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Abstract
A map P is tensor stable positive (tsp) if P⊗n is positive for all n, and essential
tsp if it is not completely positive or completely co-positive. Are there essential
tsp maps? Here we prove that there exist essential tsp maps on the hypercom-
plex numbers. It follows that there exist bound entangled states with a negative
partial transpose (NPT) on the hypercomplex, that is, there exists NPT bound
entanglement in the halo of quantum states. We also prove that tensor stable
positivity on the matrix multiplication tensor is undecidable, and conjecture
that tensor stable positivity is undecidable. Proving this conjecture would imply
existence of essential tsp maps, and hence of NPT bound entangled states.

Keywords: positive maps, tensor stable positivity, bound entanglement,
undecidability, nonstandard numbers

(Some figures may appear in colour only in the online journal)

1. Introduction

Extremal rays of convex cones play a similar role to basis vectors in vector spaces, as they give
rise to a description of the cone in terms of positive (instead of linear) combinations thereof.
The simplest example of a convex cone is that of nonnegative numbers: it has one extremal
ray, which gives rise to the finite description x � 0. The situation for vectors is not much dif-
ferent: for vectors from Rn there is essentially only one notion of nonnegativity, namely that
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Figure 1. The set of positive maps with its subsets of n-tensor stable positive (tsp) maps.
Do there exist essential tsp maps, i.e. tsp maps that are neither completely positive nor
completely co-positive?

of nonnegative vectors (where every entry is nonnegative), and they form a convex set with
finitely many extreme rays—as many as the size of the vector. For matrices, instead, there are
two main notions of positivity: nonnegative matrices (i.e. matrices with nonnegative entries)
and positive semidefinite matrices (i.e. complex Hermitian matrices with nonnegative eigen-
values). The first is essentially equivalent to that of nonnegative vectors, in the sense that they
form a polyhedron whose extremal rays are the matrices Ei j with one element equal to 1 and
the rest to 0. The second one is fundamentally different: positive semidefinite matrices form a
convex set with infinitely many extreme rays. They are not only widely studied mathematically,
but also at the heart of quantum theory, as they are used to describe quantum states.

Given an object such as a matrix with a positivity property, it is natural to study maps that
preserve that property. The natural morphism for positive semidefinite matrices are positivity
preserving linear maps, simply called positive maps. In contrast to completely positive maps,
which admit an easy characterisation by Stinespring’s dilation theorem, positive maps are very
hard to describe, as they are related to entanglement detection [1, 2]. From a mathematical
perspective, positive maps preserve the cone of positive semidefinite matrices, but since this
cone does not admit a finite description, neither do the maps.

One natural composition operation for vector spaces is the tensor product ⊗. How does the
tensor product interact with the elements of the convex cones mentioned above? This is a very
rich problem, as the global positivity interacts with the local positivity in highly nontrivial ways
[3–5]. Here we consider the cone of positive maps, and study the interaction of its elements
with the tensor product ⊗. Specifically, we study which maps stay positive when taking the
tensor product with itself an arbitrary number of times. Namely, a map P is called tsp if all
its tensor powers are positive, i.e. P⊗n is positive for all n [6] (see also [7]). It is easy to see
that if P is completely positive, or completely positive followed by a transposition (called
completely co-positive), then it is tsp—these are the trivial tsp maps [6]. But do there exist
tsp maps beyond these trivial examples (figure 1)? In this paper, we call nontrivial tsp maps
essential tsp maps. So the central question is:

Q: Are there essential tsp maps?

This question is not only interesting mathematically, but is in fact intimately related to a
widely studied problem in quantum information theory. Namely, if there exist essential tsp
maps then there exist non-distillable quantum states with a negative partial transpose (NPT),
also called NPT bound entangled states [6]. The existence of NPT bound entanglement has
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Figure 2. Infinite elements ω and infinitesimal elements ε in the hyperreals are respec-
tively bigger and smaller than all real numbers.

Figure 3. There are essential tsp maps within the halo of the trivial tsp maps (theorem 5),
because the latter ‘glow’ in the hypercomplex. (Compare with figure 1.)

recently been highlighted as one of five important open problems in quantum information
theory [8] (see also [9–13]).

In this paper, we approach question Q from two angles. First, we show the existence of
essential tsp maps in the field of the hypercomplex numbers (theorem 5). A hypercomplex
number is of the form x + iy, where x and y are hyperreal numbers and i is the imaginary
unit, i2 = −1. The hyperreals are an extension of the reals in which there exist infinitesimal
and infinite elements, which are respectively smaller and bigger than any positive real number
(figure 2). Our result can be intuitively understood as follows: the hypercomplex form halos
around complex numbers, which ‘glow’ outside the set of trivial tsp maps, so there are essen-
tial tsp maps living in these halos (figures 3 and 4)3. We call the ‘quantum’ states defined on
the hypercomplex hyperquantum states, and show that there are NPT bound entangled hyper-
quantum states (corollary 9). In addition, we prove that essential tsp maps exist on the sequence
space �2 (theorem 36), yet with a very special notion of positivity.

The second angle concerns computational complexity, in particular undecidability. While
undecidability is well-established in computer science and mathematics, its importance in
physics and especially quantum information theory is being explored only recently (see e.g.

3 At the risk of sounding suspiciously close to quantum mystics, especially regarding the search for an essence in a
halo.
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Figure 4. How one can imagine a halo of the complex numbers (described by the
hypercomplex numbers), containing essential tsp maps. (Photo by Karen Kayser via
Unsplash).

[3, 14–18] for a sample). Here we show that deciding whether a map is tsp on a specific state,
namely the matrix multiplication (MaMu) tensor, is undecidable (theorem 15). The MaMu
tensor is defined as

|χn〉 =
d∑

i1,...,in=1

|i1, i2〉 ⊗ |i2, i3〉 ⊗ . . .⊗ |in, i1〉, (1)

where |i〉 denotes the ith vector from the canonical orthonormal basis, and |il, il+1〉 is shorthand
for |il〉 ⊗ |il+1〉. Our decision problem asks whether all tensor powers of a linear map P send
the MaMu tensor to a positive semidefinite matrix, namely:

Given d ∈ N and a linear map P : Md2 →Md2 , is P⊗n(|χn〉〈χn|) positive semidefinite
for all n?

We prove that this problem is undecidable.
This paper is structured as follows. In section 2 we present the basic notions on tensor stable

positivity and the hypercomplex field. In section 3 we prove the existence of essential tsp maps
on the hypercomplex field, and the existence of NPT bound entangled hyperquantum states.
In section 4 we prove the undecidability of tsp maps on the MaMu tensor. In section 5 we
conclude, provide an outlook and discuss the value of our results. In appendix A we give basic
properties of the hyperreals, and in appendix B we reformulate our results on �2.

2. Setting the stage

To set the stage we fix the notation (section 2.1), give basic properties of tensor stable positivity
(section 2.2) and of the hypercomplex field (section 2.3).
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2.1. Notation

We denote the computational basis of the Hilbert space Cd by |i〉.4 The transposition map with
respect to this basis is denoted θ(A) :=AT; if A is a d × d matrix, sometimes we emphasize the
dimension of the transposition map as θd.

The d × d identity matrix is denoted 𝟙d, and the set of all d-dimensional square matrices
with complex entries by Md . Whenever we consider matrices over a field or vector space V
different from the complex numbers C, this will be denoted Md(V).

We write |i, j〉, or |i j〉 when there is no ambiguity, as a shorthand for |i〉 ⊗ | j〉. Given a matrix
A ∈ Md1 ⊗Md2 with matrix elements given by 〈i j|A|kl〉, the partial transpose of the second
system, denoted ATB , is defined as

〈i j|ATB |kl〉 = 〈il|A|k j〉,

or equivalently

(∑
i

Xi ⊗ Yi

)TB

=
∑

i

Xi ⊗ YT
i .

