12

Example. Here we illustrate the above steps for a simple TTN.

Figure 1.8: 1-Site Canonical Transformation Steps

Starting from a TTN in 1-Site Canonical Tran, let us say at node i, which has several neigh-
boring nodes {j1, j2, . . . , jk}, if we impose orthogonality condition on the tensor T [i] along a
bond bi↔jl , then the TTN would be still in 1-site canonical form with new orthogonalization
at site jk.

1.4.3 SVD Canonical Transformation
The QR decomposition can be replaced with SVD, to facilitate singular values truncation,
which is essential for variational algorithms and efficient computations. Given a TTN with
neighboring tensors T [i] and T [j] connected by a bond αi↔j, we can impose orthogonality
condition on tensor T [i] very similar to QR-based approach. We first decompose the reshaped
tensor M [i] with row indices corresponding to Γi and column index corresponding to αi→j.

M [i] = U [i]Γi, rS[i]r, r′V †[i]r′, αi→j
(1.22)

where U [i] and V [i] are unitary, and S[i] is a diagonal matrix of singular values. Next, we set
T [i] to U [i] after reshaping back to the original tensor form with r as the new bond index.
Then Contract S[i] · V †[i] with the neighboring tensor T [j]:

T̃ [j]r,Γj
=

∑
αi↔j , r′

S[i]r, r′V †[i]r′, αi→j
T [j]αj→i,Γj

(1.23)

Therefore, by implementing these steps in algorithm 1, the TTN can be similarly transformed
to 1-site canonical form with orthogonality center at c.

13

1.4.4 TTN Virtual Bond Truncation
Bond dimension is not merely a technical detail, but it is fundamentally linked to the physical
properties of the system being studied. For instance, in PEPS, the bond dimension must be
sufficiently large to capture the area law governing entanglement entropy in quantum systems
with short-range interactions [71]. Conversely, in certain scenarios, such as systems that ap-
proach the critical point, the bond dimension must scale superpolynomially with system size
to maintain an accurate representation [72].
Variations in bond dimension can lead to transitions from area-law to logarithmic scaling of
entanglement entropy. This phenomenon is crucial for accurately capturing the physical char-
acteristics of these systems, emphasizing the importance of bond optimization in theoretical
models. The mean-field theory proposed by Lopez-Piqueres [73] indicates that entanglement
phase transitions can occur in random tree tensor networks, where the bond dimension acts as
a control parameter. As the bond dimension is varied, a clear transition is observed between
area-law and logarithmic scaling of entanglement entropy. Similarly, Yang et al.’s work [74] on
random stabilizer tensor networks verifies this finding, demonstrating varying the bond dimen-
sions we can observe a transition between an area and volume phase with a logarithmic critical
point.
In addition to varying bond dimension, Liu et al.[75] discuss the concept of critical bond dimen-
sion as a pivotal factor in understanding the entanglement transitions within quantum circuits.
Specifically, when the bond dimension q is greater than critical bond dimension qc, the bound-
ary state exhibits volume-law entanglement, indicating a high degree of entanglement across
the system. Conversely, when q falls below qc, the system transitions to an area-law entangled
state, characterized by reduced entanglement. This transition is closely related to the suppres-
sion of entanglement due to the measurement of bulk qubits, which alters the entanglement
structure of the remaining boundary qubits. The authors emphasize that the critical bond
dimension serves as a control parameter that dictates the entanglement phase of the system.
The arrangement of virtual bonds, directly influences the efficiency of quantum circuit simula-
tions. Seitz et al.[76] illustrate how rooted tree tensor networks can be employed to simulate
quantum circuits effectively, where the virtual bonds play a crucial role in threading the en-
tanglement through the network. Two-qubit gates are decomposed via SVD, and the resulting
virtual bond is threaded through the tree, increasing the edge dimension between the relevant
nodes. The method ensures that bond dimensions remain within a predefined limit, which
constrains the types of circuits that can be simulated. This work underscores the pivotal role of
bond dimension optimization in enhancing the efficiency and capability of TTN-based quantum
circuit simulations.

If one applies truncation to the singular values in step (1.22), then all virtual bonds of TTN
could be efficiently truncated in the process of transforming a TTN to canonical form.
We use three svd_truncation_parameters to control the truncation process: (χmax, ϵrel, ϵtotal)
where χmax is the maximum bond dimension, ϵrel is the relative truncation tolerance, and ϵtotal
is the absolute (total) truncation tolerance.
Suppose S = diag(s1, s2, . . . , sR) with s1 ≥ s2 ≥ · · · ≥ sR ≥ 0. Then, the truncation
procedure is as follows:

1. Compute the cutoff threshold : τ = max
(
ϵrel s1, ϵtotal

)
2. Keep only the singular values satisfying sk > τ . Let the number of such values be D.

Then:

14

• If D > χmax, keep only the top χmax singular values.
• If D = 0, then all singular values would have been truncated. As a fallback, keep

only s1, the largest singular value.
• Otherwise, keep D singular values.

3. Optionally renormalize the kept singular values so that their sum matches the sum of the
original sum. Specifically, the truncated singular values are rescaled via:

sk ←− sk ·

R∑
j=1

sj∑
j∈kept

sj
, ∀sk ∈ skept. (1.24)

Truncation Error : Consider the SVD of tensor T . Let χeff < R be the number of kept singular
values. Then the truncated tensor Ttrunc discards

R∑
α=χeff+1

s2
α of the squared norm, so

∥T − Ttrunc∥2
F =

R∑
α=χeff+1

s2
α.

with the upper bound

∥T − Ttrunc∥2
F ≤ min

(
ϵ2

total, ϵ
2
rel s

2
1

)
·
(
R− (χeff + 1)

)
,

which provides the worst-case estimate of the truncation error.

1.4.5 Bond Canonical Form
Definition 1.4.3. The SVD approach naturally leads to the concept of the bond canonical
form, where the singular values S are retained as an intermediate tensor on a chosen bond, and
all other tensors in the TTN are orthogonalized toward that bond.

This form is particularly advantageous for studying entanglement properties, as the singular
values directly correspond to the Schmidt coefficients across the bond.
Consider a TTN with N nodes and a specific bond h (connecting nodes i and j) selected as
the canonical bond. To achieve bond canonical, first orthogonalize all tensors, except those
adjacent to h (let us say T [i] and T [j]), toward the bond h, using the pulling-through approach
(via QR or SVD).

|Ψ⟩ =
∑

{σ},{b}
T̃ [1]σ1

B1 · · ·T [i]σi
Bi
T [j]σBj

· · · T̃ [N]σN
BN
|σ1σ2 · · ·σN⟩, (1.25)

Next, let T [i]σi
Bi

and T [j]σj

Bj
be the tensors connected by h ∈ Bi∩Bj, with Bi = {h, bi1 , . . . , bimi

}

and Bj = {h, bj1 , . . . , bjmj
}. Define Γi = {σi} ∪

(
Bi \ {bk}

)
and Γj = {σj} ∪

(
Bj \ {bk}

)
, and

reshape the contraction T [i] · T [j] over h into a matrix M with row index corresponding to Γi
and column index corresponding to Γj.

MΓi,Γj
=
∑
h

T [i]Γi,hT [j]h,Γj
. (1.26)

15

Perform SVD on M , and unfold the resulting matrices U and V † back into original form.

MΓi,Γj
= U [i]Γi, rSr,r′V †[j]r′,Γj

, (1.27)

where U [i] and V †[j] are unitary, and S is diagonal with non-negative singular values.
The TTN is then restructured as:

1. Impose orthogonality towards site j : T̃ [i]Γi, r = U [i]Γi, r,∑
Γi

T̃ [i]∗r,Γi
T̃ [i]Γi,r′ = δr,r′ , (1.28)

2. Create diagonal matrix Sr,r′ on the linking bond,

3. Impose orthogonality towards site i : T̃ [j]r′,Γj
= V †[j]r′,Γj

,∑
Γj

T̃ [j]r′,Γj
T̃ [j]∗Γj ,r

= δr′,r. (1.29)

The full state representation in Bond Canonical form is:

|Ψ⟩ =
∑

{σ},{b},r,r′

T̃ [1]σ1
B1 · · · T̃ [i]σi

Γi\σi,r
Sr,r′T̃ [j]σj

r′,Γj\σj
· · · T̃ [N]σN

BN
|σ1σ2 · · · σN⟩, (1.30)

where all tensors except S are orthogonal toward h, and the contraction over r and r′ links the
sub-trees through S.

Example. In this form, the norm is simply computed as

⟨Ψ|Ψ⟩ = Tr(S†S) =
∑
r

S2
r,r, (1.31)

Figure 1.9: TTN Inner Product in Bond Canonical Form.

It is worth noting that during this work, we will not need to explicitly transform the TTN to
bond canonical form, but the concept will manifest in the Time-Dependent Variational Principle
(TDVP) algorithm.

16

2. Time Dependent Variational Prin-
ciple (TDVP)

This chapter explores the adaptation of TDVP to TTN, presenting a powerful approach to
simulate the dynamics of quantum many-body systems within a variational framework. At its
core, TDVP operates by evolving quantum states on a TTN manifold, utilizing the tangent
space to project the Schrödinger equation into a low-dimensional subspace defined by 1-site
and 2-site projectors, ensuring globally optimized truncation and preservation of unitarity. We
introduce the foundational formalism, detailing how the tangent space captures infinitesimal
state deformations. The chapter provides practical tools for implementation, including the
TDVP algorithm with its sweeping mechanism, environment caching to enhance computational
efficiency, and an orthogonalization path strategy to manage gauge invariance across the tree
structure. Building on this foundation, we propose using spanning trees for lattice systems,
and try to identify optimal TTN configurations that balance computational cost and physical
accuracy.

2.1 Introduction
For the simulation of quantum many-body systems, the Time-Evolving Block Decimation
(TEBD) [77], Time-Dependent Density Matrix Renormalization Group (tDMRG) [78] and
Krylov-based approaches [79] have been extensively utilized.
TEBD relies on the Trotter-Suzuki decomposition of the global evolution operator e−iHt into
a product of local gates, which are then applied to the TNS. The bond dimensions are then
truncated based on a local Schmidt decomposition to minimize the Frobenius norm error lo-
cally: ||Ψupdated⟩−|Ψtruncated⟩∥F . Implementing trotterization for Hamiltonians with long-range
interactions, requires numerous time-consuming swap gate operations and high-order Trotter
decomposition. One approach to treat long-range couplings is to construct MPO approxima-
tion of the time-evolution operator [40]. TEBD also Struggles with long-time evolution, due to
entanglement growth, and energy drift is expected due to Trotter errors accumulation.
A more advanced approach known as tDMRG incorporates the TEBD simulation algorithm
in the DMRG framework; It was originally focused on real-time dynamics in strongly corre-
lated systems and later extended to finite-temperature dynamics via purification techniques.
This method opens the possibility for different time evolution strategies (e.g. Lanczos) and
more sophisticated variational optimization methods (e.g. functional energy minimization
minψ

∣∣∣ψ − e−iHt|ψ0⟩
∣∣∣2) instead of predetermined truncation parameters to ensures that the trun-

cation error is minimized globally within the variational space.
And the global Krylov method simply translates the Lanczos formalism [80] for unitary time
evolution to TNS, i.e. one can approximate the action of the time evolution operator on the

17

initial state
e−iHδ|ψ0(t)⟩ = |ψ0(t+ δ)⟩ ≈

k−1∑
l=0

(−i∆t)l
l! Ĥ l|ψ(t)⟩ (2.1)

in a truncated manner. Specifically, The full Hamiltonian could be mapped onto Krylov space
resulting in a tridiagonal effective Hamiltonian, which can be easily diagonalized and it can
be shown that the extremal eigenvalues are good approximate to the extremal eigenvalues of
the original system [81]. A typical problem of Krylov subspace methods [82] is the need to
represent potentially highly entangled Krylov vectors (typically much more entangled than
the actual time-evolved state) as TNS. If many Krylov vectors are desired, truncation errors
affecting the orthogonality of the basis vectors do not simply add to the overall error, but may
quickly degrade the overall quality of the Krylov space, leading to a poor result. Also, If one
uses a simple Gram-Schmidt procedure to orthogonalize vectors by successive additions of TNS,
new truncation errors are introduced during this procedure, which will quite often entail the
same problem. When orthogonality is lost, Krylov vectors begin to overlap significantly, which
increases the entanglement encoded in each vector. The accumulation of entanglement affects
not only individual Krylov vectors but also the process of constructing the time-evolved state.
Since the time evolution involves a linear combination of the Krylov vectors, the entanglement
from each non-orthogonal vector contributes to the overall entanglement in the resulting state.
This makes it increasingly difficult to represent the time-evolved state efficiently within the
MPS framework.
A detailed comparison of various time evolution algorithms in Ref.[82] concluded that, despite
each method having its own strengths and weaknesses, TDVP stands out as one of the most
reliable approaches for time evolution.

2.2 Tangent Space Approach
The tangent space approach was first formalized in 2011 by Haegeman and collaborators [1],
who introduced the mathematical framework for time evolution within the tangent space. A
major breakthrough happened in 2015 when Lubich et al. proposed the explicit construction
of tangent space projectors [83]. Then in 2016, Haegeman, Lubich et al.[84] showed how one
could solve the projected Schrödinger equation, and since then, the tangent space approach has
been widely used in numerous applications. The first motivation for the development of TDVP
for TTN was in the study of Dynamical Mean-Field Theory (DMFT), where the Fork Tensor
Product States (FTPS) was used to represent multi-orbital Anderson Impurity Model (AIM),
as earlier TEBD method struggles with systems that exhibit off-diagonal hybridizations [85].
Let the state Ψ be represented on a tree topology T = (V,E) and let the set of bond dimen-
sions D = {De | e ∈ E} define a manifold M[T,D] of TTNS. Consider the time-dependent
Schrödinger equation

i
∂

∂t
ΨM[T,D](t) = ĤΨM[T,D](t). (2.2)

Numerical solutions typically propagate ΨM[T,D](t) in small time steps ∆t:

ΨM[T,D](t+ ∆t) = ΨM[T,D](t) + ∆t ·
(
−iĤΨM[T,D](t)

)
+O(∆t2). (2.3)

This iterative process requires repeated evaluations of ĤΨM[T,D](t), which can increase the
computational cost by producing states that deviate from the initial TTN subspace with fixed
a bond dimensions. Tangent space methods address this by recognizing that for small ∆t, the
change ∆Ψ = ΨM[T,D](t+ ∆t)−ΨM[T,D](t) lies in a low-dimensional tangent space associated

18

with the manifold M[T,D]. While the entire state changes globally, the tangent space is de-
fined as the linearized space of all infinitesimal deformations that arise from varying one or two
tensors at a time, capturing the localized contributions that collectively approximate the full
change.
TDVP mitigates these issues by evolving the quantum state within the manifold of tensor net-
work states. In the 1-site TDVP, the bond dimensions remain fixed during evolution, making
it computationally efficient but less capable of accommodating rapid entanglement growth. In
the 2-site TDVP, the bond dimensions are dynamically expanded in a controlled, optimal way
to accommodate entanglement growth. More specifically, the environments surrounding the
updated tensors explicitly influence the truncation process. If the entanglement grows and
the environment dictates that the current bond dimension is insufficient, TDVP dynamically
increases the bond dimension by retaining more singular values. This ensures that the updated
tensors remain consistent with the global environment and the truncation errors is minimized.

In TDVP, the evolution is performed variationally by projecting onto the tangent space of the
TNS manifold before performing the SVD truncation. This finds the best possible approxima-
tion of the evolved state of TNS with fixed bond dimension that respects the structure of the
state manifold, and ensures the truncation error is minimized globally within the variational
space. As result of evolution being confined to the variational subspace, unitarity is preserved
better over long times. However, in TEBD and tDMRG truncation is performed after each
gate application, which does not guarantee that the new state remains the best possible varia-
tional state within the MPS manifold of fixed bond dimension, and as a result leads to loss of
unitarity.
Unlike TEBD, which relies on a Trotter decomposition of the Hamiltonian, TDVP directly
evolves the state using the full Hamiltonian. This makes TDVP particularly efficient for sys-
tems with long-range interactions, where decomposing the Hamiltonian into local gates becomes
impractical.

2.2.1 Projection onto the Tangent Space
A critical step in the tangent space method is the construction of a global projector P̂ onto the
1-site/2-site tangent spaces V1s/2s

|ΨM[T,D]⟩:

P̂1s/2s : H → V1s/2s
|ΨM[T,D]⟩ (2.4)

The key insight of this approach, as depicted in Figure 2.1, is that the projection onto the tan-
gent space should be applied immediately after the Hamiltonian Ĥ acts on the state |ΨM[T,D]⟩
rather than performing the full time evolution first and then projecting.

|δΨM[T,D]⟩ = P̂1s/2sĤ|ΨM[T,D]⟩ ⊆ V1s/2s
|ΨM[T,D]⟩. (2.5)

This ensures that the time evolution runs entirely within the tangent space of the manifold
M[T,D] at every step. The time-dependent Schrödinger equation is then solved within the
tangent space.

i
∂

∂t
|ΨM[T,D](t)⟩ = P̂Ĥ|ΨM[T,D](t)⟩. (2.6)

19

Figure 2.1: Projection onto the Tangent Space

The 1-site tangent space of state ΨM[T,D] is the space of all infinitesimal deformations of the
state arising from varying a single tensor T [i] at a time, while keeping all other tensors fixed:

|δΨ[i]
M[T,D]⟩ = ∂|ΨM[T,D]⟩

∂T [i] · δT [i] =
∑
{σ}

(
T [1]σ1 · · · δT [i]σi · · ·T [N]σN

)
|σ1σ2 · · · σN⟩. (2.7)

The full 1-site tangent space is then the span of these localized tangent vectors:

V1s
|ΨM[T,D]⟩ = span

{
|δΨ[i]

M[T,D]⟩ : i = 1, 2, . . . , N
}
. (2.8)

The formal definition of the 1-site tangent space, using local projectors, is:

V1s = span
{
Im(P̂1s

i) : i = 1, 2, . . . , N
}
. (2.9)

Here, Im(P̂1s
i) denotes the image of the projector P̂1s

i , defined as the subspace of the Hilbert
space onto which P̂1s

i maps any state.