Finally, the flip operator Fd : Cd ⊗ Cd → Cd ⊗ Cd acts as Fd|i j〉 = | ji〉.

2.2. Tensor stable positive maps

Here we define tsp maps. First recall that a Hermitian matrix A ∈ Md is positive semidefinite
(psd), denoted A � 0, if 〈v|A|v〉 � 0 for all vectors |v〉 ∈ Cd , and A is separable if it can be
expressed as A =

∑
i σi ⊗ τ i where all σi and τ i are psd.

For a linear map

P : Md1 →Md2 , (2)

we consider the following ways of preserving the positivity:

Definition 1 (Notions of positivity).

(a) P is positive, denoted P � 0, if it maps psd matrices to psd matrices.
(b) P is completely positive if idd ⊗ P � 0 for all d, where idd is the identity map on d × d

matrices.
(c) P is completely co-positive if P = θ ◦ S where θ is the transposition andS is a completely

positive map.

The set of positive, completely positive and completely co-positive maps is denoted POS,
CP and coCP, respectively.

Bear in mind that the dimensions d1, d2 are fixed, despite the fact that our notation for the
sets does not make it explicit.

For complete positivity (b), Choi’s theorem [19] says that the infinite set of conditions defin-
ing complete positivity (namely for all d ∈ N) is equivalent to a finite set conditions, namely

idd ⊗ P � 0 for all d � d1. (3)

4 In mathematics, this is the canonical basis, namely ei is a column vector containing a 1 in position i and 0 elsewhere.
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Every linear map P (2) can be decomposed as

P(X) =
r∑

i=1

Ai tr(BT
i X), (4)

where Bi ∈ Md1 are linearly independent, and so are Ai ∈ Md2 , so that r is the rank of the map
(i.e. the dimension of the image). There is a one-to-one correspondence between a linear map
P and its Choi matrix

CP := (P ⊗ idd1 )|Ω〉〈Ω| where |Ω〉 :=
1√
d1

d1∑
i=1

|ii〉,

where the latter is a maximally entangled state. In terms of the decomposition of (4),

CP =
1
d1

r∑
i=1

Ai ⊗ Bi ∈ Md2 ⊗Md1 . (5)

CP is block positive if

(〈a| ⊗ 〈b|)CP (|a〉 ⊗ |b〉) � 0

for all vectors |a〉 and |b〉. The following relations under the Choi–Jamiołkowski isomorphism
are well-known:

(a) P is positive iff CP is block positive.
(b) P is completely positive iff CP � 0.
(c) P is completely co-positive iff CTB

P � 0.
(d) P is entanglement breaking iff CP is separable.

Recall that CP is separable if CP =
∑r

i Ai ⊗ Bi with Ai, Bi � 0 ∀ i. Note also that if P is
positive, then CP is Hermitian and hence Ai and Bi in (4) can be chosen Hermitian too.

We are now ready to consider tensor products of positive maps [6]. The n-fold tensor power
of P is given by

P⊗n:M⊗n
d1

→M⊗n
d2

X ⊗ Y ⊗ . . .⊗ Z �→ P(X) ⊗ P(Y) ⊗ . . .⊗ P(Z)

and this extends to the entire vector space by the linearity of P . Since M⊗n
d

∼= Mdn , the map
P⊗n inherits the notion of positivity from P , namely P⊗n is positive if it maps psd matrices in
Mdn to psd matrices.

Definition 2 (Tensor stable positivity [6]). Let P : Md1 →Md2 be a linear map.

(a) P is n-tensor stable positive (n-tsp) if its n-fold tensor product is positive, i.e. P⊗n � 0.
The set of all such maps is denoted TSPn.

(b) P is tsp if it is n-tsp for all n. The set of all such maps is denoted TSP.

Note that an n-tsp map is also (n − 1)-tsp (see the proof of lemma 10). In addition, for
every n there exists an n-tsp map that is not completely positive or completely co-positive [6].
Together this shows that there is a nested structure (figure 1):
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POS = TSP1 ⊇ TSP2 ⊇ . . . ⊇
⋂

n

TSPn = TSP
Q(?)
= CP ∪ coCP.

It is easy to see that every completely positive and completely co-positive map is tsp—these
are the trivial tsp maps. The key question is whether there exist nontrivial, i.e. essential tsp
maps [6].

A quantum state ρ ∈ Md1 ⊗Md2 is distillable if there exists a sequence of maps that can
be performed with local operations and classical communication Λn such that

Λn(ρ⊗n) → |Ω〉〈Ω|,

and ρ is bound entangled if it is not distillable (and it is entangled). If ρ is entangled and has a
positive partial transpose (PPT), then it is bound entangled [9].

2.3. The hypercomplex field

Here we present the basic notions of the hyperreal and the hypercomplex field. For an
introduction to the topic we refer to [20].

As a general rule, all results from linear algebra (like eigenvalues, invertibility, determinants,
traces, etc) hold for any field, so in particular to the reals, the hyperreals, the complex and
the hypercomplex. As we will see, the notions of positivity of section 2.2 can be transferred
wholesale to the hyperreals and hypercomplex. This can be seen by applying linear algebra
techniques directly to these other fields, or by using the transfer principle (theorem 3).

The hyperreal field ∗R can be defined as the set of infinite sequences of real numbers mod-
ulo a certain equivalence relation ∗R = RN/ ∼ (see appendix A). We can embed any real
number a ∈ R into the hyperreals by identifying it with the equivalence class of the sequence
(a, a, a, a, . . .) ∈ RN. The hyperreals are in many ways similar to R but contain extra infinitesi-
mal and infinite elements (figure 2), arising for example from sequences that converge to 0 and
diverge, respectively. Every hyperreal b is surrounded by a set of elements that are infinitely
close to b with respect to R. The set of all such elements is called the halo of b. And con-
versely: every non-infinite hyperreal x is infinitesimally close to exactly one element a of the
real numbers, called the shadow (or standard part), denoted sh(x) = a.

The hypercomplex field ∗C is the complexification of the hyperreals [21],

∗C = ∗R + ∗Ri,

where i2 = −1. We denote the space of d × d matrices over ∗C by Md(∗C). A ‘quantum state’
on the hypercomplex field is described by a matrix M ∈ Md(∗C) which is Hermitian, positive
semidefinite (i.e. with nonnegative eigenvalues) and of trace 1. We call them hyperquantum
states:

Quantum state on the hypercomplex = hyperquantum state.

Some results in ∗R can be transferred to R, and vice versa. Transferring a non-infinite ele-
ment in the hyperreals to the reals means taking its shadow, and transferring a real a ∈ R
to the hyperreals means embedding it in ∗R. On the other hand, transferring a formula from
R to ∗R means taking its ∗-transform [20], which essentially amounts to replacing ∀ x ∈ R
by ∀ x ∈ ∗R, and the same for existential quantifiers. (This is so because the ∗-transforms of
relations =,>,<, �= remain the same.) The results that can be transferred from the reals to
the hyperreals and vice versa are those that can be expressed in first-order logic, that is, that

7
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involve quantifiers only over the domain of discourse, which is R and ∗R in our case, or C and
∗C later on:

Theorem 3 (Transfer principle [20]). An L-sentence φ is true if and only if its
∗-transform ∗φ is true.

The symbols+, ·, 0, 1, � define the so-called languageL of ordered rings. An L-sentence is
a formal statement that is written with quantifiers, these symbols and finitely many variables.
The fact that quantifiers run over the whole domain is the defining feature of first-order logic.

The transfer principle is proven for real closed fields, but it can easily be extended to
complex versions thereof by considering the real and imaginary parts.