Im(P̂1s
i) =

{
|ϕ⟩ ∈ V : |ϕ⟩ = P̂1s

i |ψ⟩ for some |ψ⟩ ∈ V
}
. (2.10)

where V is the full Hilbert space of the system.
The projectors P̂1s

i are constructed such that the tangent space captures all deformations at site
i by projecting onto the subspace spanned by the derivative ∂|Ψ⟩

∂A[i] , and preserve gauge invariance,
meaning that the tangent space remains well-defined under canonical transformations.

20

(a) Local Bond Projector (b) 1-Site Local Projector (c) 2-Site Local Projector

Figure 2.2: Local Projectors.

The 2-site tangent space extends this concept by simultaneously allowing variations of two
neighboring tensors T [i] and T [i+ 1], while keeping the rest fixed:

|δΨM[T,D]
[i,i+1] ⟩ =

∑
{σ}

(
T [1]σ1 · · · (δT [i]σiT [i+ 1]σi+1 + T [i]σiδT [i+ 1]σi+1) · · ·T [N]σN

)
|σ1σ2 · · ·σN⟩,

(2.11)
The full 2-site tangent space is:

V2s
|ΨM[T,D]⟩ = span

{
|δΨM[T,D]

[i,i+1] ⟩ : i = 1, 2, . . . , N − 1
}
. (2.12)

The formal definition of the 2-site tangent space, using local projectors, is:

V2s = span
{
Im(P̂2s

i) : i = 1, 2, . . . , N − 1
}
, (2.13)

These projectors map the state |Ψ⟩ to the space of all possible 2-site variations at sites i and
i+ 1.

2.2.2 Local and Global Projectors
The local ns-site local projector P̂ns

i targets variations across n contiguous sites starting at site
i. These projectors form a nested hierarchy:

P̂b
ℓ ⊂ P̂1s

ℓ ⊂ P̂2s
ℓ , (2.14)

This reflects the increasing ability of these projectors to capture larger-scale variations in the
TNS. Smaller subspaces are fully contained in larger ones which enables refinement of approxi-
mations by progressively including more degrees of freedom. Extending to higher site projectors
improves the resolution of energy variance and local excitations at the cost of higher computa-
tional resources.

The bond projector P̂b
ℓ = P̂0s

ℓ , illustrated in Figure 2.2a, is defined on bond ℓ (the virtual space
between sites ℓ and ℓ+ 1).

P̂b
ℓ = P̂ℓQ̂ℓ+1. (2.15)

Where P̂ℓ is the projector onto the left space Vℓ, and Q̂ℓ+1 is the projector onto the right space
Wℓ+1. Thus, P̂b

ℓ maps the full HilHilbert bert space V into:

Im(P̂b
ℓ) = Vℓ ⊗Wℓ+1. (2.16)

The 1-site projector P̂1s
ℓ , illustrated in Figure 2.2b, projects the full Hilbert space V into the

21

1-site space at site ℓ. It is defined as:

P̂1s
ℓ = P̂ℓ−1 ⊗ Id ⊗ Q̂ℓ+1. (2.17)

Here, P̂ℓ−1 is the projector onto the left space at site ℓ − 1, Id is the identity operator acting
on the local Hilbert space vℓ, and Q̂ℓ+1 is the projector onto the right space at site ℓ+ 1. Thus,
P̂1s
ℓ maps the full Hilbert space V into:

Im(P̂1s
ℓ) = Vℓ−1 ⊗ vℓ ⊗Wℓ+1. (2.18)

The 2-site projector P̂2s
ℓ , illustrated in Figure 2.2c, projects the full Hilbert space V into the

2-site space spanning sites ℓ and ℓ+ 1. It is defined as:

P̂2s
ℓ = P̂ℓ−1 ⊗ Id ⊗ Id ⊗ Q̂ℓ+2. (2.19)

Here, P̂ℓ−1 is the projector onto the left space at site ℓ− 1, Id⊗ Id acts as the identity operator
on the 2-site local Hilbert space vℓ⊗ vℓ+1, and Q̂ℓ+2 is the projector onto the right space at site
ℓ+ 2. Thus, P̂2s

ℓ maps the full Hilbert space V into:

Im(P̂2s
ℓ) = Vℓ−1 ⊗ vℓ ⊗ vℓ+1 ⊗Wℓ+2. (2.20)

The projectors P̂b
ℓ , P̂1s

ℓ , P̂2s
ℓ satisfy the following properties:

• Idempotence:
(P̂ns

ℓ)2 = P̂ns
ℓ (2.21)

• Mutual Commutativity:

[P̂b
ℓ , P̂1s

ℓ] = 0, [P̂b
ℓ , P̂2s

ℓ] = 0, [P̂1s
ℓ , P̂2s

ℓ] = 0. (2.22)

Projectors targeting different subspaces do not interfere with each other’s action, enabling
simultaneous optimization or decomposition across different sites or bonds without incon-
sistencies.

The representation of projection of a state with the bond, 1-site, and 2-site local projectors is
shown in the following Table 2.1. The projected states are brought into a locally canonical form
via isometries enforcing local orthonormality, and preserving physical properties while spanning
distinct variational subspaces.
The table 2.2 represent the Local projection of Hamiltonian Ĥ into the bond, 1-site, and 2-site
subspaces, with their finite matrix representation achieved by projecting the Hamiltonian onto
the basis states of the corresponding subspaces.

22

Bond canonical form of |Ψ⟩

|Ψ⟩ = ∑
α,α′
|Ψℓ,α⟩ψb

ℓ,αα′|Φℓ+1,α′⟩,

ψb
ℓ = Λℓ

1-site canonical form of |Ψ⟩

|Ψ⟩ = ∑
α,α′,σℓ

|Ψℓ−1,α⟩ψ1s
ℓ,αα′|σℓ⟩|Φℓ+1,α′⟩,

ψ1s
ℓ = Cℓ

2-site canonical form of |Ψ⟩

|Ψ⟩ = ∑
α,α′,σℓ,σℓ+1

|Ψℓ−1,α⟩ψ2s
ℓ,αα′|σℓ⟩|σℓ+1⟩|Φℓ+2,α′⟩,

ψ2s
ℓ = AℓΛℓBℓ+1

Table 2.1: State Local Projections.

Effective link Hamiltonian

⟨Φℓ+1|⟨Ψℓ|Ĥ|Ψℓ⟩|Φℓ+1⟩

= Hb
ℓ = LℓRℓ+1

Effective 1-site Hamiltonian

⟨Φℓ+1|⟨σℓ|⟨Ψℓ−1|Ĥ|Ψℓ−1⟩|σℓ⟩|Φℓ+1⟩

= H1s
ℓ = Lℓ−1W [ℓ]Rℓ+1

Effective 2-site Hamiltonian

⟨Φℓ+2|⟨σℓ+1|⟨σℓ|⟨Ψℓ−1|Ĥ|Ψℓ−1⟩|σℓ⟩σℓ+1⟩|Φℓ+2⟩

= H2s
ℓ = Lℓ−1W [ℓ]W [ℓ+ 1]Rℓ+2

Table 2.2: Hamiltonian Local Projections.

23

Now, Let us consider the 1-site Hamiltonian before and after the environemts being contracted:

with matrix elements:

[H1s
ℓ]σℓσ

′
ℓ

αα′,ββ′ = [Lℓ−1]αα′ [Wℓ]σℓ,σ
′
ℓ [Rℓ+1]ββ′ (2.23)

The environments are recursively constructed toward the center, and each single step they are
saved in the cached to avoid recalculation.

The global ns-site projector P̂ns serves to capture variations in the TNS over ns contiguous sites
across the entire lattice. The naive approach would be defining the global ns-site projector as∑
i
P̂nsi . However, Contributions from local projectors P̂nsi overlap with those of neighboring

sites, leading to double-counting. To resolve this redundancy, the contributions from different
local projectors must be orthogonalized. Therefore, addressing this issue, involves systemati-
cally combining local projectors to subtract the overlaps. We skip the details of this mathe-
matical derivation, which could be found in the work of Gleis, Li, and von Delft, particularly
Sections II and III [86].
The corrected form of the global ns-site projector, which removes overlaps between local pro-
jectors, is

P̂ns =
L−n+1∑
ℓ=1
P̂ns
ℓ −

L−n∑
ℓ=1
P̂(n-1)s
ℓ+1 , (2.24)

And special cases of this construction are:

24

• 1-Site Global Projector:

P1s =
L∑
ℓ=1
P1s
ℓ −

L−1∑
ℓ=1
Pb
ℓ , (2.25)

• 2-Site Global Projector:

P2s =
L−1∑
ℓ=1
P2s
ℓ −

L−2∑
ℓ=1
P1s
ℓ+1, (2.26)

2.3 TDVP algorithm
The Schrödinger equation in 1(2)-site TDVP is then solved within the tangent space by substi-
tuting this 1(2)-site global projector (2.25) and (2.26) into (2.6), leading to serious of coupled
local Schrödinger equations that can be solved in a sweeping fashion, i.e., updating one bond
or tensor at a time.

1-Site TDVP (1TDVP)
In order to evolve the state one time-step τ , we should successively perform these forward and
backward local updates. At site ℓ the 1TDVP local equations are:

iĊl(t) = H1s
l Cl(t)

Cl(t+ τ) = e−iH1s
l τCl(t) Forward time-step

(2.27)

iΛ̇l(t) = −Hb
l Λl(t)

Λl(t− τ) = eiH
b
l τΛl(t) Backward time-step

(2.28)

Bellow we demonstrate the steps in one local update, which should be done successively for all
sites during sweeps. Starting with state in 1-site canonical form, updating the site ℓ involves
the following steps:
Consider two neighboring sites Cℓ(t) and Bℓ+1(t)

1. Evolve Cℓ(t) forward in time:

Cℓ(t+ τ) = e−iHℓτCℓ(t)Bℓ+1(t) (2.29)

2. Decompose Cℓ(t+ τ):

Cℓ(t+ τ) = Aℓ(t+ τ)Λℓ(t+ τ)Bℓ+1(t) (2.30)

25

3. Evolve Λℓ(t+ τ) backward in time:

Λℓ(t) = eiH
b
ℓ τΛℓ(t+ τ) (2.31)

4. Contract Λℓ(t) with Bℓ+1(t) to shift the orthogonality center to site ℓ+ 1:

Cℓ+1(t) = Λℓ(t)Bℓ+1(t) (2.32)

5. Update the left environment Eℓ with Aℓ(t+ τ).

2-Site TDVP (2TDVP)
At site ℓ the 2TDVP equations are:

iψ̇2s
l (t) = H1s

l ψ
2s
l (t)

ψ2s
l (t+ τ) = e−iH2s

l τψ2s
l (t) forward time-step

(2.33)

iψ̇1s
l+1(t) = −H1s

l+1C
1s
l+1(t)

ψ1s
l+1(t− τ) = eiH

1s
l+1τC1s

l+1(t) Backward time-step
(2.34)

2.4 From MPS to TTN
The detailed adaptation of TDVP to general loop-free and finite-size tensor networks with
arbitrary tree topologies is presented in the work of Bauernfeind et al. (2020) [85]. They
demonstrated how tree-like architecture is utilized to efficiently project the Schrödinger equa-
tion’s evolution onto the TTN manifold. In the following section, we delve into the details of
TDVP algorithm on TTN, and investigate strategies to minimize the overal computational cost.
In the following, we assume a direct mapping of the physical degrees of freedom of individual
sites to the nodes of the TTNS. In contrasts with hierarchical representations that introduce
auxiliary tensors for coarse-grained representations, this method encodes entanglement solely
through direct connections between physical site. Note that all sites have physical index which
would not be depicted in the following figures for simplicity.
In the MPS framework, by maintaining and systematically updating left and right environments

26

at each sweeping step, the overall computational cost of variational algorithms like DMRG and
TDVP can be reduced, by a factor of total number of sites, if the algorithm reuses previously
computed contractions. For instance, when moving, from site i to site i+ 1, to the right, only
a single environment Li → Li+1 is needed to be computed and stored, while all left and right
environemts toward i and i + 1 are already available from the previous sweeping steps. This
rolling update scheme eliminates redundant calculations by storing intermediate results, which
act as partial contractions of the network to the surrounding sites of the target optimization
site. The efficiency gain is particularly pronounced where multiple sweeps are required, as the
environment tensors effectively serve as a computational cache that preserves the results of
expensive tensor contractions across iterations.
In the TTN framework, however, the environment caching becomes more complicated, due to
the branching structure of TTNS. Updating a target node j with neighbors {n1, ..., nk}, requires
all environments {E(n1,j), · · · , E(nk,j)} toward site j. More precisely, obtaining 1-site effective
Hamiltonian at site j requires contractions of these environments:

H
[j]
eff =

∑
n∈neighbors(j)

E(n,j) ·W [j] (2.35)

Similarly, the 2-site effective Hamiltonian between sites j and j′, is given by

H
[j,j′]
eff =

∑
n∈neighbors(j)

n̸=j′

n′∈neighbors(j′)
n′ ̸=j

E(n,j) ·W [j] ·W [j′] · E(n′,j′) (2.36)

In addition, the Forward and Backward sweeping path in MPS does not directly translate to
TTN, as we face multiple paths to move on at each branching node, and the gauge choice
requirement at each local update, adds to this complexity. If TDVP redundantly revisits nodes
or subtrees during traversal, it will need to perform QR decompositions multiple times on the
same nodes which increase the computational cost. The number of orthogonalisations could be
minimized by carefully structuring the order in which nodes are updated, For this purpose, an
update path P = [p1, p2, . . . , pN], is constructed to guide the traversal of the tree.
We will use this tree structure as a running example to demonstrate how we manage this
challenge in the TDVP algorithm.

This tree consists of:

• Root node: site0.

• Leaf nodes: site2, site4, site5, site7.

27

• Internal nodes: site1, site3, site6.

2.4.1 General Rules for update path Construction
1. Main Paths:

The key idea is to prioritize processing along a main path before handling branches.

• Construct the main path M1
up from furthest leaf p1 to the root r:

pfar = arg max
ℓ∈L

d(r, ℓ),

M1
up = [pfar, p2, p3, . . . , pr].

where d(r, ℓ) denotes the shortest path length from the root r to the leaf ℓ and L
denotes all leaf nodes in the tree T . For an MPS this would be the only path.

• If the root had n ≥ 3 children, construct the corresponding n− 1 other paths M i>1
up ,

like M1
up from other furthest leaf to the root.

• Construct second main path Mdown from the root r to the furthest leaf p′
far:

p′
far = arg max

ℓ′∈L′
d(r, ℓ′),

Mdown = [pr, p′
2, p

′
3, . . . , p

′
far].

where L′ denotes all leaf nodes that are in the constructed M i
up paths.

Example: The leaf nodes distances from root site0 are:

Leaf Node Distance
site2 2
site4 3
site5 3
site7 2

The starting node is site4, as it is the furthest from the root. Starting from site4, the
path to the root site0 is:

M1
up = [site4, site3, site1, site0].

The second main path is constructed from the root to the furthest leaf site7:

Mdown = [site0, site6, site7].

M i>2
up = ∅

2. Recursive Branch Traversal:
By treating the main path as the priority and handling side branches only after the main
path is resolved, the algorithm effectively separates the tree traversal into manageable
chunks. Subtrees (branches) are processed recursively, starting from the leaves of the
subtree and working upward, following this logic:

• Start and add nodes along the path Mup, until reaching a branching node.
• Dive into each branch:

28

(a) Start at the child nodes of the branching node.
(b) Process all descendants of each child recursively, moving deeper until reaching

the leaf nodes.
(c) After processing all subtrees a child, completing the branch in a bottom-to-top

order.
(d) continue to the next node in the main path.

• The M i
up paths for i > 2 should be process likewise before going down with Mdown

path.

Example:

• Add site4.
• At site3: go up from site5.
• At site1: go up from site2.
• At site0: go down to site6 and then site7.

3. Path Finalization:

• Combine all traversed subbranches and the main path M :

Example:

P = [site4, site5, site3, site2, site1, site0, site6, site7].

2.4.2 Orthogonalization Path in TDVP
We learned how the TDVP on TTN can systematically runs over a main path and subsequently
process the branches, however, there is another challenge.
It is important to observe that at each local site update in TDVP algorithm 2.3:

• In step 4 : The orthogonalization center is automatically moved to the next site.

• In step 5 : The evolved environment E(target site, next site) tensors are computed and
stored in the environment cache dictionary.

Hoewever, when the update path traverse to the bottom sites, the effective hamiltoninan con-
tsruction at the new target site requires:

1. The tensor at the target site to be the orthogonalization center.

2. All environments towards the target site to be computed and stored in the cache dictio-
nary.

The above conditions are managed by associating an orthogonalization path to each site in the
update path.