All notions of positivity of section 2.2 apply to the hypercomplex too. In particular, for the
linear map

P : Md1(∗C) →Md2 (∗C), (6)

we will consider the same ways of preserving positivity as in definition 1. Note that Choi’s
theorem applies over ∗C because (3) can be transferred to C, or alternatively because the proof
of Choi’s theorem works over ∗C. The definition of tsp over the hypercomplex is identical to
definition 2.

3. Essential tsp maps in the hypercomplex field

Here we prove existence of essential tsp maps in the hypercomplex field (section 3.1) and exis-
tence of NPT bound entangled hyperquantum states (section 3.2). We then reprove existence
of essential tsp maps in the hypercomplex field with a geometric argument, and show other
geometric properties of the set of tsp maps (section 3.3).

3.1. Essential tsp maps on the hypercomplex

Here we prove the existence of essential tsp maps on the hypercomplex (theorem 5). To
this end, consider a linear map P whose Choi matrix CP ∈ Md1 ⊗Md2 has the following
properties (P):

(P1) CP is separable,
(P2) CP is rank deficient, and
(P3) The zero vector is the only product vector in the kernel of CP .

Then the following two statements are proven in [6]:

(a) (CP − ε𝟙)⊗n is block positive for any

ε ∈ [0, n
√
‖CP‖n

∞ + μn − ‖CP‖∞], (7)

where

μ = min{(〈ψ| ⊗ 〈φ|)CP (|ψ〉 ⊗ |φ〉) : |ψ〉 ∈ Cd1 , |φ〉 ∈ Cd2 , 〈ψ|ψ〉 = 〈φ|φ〉 = 1}

and ‖CP‖∞ denotes the operator norm, which is given by the maximal singular
value of CP .

(b) The matrices CP − ε𝟙 and CTB
P − ε𝟙 are not psd for any ε > 0.

Statement 1 says that for any n, there is an n-tsp map, and statement 2 shows that this n-tsp
map is essential. Together they imply the existence of an essential n-tsp map for every n.

8
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The following Choi matrix CP ∈ Md1 ⊗Md2 satisfies (P):

CP = (|11〉+ |22〉)(〈11|+ 〈22|) + |12〉〈12|+ |21〉〈21|+
∑

i>2 or j>2

|i j〉〈i j| (8)

for any d1, d2 > 2 [6]. For the construction of an essential tsp map on the hypercomplex, we
use the following property of the above statements:

Lemma 4 (First order logic). For fixed n ∈ N, statement 1 and statement 2 are first order
sentences in the language of ordered rings (using the entries of CP as coefficients).

Proof. For fixed n, d1 and d2, statement 1 is an expression where one quantifies over suf-
ficiently small ε. The upper bound for ε is determined by n, and for each of these ε, block
positivity of (CP − ε𝟙)⊗n can be expressed in terms of quantifiers over the field C. State-
ment 2 is also a first order logic statement, since one quantifies over ε and checks positive
semidefiniteness. �

We are now ready to present the first main result of this work:

Theorem 5 (Essential tsp maps on the hypercomplex—first main result). Let
η ∈ ∗R be a positive infinitesimal and P : Md1 →Md2 be a map whose Choi matrix CP
satisfies properties (P). Then the map

Pη : Md1 (∗C) →Md2(∗C) (9)

with Choi matrix

CPη = CP − η𝟙 (10)

is an essential tsp map on the hypercomplex.

Proof. By lemma 4, for a fixed n, statement 1 and statement 2 are sentences in first order
logic, so they can be transferred to the hypercomplex using the transfer principle (theorem 3).
For every n we choose εn equal to the upper bound of (7). Since every positive infinitesimal
η ∈ ∗R satisfies that η < εn for all n ∈ N, we conclude that the map of (9) whose Choi matrix
is given by (10) is n-tsp for all n. It is also essential, since η > 0 and thus both its Choi matrix
CPη and its partial transpose have at least one negative eigenvalue by statement 2. �

Note that this proof holds for any real closed field with infinitesimal elements (in particular,
it holds for ‘smaller’ extensions of the reals that also contain infinitesimals).

Note also that theorem 5 cannot be stated in first order logic, because to express tensor stable
positivity one needs to quantify over all N, which is not the domain of discourse. So it cannot
be transferred to the complex numbers.

Moreover, the example of an essential tsp map in the hypercomplex of theorem 5 becomes
a trivial tsp map in the complex numbers. Namely, the shadow of CPη is CP (because all
infinitesimals are sent to zero), which corresponds to a trivial tsp map, because of (P1).

The result of theorem 5 can also be intuitively understood as follows: over the hypercom-
plex, there are trivial tsp maps at the boundary of CP ∪ coCP that have essential tsp maps in
their halo (figure 3). When transferring back to the complex numbers, all infinitesimals are set
to zero and this halo disappears.

Finally, there exist essential tsp maps in �2, as we show in theorem 36 in appendix B. In
contrast to ∗C, �2 is a Hilbert space—yet not with our notion of positivity.

9
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3.2. NPT bound entangled hyperquantum states

Now we show that there exist NPT bound entangled hyperquantum states (corollary 9). We
start by defining entanglement distillation on ∗C.

Definition 6 (Entanglement distillation on ∗C). A hyperquantum state ρ is distillable
if its shadow sh(ρ) is distillable5.

By [6, theorem 4], if there exists an essential tsp map P : Md1 →Md2 , then there exist
NPT bound entangled states in Md1 ⊗Md1 and in Md2 ⊗Md2 . Moreover, the proof of
[6, theorem 4] is constructive and gives a recipe to transform an essential tsp map into an
NPT bound entangled state. Here we follow this recipe to construct an NPT bound entangled
hyperquantum state:

Example 7 (NPT bound entangled hyperquantum state). Consider the Choi matrix
CP defined in (8) for d1 = d2 = 3. Since it satisfies (P), the map CPη of (10) is essential tsp on
∗C for infinitesimal η > 0. Following the proof of [6, theorem 4] we obtain the matrix

A =

√
3
2

⎛
⎜⎜⎝

0 1 0
−1 0 0
0 0 0

⎞
⎟⎟⎠ ∈ M3(∗C)

and define a new Choi matrix D via a so-called local filtering operation,

D := (A† ⊗ 𝟙3)CPη (A ⊗ 𝟙3),

where † denotes complex conjugation and transposition. It is easy to verify that the partial
transpose is not positive, specifically

〈Ω|DT2 |Ω〉 < 0,

where |Ω〉 is the hypercomplex maximally entangled state of dimension 3.
We define the following hyperquantum state as the so-called U-twirl of D

ρ =
1

tr(D)

[(
tr(D)

8
− tr(DF3)

24

)
(𝟙3 ⊗ 𝟙3) −

(
tr(D)
24

− tr(DF3)
8

)
F3

]
(11)

resulting in

ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α− β
α −β

α −β
−β α

α− β
α −β

−β α
−β α

α− β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

5 The usual definition of distillability cannot be transferred to the hypercomplex numbers, because the definition
involves approximations by converging sequences, and, over the hypercomplex, only sequences that become constant
converge.
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where all unwritten entries are 0 and where we have defined

α =
1
8

(
1 +

η

9(1 − η)

)
and β =

1
8

(
1
3
+

η

3(1 − η)

)
. (13)

Recall that α, β, η and all matrix entries are hyperreal.
We claim that ρ of (12) is an NPT bound entangled hyperquantum state. First, it can be

easily checked that tr(ρ) = 1. Moreover, ρ is psd if η � 3
4 , which is the case here since it is a

positive infinitesimal. Furthermore ρ is NPT for

0 < η < 1, (14)

which is also the case. Since its shadow sh(ρ) is PPT (and is thus not distillable), ρ is an NPT
bound entangled hyperquantum state. �
Remark 8 (NPT bound entangled hyperquantum states via the transfer principle).
The conclusion of example 7 can be reached via the transfer principle (theorem 3). For real
η � 3

4 , ρ of (12) is psd. Transferring to the hyperreals, ρ is psd for hyperreal η � 3
4 , which

includes all positive infinitesimals. Furthermore, ρTB is not psd for η in the range (14), which
can be transferred as well and shows that ρ is NPT. When transferring back to C, the shadow
of η is 0, and we are left with a PPT state.

Example 7 shows that (figure 4):

Corollary 9 (NPT bound entangled hyperquantum state). There exist NPT bound
entangled hyperquantum states.

3.3. Geometry of tsp maps

Here we prove again the existence of essential tsp maps over ∗C by a geometric argument.
To this end, we first investigate the geometry of the subsets of POS in the complex and
hypercomplex (lemma 10).

For a real closed field R (such as R and ∗R), a semialgebraic set is a subset of Rn defined by
finitely many polynomial equations of the form p(x1, . . . , xn) � 0 and Boolean combinations
thereof. By the quantifier elimination theorem [22], a set defined by a first-order formula in the
language of ordered rings (possibly including quantifiers) is semialgebraic. We consider sets of
Hermitian matrices, which form a real vector space, where they are (potentially) semialgebraic:

Lemma 10 (Geometry of tsp maps). The following statements hold for C and ∗C:

(a) CP ∪ coCP is a semialgebraic set.
(b) TSPn is semialgebraic for every n.
(c) TSPn ⊇ TSPn+1 for all n ∈ N.

Each of these statements holds for a given, finite size. For example, CP is the set of
completely positive maps from Md1 →Md2 , for fixed d1, d2.

Proof. All arguments hold both for C and ∗C.

(a) The condition of being completely positive translates to the Choi matrix being psd, which
can be expressed as a finite set of inequalities in the matrix elements, namely that the
determinant of every principal minor is nonnegative (Sylvester’s criterion). Being com-
pletely co-positive translates to the partial transpose of the Choi matrix being psd, so
Sylvester’s criterion need only be applied to the partial transpose. Finally, the union of
two semialgebraic sets CP and coCP is semialgebraic by the definition of the latter.

11
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(b) For P ∈ TSPn, the Choi matrix CP⊗n is block positive, which is a semialgebraic condi-
tion on the entries of the Choi matrix (using quantifier elimination). Therefore, the set is
semialgebraic.

(c) First note that this holds trivially for the zero map. When a positive map P is not the zero
map, it can be shown that P(𝟙) �= 0. Consider now a nonzero map P ∈ TSP3 and a psd
matrix

∑
i Xi ⊗ Yi � 0. Then

(P ⊗ P ⊗ P)

(∑
i

Xi ⊗ Yi ⊗ 𝟙

)
=

(∑
i

P(Xi) ⊗ P(Yi)

)
⊗ P(𝟙) � 0,

because
∑

iXi ⊗ Yi ⊗ 𝟙 � 0. Since P(𝟙) � 0 and P(𝟙) �= 0, then
∑

iP(Xi) ⊗ P(Yi) � 0
and so P ∈ TSP2. This holds iteratively for any n. It follows that a map that is in TSPn is
also in TSPn−1, i.e. the sets have a nested structure. �

Over C, TSP is an intersection of infinitely many closed sets, and is therefore a closed set
itself. Yet, an infinite intersection of semialgebraic sets need not be semialgebraic, so it does
not follow from lemma 10(b) and (c) that TSP be semialgebraic. If TSP were not semialgebraic
then essential tsp maps would exist, because CP ∪ coCP is semialgebraic by lemma 10(a).

In the following, the set of tsp maps over C and ∗C is denoted TSP and TSP(∗C),
respectively.

Proposition 11 (Essential tsp maps on the hypercomplex—geometric version).
If TSP(∗C) is semialgebraic, then there exist essential tsp maps over C.

Proof. Assume TSP(∗C) is semialgebraic. In the hyperreals every countable cover of a
semialgebraic set has a finite subcover [22]. The set TSP(∗C) is a countable intersection of
semialgebraic sets (by lemma 10(c)),

TSP1 ⊇ TSP2 ⊇ . . . ⊇
∞⋂
n

TSPn = TSP.

This implies that TSPn(∗C) = TSP(∗C) for some n. But for each fixed k ∈ N,

TSPn(∗C) = TSPn+k(∗C)

is a statement that transfers to C by the transfer principle (theorem 3), implying that
TSPn = TSP. For every m there is an essential m-tsp map [6], so in particular this holds for
m = n. That is, there exist essential tsp maps over C. �

It follows that there are essential tsp maps on the hypercomplex:

Corollary 12 (Essential tsp maps on the hypercomplex—geometric version).
There exist essential tsp maps over ∗C.

Proof. From proposition 11 we conclude that at least one of the following statements is
true: there exist essential tsp maps over C and/or TSP(∗C) is not semialgebraic. If there exist
essential tsp maps over C, these maps can be embedded in ∗C, so there exist essential tsp
maps over ∗C. If on the other hand TSP(∗C) is not semialgebraic, then TSP(∗C) cannot be
CP(∗C) ∪ coCP(∗C), because the latter is semialgebraic. �

More on the geometry of tsp maps

12
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Here we examine the geometry of various subsets of the cone of positive linear maps. The
following results hold both over C and ∗C.

Proposition 13 (Convexity).

(a) Both CP and coCP are convex cones.
(b) CP ∩ coCP is a convex, non-empty cone.
(c) CP ∪ coCP is not convex.
(d) TSP is not convex.
(e) TSP is star convex with respect to every entanglement breaking map Q. This means that

the line segment from Q to any point in TSP is contained in TSP.

Note that an object shaped like a star (like a starfish) is star convex, but not convex. The set of
trivial tsp maps, that is, CP ∪ coCP, is star convex with respect to any point in the intersection,
as can be seen in figure 1.

Proof.

(a) Obvious.
(b) The intersection of convex cones is convex. Furthermore, the intersection is non-empty,

since every entanglement breaking map is both in CP and coCP.
(c) Define the map

γ : A �→ 1
2

(A + θ(A)).

We claim that γ is neither in CP nor in coCP. Since θ ◦ γ = γ, we only have to show that
γ /∈ CP. It is immediate to verify that (id ⊗ γ)(|Ω〉〈Ω|) � 0.

(d) It is easily checked that the map of (c) is not two-tsp.
(e) Recall that an entanglement breaking map Q ∈ CP ∩ coCP and admits a decomposition

of the form of (4) with all Ai, Bi � 0. We claim that

Q+ T ∈ TSP for everyT ∈ TSP.

By scaling these maps, this shows that every map on the line between T and Q is tsp, so
TSP is a star convex cone.

To prove the claim, start by noting that (T +Q)⊗n is a sum of maps of the form

T ⊗ . . .⊗ T︸ ︷︷ ︸
s

⊗Q⊗ . . .⊗Q︸ ︷︷ ︸
r

,

where s, r ∈ N with s + r = n, together with all permutations of the tensor factors. Applying
such a map to a psd input∑

i

X[1]
i ⊗ . . .⊗ X[s]

i ⊗ Y [1]
i ⊗ . . .⊗ Y [r]

i

yields

∑
j1,..., jr

T ⊗s

[∑
i

tr(BT
j1

Y [1]
i ) . . . tr(BT

jr Y
[r]
i )X[1]

i ⊗ . . .⊗ X[s]
i

]
⊗ A j1 ⊗ . . .⊗ A jr .