Orthogonalization Path = [Oorth
1 , Oorth

2 , . . .]

The orthogonalization path has two purposes:

1. Determines the sweep direction.

2. Ensures that the orthogonalization center is at the target site.

29

The orthogonalization path is constructed as follows:

1. Initialization: Start with the update path:

P = [p1, p2, . . . , pN],

where p1 is the first site to be updated, and pN is the last.

2. Compute Intermediate Paths: For each consecutive pair of sites (pi, pi+1) in P :

• Find the shortest path between them: path(pi, pi+1).
• Exclude the starting site pi to avoid redundancy: porth

i = path(pi, pi+1)[1 :].

3. Combine All Intermediate Paths:
Collect the intermediate paths porth

i for i ∈ {1, · · · , N − 1}.

Example:
Given update path P = [site4, site5, site3, site2, site1, site0, site6, site7],

From → To Full Path orthogonalization path
site4 → site5 [site4, site3, site5] [site3, site5]
site5 → site3 [site5, site3] [site3]
site3 → site2 [site3, site1, site2] [site1, site2]
site2 → site1 [site2, site1] [site1]
site1 → site0 [site1, site0] [site0]
site0 → site6 [site0, site6] [site6]
site6 → site7 [site6, site7] [site7]

The complete orthogonalization path for the example tree is:

Orthogonalization Path =[[site3, site5], [site3],
[site1, site2], [site1],
[site0], [site6], [site7]]

To better understand the TDVP process, we will now illustrate a complete sequence of opera-
tions in a single time-step of the first-order 1TDVP algorithm.
For each site pi in the update path P :

• The next site would be Orthogonalization Path[i][0]. In step 5 of 2.3, the Λi is then con-
tracted with next site. Subsequently, an environment E(target site, next site) is computed
and stored in the cache dictionary.

• The orthogonalization center is moved along the Orthogonalization Path[i− 1][0] and the
environment tensor is computed accordingly right before local update. This ensures the
the existence of environemt needed for the effective Hamiltonian construction in the next
local update.

30

Figure 2.3: Illustrative Example of a Single Time-Step Evolution with First-Order 1-site TDVP.
The symbols and arrows in the figure have the following meanings:

• −→ : Direction of Initial Environments (calculated before and at the beginning of each
time-step)

• −→ : Direction of new Environments (calculated after each local update)

• • : The orthogonality center before being updated

• ▷ : Isometric tensor before being updated

• : Isometric tensor after being updated

• : Last tensor in the update-path after being updated

Remark. The second-order TDVP reduces error by employing a symmetric integration scheme
that performs forward with δt/2 and backward sweeps with δt/2 in each time-step. Conse-
quently, the error scaling improves from O(δt2) in first-order TDVP to O(δt3). This effec-
tively cancels higher-order error terms that arise in the integration of the Schrödinger equation
without requiring smaller time steps, making it particularly suitable for long-time evolution
while preserving energy conservation and fidelity. Moreover, in second-order TDVP, during
the backward sweep, the intial environemts, that are needed to start the next time-step, are
automatically calculated during the backward sweep, which we would had to be accounted for
separately in first-order TDVP anyway. In backward sweep, the update path is reversed and a
new orthogonalization path should be, similarly, constructed with the new update path.

31

2.5 Representation of Many-Body Wavefunctions on a
Lattice

Tree Tensor Network State (TTNS) can approximates the full many-body wavefunction |ψ⟩
of a lattice system by hierarchically decomposing it into a network of tensors organized along
the structure of a spanning tree. A spanning tree is a subgraph of a connected graph that
includes all vertices of the graph, is acyclic, and has exactly |V | − 1 edges, where |V | is the
number of vertices. Formally, if the lattice is represented as a graph G = (V,E), a spanning
tree T = (V,ET) satisfies ET ⊆ E, |ET | = |V | − 1, and T is connected and acyclic. This
construction ensures that the connectivity of the original lattice is retained whithout any loops.
This could be interpreted as an intermediate approach between snake-like mapping with MPS
and PEPS.

To optimize the computational performance of TDVP on a Lattice, we aim to identify config-
urations that lead to the most efficient execution of algorithm steps in terms of CPU runtime
and memory usage. Furthermore, we hypothesize that configurations with higher connectivity
can better approximate the quantum state, leading to a more accurate time evolution. Our
approach involves generating multiple TTNS with random spanning trees and analyzing the
performance of the algorithm under these varying configurations. This allows us to identify
bottlenecks and determine the configurations that minimize computational overhead.
In hierarchical representation, significant efforts have been made to identify an optimal spa-
tial tree structure for better numerical efficiency and accuracy. Notably, Hikihara et al. [87]
proposed an automatic structural optimization algorithm for TTNs, which refines the tree net-
work by dynamically reconfiguring isometries to minimize bipartite entanglement entropy along
each bond. Their methodology involves iteratively sweeping through the tensor network and
selecting the optimal local reconnections to reduce truncation errors, much like the DMRG
sweeps. By applying this technique to inhomogeneous antiferromagnetic Heisenberg chains,
they demonstrated that the optimized TTN naturally adapts to the entanglement structure
of the quantum state. Their follow-up work [88] applied the algorithm to the Rainbow-chain
model, a system where the ground state is approximately represented by singlet pairs spanning
various distances. Their study revealed that the optimization process does more than just
reduce computational overhead—it also visualizes the intrinsic entanglement geometry of the
system. The algorithm successfully reorganized the TTN structure to align with the natural
singlet-pair distribution, confirming its capability to extract the optimal spatial layout of the
tensor network for a given quantum state.

32

2.5.1 Random Spanning Tree
To introduce variability in the TTN configuration, we generate spanning trees randomly using
Wilson’s algorithm. This method ensures that the spanning trees are sampled uniformly from
the set of all possible spanning trees for a given lattice.
Wilson’s algorithm [89] generates unbiased random spanning trees through Loop-Erased Ran-
dom Walks (LERW). The process involves starting from an arbitrary root node and iteratively
connecting unvisited nodes to the tree via random walks. Loops encountered during the walks
are erased to maintain the acyclic property of the tree. The following code implements Wilson’s
algorithm to generate a random spanning tree for a two-dimensional lattice.

Algorithm 2: Wilson’s algorithm for Random Spanning Tree
Input: lattice_nodes: A set of lattice nodes.
Output: tree_dict: A dictionary representing parent child relations of nodes

1 Choose a random root node root ∈ lattice_nodes
2 Mark root as visited: visited← {root}
3 Initialize unvisited← lattice_nodes \ {root}
4 while unvisited ̸= ∅ do
5 Select a random starting node start ∈ unvisited
6 Initialize path← [start]
7 while path[−1] /∈ visited do
8 current← path[−1]
9 Determine neighbors of current:

10 neighbors← {(current[0] + dx, current[1] + dy) | dx, dy ∈ {−1, 0, 1},
11 (current[0] + dx, current[1] + dy) ∈ lattice_nodes}
12 Choose a random neighbor next ∈ neighbors
13 if next ∈ path then
14 Erase the loop in path: path← path[: index(next) + 1]
15 end
16 else
17 Append next to path: path← path+ [next]
18 end
19 end
20 for i = 0 to |path| − 2 do
21 parent← path[i+ 1], child← path[i]
22 Update tree_dict
23 tree_dict: tree_dict[child][”parent”]← parent
24 tree_dict[parent][”children”]← tree_dict[parent][”children”] + [child]
25 Mark child as visited: visited← visited ∪ {child}
26 Remove child from unvisited: unvisited← unvisited \ {child}
27 end
28 end
29 Return tree_dict

2.5.2 Measure TTNS Connectivity
The Average Path Length (APL) measures the average distance between all pairs of nodes in
the tree. A smaller APL indicates that nodes in the tree are closer to each other on average,
suggesting higher overall connectivity. Conversely, a larger APL indicates less connectivity
because nodes are, on average, farther apart.

APL(TTN) = 1
n(n− 1)

∑
u,v∈V

d(u, v), (2.37)

where, n is the number of nodes, V is the set of nodes, and d(u, v) is the distance between
nodes u and v.

33

While APL is a useful metric for assessing overall connectivity, it does not provide insights
into how connectivity is distributed among nodes. Specifically, it cannot differentiate between
configurations where connectivity is evenly spread across the network and those where it is
concentrated in specific regions. Therefore, we introduce Weighted Path Length Index (WPLI)
to integrate both the APL and its variability.

WPLI = 1
std_dev_length (APL) ·mean_length (APL) , (2.38)

where, mean_length (APL) represents the APL’s mean value, quantifying the overall connec-
tivity of the network, and std_dev_length (APL) represents the standard deviation of path
lengths, capturing the spread or unevenness of connectivity across the network.
WPLI can be computed using the following algorithm:

Algorithm 3: Compute WPLI
Input: TTN
Output: WPLI

1 Initialize path_lengths← empty list
2 foreach node1 ∈ list of all nodes do
3 foreach node2 ∈ list of all nodes do
4 if node1 ̸= node2 then
5 path← path_from node1 to node2
6 path_lengths.append(len(path) - 1)
7 end
8 end
9 end

10 mean_length← mean of path_lengths
11 std_dev_length← standard deviation of path_lengths

12 return 1
std_dev_length·mean_length

Smaller mean_length reflects shorter paths, indicative of higher connectivity, and Smaller
std_dev_length indicates that path lengths are more evenly distributed, reflecting balanced
connectivity across the network. So, WPLI is maximized when both mean_length and std_dev_length
are small, representing a configuration with high connectivity and even distribution.

2.5.3 Profiling TTNS Configurations and Bottleneck Analysis
To understand how computational costs scale with different configurations of the underlying
tree structure, the following profiling is employed to identify bottlenecks.
The function that updates the environment during sweeps (update_tree_cache) has a relatively
significant cost among those functions that their number of calls varries across various config-
urations. However, it turns out that not only the number of calls to this function but also
deeper underlying functions, such as numpy.tensordot calls or even the total function calls, do
not have a strong correlation with the total CPU runtime. Nonetheless, the number of up-
date_tree_cache calls remains a good indicator of the trade-off between network’s complexity
and its capacity to support increased bond dimension, as snake-like mappings involve the min-
imum number of environment constructions, while allow faster bond growth with less effect on
CPU runtime in comparison with configurations with larger update_tree_cache_ncalls. This
lead us to find configuration with higher WPLI and lower update_tree_cache_ncalls, while
tracking runtime itself can helps us to differentiate tree structures that have a similar number
of update_tree_cache_ncalls but with closely comparable WPLI.
To achieve this, we generate a set of random tree structures using Wilson’s algorithm and

34

execute a single time-step δt evolution of the second-order 1-site TDVP algorithm with a
same random Hamiltonians and initial product states for all configurations. To quantitatively
evaluate and prioritizes configurations, we defined a scoring metric with adjustable weighting
parameters as follows:

1. Compute the Z-scores for each configuration:

Zruntime
i = ri − r̄

σr
, Zn_calls

i = vi − v̄
σv

, ZWPLI
i = wi − w̄

σw
(2.39)

where ri, vi, and wi are the runtime, update_tree_cache_ncalls, and WPLI values for
configuration i, r̄, v̄, and w̄ are the means, and σr, σv, and σw are their respective standard
deviations.

2. Invert the Z-score of runtime and n_calls (short for update_tree_cache_ncalls) since
lower values are preferable.

Zruntime
i → −Zruntime

i , Zn_calls
i → −Zn_calls

i , (2.40)

3. Compute the composite score Si for each configuration i using adjustable weights α, β γ.

Si = αZruntime
i + βZn_calls

i + γZWPLI
i , (2.41)

4. Normalize the scores Si across the subset to a range of [0, 1].

Snorm
i = Si − Smin

Smax − Smin
, (2.42)

where Smin and Smax are the minimum and maximum scores in the subset.

2.5.4 Profiling on Random 6×6 Lattice
To demonstrate the methodology, we conduct profiling on 200 spanning tree configurations of
a 6×6 lattice, generated using Wilson’s algorithm. Both the Hamiltonians and states were
initialized with random entries, and the states were prepared with a uniform virtual bond di-
mension of 6. A single time-step evolution was performed for each trial using the second-order
1-site TDVP algorithm. In the following, we present the results for 4 different weighted scoring
metrics, and visualize the highest and lowest scored spanning trees.
To facilitate an intuitive comparison, configurations are visualized on parallel coordinate plots,
with each axis representing a normalized metric. A heatmap is applied to color-code configu-
rations to differentiate configurations based on normalized runtime.

35

Figure 2.4: profiling results for α = 1, β = 1, γ = 1.

Score = 0.91

runtime: 0.75
update_tree_cache_ncalls: 32
WPLI : 5.77

Score = 0

runtime: 19
update_tree_cache_ncalls: 42
WPLI : 12.4

Remark. Highest score in this case corresponds to snake-like mapping, which we should
exclude.

36

Figure 2.6: profiling results for α = 2, β = 1, γ = 2.

Score = 1

runtime: 1.3
update_tree_cache_ncalls: 46
WPLI : 18

Score = 0

runtime: 18.9
update_tree_cache_ncalls: 40
WPLI : 10.9

37

2.5.5 Benchmark : Bose-Hubbard on 4x4 Lattice
In this experiment we aim to examine the performance of the second-order 1TDVP for different
spanning tree configurations.
Hamiltonian. We consider the two-dimensional (2D) Bose–Hubbard Hamiltonian on an L×L
square lattice with periodic boundary conditions along both directions.

Ĥ = −J
L−1∑
i=0

L−1∑
j=0

(
b̂†

(i,j)b̂(i+1 mod L,j) + H.c.
)

(2.43)

−J
L−1∑
i=0

L−1∑
j=0

(
b̂†

(i,j)b̂(i,j+1 mod L) + H.c.
)

(2.44)

+U2

L−1∑
i=0

L−1∑
j=0

n̂(i,j)
(
n̂(i,j) − 1

)
. (2.45)

Where b̂†
(i,j) and b̂(i,j) are the bosonic creation and annihilation operators at site (i, j), and

the parameters J and U respectively determine the hopping amplitude and on-site interaction
strength. Here, the sums over i and j run from 0 to L − 1, as the site labels start from
(i, j) = (0, 0):
For the exact error analysis, the exact solution could be achieved using the QuTiP library.
However, the largest (2D) Bose–Hubbard Hamiltonian that QuTiP can handle is maximum 16
particles on 4× 4 lattics. Therefore, we set lattice size L = 4 with maximum 1 particle allowed
per site, which makes the third terms in the Hamiltonian vanish.
Parameters and Simulation Time. We use natural units with ℏ = 1, taking J as the
reference energy scale and setting J = 2. The interaction strength is U = 0.1 J = 0.2. This
places us in the J ≫ U regime, where kinetic energy dominates and particles exhibit significant
mobility. The evolution final time is set to t = 2, corresponding to 2/J = 1 in physical time
units. All simulations are performed using a time-step of δt = 0.01.
Initial States. For our numerical experiment, we first run the profiling introduced in Sec-
tion 2.5.3 for 200 iterations. Then we initialize each tree in a checkerboard configuration of
zero and one boson per site, which provides a non-trivial starting point particularly suitable
for testing our algorithm capability to study far-from-equilibrium bosonic dynamics in lattice
systems.

|ψ0⟩ =
L−1⊗
i=0

L−1⊗
j=0

|1⟩(i,j) , if (i+ j) mod 2 = 0,
|0⟩(i,j) , if (i+ j) mod 2 = 1.

(2.46)

Then we pad all virtual bonds with zeros up to different values for diffenet configurations to
achieve comparable running times (between 20 to 25 minumtes) as trees with higher connect-
tivity could handle smaller bond dimensions. All 200 configurations falls into
{30, 32, 34, 36, 38, 40, 42, 44, 46, 46, 50} update_tree_cache_ncalls values.
Observable. To investigate correlations, we monitor the sum over all density–density correla-
tor at distances = 3,

Ô(3)
nn =

∑
(i,j), (i′,j′)

dist((i,j),(i′,j′))=3

n̂(i,j) n̂(i′,j′), (2.47)

38

Results

Figure 2.8: Mean error of different configurations against their scores that were computed
beforehand

Score = 0.75
Error = 0.092

Score = 0.79
Error = 0.075

Score = 0.92
Error = 0.069

Score = 0.34
Error = 0.143

Score = 0.46
Error = 0.087

Score = 0.51
Error = 0.115

Figure 2.9: Example of different TTNS with corresponding scores and errors

39

Figure 2.8 illustrates the mean absolute error of the observable Ô(3)
nn evaluated across all 200 =

2
0.01 time-steps.

mean error = 1
200

200∑
k=1

∣∣∣Ô(3)
nn,sim(k · 0.01)− Ô(3)

nn,exact(k · 0.01)
∣∣∣ (2.48)

providing a precise measure of the average error over the entire simulation duration.
The outcome confirms the effectiveness of the scoring metric in identifying configurations that
lead to lower errors. TTNS with scores higher than 0.7 exhibit errors bellow 10−1. The
Score = 1 configuration corresponds to the MPS snake-like mapping, has the minimum up-
date_tree_cache_ncalls. Moreover, for this model, we found the optimal weight for the scoring
metric to be α = 1, β = 2, γ = 1.
Figure 2.9, shows 6 examples that were used in the benchmark, with thier corresponding scores
and errors.