13
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Figure 5. Every tsp map T is of the form B − εQ, where B is a map at the boundary of
the set of completely positive maps and completely co-positive maps, CP ∪ coCP, and Q
is an entanglement breaking map. The set of entanglement breaking maps is colored light
blue. This follows from the star convexity of TSP with respect to the set of entanglement
breaking maps (proposition 13(e)). (Compare with figure 1).

The expression in square brackets is psd because all Bi’s are psd. Since T is tsp by assumption,
T ⊗s applied to the expression in square brackets is psd too. In addition, all Ai � 0 are psd by
assumption. This proves that Q+ T is tsp. �

Proposition 13(e) shows that TSP is connected, and even more, that if there is an essential
tsp map, it can be found by starting at the boundary of the trivial tsp maps and ‘walking’ a
small distance in the direction away from an entanglement breaking map Q. More precisely, it
will be of the form

B − εQ,

where B is on the boundary of the trivial tsp maps and ε > 0 (and is real). Taking Q as the
completely depolarizing map Q(X) = tr(X)𝟙, this is in fact where the examples of n-tsp maps
from [6] are found. Also, when ε is an infinitesimal in the hyperreals, the map B − εQ is in the
halo of B (figure 5).

4. Undecidability of a tensor stable positivity problem

Here we prove the second main result of this work (theorem 15). To this end, we start by
defining the decision problem. The main actress will be the MaMu state |χn〉 defined in (1)
[23–25], which is a collection of d-dimensional maximally entangled states shared between
n neighboring sites (figure 6). More precisely, the main actress will be the projector onto the
MaMu state:

χn := |χn〉〈χn|.

Problem 14 (tsp-mamu). Given d ∈ N and a linear map P : Md2 →Md2 whose Choi
matrix has entries in Q, is P⊗n(χn) � 0 for all n?

tsp-mamu is asking whether P⊗n maps χn to a psd matrix for all n (figure 6). Note that if
P is tsp the answer is yes, but if P is not tsp the answer could still be yes, because we are
only ‘testing’ P⊗n on a specific psd matrix, so P⊗n could fail to be positive on another psd
input—which is in fact the case (remark 19). The requirement that CP have rational entries
ensures that the input of the decision problem is finite. In fact, the following results also hold
for integer entries, since CP can be multiplied by a common multiple of the denominators.

14
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Figure 6. Tensor network representations of (a) the MaMu state |χn〉, (b) the n-fold ten-
sor product of a linear map P decomposed as in (4), and (c) P⊗n applied to the projector
on the MaMu state χn. tsp-mamu asks whether P⊗n(χn) is psd for all n.

Figure 7. The reduction from positive-mpo to tsp-mamu in tensor network diagrams.
(a) τ n(C), given by (15), is the central object in positive-mpo. (b) We ‘split’ the fat
horizontal index of C into two indices (16), and express the vertical indices with a delta
function (indicated with a dot). (c) We identify A with the delta function, and B with a
reshuffled C as given in (17). The diagram of (c) equals the diagram of (b), which equals
the diagram of (a), as given in (18).
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Since we will prove that tsp-mamu is undecidable, this will also hold for larger input sets, in
particular for maps whose Choi matrix has complex entries.

Theorem 15 (Undecidability of tsp-mamu—second main result). tsp-mamu is
undecidable, even if d = 3.

To prove this result, we provide a reduction from a problem about matrix product operators
(MPO) [3], where given a tensor C = (Cα,β

i ∈ Q), one considers the following object:

τn(C) :=
∑

i1,...,in

tr(Ci1Ci2 . . .Cin)|i1 . . . in〉〈i1 . . . in|. (15)

Problem 16 (Positive-mpo). Given s, t ∈ N and a tensor C = (Cα,β
i ∈ Q) where i ∈

{1, . . . , t} and α, β ∈ {1, . . . , s}, is τ n(C) � 0 for all n?

Theorem 17 (Undecidability of positive-mpo [3]). Positive-mpo is undecidable, even
if s = t = 7.

Proof of theorem 15. We provide a computable reduction from positive-mpo with s, t = 9
to tsp-mamu. If there would exist an algorithm to solve tsp-mamu, one could use it to
decide positive-mpo (via this reduction), but that contradicts theorem 17, so an algorithm for
tsp-mamu cannot exist.

Consider an instance of positive-mpo given by the tensor C = (Cα,β
i ) with (s, t) = (9, 9).

We want to show that this is a yes-instance iff its image (under the reduction) is a yes-instance
of tsp-mamu. So, from C, we construct a map P as follows (figure 7).

We choose d = 3, r = t and

Ai = |i〉〈i|.

Since α, β run to d2 = s, we can express each as a multiindex,

α = (μ, ν), β = (λ, ρ), (16)

where μ, ν,λ, ρ = 1, . . . , d, and we define the tensor B as

B(μ,λ),(ν,ρ)
i = C(μ,ν),(λ,ρ)

i . (17)

It is now immediate to see that

〈χn|(Bi1 ⊗ Bi2 ⊗ . . .⊗ Bin)|χn〉 = tr(Ci1Ci2 . . .Cin ).

Since the Choi matrix of the n-fold tensor product of P is given by

C⊗n
P =

r∑
i1,...,in=1

(Ai1 ⊗ . . .⊗ Ain) ⊗ (Bi1 ⊗ . . .⊗ Bin),

we obtain that

τn(C) = (𝟙⊗ 〈χn|)C⊗n
P (𝟙⊗ |χn〉).

16



J. Phys. A: Math. Theor. 55 (2022) 264006 M van der Eyden et al

In other words (or in other symbols):

τn(C) = P⊗n(χn). (18)

Since they are the same, the left-hand side is psd iff the right-hand side is psd (for every n),
which proves the reduction from positive-mpo to tsp-mamu. �

(Un)fortunately, this does not immediately imply undecidability of tsp:

Problem 18 (tsp). Given d ∈ N and a linear map P : Md →Md whose Choi matrix has
entries in Q, is P⊗n positive for all n?

Remark19 (tsp-mamu cannot be reduced to tsp in the obvious way). ‘The obvi-
ous way’ is the identity map—we show that the identity map from tsp-mamu to tsp is not
a reduction. There could exist another reduction, though.

A reduction maps yes-instances to yes-instances, and no-instances to no-instances. The fol-
lowing map P is a yes-instance of tsp-mamu and a no-instance of tsp. In decomposition of (4),
it is given by r = 1 and

A = 𝟙d2 , B = diag(−1, 0, . . . , 0, 2) ∈ Md2 .

P is not a positive map, because

P(|1〉〈1|) = −𝟙.

Yet,

P⊗n(χn) = 𝟙⊗n tr(Bn) = 𝟙⊗n[(−1)n + 2n]

which is psd for all n. �

A problem6 is recursively enumerable (r.e.) if it is recognised by a Turing machine, and
co-recursively enumerable (co-r.e.) if its complement is r.e. [26]. A problem is semidecidable
if it is r.e. or co-r.e., and decidable if it is r.e. and co-r.e. (that is, there is a Turing machine
that accepts all yes-instances and rejects all no-instances).

Remark 20 (Semidecidability of TSP). tsp is co-r.e., because the no-instances can be
recognised by a Turing machine (and we conjecture that the yes-instances cannot, cf conjecture
21). Starting from n = 1 and increasing in n, this Turing machine checks whetherP⊗n is a pos-
itive map. Checking positivity of the map is computable, because of the quantifier elimination
theorem. If a map P is not tsp, then there is an n ∈ N such that P⊗n is not positive, so the
algorithm will find it in finite time and reject the instance. If a map P is tsp, this algorithm will
not halt. �

Conjecture 21 (tsp is undecidable). tsp is not r.e.

If tsp were undecidable, essential tsp maps (over the complex) would exist. This is so
because checking whether a map is in CP or coCP is decidable, so if all tsp maps were trivial,
an algorithm to decide tsp would exist. More precisely, the undecidability of tsp would entail

(a) The existence of essential tsp maps,
(b) The existence of NPT bound entangled states, and

6 More precisely, the set of yes-instances of this problem, which defines a formal language.

17



J. Phys. A: Math. Theor. 55 (2022) 264006 M van der Eyden et al

(c) Disprove the PPT squared conjecture [27].

Yet, these implications are non-constructive, meaning that even if we know that essential tsp
maps exist, we may not be able to construct one. From a broader perspective, undecidability
would be a means to proving the existence of essential tsp maps, that is, it would be a proof
technique, and not an end in itself. This is already the case for the undecidability of positive-
mpo (theorem 17), which is a proof technique to conclude that certain purifications cannot
exist [3].

5. Conclusion and outlook

In this paper, we have approached the existence of essential tsp maps [6] from two angles.
First, we showed that essential tsp maps exist on the hypercomplex field (theorem 5) and on �2

C

(theorem 36), and that bound entangled hyperquantum states with a NPT exist (corollary 9).
Second, we proved the undecidability of the tensor stable positivity problem on MaMu tensors
(theorem 15).

One question overlooking this work is whether tensor stable positivity is undecidable
(conjecture 21), which is part of a bigger trend of exploring the scope of undecidability in
physics (see also [28]). Often, when a problem is undecidable, a bounded version thereof is
NP-complete—this is the case for the (bounded) halting problem, the (bounded) post corre-
spondence problem, the (bounded) tiling problem, the (bounded) matrix mortality problem,
and the (bounded) positive-mpo (problem 16) [16], to cite a few. A bounded version of tsp
could be NP-complete. We are currently investigating this direction.

How valuable is it to prove that essential tsp maps exist on the hypercomplex? There are
many investigations regarding the ‘border’ of quantum mechanics. For example, generalised
probabilistic theories try to single out quantum mechanics from a more general set of theo-
ries. Similarly, reconstructions of quantum mechanics aim at providing physically motivated
postulates for quantum mechanics [29]. The hypercomplex are not part of any ‘orthodox’
formulation of quantum mechanics (as far as we know), but this paper shows that some long-
standing problems (like the existence of NPT bound entanglement) become solvable there.
How reasonable is it to assume that our physical reality is in some way described by hyper-
complex numbers? Clearly, not very reasonable at all, but neither is the assumption that our
reality is described by objects requiring an infinite description, such as the reals or complex
(see the recent works [30–32]). On the other hand, recent work highlights the need of com-
plex numbers in quantum theory [33] (or more precisely, the need for numbers with a real and
an imaginary part), and when complex numbers were invented, who would have thought that
the square root of −1 would be of any use, let alone be necessary, for the formulation of a
fundamental theory of our world, namely quantum mechanics?

A downside of our result on essential tsp maps onMd(∗C) (theorem 5) is thatMd(∗C) is not
a Hilbert space7. For this reason we attempted to reformulate our result in �2

C
(appendix B), but

the notion of positivity there clashes with the existence of an inner product (proposition 38), so
the resulting space is not a Hilbert space either. So theorem 5 is not only challenging because
it uses an unorthodox field, namely ∗C, but also because the space where these positive maps
live is not a Hilbert space—so both aspects challenge the standard formulation of quantum
mechanics.

7 The notion of a Hilbert space is only defined over the real or complex numbers. One could relax this condition and
try to define a Hilbert space over ∗C, but would again run into the problem that over ∗C only constant sequences
converge. This problem arises when imposing completeness (with respect to the norm induced by the inner product),
which is one of the properties of a Hilbert space.
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How valuable is it to prove that a ‘physical’ problem (like tsp on MaMu) is undecidable? If
one disagrees with the use of infinities in physics, then all problems become decidable, because
undecidability requires an infinite number of instances8. Yet, the undecidability of tensor stable
positivity would be a non-constructive proof technique, as emphasized at the end of section 4.
In this respect, proving undecidability would be useful even if one distrusts objects involving
infinities—however, the very definition of tsp involves an infinity (namely for all n), so in this
case one would disregard the entire question and work.
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Appendix A. The hyperreals

Here we construct the hyperreals via the ultrapower construction and give an example of an
infinitesimal element in the field. This material is based on [20].

Consider the set RN of all sequences of real numbers. An element in this set is of the form
r = (r1, r2, r3, . . .), which we denote by (rn). Defining addition and multiplication entrywise,

r + s = (rn + sn : n ∈ N)

r · s = (rn · sn : n ∈ N),

we obtain that the set RN is a commutative ring. The real numbers can be included in RN by
assigning to a ∈ R the element (a, a, a, . . .). The zero element of the set is then (0, 0, 0, . . .)
and the unity (1, 1, 1, . . .). Finally, the additive inverse is given by −r = (−rn). Yet, (RN,+, ·)
is not a field, because there exist non-zero zero divisors such as

(1, 0, 1, 0, 1, 0, . . .) · (0, 1, 0, 1, 0, 1, . . .) = (0, 0, 0, . . .). (A.1)

To ‘fix’ this, and construct a field ∗R out of this ring, one of the previous elements needs to be
0 in ∗R. This is formalized by means of an ultrafilter F : two sequences are equivalent if the
indices for which they are equal form a ‘large’ subset of N, that is, these indices are in F .

Definition 22 (Ultrafilter). An ultrafilter F onN is a set of subsets ofN with the following
properties:

(a) It is closed under taking supersets: if X ∈ F and X ⊆ Y ⊆ N, then Y ∈ F .

8 This is ultimately due to the fundamental distinction between finite and infinite made in computer science and for-
mal systems, which seems irrelevant for physical quantities, since any number larger than, say, a googol, 10100, is
‘practically’ infinite.

19



J. Phys. A: Math. Theor. 55 (2022) 264006 M van der Eyden et al

(b) It is closed under intersections: if X, Y ∈ F , then X ∩ Y ∈ F .
(c) N ∈ F and ∅ /∈ F .
(d) For every subset X ∈ N, exactly one of X and N\X is in F .

An ultrafilter is called nonprincipal (or ‘free’) if it contains no finite subset of N, and there-
fore all cofinite subsets of N (see example 23 for an example of a principal and nonprincipal
ultrafilter). This type of ultrafilter will be used to construct the equivalence relation. It can be
proven that every infinite set has a nonprincipal ultrafilter on it.

Given a nonprincipal ultrafilter F on N, the equivalence relation ∼ on RN is defined as
follows:

(rn) ∼ (sn) ⇔ {n ∈ N : rn = sn} ∈ F .

In words, this relation says that two sequences are equivalent if they are the same on a large
set of indices obeying some nice conditions. The equivalence class [r] of a sequence r ∈ RN is
given by

[r] = {s ∈ RN : r ∼ s}.

The hyperreals ∗R are defined as the quotient set

∗R :=RN/ ∼= {[r] : r ∈ RN}.

The hyperreals ∗R together with addition ([r] + [s] = [(rn + sn)]), multiplication ([r] · [s] =
[(rn · sn)]) and the order relation

[r] < [s] iff {n ∈ N : rn < sn} ∈ F ,

is an ordered field.
In ∗R there are infinitesimal elements, that is, elements that are positive but smaller than all

positive real numbers. Their multiplicative inverses are infinitely large. Let us consider as an
example the sequence

ε =

(
1,

1
2

,
1
3

,
1
4

, . . .

)
=

(
1
n

)
.

The element [ε] ∈ ∗R is strictly positive, because

{n ∈ N :
1
n
> 0} = N ∈ F .