40

3. Global Subspace Expansion

The introduction of the density matrix renormalization group [90, 91] and Matrix Product
States algorithms to simulate ground states of one-dimensional quantum many-body systems
[92, 93] have given strong evidence for the fact that physically interesting states are confined to
reside in a small submanifold of the full Hilbert space which could be achieved via truncation
of virtual bonds. This observation was later proven in the context of quantum information
theory in terms of entanglement properties of ground states. More specifically, it was shown
that ground states of one-dimensional systems whose Hamiltonian is gapped are only weakly
entangled (they obey the area law) and can as such be faithfully and efficiently simulated in
terms of matrix product states [94].
The virtual bond dimensions of a TN determines the number of variational parameters, asso-
ciated storage and computational costs and the capacity of the network to represent quantum
states. A TNS (|Ψ⟩ ∈ V ⊗L) with higher bond dimensions captures more complex entanglement
structures and provide more accurate representation within the allowed symmetry sectors. How-
ever, a TTN with restricted bond dimension χ provides an efficient representation of specific
many-body wave functions (subset Sχ ⊂ V ⊗L of |Ψ⟩) which requires a number of coefficients
that grows polynomially (often linearly) with system size L, rather than exponentially.

3.1 Local Subspace Expansion
The idea of subspace expansion was originally introduced by Hubig et al. (2015) [95] as a strat-
egy in 1DMRG, designed to enrich the variational space by appending the dominant singular
vectors of the residual error |Z⟩ = H|ψ⟩ − E|ψ⟩ to the MPS tensor basis. This allows the
algorithm to escape local minima and enhance convergence.
In their algorithm the expansion term Pi is constructed by multiplying mixing factor α, that
controls the magnitude of the subspace expansion, with residual tensor at site i that is approx-
imated by neglecting the right environment Ri+1.

Pi = αLi−1 ·Mi ·Wi, (3.1)

where, Li−1 is the left contraction environment up to site i − 1, Mi is the target MPS tensor
and Wi is the local MPO (Hamiltonian) tensor.

Given the initial dimensions of the tensors:

• Mi ∈ Cd×mi−1×mi ,
where: d: Physical dimension, mi−1: Left bond dimension, mi: Right bond dimension.

• Pi ∈ Cd×mi−1×mPi ,
where mPi

= w ·mi, representing the additional bond space introduced by the subspace
expansion.

41

• Neighboring tensor Bi+1 ∈ Cd×mi×mi+1 .

The expansion term Pi is added to Mi and zero is padded to neighbor site Bi+1 for compatibility,
resulting in an expanded tensor:

M̃i =
[
Mi Pi

]
∈ Cd×mi−1×(mi+mPi

), (3.2)

B̃i+1 =
[
Bi+1

0

]
∈ Cd×(mi+mPi

)×mi+1 , (3.3)

Next, SVD is performed on M̃i to retain the most significant singular vectors:

M̃i = UΣV †, (3.4)

where: U ∈ Cd×mi−1×mmax , Σ ∈ Cmmax×mmax , V † ∈ Cmmax×(mi+mPi
)

The truncation process retains the top mmax singular values:

M ′
i = U [:, :, : mmax] ∈ Cd×mi−1×mmax , (3.5)

B′
i+1 = (ΣV †) · B̃i+1 ∈ Cd×mmax×mi+1 . (3.6)

In this process the bond dimension of Mi at mi expands to mmax, while the physical properties
are preserved.

3.2 Global Subspace Expansion (GSE)

Motivation : TDVP1 vs TDVP2 error analysis
In 1-site TDVP, the bond dimensions of the TNS is constant throughout the evolution, whereas,
in 2-site TDVP, in each 2-site local update (2.33), the bond dimensions, due to contraction
before update and SVD decomposition after update of ψ2s

l , is dynamically adjusted with pa-
rameters introduce in 1.4, which leads to lower projection error at the cost of introducing of
truncation error. The projection error arises from the fact that the true time evolution vector
Ĥ|ΨM[T,D](t)⟩ differs from the projected one P̂Ĥ|ΨM[T,D](t)⟩. The evaluation of projection
error have greater computational cost than a 1-site TDVP sweep.
The error analysis of two exactly solvable models, one evolved with 1-site TDVP with varying
bond dimensions, and the other evolved with 2-site TDVP with varying truncation parameters
was carried out in [96]. In 2-site TDVP with suitable truncation parameters, bond dimensions
stay at lower dimensions early on and expands gradually when necessary. 1-site TDVP, on the
other hand, requires bond dimensions to be set higher than the initial bond dimensions in 2-site
TDVP case, otherwise we would face significant projection error. However, the initial overesti-
mated bond dimension leads to unnecessary computation at the early stages of the evolution,
as a result the runtime scales badly with the system size. Notably, the outperformance of 1-site
TDVP compared to 2-site TDVP was observed When setting the bond dimensions, by padding
with zero, up to the optimal value, which could be achieved by calculating the error at final
the time of 2-site TDVP simulation (assuming the exact solution is known). This is mainly
because 1-site updates require only a local QR decomposition on a single site, whereas 2-site
TDVP involves a larger 2-site tensor and requires an SVD, which is generally more expensive.
However, in a real case scenario, we don’t have the exact solution to calculate the error at
the final time, and the optimal bond dimension is not known beforehand. Therefore, bond

42

dimension are inevitably either over or underestimated.
Motivated by the mentioned drawback of 1-site TDVP and higher computational cost of 2-site
TDVP, we are intrigued to investigate strategies to dynamically adjust the bond dimensions
during the 1-site TDVP evolution, to achieve the same accuracy of 2-site TDVP while avoiding
its higher computational cost. It is worth mentioning that simply padding the bond with zeros
is not an effective strategy to reduce the projection error [97].

3.3 GSE-TDVP Algorithm
We learned how MPS manifold could be enlarged directly by appending a local subspace to the
MPS tensor at each site. Inspired by the subspace expansion algorithm in DMRG, Yang and
White [2] have shown how one can expand the MPS manifold with another manifold globally,
thereby enlarging the tangent space before a TDVP time-step, to make it directed to the true
equation of motion, with the intermediate numerical costs between 1TDVP and 2TDVP. In
this method, Krylov vectors serve as ancillary MPSs to enrich the basis of the time-evolving
MPS through the gauge degree of freedom, thus avoiding the problems of loss of orthogonality
and production of unnecessarily highly entangled states. In the following, we will describe the
GSE-TDVP algorithm adapted to TTN in detail.

Algorithm 4: GSE-1TDVP Algorithm
Input : |ψ(t = 0)⟩, H, time_step = δt, final_time = T , expansion_step
Output: |ψ(T)⟩

1 Nsteps ← T/δt
2 for i = 0 to Nsteps − 1 do
3 |ψ((i+ 1)δt)⟩ ← Run one time_step 1TDVP on |ψ(iδt)⟩
4 if i = expansion_step then
5 |ψ((i+ 1)δt)⟩ ← Run GSE on |ψ((i+ 1)δt)⟩
6 end
7 end
8 return |ψ(T)⟩

Definition 3.3.1. The concept of Krylov subspaces arises from the iterative methods that
generate a sequence of vectors from a given initial vector and a matrix, allowing for the ap-
proximation of solutions to linear systems, defined as :

Km(H, |ψ0⟩) = span
{
|ψ0⟩, H|ψ0⟩, H2|ψ0⟩, . . . , Hm−1|ψ0⟩

}
(3.7)

In GSE, instead of directly constructing the Krylov subspace, we could achieve good accuracy
with modest computational resources by an approximate expansion that is constructed by
successive application of first-order expansion of the time evolution operator (I − iτH) to
capture low-order corrections by slightly perturbs the state, leading to controlled entanglement
growth. In this process, the Hamiltonian TTNO is multiplied element-wise by −iτ , where τ
represents a small time-step, and subsequently summed with the identity TTNO as we discussed
in 1.3.2. For numerical stability, after each application of (I − iτH), all bonds are truncated
with adjustable svd_truncation_parameters by canonical form transformation using SVD as
discussed in Section 1.4.4, and the resulting TTN is normalized. The initial TTN |ψ0⟩ is
enlarged with the next Krylov basis element and the resulting would be enlarged with the next
Krylov basis element, and the iteration continues until all Krylov basis are incorporated.

43

The general structure of GSE algorithm involves these main steps:
Algorithm 5: Global Subspace Expansion (GSE)

Input: |ψ0(t)⟩, H, m, τ , svd_truncation_parameter
Output: |ψexpanded⟩

1 Construct m Krylov_basis (|ψ0(t)⟩ , H, τ , svd_truncation_parameter):
2 Krylov_basis←

{
|ψ0(t)⟩, (1− iτH)|ψ0(t)⟩, (1− iτH)2|ψ0(t)⟩, . . . , (1− iτH)k−1|ψ0(t)⟩

}
3 Initialize: |ψexpanded⟩ ← Krylov_basis[0]
4 for i = 0 to m− 1 do
5 |ψexpanded⟩ ← Expand |ψexpanded⟩ by Krylov_basis[i]
6 |ψexpanded⟩ ← Normalize |ψexpanded⟩
7 end
8 return |ψexpanded⟩

Remark. The normalized TTN (line 6) is simply achieved by dividing the TTN local tensor
at orthogonalization center by its norm.
To illustrate steps, we will focus on first iteration (i = 0) in line 4, were |ψexpanded⟩ is constructed
by enlarging |ψ1⟩ = |ψ0⟩ subspace with |ψ2⟩ = (1− iτH)|ψ0(t)⟩.
The algorithm sweeps through the TTN, expanding one virtual bond at a time. The optimal
update path follows the principles discussed in Section 2.4.1. A crucial challenge in this proce-
dure is in the calculation of the reduced density matrix for each local update, as the direction of
partitioning must be determined appropriately, at branching sites. We will refer to this reduced
density matrix as the Partial Reduced Density Matrix (PRDM).
More precisely, as the algorithm proceed along the update path, it requires the following condi-
tions to be satisfied:

• The target node must be at the orthogonalization center.

• The next node to be updated must be chosen such that the branch node can be partitioned
in a way that the unvisited sites could be traced out in a way that give the correct PRDM.

This can be effectively managed by employing the orthogonalization path as described in Sec-
tion 2.4.2.

Algorithm 6: Sweeping Through the TTN and Expanding Virtual Bonds
Require: update path, orthogonalization path

1 Initialize ψ1 and ψ2 to be site canonical at update path[0]
2 for i, target node ∈ enumerate(update path[:-1]) do
3 target node← update path[i]
4 next node← orthogonalization path[i][0]
5 Construct the ψexpanded tensor at target node
6 Update ψ1 and ψ2 tensors at next node
7 if orthogonalization path[i] > 1 then
8 ψ1 ← Move orthogonalization center of ψ1 to orthogonalization path[i][−1]
9 ψ2 ← Move orthogonalization center of ψ2 to orthogonalization path[i][−1]

10 end
11 end
12 Construct the ψexpanded tensor at target node[−1]

Line 5-10 of Algorithm 6
Notation remark: The bonds are labeled by their corresponding node and the node that they are
connected to. Thus, the bond bAB and bBA have the same dimension, and should be contracted
with each other. And target node and next node are denoted by T and N, respectively.

44

Step 1. Compute PRDM at Site target node toward next node

ρN
1,T =

∑
bT N

CT (CT)† , (3.8)

ρN
2,T =

∑
bT N

C̃T
(
C̃T
)†
. (3.9)

Combine the reduced density matrices:

ρN
T = ρN

1,T + ρN
2,T ∈ Cdn×dn

, (3.10)

Step 2. Diagonalize PRDM

Diagonalize the reduced density matrix:

ρN
T = UΣ2U †, U ∈ Cdn×dn

, Σ2 ∈ Cdn×dn (3.11)

where d is the physical dimension and n ∈ N.

Step 3. Construct the Expanded Tensor of |ψexpanded⟩ at target node

The tensor of |ψexpanded⟩ at site target node = T is updated with U † which is orthogonalized
toward the next node .

Step 4. Update next node tensors of ψ1 and ψ2 with U

Step 4.1. move the orthogonalization center to the next node
Perform a QR decomposition on the CT , and contract R to the next node tensor.

CT = QT , CN = RT · CN (3.12)

similarly for C̃T :
C̃T = QT , C̃N = RT · C̃N (3.13)

construct (UC)T and (UC̃)T matrix by contracting CT and C̃T with U

(UC)T = Contract (CT · U) ∈ CdbT N
×dn (3.14)

(UC̃)T = Contract
(
C̃T · U

)
∈ Cd̃bT N

×dn (3.15)

In this contraction, all legs of CT and C̃T except the leg toward the next node i.e. bTN are
contracted with the corresponding legs of U except the leg toward the Singular value matrix Σ.

Step 4.2. Multiply (UC)T and (UC̃)T matrices with next node tensor TN and T̃N

CN = Contract (TN · (UC)T) , (3.16)

C̃N = Contract
(
T̃N · (UC̃)T

)
(3.17)

These two tensors will be used to bulid the PRDM in the next iteration. They belong to

C
∏
i=1

dbi
×dm×d

where the product is over all neighbors except the target node and m is the number
of PRDM that has been allready contracted in the subtree toward that specific leg.

45

Step 5. Move orthogonalization center of ψ1 and ψ1 at branch nodes

By moving the orthogonalization center of ψ1 and ψ2 to the new site, we make sure that the
next iteration will start with the orthogonalization center at the target node.

Line 12 of Algorithm 6
Final step. Construct the last tensor of |ψexpanded⟩

Given update path[-1] = L , CL and C̃L were updated in the previous iteration, where L was
the next node. The last tensor of |ψexpanded⟩ is updated with the CL and C̃L is discarded.

Example. In the following illustrative example, we will go through the steps of algorithm 6
for a simple TTN with 5 nodes.

Both TTNSs are in site-canonical form with orthogonalization center at leaf node update path[0] =
S with tensors CS ∈ CdbSM

×d and C̃S ∈ Cd̃bSM
×d respectively.

|ψ1⟩ =
∑

{b},{σ}
CσS
S bSM

T σM
M bMS ,bMH

T σH
H bHM ,bHD,bHP

T σD
D bDH

T σP
P bP H

|σSσMσHσDσP ⟩

|ψ2⟩ =
∑

{b},{σ}
C̃σS
S bSM

T̃ σM
M bMS ,bMH

T̃ σH
H bHM ,bHD,bHP

T̃ σD
D bDH

T̃ σP
P bP H

|σSσMσHσDσP ⟩

update path = [S,M,D,H, P]
orthogonalization path = [[M], [H,D], [H], [P]]

46

i = 0 : target node = S , next node = M

i = 1 : target node = M , next node = H

47

i = 2 : target node = D , next node = H

i = 3 and final step : target node = H , next node = P

48

3.3.1 GSE-TDVP Optimizations
1. Path Dependence: The first issue with this algorithm is that the growing dimension
on each bond depends on the update path we initially chose. For instance, in the previously
discussed example, no matter how many times GSE is performed, the bond between nodes S
and M will not exceed a dimension of d.

Solution : We sacrifice the efficiency of initializing the main path M i
up from the furthest leaf

and initialize path separately for different GSE during the evolution, i.e., M i
up are constructed by

randomly selecting a leaf node, and the remainder follows the steps outlined in Section 2.4.1.
This trade-off is acceptable, as GSE is executed significantly fewer times during evolution
compared to TDVP.

Figure 3.1: M i
up is selected randomly from these options for different GSEs

2. Exponential Growth: The other challenge with the current algorithm is that, even with
the application of aggressive truncation in line 1 of algorithm 5, the bond dimension of the
Krylov basis grows exponentially (d1, d2, . . . , dn) with the system size.

Solution: To manage computational resources effectively, truncation should be applied directly
to the PRDM after diagonalization (3.11) to control the dimension growth on bonds. Specif-
ically, a relative truncation parameter, similar to ϵrel introduced in Section 1.4.4, is employed
to retain significant components by discarding those below a fraction of the largest eigenvalue.
However, a fixed ϵrel proves to be inefficient, as the precision of truncation must be adjusted
dynamically as the state evolves. For instance, beginning with a very large ϵrel can lead to
rapid bond growth initially, which may be unnecessary. To ensure stable bond growth, ϵrel is
dynamically adapted based on feedback from the results of the expansion.
First, a fixed acceptable range R for the total expanded bond dimension is defined. If the
difference between total bonds dimension after and before expansion falls within this range,
we proceed to the next TDVP time-step. If not, the relative truncation parameter is in-
creased or decreased by predefined factors (increase_factor or decrease_factor) depending
on whether the total expanded bond dimension exceeds or falls below R. A new GSE compu-
tation is performed with the updated parameter, and this procedure is repeated for a maxi-
mum of num_trials iterations within the GSE_increase(_decrease) function until the desired
expanded_dim is identified. The updated relative truncation parameter ϵrel after each GSE
execution is used as the initial parameter for the subsequent GSE.
Since over-expansion is more likely during the evolution, it is more efficient to set increase_factor
larger than decrease_factor to minimize the number of GSE executions, i.e. If under-expansion

49

occurs during the execution of the GSE_increase function, the process switches to GSE_decrease,
and start and growing expanded bond from lower bound of R. After achieving max_total_bond
the TDVP runs without GSE until the final_time = T .
With this approach, stable and gradual bond growth can be achieved under controlled condi-
tions.

Algorithm 7: GSE with Dynamical Truncation Parameter
Input: |ψ⟩, ϵrel, R, max_trials, increase_factor, decrease_factor, max_total_bond
Output: |ψex⟩, ϵ′rel

1 Initial Expansion Attempt: Run GSE on |ψ⟩ with ϵrel to produce |ψex⟩
2 Compute:

expanded_dim←
∑

bond∈|ψex⟩

dimension(bond)−
∑

bond∈|ψ⟩

dimension(bond)

3 Check Expansion Dimension:
4 if expanded_dim ∈ R then
5 Acceptable expansion found in initial attempt.
6 ϵ′rel ← ϵrel
7 else
8 if expanded_dim > max(R) then
9 Handle Over-expansion: Increase ϵrel

10

|ψex⟩, ϵ′rel, switch_to_decrease← GSE_increase(|ψ⟩, ϵrel, max_trials, R, increase_factor)

11 if switch_to_decrease then
12 Run GSE in decrease mode if expanded_dim falls below acceptable range
13

|ψex⟩, ϵ′rel ← GSE_decrease(|ψ⟩, ϵrel, max_trials, R, decrease_factor)

14 end
15 else if expanded_dim < min(R) then
16 Handle Under-expansion: Decrease ϵrel
17

|ψex⟩, ϵ′rel ← GSE_decrease(|ψ⟩, ϵrel, max_trials, R, decrease_factor)

18 end
19 end
20 check overgrown bond dimensions:
21 compute new expanded_dim
22 if expanded_dim > max_total_bond then
23 |ψex⟩ ← |ψ⟩
24 Terminate GSE for the rest of the evolution.

25 return |ψex⟩, ϵ′rel

50

Algorithm 8: GSE_increase
Input: |ψ⟩, ϵrel, max_trials, R, increase_factor
Output: |ψex⟩, ϵ′rel, switch_to_decrease

1 num_trials← 0
2 while num_trials < max_trials do
3 num_trials← num_trials+ 1
4 Increase ϵ′rel : ϵ′rel ← ϵ′rel + increase_factor
5 |ψex⟩ ← Run GSE on |ψ⟩ with ϵ′rel
6 Compute : expanded_dim←

∑
bond∈|ψex⟩

dimension(bond)−
∑

bond∈|ψ⟩
dimension(bond)

7 Check expanded_dim :
8 if expanded_dim ∈ R then
9 return |ψex⟩, ϵ′rel, False

10 else
11 if expanded_dim < min(R) then
12 Switch to decrease mode :
13 if expanded_dim ≤ 0 then
14 |ψex⟩ ← |ψ⟩
15 end
16 return |ψex⟩, ϵ′rel, True
17 end
18 end
19 Exceeded Trials Without Success
20 ϵ′rel ← ϵ′rel + increase_factor
21 return |ψ⟩, ϵ′rel, False

Algorithm 9: GSE_decrease
Input: |ψ⟩, ϵrel, max_trials, R, decrease_factor
Output: |ψex⟩, ϵ′rel

1 num_trials← 0
2 while num_trials < max_trials do
3 num_trials← num_trials+ 1
4 Decrease ϵ′rel : ϵ′rel ← ϵ′rel + decrease_factor
5 |ψex⟩ ← Run GSE on |ψ⟩ with ϵ′rel
6 Compute : expanded_dim←

∑
bond∈|ψex⟩

dimension(bond)−
∑

bond∈|ψ⟩
dimension(bond)

7 Check expanded_dim :
8 if expanded_dim ∈ R then
9 return |ψex⟩, ϵ′rel

10 else
11 if expanded_dim > max(R) then
12 return |ψ⟩, ϵ′rel
13 end
14 end
15 Exceeded Trials Without Success
16 ϵ′rel ← ϵ′rel + decrease_factor
17 return |ψ⟩, ϵ′rel

51

3. Bottleneck in local updates: As we go to network structures with higher WPLI, we
face a bottleneck in the action of the local effective Hamiltonian ((2.35) with n > 2) acting on
tensors at branching sites (2.27). This creates a challenge for efficiently expanding bonds in
TTN.
Solution : The representational power of TTNS with higher WPLI justifies using approxi-
mation techniques to compute each single time_step = δt evolution of site tensors Cj or link
tensors Λj

e−iδtH1s
j Cj , eiδtH

b
j τΛl(t)

with relatively aggressive parameters when the dimension of the effective Hamiltonian is larger
than size_threshold.
We implemented the Krylov subspace projection method introduced in Expokit: a software pack-
age for computing matrix exponentials [98] to circumvent computing the full matrix exponential.
While the core of the algorithm is based on a standard Krylov subspace projection approach,
these enhancements yields both performance gains and accuracy guarantees:

1. Adaptive time-stepping with sub-intervals. The algorithm approximates a time-
step δt evolution by internally dividing this interval into a sequence of smaller intervals
τ1, τ2, . . ., such that ∑

k
τk = δt. These sub-steps τ are chosen adaptively based on multiple

error indicators during each sub-step and constrained by safety factors to limit the risk of
overshooting. This approach ensures that the approximation stays within a user-defined
error_tol, while avoiding unnecessary computations or inaccuracies that might occur
with a fixed step size.

2. Early termination of the Arnoldi process. In large-scale numerical exponentiation,
the Arnoldi iteration can often capture the most significant part of the exponential’s
action with fewer vectors. Once the residual norm drops below a threshold, the iteration
terminates early. This avoids building an unnecessarily large Krylov basis when the main
part of the exponential map is already well-approximated.

These features make the algorithm more accurate and efficient compared to a basic Krylov
projection method, Chebyshev [99] and pade approximation [100].
Here we briefly discuss the core functionality of adaptive Krylov exponential propagation algo-
rithm:

Aim : approximate w(t) = etAv :

Algorithm Inputs :

• t = ±iδt , A = H1s
j or Hb

j , v = Cj or Λj

• error_tol: The desired accuracy threshold for controlling approximation errors

• krylov_dim: The Krylov subspace dimension used for projection

Algorithm constants :

• safety factors : γ = 0.9, δ = 1.2,

• Tolerance for Arnoldi process termination : btol = 1× 10−7

• maximum number of time-step refinements : max_iter = 10

52

The algorithm starts with an initial τ0, constructs a Krylov subspace for the current τk, adap-
tively adjusts τk based on error estimates, and approximates the action of the matrix exponential
on the vector for the accepted τk. The algorithm repeats the adaptive process over successive
sub-intervals until the accumulated time tk reaches the desired final time t. The final approxi-
mation is then given by w(t) ≈ etAv.

The algorithm computes a sequence of vectors: w0, w1, w2, . . . , wK

where w0 = v is the initial vector, and each wk represents the approximation after the k-th
sub-interval τk. At each sub-interval, the approximation is updated as: wk ≈ eτkAwk−1, where
tk =

k∑
i=1

τi is the accumulated time after k subintervals. The iteration starts from k = 1 and
continues until tk reaches or exceeds the total time t. If tk is about to exceed t, the algorithm
dynamically adjusts the current τk to match the remaining time, ensuring that tk = t exactly
after the final step.

Krylov Subspace Construction:
Define the norm of the initial vector: β = ∥wk−1∥.
Start with the normalized vector: v1 = wk−1

β
.

Using the Arnoldi process, construct an orthonormal basis Vm = [v1, v2, . . . , vm] for the Krylov
subspace Km(A,wk−1).
The Arnoldi steps are as follows:
For j = 1, 2, . . . ,m:

1. Compute a temporary vector p = Avj.

2. For i = 1, . . . , j, set hi,j = ⟨p, vi⟩ and update p← p− hi,jvi.

3. Set hj+1,j = ∥p∥.

4. Break the loop if hj+1,j < btol.

5. Normalize vj+1 = p
hj+1,j

.

After m steps (or earlier if a breakdown occurs), define the m×m principal sub-matrix Hm as
the upper-left m×m portion of the larger Hessenberg matrix formed during the process.

Local Error Estimation: To estimate the local error of the approximation, the algorithm
applies the matrix exponential of the extended Hessenberg matrix Hm+1,m to the first basis
vector:

f = eτkHm+1,me1 ∈ Cm+1,

whereHm+1,m is an (m+1)×mHessenberg matrix. For the computation, Hm+1,m is conceptually
augmented to a square (m+ 1)× (m+ 1) matrix by adding zeros to unused columns, enabling

the evaluation of the matrix exponential. The vector f is decomposed as f =
(
f (m)

fm+1

)
. Here,

f (m) ∈ Cm corresponds to the components within the original Krylov subspace Km(A,wk−1),
while fm+1 ∈ C represents the contribution from the additional basis vector, which lies outside
the subspace. The component fm+1 serves as an indicator of how well the current Krylov
subspace captures the action of eτkA on wk−1. Specifically, err1 = |βfm+1| directly measures the
contribution of the extra Krylov vector. And err2 = |βfm+1∥Avm+1∥| measures how strongly A
influences the additional Krylov vector outside the subspace.

53

1. If err1 is significantly larger than err2, it suggests that the subspace adequately represents the
action of A on wk−1, and thus the local error can be estimated primarily by err2. Parameter
r is set to 1

m
.

2. If err1 is moderately larger than err2, the local error is computed as errloc = err1·err2
err1−err2

. Here,
r is set to 1

m

3. Otherwise, if err1 is not larger than err2, the local error is simply err1. In this case, r is set
to 1

m−1 .

These estimates ensure that the approximation remains within the user-defined error_tol,
guiding the adaptive time-stepping mechanism to adjust τk appropriately.
Adaptive Time-Stepping: At each time-step, compare errloc with the tolerance error_tol:

• If errloc ≤ δ τk

(
τk error_tol

errloc

)r
:

– Accept the current τk and advance the solution by time τk : tk ← tk + τk,

– Approximate eτkAwk−1 ≈ βVme
τkHme1.

– Update the next initial vector : wk ← eτkAwk−1,

• If errloc > error_tol : Adjust the step size: τk ← γτk
(
τk·error_tol

errloc

)r
• Repeat the error estimation and step size adjustment for up to max_iter times. If the error

remains above tolerance after max_iter refinements, raise an exception.

54

4. Benchmark

4.1 Tensor Jump Method (TJM)

4.1.1 Overview
We utilize GSE-TDVP to enhance the Tensor Jump Method (TJM) [3], which is an extended
version of the Monte Carlo Wave-Function (MCWF) for TNS. This method is designed to
recover the Markovian quantum process described by the master equation in Lindblad form.

dρ

dt
= −i [H0, ρ] +

k∑
m=1

γm

(
Lm ρL

†
m −

1
2{L

†
mLm, ρ}

)
, (4.1)

where H0 is the system Hamiltonian and Lm are the Lindblad jump operators with coupling
factors γm.
The MCWF method decomposes the evolution of an open quantum system into N independent
trajectories, each representing a non-unitary evolution of a pure state followed by stochastic
quantum jumps. Averaging over many trajectories reconstructs the full non-unitary dynam-
ics without directly solving the Lindblad equation which scales as O(n d6L) in superoperator
formalism [101], while the MCWF method, with the same setting, requires O

(
Nn d3L

)
.

This convergence is guaranteed by the statistical properties of Monte Carlo sampling. Defining
the reconstructed density matrix as

ρN(t) = 1
N

N∑
i=1
|Ψi(t)⟩ ⟨Ψi(t)| , (4.2)

The deviation of the Monte Carlo estimate ρN(t) from the true density matrix ρ(t) scales as

σ̂ [ρN(t)] =
√
V [ρN(t)] =

√
E
[
∥ρN(t)− ρ(t)∥2

]
= O

(
1√
N

)
, (4.3)

independent of the system size. This property, combined with the efficient handling of unitary
evolution via TDVP, yields a scalable simulation method for open quantum systems. It can
achieve comparable accuracy with substantially reduced computation time compared to state-
of-the-art MPDO Lindbladian approaches (e.g., via the LindbladMPO package [102]).

4.1.2 Single Trajectory Evolution Steps
Each trajectory in the TJM evolves under the non-Hermitian effective Hamiltonian H = H0 +
HD, where H0 represents the unperturbed part of the system, while HD = − i

2

k∑
m=1

γm L
†
m Lm

encodes dissipation.
To achieve second-order accuracy, we can approximates the non-unitary time-evolution operator

55

U(δt) = e−i(H0+HD)δt via Strang splitting :

U (i)(δt) = e−iHD
δt
2 e−iH0δte−iHD

δt
2 +O(δt3), (4.4)

reducing the time-step error from O(δt2) to O(δt3), which allows for larger time steps or fewer
computational resources for a given precision. By adapting this splitting, TJM is then incor-
porate stochastic jumps, resulting in the piecewise function Fj[δt]

Fj[δt] =

Je[δt]D

[
δt
2

]
if j = 0,

Je[δt]D[δt]U [δt] if 0 < j < n,

Je[δt]D
[
δt
2

]
U [δt] if j = n.

(4.5)

Which defines the sequence of operations applied to the state at each time-step j, where j =
0, 1, . . . , n, and n = T

δt
is the total number of time steps for a simulation duration T . Here, the

unitary evolution operator U [δt] = e−iH0δt evolves the state with TDVP algorithm, while the
dissipative operator D[δt] = e−iHDδt accounts for the non-unitary effects of the environment
over time-step δt, which reduces the state’s norm due to dissipation. Similarly, D

[
δt
2

]
applies

the dissipation over half the time-step at the simulation boundaries to maintain the symmetry
of the Strang splitting. And Je[δt] represents the stochastic jump process, which determines
whether a quantum jump occurs based on a random variable ϵ ∈ [0, 1]. The probability of a
jump is computed as

δp =
k∑

m=1
δtγm⟨Ψ(t)|L†

mLm|Ψ(t)⟩. (4.6)

If ϵ < δp, a jump operator Lm is applied with probability

Πm = δtγm⟨Ψ(t)|L†
mLm|Ψ(t)⟩

δp
, (4.7)

followed by normalization. Otherwise, the state is simply normalized to account for the dissi-
pative reduction in norm.
Note that the Strang splitting introduces a half-time-step lag between the unitary and dissi-
pative evolutions, which is only fully corrected when the final operator Fn[δt] is applied. To
address this and enable accurate sampling at each time-step, TJM employs a sampling (|Φ⟩),
initialized as |Φ(0)⟩ = F0[δt]|Ψ(0)⟩ and evolved iteratively via |Φ((j + 1)δt)⟩ = Fj[δt]|Φ(jδt)⟩.
The quantum state |Ψ(jδt)⟩ is then retrieved by applying Fn[δt] to the sampling MPS, ensuring
precise sampling while maintaining second-order accuracy.
For more detailed explanations about the implementation, please refer to the original article,
particularly sections III.A and III.B [3].

4.1.3 TJM Optimization
TJM utilizes TDVP for the unitary part of the evolution, while incorporating dissipation
and stochastic jump procedures to account for the non-unitary dynamics. The original pa-
per presents a Hybrid strategy that begins with 2TDVP until reaching a certain maximum
bond dimension, then switches to 1TDVP. In contrast, the GSE-TDVP strategy can enrich the
state with Krylov basis states throughout the simulation. This approach allows virtual bond
dimensions to grow to desired values at any stage of the evolution, eliminating the need for
2-site updates and state truncation. Consequently, it enables more stable bond growth, better
distribution of computational resources, exploration of larger bond dimensions, and ultimately
higher accuracy. Moreover, we extend TJM to the TTN framework. First, we validate that

56

TTNS can encode 2D states and operators, better than MPS, by benchmarking a solvable 3×3
lattice model. We then take this approach further by performing a large-scale simulation on an
8×8 lattice, demonstrating the scalability of the method on consumer-grade CPUs.

4.2 2D Transverse-Field Ising Dissipative Simulation
In this simulation, we explore the 2D transverse-field Ising model’s coherent dynamics—driven
by its Hamiltonian— supplemented by non-unitary evolution due to environmental interactions,
leading to dissipative processes, which causes its dynamics to deviate from purely unitary (co-
herent) evolution.

Hamiltonian. We consider the two-dimensional (2D) transverse-field Ising model on an M×M
square lattice:

Ĥ = −J
M−1∑
i=0

M−1∑
j=0

(
σ̂z(i,j)σ̂

z
(i+1,j) + σ̂z(i,j)σ̂

z
(i,j+1)

)
− g

M−1∑
i=0

M−1∑
j=0

σ̂x(i,j). (4.8)

The parameter J sets the strength of the nearest-neighbor coupling while g determines the
transverse field amplitude. Here, the indices i and j run from 0 to M − 1 with the site labels
starting from (i, j) = (0, 0).

Noise model. Here, the dissipative processes are introduced through set of single-site Lindblad
jump operators acting on every site (i, j) with uniform coupling factors.

• Relaxation Operator σ̂−
(i,j) with Coupling Strength γ−:

The operator σ̂−
(i,j) drives each site from its excited state (|1⟩) to its ground state (|0⟩).

This is analogous to spontaneous emission in atomic systems or spin-lattice relaxation in
magnetic materials. Physically, this process suppress quantum fluctuations (induced by
the transverse field) and pushing the system toward a more classical, ordered state.

• Dephasing Operator: σ̂z(i,j) with Coupling Strength γz:
The operator σ̂z(i,j) introduces phase randomization, disrupting the system’s quantum co-
herence without changing the populations of the computational basis states. This process
eliminates off-diagonal elements of the density matrix, reducing quantum superpositions
and localizing the system in the Z-basis.

The interplay between these dissipative mechanisms and the system’s coherent dynamics strikes
a balance where coherent quantum effects are partially preserved but steadily diminished by
environmental noise. This setup allows us to study how dissipation influences the emergence
of classical behavior and the modification of quantum critical points in a higher-dimensional
quantum system.

57

4.2.1 Experiment 1
TTN structures. In first experiment we compare the absolute error of snake-like and TTN
mappings on 3×3 lattice (M=3) which is the largest model we could obtain the exact result
with qutip.mesolve [103] package.