If r is any positive real number, then the set

{n ∈ N :
1
n
< r} ∈ F

is cofinite, since F is a nonprincipal ultrafilter. Therefore ε is a positive infinitesimal, that is, a
positive element that is smaller than all positive real numbers,

[(0, 0, . . .)] < [ε] < [(r, r, . . .)].
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On the other hand, given a diverging sequence

ω = (1, 2, 3, . . .),

[ω] is a positive infinite element. More generally, all equivalence classes of sequences that con-
verge to 0 are infinitesimal elements in ∗R, and all equivalence classes of diverging sequences
are infinite elements.

Example 23 (Ultrafilters on N).

(a) By fixing one natural number, say 5, one can define an ultrafilter as all subsets of the nat-
urals that contain the element 5. This ultrafilter is principal since it contains finite subsets
(the subset {5} and {5, 23} for example). If one would define ∗R by defining equiva-
lence classes of RN using this (principal) ultrafilter, the result will be exactly the usual
reals R, since any two elements a := (an), b := (bn) are identified whenever a5 = b5, so the
rest of the sequence can be ignored. This illustrates why it is crucial that the ultrafilter is
nonprincipal.

(b) It is not possible to write down an example of a nonprincipal ultrafilter, as it would require
to make use of the axiom of choice. On top of all cofinite subsets, one has to choose
for all possible ways to divide the natural numbers into two infinite sets which one is
in the ultrafilter, in a way that is consistent with the definition (regarding supersets and
intersections). For example, one has to choose which of the two alternating sequences in
(A.1) is identified with (0, 0, 0, . . .) and which one with (1, 1, 1 . . .).

�

Appendix B. Tensor stable positivity on �2

In this appendix we prove the existence of essential tsp maps on the sequence space �2
C

(theorem
36). �2

C
is the subspace of CN of all sequences (xn) with

∑∞
n=1|xn|2 < ∞, i.e. which are square

summable. We denote the corresponding subset with elements from R by �2.
We start by defining a notion of positivity in �2 (appendix B.1), then positive semidefinite

matrices over �2
C

(appendix B.2), positive linear maps and tsp maps on �2
C

(appendix B.3), and
finally prove the existence of essential tsp maps (appendix B.4). We also explore the existence
of an inner product on �2

C
(appendix B.5).

B.1. Positivity on �2

In order to define positivity on �2, we fix a nonprincipal ultrafilter F on N (definition 22) and
use it for all upcoming definitions.

Definition 24 (Positivity of elements in �2). Given an ultrafilter F , an element (xn) ∈
�2 is called �2-nonnegative, denoted (xn) � �2 0, if

{n : xn � 0} ∈ F .

Note that with this definition, �2-nonpositive (��2), �2-negative (<�2), �2-positive (>�2) are
also defined—for example,

a <�2 b if{n : an < bn} ∈ F .

Note also that it can happen that a ��2 b and b ��2 a even though a �= b, namely when they are
equal on an index set that is in the ultrafilter.
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This definition of positivity gives rise to a total order:

Lemma 25 (Ring ordering). The subset of �2-nonnegative elements,

T := {x ∈ �2 : x ��2 0},

defines a total ring-ordering on �2.

Proof. A total ordering T ⊂ R for a ring R without 1 has the following properties:

(a) T + T ⊆ T (a sum of nonnegative elements is positive),
(b) T · T ⊆ T (a product of nonnegative elements is nonnegative),
(c) R2 ⊆ T (all squares are nonnegative),
(d) T ∪ −T = R (the union of nonnegative and nonpositive elements form the total ring).
(e) T ∩ −T is a prime ideal.

It is easy to check that properties (1)–(4) are fulfilled. The ordering has a nontrivial support
T ∩ −T that consists of all elements (xn) ∈ �2 for which {n : xn = 0} ∈ F . To see that this set
is a prime ideal, consider two elements (an), (bn) ∈ �2 such that (an) · (bn) ∈ T ∩ −T, meaning
that

C := {n : anbn = 0} ∈ F .

Assume now, towards a contradiction, that both A := {n : an = 0} /∈ F and B := {n : bn = 0} /∈
F . Since F is an ultrafilter, we have that N\A ∈ F and N\B ∈ F , so

D := (N\A) ∩ (N\B) ∈ F ,

but then N\D = A ∪ B = C /∈ F , which is a contradiction. So either A or B are in F , showing
that F is a prime ideal. �

From now on we consider the complex sequences �2
C

. In fact we consider a tuple over �2
C

,
that is, an element of (�2

C
)d.

Definition 26 (Quasi-inner product). The quasi-inner product, denoted 〈·, ·〉seq, on
(�2

C
)d is a map

〈·, ·〉seq : (�2
C

)d × (�2
C

)d → �2,

where

〈a, b〉seq = (〈an, bn〉),

where the right-hand side uses the standard inner product on Cd entrywise.

Since the image of the quasi-inner product is not a field, this is not an inner product. It does
however satisfy the other properties of an inner product: it is linear (even �2-linear) in the first
argument, conjugate symmetric and positive definite, namely for �2

C
� a �= 0

〈a, a〉seq >�2 0.

Note that this differs from the standard inner product on �2 as a Hilbert space (definition 37).
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Figure B1. Matrices over �2 are equivalent to sequences of matrices, with a condition of
square-summability on the matrix elements.

B.2. Matrices on �2

We now define a notion of psd matrices over �2
C

.

Definition 27 (Psd over �2
C
). A matrix A ∈ Md(�2

C
) is called �2-psd, denoted A ��2 0, if

〈v, Av〉seq ��2 0

for all v ∈ (�2
C

)d.

Note that the symbol for �2-psd is ��2 whereas the symbol for �2-nonnegative is ��2 , in
analogy to psd matrices (�) and nonnegative numbers (�).

A matrix A ∈ Md(�2
C

) can be seen as a matrix with elements from �2
C

, or as a sequence of
matrices An with elements in C (obeying the square-summability condition; figure B1). One
can think of each An as a ‘layer’ of A.

Lemma 28 (Psd of layers). Given a matrix A := (An) ∈ Md(�2
C

), the following are
equivalent:

(a) A ��2 0.
(b) {n : An � 0} ∈ F .

Proof. We prove the contrapositive of (a)⇒ (b). Consider a matrix A := (An) ∈ Md(�2
C

) such
that {n : An � 0} /∈ F , and define the complement of this set as

X := {n : An � 0} ∈ F .

Then for all m ∈ X there is a wm ∈ Cd such that

〈wm, Amwm〉 < 0.

We now construct v = (vn) by setting vn :=wn for all n ∈ X and fill the rest of the entries
arbitrarily. To ensure that v ∈ (�2

C
)d, we rescale wn with a factor depending on n, such that the

�2 condition of square summability is satisfied, resulting a vector v ∈ (�2
C

)d for which

〈v, Av〉 <�2 0.

It follows that A is not �2-psd, namely A��2 0.
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(b)⇒ (a). Given a matrix A := (An) ∈ Md(�2
C

), define the set of entries whose layer is psd as

Y := {n : An � 0} ∈ F .

For every w = (wn) ∈ (�2
C

)d, define

Zw := {n : 〈wn, Anwn〉 � 0}

We know that for all such w, Zw ⊇ Y, since Zw considers a contraction with a specific element
w whereas Y considers a contraction with all elements, so Zw contains the indices of Y and
perhaps more. Since the ultrafilter is closed under supersets, it follows that Zw ∈ F for all such
w. Therefore, 〈w, Aw〉��2 0 for all w ∈ (�2

C
)d, that is, A ��2 0. �

B.3. Tensor stable positivity on �2
C

We now consider linear maps

P : Md(�2
C) →Md(�2

C).