Parameters. The simulation parameters are summarized in Table 4.1.

Table 4.1: Simulation Parameters

Second-order 1TDVP Parameters

Coupling factors J = 1, g = 0.5

Initial state |ψ0⟩ =
M−1⊗
i=0

M−1⊗
j=0
|1⟩(i,j)

time_step δt = 0.1
final_time T = 10
TJM Parameters

Coupling factors γ− = 0.1, γz = 0.1
Number of trajectories N 200

Matrix Exponential Parameters

size_threshold 500
error_tol 1× 10−5

krylov_dim 6

GSE Parameters

Krylov space dimension m 6
Coefficient τ 0.1
svd_truncation_parameter χmax = +∞, ϵrel = 0.001, ϵtotal = −∞,
ϵrel 0.2
Acceptable range R (1, 10)
expansion_step 10
max_trials 10
increase_factor 0.08
decrease_factor 0.02
max_total_bond TTN : 40 , snake-like : 50

58

Results
CPU time. It takes 22 minumtes to run the both simulation.

Energy Error.
Defining discrete times are defined as

tm = mδt, m = 0, 1, . . . , n, with final time T = n δt.

Let ⟨Ĥ⟩approx(tm) and ⟨Ĥ⟩exact(tm) denote the approximate and exact energy expectation values
at the discrete times. We observe :

Figure 4.1: Absolute error of the energy expectation value for the snake-like and TTN mappings.

Computing Accumulated Energy Error (AEE) over the time interval [0, T],

AEE(T) =
n∑

m=0
|⟨E⟩approx(tm)− ⟨E⟩exact(tm)| . (4.9)

we get TEE(10) = 12.0 for the snake-like mapping and TEE(10) = 8.9 for the TTN mapping,
which confirms the overall accuracy of Spanning tree approach.
Local Errors. Let ⟨ˆ̂σx(i,j)⟩approx(tm) and ⟨ˆ̂σx(i,j)⟩exact(tm) be the approximate and exact expecta-
tion values of the Pauli X operator at site (i, j) at time tm. Then the Mean Accumulated Error
(MAE) up to time T

MAE(T) = 1
9

n∑
m=0

2∑
i=0

2∑
j=0

∣∣∣⟨ˆ̂σx(i,j)⟩approx(tm)− ⟨ˆ̂σx(i,j)⟩exact(tm)
∣∣∣ , (4.10)

captures the per-site absolute error summed over all sites at each time-step and then cumula-
tively over time.

Figure 4.2: Mean Accumulated Error of the Pauli X operator for the snake-like and TTN
mappings.

59

Bond Growth. For each trajectory r ∈ {1, . . . , N}, let χ(r)(tm) be the total bond dimension
at time tm.
Then the mean bond dimension at time tm is

χ̄(tm) = 1
N

N∑
r=1

χ(r)(tm), (4.11)

with standard deviation

σ̂χ(tm) =

√√√√ 1
N

N∑
r=1

(
χ(r)(tm)− χ̄(tm)

)2
. (4.12)

This plot displays the evolution of χ̄(t) over time along with a shaded region spanning from
χ̄(t)− σ̂χ(t) to χ̄(t) + σ̂χ(t), thereby capturing both the overall trend and the variability across
trajectories.

Figure 4.3: Mean total bond dimension over all trajectories for the snake-like and TTN mappins.

60

4.2.2 Experiment 2
TTN structures. In the second experiment, we simulate the same model on a larger 8×8
lattice (M = 8). In the first step, we perform the profiling described in Section 2.5.3 on 300
randomly generated spanning trees to identify the most efficient structures. Since, in TJM,
individual trajectories evolve independently, to better capture the true dynamics, we can add
another layer of randomness to the algorithm by letting the algorithm to randomly select
spanning tree for each trajectory. Therefore, we select the top 30 structures with the highest
scores (using weights α = 1, β = 1, γ = 1), construct their corresponding TTNOs, and, to
minimize computational cost, discard those with a total bond dimension exceeding 450.

(a) structure #4 (b) structure #5 (c) structure #12

(d) structure #14 (e) structure #22 (f) structure #23

Figure 4.4: Selected structures with the highest scores with corresponding TTNO bond dimen-
sion bellow 450.

61

Parameters. The simulation parameters are summarized in the following Table:

Table 4.2: Simulation Parameters

Second-order 1TDVP Parameters

Coupling factors J = 1, g = 0.5

Inittial state |ψ0⟩ =
M

2 −1⊗
i=0

M−1⊗
j=0
|1⟩(i,j)

⊗
M−1⊗
i= M

2

M−1⊗
j=0
|0⟩(i,j)

time_step δt = 0.1
final_time T = 10
TJM Parameters

Coupling factors γ− = 0.1, γz = 0.1
Number of trajectories N 300

Matrix Exponential Parameters

size_threshold 500
error_tol 1× 10−5

krylov_dim 6

GSE Parameters

Krylov space dimension m 6
Coefficient τ 0.1
svd_truncation_parameter χmax = +∞, ϵrel = 0.001, ϵtotal = −∞,
ϵtotal 10−15

Acceptable range R (10, 50)
expansion_step 12
max_trials 10
increase_factor 10
decrease_factor 20
max_total_bond 340

Remark. For larger lattices, working with total truncation ϵtotal instead of ϵrel in algorithm 7
proves more flexible, as it allows for expanding bond dimensions with finer resolution. Conse-
quently, the cutoff threshold introduced in Section 1.4.4, which is applied to diagonalized PRDM
singular values in Equation (3.11), is solely determined by ϵtotal. With this modification, the
GSE_increase algorithm 8 and GSE_decrease algorithm 9 require ϵtotal to be multiplied (in-
stead of summation) by increase_factor or divided by decrease_factor (instead of subtraction),
respectively.

Results
CPU time. With 16 GB of available RAM, a maximum of 3 concurrent processes can be used
to parallelize this computation, and it required approximately 800 minutes (≈ 2.6 minutes per
trajectory) to complete on a system equipped with an Intel Core i7-1065G7 processor operating
at a base frequency of 1.30 GHz.

62

Local spin expectation values. We illustrate the local σ̂z expectation values for each site
(i, j) at 5 differet time-step.

Figure 4.5: Local spin ⟨σ̂z(i,j)(tm)⟩ evolution for all sites, at m = {0, 25, 50, 75, 100} time steps,
and at two sides of domain wall separately.

Convergence. For each site (i, j) on the M×M lattice and each trajectory r ∈ {1, 2, . . . , N},
let σ̂z(i,j)(r, tm) represent the local σ̂z observable at time tm, as measured on trajectory r. Then
the final result is achieved by averaging over N trajectories.

⟨σ̂z(i,j)⟩N(tm) = 1
N

N∑
r=1
⟨σ̂z(i,j)⟩(r, tm). (4.13)

Since we have used 300 trajectories, for any chosen N ≤ 300, we compare ⟨σ̂z⟩N to the reference
average ⟨σ̂z⟩300. A convenient measure of their difference at time tm is the mean absolute
deviation over all sites:

D300
N (tm) = 1

M2

M−1∑
i=0

M−1∑
j=0

∣∣∣∣ ⟨σ̂z(i,j)⟩N(tm) − ⟨σ̂z(i,j)⟩300(tm)
∣∣∣∣. (4.14)

Figure 4.6: Distance D300
N (tm) plotted against time steps m = {0, 1, . . . , 100} for N = 300

trajectories.

63

As N increases, DN(tm) approaches zero, demonstrating that the local ⟨σ̂z⟩ measurements con-
verge to the reference solution at Nref = 300.
Bond Growth. In the following plots, we display the evolution of total virtual bond dimen-
sions.

(a) Total Bond Dimensions for each trajectory.
(b) Mean Total Bond Dimensions over all trajec-
tories.

Figure 4.7: Total Virtual Bond Dimension growths as GSE is applied every expansion_step =
12, until the max_total_bond = 340 is reached.

We observe that the total bond dimensions grow steadily over time within a fixed acceptable
range R = 50, until reaching a maximum value of 340. The mean total bond dimension over
all trajectories shows a similar trend, with a slight increase in variability as we each trajectory
randomly chose between 6 configurations.

64

Final Discussion and Outlook

As demonstrated in the final chapter, integrating the GSE algorithm into the TDVP, can
contribute to the scalability of TN algorithms that require tracking the real time dynamic of
system. This improvement could potentially extend to fermionic tensor networks and models
with a broader variety of geometries like honeycomb or triangular lattices.
Several potential optimizations could be explored in the future. For instance, in algorithm 4,
we execute GSE on every predefined intervals. This could be improved by making the interval
adaptive. One approach I investigated involves evolving both the original and expanded states
in parallel at each time step, then measuring the difference between a chosen observable of the
two states. If the convergence falls below a threshold, the original state is retained, and the
simulation proceeds to the next time step. Otherwise, the simulation steps back, expands the
state with less aggressive truncation, and repeats the process until convergence is achieved.
However, a fixed threshold turned out to not perform reliably across general cases. Alternative
strategies worth exploring include using entanglement-based measures or monitoring energy
conservation to determine the optimal point for bond expansion.
Another optimization to improve GSE efficiency involves leveraging the Lanczos method to
compute a specific number of eigenvalues. We attempted to shift from using a dynamic cutoff
threshold for truncating the full eigenvalue spectrum of the PRDM (3.11), to dynamically
determining the number of eigenvalues computed via the Lanczos method. However, finding a
dynamic adjustment for this number that in a way that ensures stable bond growth throughout
the evolution remains challenging and requires further investigation.
Moreover, It is worth mentioning that, we investigated the performance of TDVP on TTN
in three-legged TTN form, which was shown to be more efficient in DMRG calculation [104].
Motivated to overcome the bottleneck in local updates observed in 3.3.1, we assumed that
new bonds in this form could carry information from branching nodes, potentially achieving
the same accuracy with smaller matrix exponentials. However, further experiments revealed
that, in general cases, this approach does not offer a favorable trade-off due to the additional
computational cost of environment calculations introduced by adding new nodes.
Another approach we investigated, though unsuccessfully, was representing the density matrix
on a tree and using TDVP to directly simulate the Lindblad equation in its superoperator
formalism [105]. Although Completely Positive and Trace-Preserving (CPTP) condition was
satisfied, we noticed that, due to non-trivial distances between density matrices, the TDVP
projector becomes ineffective. Consequently, TDVP appears only suited for simulating pure
states [106].

65

Acknowledgements

As I sit down to write these words, I find myself reflecting on the winding path that brought
me to this moment—a path paved not just by my own efforts, but by the brilliance, generosity,
and quiet dedication of others. It’s a humbling thing, to stand on the shoulders of those who
see farther than I ever could alone.
I would like to begin by expressing my admiration for Professor Christian B. Mendl for his
visionary leadership in establishing and guiding the quantum computing group at the Technical
University of Munich and for bringing together a community of experts who push the boundaries
of research in this field. Although I did not have the privilege to work directly with him, his
efforts in assembling such a vibrant group made it possible for me to explore this area in a
supportive environment.
My deepest gratitude, though, belongs to Richard Milbradt. Richard, a PhD student in the
group, was my guide, my collaborator, my anchor through this process. There’s something
profound about someone who not only masters a field but opens it up for others to walk through.
Without his innovative work on PyTreeNet library—the very foundation of my work—which
provides essential tools and insights needed to navigate the complexities of tensor networks, this
achievement would not have been possible. Richard’s patience, his insights, and his willingness
to walk alongside me as I stumbled through this work made all the difference.
And then there’s Professor Elisa Ercolessi, my supervisor back at the University of Bologna.
Although she was not directly involved in the research itself, her feedbacks and assistance in
organizing this project helped keep me on track and navigate the chaos of organizing this project
as an exchange student far from home. I’m grateful for her trust and her support.
This thesis isn’t just a stack of pages or a collection of code—it’s a piece of me, shaped by the
people who gave me their time, their expertise, and their faith. To Professor Mendl, Richard,
and Professor Ercolessi: thank you. You’ve not only made this work possible, but you’ve
reminded me why we do this—why we chase the unknown, why we build, why we learn. It’s
about the pursuit, yes, but it’s also about the people we meet along the way.

66

Bibliography

[1] Jutho Haegeman, J. Ignacio Cirac, Tobias J. Osborne, Iztok Pižorn, Henri Verschelde, and
Frank Verstraete. Time-dependent variational principle for quantum lattices. Physical
Review Letters, 107(7), August 2011. ISSN 1079-7114. doi: 10.1103/physrevlett.107.
070601. URL http://dx.doi.org/10.1103/PhysRevLett.107.070601.

[2] Mingru Yang and Steven R. White. Time-dependent variational principle with ancillary
krylov subspace. Physical Review B, 102(9), September 2020. ISSN 2469-9969. doi: 10.
1103/physrevb.102.094315. URL http://dx.doi.org/10.1103/PhysRevB.102.094315.

[3] Aaron Sander, Maximilian Fröhlich, Martin Eigel, Jens Eisert, Patrick Gelß, Michael
Hintermüller, Richard M. Milbradt, Robert Wille, and Christian B. Mendl. Large-scale
stochastic simulation of open quantum systems, 2025. URL https://arxiv.org/abs/
2501.17913.

[4] Mari Carmen Bañuls. Tensor network algorithms: a route map. 2022. doi: 10.48550/
ARXIV.2205.10345. URL https://arxiv.org/abs/2205.10345.

[5] S. Montangero. Tensor network methods. pages 49–77, 2018. doi: 10.1007/
978-3-030-01409-4_5.

[6] Jacob Biamonte and Ville Bergholm. Tensor networks in a nutshell, 2017. URL https:
//arxiv.org/abs/1708.00006.

[7] J. C. Slater. A simplification of the hartree-fock method. Physical Review, 81(3):385–390,
February 1951. ISSN 0031-899X. doi: 10.1103/physrev.81.385. URL http://dx.doi.
org/10.1103/PhysRev.81.385.

[8] Erik Waltersson. Performance of many-body perturbation theory calculations on 2d
quantum dots. 2007.

[9] Carlos F. Bunge. Present Status of Selected Configuration Interaction With Truncation
Energy Error, pages 3–34. Elsevier, 2018. doi: 10.1016/bs.aiq.2017.05.001. URL http:
//dx.doi.org/10.1016/bs.aiq.2017.05.001.

[10] Nadia Salami and Aliasghar Shokri. Electronic structure of solids and molecules, pages
325–373. Elsevier, 2021. ISBN 9780128188064. doi: 10.1016/b978-0-12-818806-4.00002-4.
URL http://dx.doi.org/10.1016/B978-0-12-818806-4.00002-4.

[11] Masatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura. Metal-insulator transitions.
Reviews of Modern Physics, 70(4):1039–1263, October 1998. ISSN 1539-0756. doi: 10.
1103/revmodphys.70.1039. URL http://dx.doi.org/10.1103/RevModPhys.70.1039.

[12] Elbio Dagotto. Correlated electrons in high-temperature superconductors. Reviews of
Modern Physics, 66(3):763–840, July 1994. ISSN 1539-0756. doi: 10.1103/revmodphys.
66.763. URL http://dx.doi.org/10.1103/RevModPhys.66.763.

67

http://dx.doi.org/10.1103/PhysRevLett.107.070601
http://dx.doi.org/10.1103/PhysRevB.102.094315
https://arxiv.org/abs/2501.17913
https://arxiv.org/abs/2501.17913
https://arxiv.org/abs/2205.10345
https://arxiv.org/abs/1708.00006
https://arxiv.org/abs/1708.00006
http://dx.doi.org/10.1103/PhysRev.81.385
http://dx.doi.org/10.1103/PhysRev.81.385
http://dx.doi.org/10.1016/bs.aiq.2017.05.001
http://dx.doi.org/10.1016/bs.aiq.2017.05.001
http://dx.doi.org/10.1016/B978-0-12-818806-4.00002-4
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.66.763

[13] Leon Balents. Spin liquids in frustrated magnets. Nature, 464(7286):199–208, March
2010. ISSN 1476-4687. doi: 10.1038/nature08917. URL http://dx.doi.org/10.1038/
nature08917.

[14] Horst L. Stormer. Nobel lecture: The fractional quantum hall effect. Reviews of Modern
Physics, 71(4):875–889, July 1999. ISSN 1539-0756. doi: 10.1103/revmodphys.71.875.
URL http://dx.doi.org/10.1103/RevModPhys.71.875.

[15] Subir Sachdev. Quantum Phase Transitions. Cambridge University Press, January 2000.
ISBN 9780511622540. doi: 10.1017/cbo9780511622540. URL http://dx.doi.org/10.
1017/CBO9780511622540.

[16] Alexander Weiße and Holger Fehske. Exact Diagonalization Techniques, page 529–544.
Springer Berlin Heidelberg. ISBN 9783540746850. doi: 10.1007/978-3-540-74686-7_18.
URL http://dx.doi.org/10.1007/978-3-540-74686-7_18.

[17] Jaan Oitmaa, Chris Hamer, and Weihong Zheng. Series Expansion Methods for
Strongly Interacting Lattice Models. Cambridge University Press, April 2006. ISBN
9780521143592. doi: 10.1017/cbo9780511584398. URL http://dx.doi.org/10.1017/
cbo9780511584398.

[18] Benedikt Bruognolo. Tensor network techniques for strongly correlated systems: Simulat-
ing the quantum many-body wavefunction in zero, one, and two dimensions. PhD thesis,
Dissertation, July 6 2017.

[19] Emanuel Gull, Andrew J. Millis, Alexander I. Lichtenstein, Alexey N. Rubtsov, Matthias
Troyer, and Philipp Werner. Continuous-time monte carlo methods for quantum impurity
models. Reviews of Modern Physics, 83(2):349–404, May 2011. ISSN 1539-0756. doi:
10.1103/revmodphys.83.349. URL http://dx.doi.org/10.1103/RevModPhys.83.349.

[20] Matthias Troyer and Uwe-Jens Wiese. Computational complexity and fundamental lim-
itations to fermionic quantum monte carlo simulations. Physical Review Letters, 94
(17), May 2005. ISSN 1079-7114. doi: 10.1103/physrevlett.94.170201. URL http:
//dx.doi.org/10.1103/PhysRevLett.94.170201.

[21] J. Eisert. Entanglement and tensor network states. 2013. doi: 10.48550/ARXIV.1308.
3318. URL https://arxiv.org/abs/1308.3318.

[22] Álvaro M. Alhambra and J. Ignacio Cirac. Locally accurate tensor networks for thermal
states and time evolution. 2021. doi: 10.48550/ARXIV.2106.00710. URL https://
arxiv.org/abs/2106.00710.

[23] Xiangjian Qian, Jiale Huang, and Mingpu Qin. Augmenting finite temperature tensor
network with clifford circuits, 2024. URL https://arxiv.org/abs/2410.15709.

[24] Brian Swingle and Xiao-Gang Wen. Topological properties of tensor network states from
their local gauge and local symmetry structures, 2010. URL https://arxiv.org/abs/
1001.4517.

[25] J.P.F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz W. Bulik, Garnet Kin-Lic
Chan, Chia-Min Chung, Youjin Deng, Michel Ferrero, Thomas M. Henderson, Carlos A.
Jiménez-Hoyos, E. Kozik, Xuan-Wen Liu, Andrew J. Millis, N.V. Prokof’ev, Mingpu Qin,
Gustavo E. Scuseria, Hao Shi, B.V. Svistunov, Luca F. Tocchio, I.S. Tupitsyn, Steven R.
White, Shiwei Zhang, Bo-Xiao Zheng, Zhenyue Zhu, and Emanuel Gull. Solutions of the

68

http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1103/RevModPhys.71.875
http://dx.doi.org/10.1017/CBO9780511622540
http://dx.doi.org/10.1017/CBO9780511622540
http://dx.doi.org/10.1007/978-3-540-74686-7_18
http://dx.doi.org/10.1017/cbo9780511584398
http://dx.doi.org/10.1017/cbo9780511584398
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevLett.94.170201
http://dx.doi.org/10.1103/PhysRevLett.94.170201
https://arxiv.org/abs/1308.3318
https://arxiv.org/abs/2106.00710
https://arxiv.org/abs/2106.00710
https://arxiv.org/abs/2410.15709
https://arxiv.org/abs/1001.4517
https://arxiv.org/abs/1001.4517

two-dimensional hubbard model: Benchmarks and results from a wide range of numerical
algorithms. Physical Review X, 5(4), December 2015. ISSN 2160-3308. doi: 10.1103/
physrevx.5.041041. URL http://dx.doi.org/10.1103/PhysRevX.5.041041.

[26] Simone Montangero, Enrique Rico, and Pietro Silvi. Loop-free tensor networks for high-
energy physics. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 380(2216), December 2021. ISSN 1471-2962. doi: 10.1098/
rsta.2021.0065. URL http://dx.doi.org/10.1098/rsta.2021.0065.

[27] Ning Bao, Geoffrey Penington, Jonathan Sorce, and Aron C. Wall. Holographic tensor
networks in full ads/cft, 2019. URL https://arxiv.org/abs/1902.10157.

[28] Román Orús. Tensor networks for complex quantum systems. Nature Reviews Physics,
1(9):538–550, August 2019. ISSN 2522-5820. doi: 10.1038/s42254-019-0086-7. URL
http://dx.doi.org/10.1038/s42254-019-0086-7.

[29] E. Miles Stoudenmire and David J. Schwab. Supervised learning with quantum-inspired
tensor networks. 2016. doi: 10.48550/ARXIV.1605.05775. URL https://arxiv.org/
abs/1605.05775.

[30] Jinhui Wang, Chase Roberts, Guifre Vidal, and Stefan Leichenauer. Anomaly detection
with tensor networks, 2020. URL https://arxiv.org/abs/2006.02516.

[31] Raghavendra Selvan and Erik B Dam. Tensor networks for medical image classification,
2020. URL https://arxiv.org/abs/2004.10076.

[32] Samuel T Wauthier, Tim Verbelen, Bart Dhoedt, and Bram Vanhecke. Planning with
tensor networks based on active inference. Machine Learning: Science and Technology,
5(4):045012, October 2024. ISSN 2632-2153. doi: 10.1088/2632-2153/ad7571. URL
http://dx.doi.org/10.1088/2632-2153/ad7571.

[33] Ulrich Schollwöck. Simulations with matrix product states. In AIP Conference Proceed-
ings, pages 135–225. AIP, 2012. doi: 10.1063/1.4755823. URL http://dx.doi.org/10.
1063/1.4755823.

[34] Atsushi Iwaki and Chisa Hotta. Thermal pure quantum matrix product states: a simple
numerical protocol for finite temperature. Journal of Physics: Conference Series, 2207
(1):012031, March 2022. ISSN 1742-6596. doi: 10.1088/1742-6596/2207/1/012031. URL
http://dx.doi.org/10.1088/1742-6596/2207/1/012031.

[35] Angus J. Dunnett and Alex W. Chin. Matrix product state simulations of non-equilibrium
steady states and transient heat flows in the two-bath spin-boson model at finite temper-
atures. Entropy, 23(1):77, January 2021. ISSN 1099-4300. doi: 10.3390/e23010077. URL
http://dx.doi.org/10.3390/e23010077.

[36] Baptiste Anselme Martin, Thomas Ayral, François Jamet, Marko J. Rančić, and Pascal
Simon. Combining matrix product states and noisy quantum computers for quantum
simulation. Physical Review A, 109(6), June 2024. ISSN 2469-9934. doi: 10.1103/
physreva.109.062437. URL http://dx.doi.org/10.1103/physreva.109.062437.

[37] Regina Finsterhölzl, Manuel Katzer, Andreas Knorr, and Alexander Carmele. Using
matrix-product states for open quantum many-body systems: Efficient algorithms for
markovian and non-markovian time-evolution. Entropy, 22(9):984, September 2020. ISSN
1099-4300. doi: 10.3390/e22090984. URL http://dx.doi.org/10.3390/e22090984.

69

http://dx.doi.org/10.1103/PhysRevX.5.041041
http://dx.doi.org/10.1098/rsta.2021.0065
https://arxiv.org/abs/1902.10157
http://dx.doi.org/10.1038/s42254-019-0086-7
https://arxiv.org/abs/1605.05775
https://arxiv.org/abs/1605.05775
https://arxiv.org/abs/2006.02516
https://arxiv.org/abs/2004.10076
http://dx.doi.org/10.1088/2632-2153/ad7571
http://dx.doi.org/10.1063/1.4755823
http://dx.doi.org/10.1063/1.4755823
http://dx.doi.org/10.1088/1742-6596/2207/1/012031
http://dx.doi.org/10.3390/e23010077
http://dx.doi.org/10.1103/physreva.109.062437
http://dx.doi.org/10.3390/e22090984

[38] Yi Fan, Jie Liu, Zhenyu Li, and Jinlong Yang. Quantum circuit matrix product state
ansatz for large-scale simulations of molecules. Journal of Chemical Theory and Com-
putation, 19(16):5407–5417, July 2023. ISSN 1549-9626. doi: 10.1021/acs.jctc.3c00068.
URL http://dx.doi.org/10.1021/acs.jctc.3c00068.

[39] Kevin C. Smith, Abid Khan, Bryan K. Clark, S.M. Girvin, and Tzu-Chieh Wei. Constant-
depth preparation of matrix product states with adaptive quantum circuits. PRX Quan-
tum, 5(3), September 2024. ISSN 2691-3399. doi: 10.1103/prxquantum.5.030344. URL
http://dx.doi.org/10.1103/prxquantum.5.030344.

[40] Michael P. Zaletel, Roger S. K. Mong, Christoph Karrasch, Joel E. Moore, and Frank
Pollmann. Time-evolving a matrix product state with long-ranged interactions. Physical
Review B, 91(16), April 2015. ISSN 1550-235X. doi: 10.1103/physrevb.91.165112. URL
http://dx.doi.org/10.1103/PhysRevB.91.165112.

[41] F. Verstraete, V. Murg, and J.I. Cirac. Matrix product states, projected entan-
gled pair states, and variational renormalization group methods for quantum spin
systems. Advances in Physics, 57(2):143–224, March 2008. ISSN 1460-6976. doi:
10.1080/14789940801912366. URL http://dx.doi.org/10.1080/14789940801912366.

[42] Wen-Yuan Liu, Yi-Zhen Huang, Shou-Shu Gong, and Zheng-Cheng Gu. Accurate sim-
ulation for finite projected entangled pair states in two dimensions. Physical Review
B, 103(23), June 2021. ISSN 2469-9969. doi: 10.1103/physrevb.103.235155. URL
http://dx.doi.org/10.1103/PhysRevB.103.235155.

[43] Michael Lubasch, J Ignacio Cirac, and Mari-Carmen Bañuls. Unifying projected entan-
gled pair state contractions. New Journal of Physics, 16(3):033014, March 2014. ISSN
1367-2630. doi: 10.1088/1367-2630/16/3/033014. URL http://dx.doi.org/10.1088/
1367-2630/16/3/033014.

[44] Philippe Corboz. Variational optimization with infinite projected entangled-pair states.
Physical Review B, 94(3), July 2016. ISSN 2469-9969. doi: 10.1103/physrevb.94.035133.
URL http://dx.doi.org/10.1103/PhysRevB.94.035133.

[45] Xie-Hang Yu, J. Ignacio Cirac, Pavel Kos, and Georgios Styliaris. Dual-isometric pro-
jected entangled pair states. Physical Review Letters, 133(19), November 2024. ISSN
1079-7114. doi: 10.1103/physrevlett.133.190401. URL http://dx.doi.org/10.1103/
PhysRevLett.133.190401.

[46] G. Vidal. Class of quantum many-body states that can be efficiently simulated. Physical
Review Letters, 101(11), September 2008. ISSN 1079-7114. doi: 10.1103/physrevlett.101.
110501. URL http://dx.doi.org/10.1103/PhysRevLett.101.110501.

[47] Alexander Jahn and Jens Eisert. Holographic tensor network models and quantum error
correction: A topical review. 2021. doi: 10.48550/ARXIV.2102.02619. URL https:
//arxiv.org/abs/2102.02619.

[48] Y.-Y. Shi, L.-M. Duan, and G. Vidal. Classical simulation of quantum many-body systems
with a tree tensor network. Physical Review A, 74(2), August 2006. ISSN 1094-1622. doi:
10.1103/physreva.74.022320. URL http://dx.doi.org/10.1103/PhysRevA.74.022320.

[49] V. Murg, F. Verstraete, Ö. Legeza, and R. M. Noack. Simulating strongly correlated
quantum systems with tree tensor networks. Physical Review B, 82(20), November 2010.
ISSN 1550-235X. doi: 10.1103/physrevb.82.205105. URL http://dx.doi.org/10.1103/
PhysRevB.82.205105.

70

http://dx.doi.org/10.1021/acs.jctc.3c00068
http://dx.doi.org/10.1103/prxquantum.5.030344
http://dx.doi.org/10.1103/PhysRevB.91.165112
http://dx.doi.org/10.1080/14789940801912366
http://dx.doi.org/10.1103/PhysRevB.103.235155
http://dx.doi.org/10.1088/1367-2630/16/3/033014
http://dx.doi.org/10.1088/1367-2630/16/3/033014
http://dx.doi.org/10.1103/PhysRevB.94.035133
http://dx.doi.org/10.1103/PhysRevLett.133.190401
http://dx.doi.org/10.1103/PhysRevLett.133.190401
http://dx.doi.org/10.1103/PhysRevLett.101.110501
https://arxiv.org/abs/2102.02619
https://arxiv.org/abs/2102.02619
http://dx.doi.org/10.1103/PhysRevA.74.022320
http://dx.doi.org/10.1103/PhysRevB.82.205105
http://dx.doi.org/10.1103/PhysRevB.82.205105

[50] Naoki Nakatani and Garnet Kin-Lic Chan. Efficient tree tensor network states (ttns)
for quantum chemistry: Generalizations of the density matrix renormalization group
algorithm. 2013. doi: 10.48550/ARXIV.1302.2298. URL https://arxiv.org/abs/
1302.2298.

[51] Weitang Li, Jiajun Ren, Hengrui Yang, Haobin Wang, and Zhigang Shuai. Optimal tree
tensor network operators for tensor network simulations: Applications to open quantum
systems. The Journal of Chemical Physics, 161(5), August 2024. ISSN 1089-7690. doi:
10.1063/5.0218773. URL http://dx.doi.org/10.1063/5.0218773.

[52] V. Murg, F. Verstraete, R. Schneider, P. R. Nagy, and Ö. Legeza. Tree tensor network
state with variable tensor order: An efficient multireference method for strongly corre-
lated systems. Journal of Chemical Theory and Computation, 11(3):1027–1036, February
2015. ISSN 1549-9626. doi: 10.1021/ct501187j. URL http://dx.doi.org/10.1021/
ct501187j.

[53] P. Silvi, V. Giovannetti, S. Montangero, M. Rizzi, J. I. Cirac, and R. Fazio. Homogeneous
binary trees as ground states of quantum critical hamiltonians. Physical Review A, 81(6),
June 2010. ISSN 1094-1622. doi: 10.1103/physreva.81.062335. URL http://dx.doi.
org/10.1103/PhysRevA.81.062335.

[54] Alexander Kliesch and Robert König. Continuum limits of homogeneous binary trees and
the thompson group. Physical Review Letters, 124(1), January 2020. ISSN 1079-7114.
doi: 10.1103/physrevlett.124.010601. URL http://dx.doi.org/10.1103/PhysRevLett.
124.010601.

[55] Steven R. White. Density-matrix algorithms for quantum renormalization groups. Physi-
cal Review B, 48(14):10345–10356, October 1993. ISSN 1095-3795. doi: 10.1103/physrevb.
48.10345. URL http://dx.doi.org/10.1103/PhysRevB.48.10345.

[56] Gianluca Ceruti, Jonas Kusch, Christian Lubich, and Dominik Sulz. A parallel basis
update and galerkin integrator for tree tensor networks, 2024. URL https://arxiv.
org/abs/2412.00858.

[57] F. Fröwis, V. Nebendahl, and W. Dür. Tensor operators: Constructions and applications
for long-range interaction systems. Physical Review A, 81(6), June 2010. ISSN 1094-
1622. doi: 10.1103/physreva.81.062337. URL http://dx.doi.org/10.1103/PhysRevA.
81.062337.

[58] Jiajun Ren, Weitang Li, Tong Jiang, and Zhigang Shuai. A general automatic method
for optimal construction of matrix product operators using bipartite graph theory. The
Journal of Chemical Physics, 153(8), August 2020. ISSN 1089-7690. doi: 10.1063/5.
0018149. URL http://dx.doi.org/10.1063/5.0018149.

[59] C. Hubig, I. P. McCulloch, and U. Schollwöck. Generic construction of efficient matrix
product operators. Physical Review B, 95(3), January 2017. ISSN 2469-9969. doi: 10.
1103/physrevb.95.035129. URL http://dx.doi.org/10.1103/PhysRevB.95.035129.

[60] Garnet Kin-Lic Chan, Anna Keselman, Naoki Nakatani, Zhendong Li, and Steven R.
White. Matrix product operators, matrix product states, and ab initio density ma-
trix renormalization group algorithms. The Journal of Chemical Physics, 145(1), July
2016. ISSN 1089-7690. doi: 10.1063/1.4955108. URL http://dx.doi.org/10.1063/1.
4955108.

71

https://arxiv.org/abs/1302.2298
https://arxiv.org/abs/1302.2298
http://dx.doi.org/10.1063/5.0218773
http://dx.doi.org/10.1021/ct501187j
http://dx.doi.org/10.1021/ct501187j
http://dx.doi.org/10.1103/PhysRevA.81.062335
http://dx.doi.org/10.1103/PhysRevA.81.062335
http://dx.doi.org/10.1103/PhysRevLett.124.010601
http://dx.doi.org/10.1103/PhysRevLett.124.010601
http://dx.doi.org/10.1103/PhysRevB.48.10345
https://arxiv.org/abs/2412.00858
https://arxiv.org/abs/2412.00858
http://dx.doi.org/10.1103/PhysRevA.81.062337
http://dx.doi.org/10.1103/PhysRevA.81.062337
http://dx.doi.org/10.1063/5.0018149
http://dx.doi.org/10.1103/PhysRevB.95.035129
http://dx.doi.org/10.1063/1.4955108
http://dx.doi.org/10.1063/1.4955108

[61] Richard M. Milbradt, Qunsheng Huang, and Christian B. Mendl. State diagrams to
determine tree tensor network operators. SciPost Physics Core, 7(2), June 2024. ISSN
2666-9366. doi: 10.21468/scipostphyscore.7.2.036. URL http://dx.doi.org/10.21468/
SciPostPhysCore.7.2.036.