As with matrices and vectors, we are interested in linear maps P that act ‘layerwise’, i.e.

P := (Pn) where Pn : Md(C) →Md(C). (B.1)

Not every map linear map acts layerwise, but exactly the �2
C

-linear maps (i.e. linear under
multiplication with elements from �2

C
) have this property.

The image of an �2
C

-linear map P is in Md(�2
C

) if P is uniformly bounded, meaning that
there exists a common bound on ‖Pn‖op for all n. Here the operator norm of a linear map
A : V → W is defined as usual

‖A‖op = inf{c � 0 : |Av| � c|v| ∀ v ∈ V}.

The uniformly bounded maps satisfying (B.1) are called uniformly bounded linear maps.
Let us now define �2-positivity of uniformly bounded linear maps.

Definition 29 (Positivity of uniformly bounded linear maps). A uniformly bounded
linear map P is positive, denoted P ��2 0, if it maps �2-psd matrices to �2-psd matrices, that is,

A ��2 0 ⇒ P(A) ��2 0.

Note that we again follow the convention of denoting the positivity of maps by ��2 , in
analogy with positive maps (�).

Lemma 30 (Positive maps under layers). Given a uniformly bounded linear map
P = (Pn) the following two statements are equivalent:

(a) P ��2 0.
(b) {n : Pn � 0} ∈ F .

The proof is analogous to that of lemma 28.
We now define a tensor product on �2 in the expected way.
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Definition 31 (Tensor product on �2). The tensor product on (�2
C

)d, denoted ⊗�2 , is the
bilinear map

⊗�2 : (�2
C)d × (�2

C)d → (�2
C)d2

,

where

(an)⊗�2 (bn) := (an ⊗ bn),

where the right-hand side uses the standard tensor product on Cd entrywise.

In order to define a notion of �2-positivity of linear maps on Md(�2
C

)⊗�2 Md(�2
C

) we use
the natural isomorphism

Md(�2
C)⊗�2 Md(�2

C) ∼= Md2 (�2
C).

This equivalence allows to use the �2-positivity from the right-hand side on the tensor products
on the left-hand side. Namely, a linear map is �2-positive if it maps the set of �2-psd matrices
in Md(�2

C
)⊗�2 Md(�2

C
) to itself. With this can define �2-tsp as one would expect:

Definition 32 (�2-tsp). Let P : Md(�2
C

) →Md(�2
C

) be a uniformly bounded linear map.

(a) P is �2–n-tsp if P⊗
�2 n is �2-positive.

(b) P is �2-tsp if P⊗
�2

n is �2-positive for all n ∈ N.

For the following we denote the identity map on Md(�2
C

) by idd, and the transposition
map by

θd : Md(�2
C

) →Md(�2
C

)

(An) �→ (AT
n ),

where T denotes the usual transposition on Md(C).
By Choi’s theorem, complete positivity of a map P : Md(C) →Md(C) is equivalent to

d-positivity of the map (section 2.2). We use this result to define �2-complete positivity.

Definition 33 (�2-completely (co)positive map). Let P : Md(�2
C

) →Md(�2
C

) be a uni-
formly bounded linear map.

(a) P is �2-completely positive if

P ⊗�2 idd ��2 0.

(b) P is �2-completely co-positive if P = θd ◦ S for some �2-completely positive map S.

Lemma 34 (�2-completely (co-)positivity under layers). Let P : Md(�2
C

) →Md(�2
C

)
be a uniformly bounded linear map. P is �2-completely (co-)positive if and only if

{n : Pn is completely (co−)positive} ∈ F .

Proof. This follows from the behavior of �2-tensor products and �2-positivity under the
layers. �

We call �2-completely positive and �2-completely co-positive maps trivial �2-tsp maps, and
those which are not trivial essential �2-tsp maps.
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Lemma 35 (Trivial �2-tsp maps). �2-completely positive and �2-completely co-positive
maps are �2-tsp.

Proof. By the behavior of �2-tensor products and �2-positivity, a map is �2-tsp if

{n : Pn is tsp} ∈ F .

Using lemma 34 and the fact that completely (co-)positive maps from Md(C) to Md(C) are
tsp, this concludes the proof. �

B.4. Existence of essential tsp on �2

Based on all definitions and results above, we now show that essential tsp maps exist over �2
C

.

Theorem 36 (Essential �2-tsp maps). There exist essential �2-tsp uniformly bounded
linear maps P : Md(�2

C
) →Md(�2

C
).

Proof. For every n there exist an essential n-tsp map Pn : Md(C) →Md(C) [6]. For every
n we fix such a map, and construct the uniformly bounded linear map

P = (Pn) : Md(�2
C

) →Md(�2
C

).

We may need to rescale every Pn by a constant factor to enforce the uniform boundedness
condition. By lemma 34 the map P is essential. By the definition of the �2-tensor product the
mth tensor power of this map is

P⊗
�2

m = (P⊗m
n ).

Moreover, for any m, P⊗m
n � 0 for all n � m. Therefore

{n : P⊗m
n � 0} ∈ F ∀m,

since this is a co-finite subset ofN. By the definition of �2-positivity of linear maps, we conclude
that P⊗

�2 m is positive for all m, and is therefore essential �2-tsp. �
Note that the construction heavily relies on our chosen notion of positivity, since we

specifically use the ultrafilter.

B.5. Inner product on �2

Following section 3, we explore the existence of NPT bound entangled states on �2, using the
fact that this space is an infinite dimensional Hilbert space. The standard inner product on �2

is defined as follows:

Definition 37 (Standard inner product). Given a, b ∈ �2
C

, the standard inner product,
denoted 〈, 〉st, is given by

〈a, b〉st =

∞∑
n=1

ānbn.

It is immediate to show that this inner product comes with a notion of positivity that does
not coincide with the positivity of the quasi-inner product 〈·, ·〉seq of definition 26. For example,
for the following elements in �2

u = (−1, 0, 0, 0 . . .), v = (1, 0, 0, 0, . . .)
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we have that 〈u, v〉st = −1, while

〈u, v〉seq = (−1, 0, 0, 0, . . .) ��2 0.

This is not only the case for the standard inner product, but any inner product on this space
will have the same problem:

Proposition 38 (Impossibility of inner product). There does not exist an inner prod-
uct 〈·, ·〉�2 : �2 × �2 → R such that

〈x, y〉�2 � 0 iff 〈x, y〉seq ��2 0

for all x, y ∈ �2.

Proof. An inner product must be linear in every component, conjugate symmetric and pos-
itive definite. We claim that for every inner product 〈·, ·〉�2 there are x, y ∈ �2 such that either
〈x, y〉�2 is positive and 〈x, y〉seq is not, or the other way around. Consider the following elements
in �2:

x = (1, 0, 0, 0, . . .), y = (0, y1, y2, y3, . . .)

with all yi ∈ R. The quasi-inner product between x + εy and x − εy for some ε ∈ R yields:

〈x + εy, x − εy〉seq = (x + εy) · (x − εy)

= x2 − ε2y2

= (1,−ε2y2
1,−ε2y2

2,−ε2y2
3, . . .) <�2 0. (B.2)

However, by linearity,

〈x + εy, x − εy〉�2 = 〈x, x〉�2 − ε2〈y, y〉�2 , (B.3)

and by positive definiteness, both 〈x, x〉�2 > 0 and 〈y, y〉�2 > 0. For small enough ε, (B.3) is
positive whereas (B.2) is negative. �

Since a suitable inner product fails to exist already for single elements in �2, there will
not exist a suitable matrix-inner product either. One can therefore not interpret terms like
tr(ρA) as the probability of obtaining an outcome of a quantum measurement for an observable
A ∈ M(�2

C
) and a quantum state ρ ∈ M(�2

C
).
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