[62] Hazar undefinedakır, Richard M. Milbradt, and Christian B. Mendl. Optimal symbolic
construction of matrix product operators and tree tensor network operators, 2025. URL
https://arxiv.org/abs/2502.18630.

[63] Ian P McCulloch. From density-matrix renormalization group to matrix product states.
Journal of Statistical Mechanics: Theory and Experiment, 2007(10):P10014–P10014, Oc-
tober 2007. ISSN 1742-5468. doi: 10.1088/1742-5468/2007/10/p10014. URL http:
//dx.doi.org/10.1088/1742-5468/2007/10/P10014.

[64] Román Orús. A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Annals of Physics, 349:117–158, October 2014. ISSN
0003-4916. doi: 10.1016/j.aop.2014.06.013. URL http://dx.doi.org/10.1016/j.aop.
2014.06.013.

[65] Arturo Acuaviva, Visu Makam, Harold Nieuwboer, David Pérez-García, Friedrich Sittner,
Michael Walter, and Freek Witteveen. The minimal canonical form of a tensor network.
In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS),
page 328–362. IEEE, November 2023. doi: 10.1109/focs57990.2023.00027. URL http:
//dx.doi.org/10.1109/FOCS57990.2023.00027.

[66] Yifan Zhang and Edgar Solomonik. On stability of tensor networks and canonical forms,
2020. URL https://arxiv.org/abs/2001.01191.

[67] Peng-Fei Zhou, Ying Lu, Jia-Hao Wang, and Shi-Ju Ran. Tensor network efficiently
representing schmidt decomposition of quantum many-body states. Physical Review Let-
ters, 131(2), July 2023. ISSN 1079-7114. doi: 10.1103/physrevlett.131.020403. URL
http://dx.doi.org/10.1103/PhysRevLett.131.020403.

[68] F. Verstraete, J. I. Cirac, and V. Murg. Matrix product states, projected entangled pair
states, and variational renormalization group methods for quantum spin systems. 2009.
doi: 10.48550/ARXIV.0907.2796. URL https://arxiv.org/abs/0907.2796.

[69] G. Catarina and Bruno Murta. Density-matrix renormalization group: a pedagogi-
cal introduction. The European Physical Journal B, 96(8), August 2023. ISSN 1434-
6036. doi: 10.1140/epjb/s10051-023-00575-2. URL http://dx.doi.org/10.1140/epjb/
s10051-023-00575-2.

[70] Glen Evenbly. A practical guide to the numerical implementation of tensor networks i:
Contractions, decompositions and gauge freedom, 2022. URL https://arxiv.org/abs/
2202.02138.

[71] Mingpu Qin. Combination of tensor network states and green’s function monte carlo.
2020. doi: 10.48550/ARXIV.2006.15608. URL https://arxiv.org/abs/2006.15608.

[72] Xuanmin Cao, Qijun Hu, and Fan Zhong. Scaling theory of entanglement entropy in
confinements near quantum critical points. Physical Review B, 98(24), December 2018.
ISSN 2469-9969. doi: 10.1103/physrevb.98.245124. URL http://dx.doi.org/10.1103/
physrevb.98.245124.

72

http://dx.doi.org/10.21468/SciPostPhysCore.7.2.036
http://dx.doi.org/10.21468/SciPostPhysCore.7.2.036
https://arxiv.org/abs/2502.18630
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1088/1742-5468/2007/10/P10014
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1109/FOCS57990.2023.00027
http://dx.doi.org/10.1109/FOCS57990.2023.00027
https://arxiv.org/abs/2001.01191
http://dx.doi.org/10.1103/PhysRevLett.131.020403
https://arxiv.org/abs/0907.2796
http://dx.doi.org/10.1140/epjb/s10051-023-00575-2
http://dx.doi.org/10.1140/epjb/s10051-023-00575-2
https://arxiv.org/abs/2202.02138
https://arxiv.org/abs/2202.02138
https://arxiv.org/abs/2006.15608
http://dx.doi.org/10.1103/physrevb.98.245124
http://dx.doi.org/10.1103/physrevb.98.245124

[73] Javier Lopez-Piqueres, Brayden Ware, and Romain Vasseur. Mean-field entanglement
transitions in random tree tensor networks. 2020. doi: 10.48550/ARXIV.2003.01138.
URL https://arxiv.org/abs/2003.01138.

[74] Zhi-Cheng Yang, Yaodong Li, Matthew P. A. Fisher, and Xiao Chen. Entanglement phase
transitions in random stabilizer tensor networks. 2021. doi: 10.48550/ARXIV.2107.12376.
URL https://arxiv.org/abs/2107.12376.

[75] Hanchen Liu, Tianci Zhou, and Xiao Chen. Measurement induced entanglement transition
in two dimensional shallow circuit. 2022. doi: 10.48550/ARXIV.2203.07510. URL https:
//arxiv.org/abs/2203.07510.

[76] Philipp Seitz, Ismael Medina, Esther Cruz, Qunsheng Huang, and Christian B. Mendl.
Simulating quantum circuits using tree tensor networks. Quantum, 7:964, March 2023.
ISSN 2521-327X. doi: 10.22331/q-2023-03-30-964. URL http://dx.doi.org/10.22331/
q-2023-03-30-964.

[77] E. Jeckelmann, A. Cojuhovschi, M. Einhellinger, and M. Paech. Investigation of luttinger
liquids with dmrg and tebd methods(new development of numerical simulations in low-
dimensional quantum systems: From density matrix renormalization group to tensor
network formulations). 95:618–618, 2011.

[78] Hai bo Ma, Zhen Luo, and Yao Yao. The time-dependent density matrix renormalisation
group method. Molecular Physics, 116:854 – 868, 2018. doi: 10.1080/00268976.2017.
1406165.

[79] P. E. Dargel, A. Wöllert, A. Honecker, I. P. McCulloch, U. Schollwöck, and T. Pruschke.
Lanczos algorithm with matrix product states for dynamical correlation functions. Phys-
ical Review B, 85(20), May 2012. ISSN 1550-235X. doi: 10.1103/physrevb.85.205119.
URL http://dx.doi.org/10.1103/PhysRevB.85.205119.

[80] C. Lanczos. An iteration method for the solution of the eigenvalue problem of lin-
ear differential and integral operators. Journal of Research of the National Bureau of
Standards, 45(4):255, October 1950. ISSN 0091-0635. doi: 10.6028/jres.045.026. URL
http://dx.doi.org/10.6028/jres.045.026.

[81] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst, editors.
Templates for the solution of algebraic eigenvalue problems. Society for Industrial and
Applied Mathematics, January 2000.

[82] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Salvatore R. Manmana, Ulrich
Schollwöck, and Claudius Hubig. Time-evolution methods for matrix-product states.
Annals of Physics, 411:167998, December 2019. ISSN 0003-4916. doi: 10.1016/j.aop.
2019.167998. URL http://dx.doi.org/10.1016/j.aop.2019.167998.

[83] Christian Lubich, Ivan V. Oseledets, and Bart Vandereycken. Time integration of tensor
trains. SIAM Journal on Numerical Analysis, 53(2):917–941, January 2015. ISSN 1095-
7170. doi: 10.1137/140976546. URL http://dx.doi.org/10.1137/140976546.

[84] Jutho Haegeman, Christian Lubich, Ivan Oseledets, Bart Vandereycken, and Frank Ver-
straete. Unifying time evolution and optimization with matrix product states. Physical
Review B, 94(16), October 2016. ISSN 2469-9969. doi: 10.1103/physrevb.94.165116. URL
http://dx.doi.org/10.1103/PhysRevB.94.165116.

73

https://arxiv.org/abs/2003.01138
https://arxiv.org/abs/2107.12376
https://arxiv.org/abs/2203.07510
https://arxiv.org/abs/2203.07510
http://dx.doi.org/10.22331/q-2023-03-30-964
http://dx.doi.org/10.22331/q-2023-03-30-964
http://dx.doi.org/10.1103/PhysRevB.85.205119
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.1016/j.aop.2019.167998
http://dx.doi.org/10.1137/140976546
http://dx.doi.org/10.1103/PhysRevB.94.165116

[85] Daniel Bauernfeind and Markus Aichhorn. Time dependent variational principle for tree
tensor networks. SciPost Physics, 8(2), February 2020. ISSN 2542-4653. doi: 10.21468/
scipostphys.8.2.024. URL http://dx.doi.org/10.21468/SciPostPhys.8.2.024.

[86] Andreas Gleis, Jheng-Wei Li, and Jan von Delft. Projector formalism for kept and dis-
carded spaces of matrix product states. Physical Review B, 106(19), November 2022.
ISSN 2469-9969. doi: 10.1103/physrevb.106.195138. URL http://dx.doi.org/10.1103/
PhysRevB.106.195138.

[87] Toshiya Hikihara, Hiroshi Ueda, Kouichi Okunishi, Kenji Harada, and Tomotoshi Nishino.
Automatic structural optimization of tree tensor networks. 2022. doi: 10.48550/ARXIV.
2209.03196. URL https://arxiv.org/abs/2209.03196.

[88] Toshiya Hikihara, Hiroshi Ueda, Kouichi Okunishi, Kenji Harada, and Tomotoshi Nishino.
Visualization of entanglement geometry by structural optimization of tree tensor network,
2024. URL https://arxiv.org/abs/2401.16000.

[89] David Bruce Wilson. Generating random spanning trees more quickly than the cover time.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing -
STOC ’96, STOC ’96, page 296–303. ACM Press, 1996. doi: 10.1145/237814.237880.
URL http://dx.doi.org/10.1145/237814.237880.

[90] Steven R. White. Density matrix formulation for quantum renormalization groups. Phys-
ical Review Letters, 69(19):2863–2866, November 1992. ISSN 0031-9007. doi: 10.1103/
physrevlett.69.2863. URL http://dx.doi.org/10.1103/PhysRevLett.69.2863.

[91] U. Schollwöck. The density-matrix renormalization group. Reviews of Modern Physics,
77(1):259–315, April 2005. ISSN 1539-0756. doi: 10.1103/revmodphys.77.259. URL
http://dx.doi.org/10.1103/RevModPhys.77.259.

[92] Guifré Vidal. Efficient simulation of one-dimensional quantum many-body systems. Phys-
ical Review Letters, 93(4), July 2004. ISSN 1079-7114. doi: 10.1103/physrevlett.93.
040502. URL http://dx.doi.org/10.1103/PhysRevLett.93.040502.

[93] F. Verstraete, D. Porras, and J. I. Cirac. Density matrix renormalization group and
periodic boundary conditions: A quantum information perspective. Physical Review
Letters, 93(22), November 2004. ISSN 1079-7114. doi: 10.1103/physrevlett.93.227205.
URL http://dx.doi.org/10.1103/PhysRevLett.93.227205.

[94] F. Verstraete and J. I. Cirac. Matrix product states represent ground states faithfully.
Physical Review B, 73(9), March 2006. ISSN 1550-235X. doi: 10.1103/physrevb.73.
094423. URL http://dx.doi.org/10.1103/PhysRevB.73.094423.

[95] C. Hubig, I. P. McCulloch, U. Schollwöck, and F. A. Wolf. Strictly single-site dmrg
algorithm with subspace expansion. Physical Review B, 91(15), April 2015. ISSN 1550-
235X. doi: 10.1103/physrevb.91.155115. URL http://dx.doi.org/10.1103/PhysRevB.
91.155115.

[96] Richard M. Milbradt, Qunsheng Huang, and Christian B. Mendl. Pytreenet: A python
library for easy utilisation of tree tensor networks, 2024. URL https://arxiv.org/abs/
2407.13249.

74

http://dx.doi.org/10.21468/SciPostPhys.8.2.024
http://dx.doi.org/10.1103/PhysRevB.106.195138
http://dx.doi.org/10.1103/PhysRevB.106.195138
https://arxiv.org/abs/2209.03196
https://arxiv.org/abs/2401.16000
http://dx.doi.org/10.1145/237814.237880
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/RevModPhys.77.259
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.227205
http://dx.doi.org/10.1103/PhysRevB.73.094423
http://dx.doi.org/10.1103/PhysRevB.91.155115
http://dx.doi.org/10.1103/PhysRevB.91.155115
https://arxiv.org/abs/2407.13249
https://arxiv.org/abs/2407.13249

[97] Jutho Haegeman, Tobias J. Osborne, and Frank Verstraete. Post-matrix product state
methods: To tangent space and beyond. Physical Review B, 88(7), August 2013.
ISSN 1550-235X. doi: 10.1103/physrevb.88.075133. URL http://dx.doi.org/10.1103/
PhysRevB.88.075133.

[98] Roger B. Sidje. Expokit: a software package for computing matrix exponentials. ACM
Transactions on Mathematical Software, 24(1):130–156, March 1998. ISSN 1557-7295.
doi: 10.1145/285861.285868. URL http://dx.doi.org/10.1145/285861.285868.

[99] Subhasis Ghora, Tarakanta Nayak, Soumen Pal, and Pooja Phogat. Chebyshev’s method
for exponential maps, 2024. URL https://arxiv.org/abs/2411.11290.

[100] M. Arioli, B. Codenotti, and C. Fassino. The padé method for computing the ma-
trix exponential. Linear Algebra and its Applications, 240:111–130, June 1996. ISSN
0024-3795. doi: 10.1016/0024-3795(94)00190-1. URL http://dx.doi.org/10.1016/
0024-3795(94)00190-1.

[101] Daniel Manzano. A short introduction to the lindblad master equation. AIP Advances,
10(2), February 2020. ISSN 2158-3226. doi: 10.1063/1.5115323. URL http://dx.doi.
org/10.1063/1.5115323.

[102] Haggai Landa and Grégoire Misguich. Nonlocal correlations in noisy multiqubit systems
simulated using matrix product operators. SciPost Physics Core, 6(2), May 2023. ISSN
2666-9366. doi: 10.21468/scipostphyscore.6.2.037. URL http://dx.doi.org/10.21468/
SciPostPhysCore.6.2.037.

[103] QuTiP Developers. mesolve. https://qutip.org/docs/4.0.2/modules/qutip/
mesolve.html. QuTiP 4.0.2 Documentation.

[104] Klaas Gunst, Frank Verstraete, Sebastian Wouters, Örs Legeza, and Dimitri Van Neck.
T3ns: Three-legged tree tensor network states. Journal of Chemical Theory and Compu-
tation, 14(4):2026–2033, February 2018. ISSN 1549-9626. doi: 10.1021/acs.jctc.8b00098.
URL http://dx.doi.org/10.1021/acs.jctc.8b00098.

[105] Morag Am-Shallem, Amikam Levy, Ido Schaefer, and Ronnie Kosloff. Three approaches
for representing lindblad dynamics by a matrix-vector notation, 2015. URL https://
arxiv.org/abs/1510.08634.

[106] Christina V. Kraus and Tobias J. Osborne. Time-dependent variational principle for
dissipative dynamics. Physical Review A, 86(6), December 2012. ISSN 1094-1622. doi:
10.1103/physreva.86.062115. URL http://dx.doi.org/10.1103/PhysRevA.86.062115.

75

http://dx.doi.org/10.1103/PhysRevB.88.075133
http://dx.doi.org/10.1103/PhysRevB.88.075133
http://dx.doi.org/10.1145/285861.285868
https://arxiv.org/abs/2411.11290
http://dx.doi.org/10.1016/0024-3795(94)00190-1
http://dx.doi.org/10.1016/0024-3795(94)00190-1
http://dx.doi.org/10.1063/1.5115323
http://dx.doi.org/10.1063/1.5115323
http://dx.doi.org/10.21468/SciPostPhysCore.6.2.037
http://dx.doi.org/10.21468/SciPostPhysCore.6.2.037
https://qutip.org/docs/4.0.2/modules/qutip/mesolve.html
https://qutip.org/docs/4.0.2/modules/qutip/mesolve.html
http://dx.doi.org/10.1021/acs.jctc.8b00098
https://arxiv.org/abs/1510.08634
https://arxiv.org/abs/1510.08634
http://dx.doi.org/10.1103/PhysRevA.86.062115

	Abstract
	Contents
	Introduction
	Tree Tensor Networks (TTN)
	Tensor Network (TN) Methods
	Tree Tensor Networks (TTN)
	Tree Tensor Network State (TTNS) Ansatz
	Tree Tensor Network Operators (TTNO)

	TTN Operations
	Operator-State Contraction
	TTNO Summation
	Expectation Value

	Canonical Form
	1-Site Canonical Form
	QR Canonical Transformation
	SVD Canonical Transformation
	TTN Virtual Bond Truncation
	Bond Canonical Form

	Time Dependent Variational Principle (TDVP)
	Introduction
	Tangent Space Approach
	Projection onto the Tangent Space
	Local and Global Projectors

	TDVP algorithm
	From MPS to TTN
	General Rules for update path Construction
	Orthogonalization Path in TDVP

	Representation of Many-Body Wavefunctions on a Lattice
	Random Spanning Tree
	Measure TTNS Connectivity
	Profiling TTNS Configurations and Bottleneck Analysis
	Profiling on Random 6×6 Lattice
	Benchmark : Bose-Hubbard on 4x4 Lattice

	Global Subspace Expansion
	Local Subspace Expansion
	Global Subspace Expansion (GSE)
	GSE-TDVP Algorithm
	GSE-TDVP Optimizations

	Benchmark
	Tensor Jump Method (TJM)
	Overview
	Single Trajectory Evolution Steps
	TJM Optimization

	2D Transverse-Field Ising Dissipative Simulation
	Experiment 1
	Experiment 2

	Final Discussion and Outlook
	Acknowledgements
	Bibliography

