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Abstract. We investigate a branching random walk with independent and identically distributed
heavy-tailed displacements. The offspring distribution is supercritical and satisfies the Kesten-
Stigum condition. Our focus is on the case where the displacement law does not belong to the
max-domain of attraction of an extreme value distribution. We demonstrate that when the tails of
the displacements are such that the absolute value of their logarithm is a slowly varying function,
the extremes of the process can still be effectively analyzed. Specifically, after applying a non-linear
transformation, the extremes of the branching random walk converge to a clustered Cox process.

1. Introduction

1.1. Model and main results. Consider a system of particles evolving on the real line R as follows.
Initially, the system consists of a single particle located at the origin 0 of R. At each discrete time
step n ∈ N = 1, 2, . . ., the particles present in the system reproduce independently according to a
given reproduction law. Each newly created particle is then shifted independently from its birth
position according to a fixed displacement distribution, represented by a generic random variable
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X. Let Vn ⊆ R denote the point process of the particle positions at time epoch n. The sequence
{Vn}n∈N forms a branching random walk (BRW). We denote the rightmost particle position by

Mn = maxVn.

Assuming that the underlying genealogical structure follows a supercritical Galton-Watson process,
we study the case of independent and identically distributed (iid) displacements, where the tail of
the displacement distribution is given by

P[X > t] = a(t)e−L(t), (1.1)

for t ∈ R, where a(·) is a bounded, measurable function such that a(t) → a > 0 as t → ∞. The
asymptotic behavior of both Vn and Mn depends on the asymptotic properties of L.

We recall that a function ℓ is slowly varying if

lim
t→∞

ℓ(ct)/ℓ(t) = 1 for any c > 0.

Additionally, we say that a function ℓ is superlogarithmic if

lim
t→∞

log t/ℓ(t) = 0,

and it is sublogarithmic if
lim
t→∞

ℓ(t) log t = 0.

Finally, the function ℓ is regularly varying with index r ∈ (0, 1) if

lim
t→∞

ℓ(ct)/ℓ(t) = cr, (1.2)

for any c > 0.

In this paper, we consider the case where L appearing in (1.1) is slowly varying. One of our results
shows that if the function L is superlogarithmic (a notable example being the lognormal distribution,
for which L(t) = (log t)2/2+log log t), then there exist subexponentially growing sequences {bn}n∈N
and {an}n∈N such that

(Mn − bn)/an

converges in law to a random shift of the Gumbel distribution, i.e., a distribution with a cumulative
distribution function (cdf) given by

x 7→ E
[
exp{−We−x}

]
, (1.3)

where W is a random variable representing the limit of a martingale associated with the underlying
Galton-Watson process. Here, and in what follows, a sequence of real numbers {xn}n∈N is said to
grow subexponentially if xne−εn → 0 for any ε > 0.

In the sublogarithmic case, the classical extreme value theory no longer applies. Note that this
condition implies that E[|X|ε] = ∞ for any positive ε > 0. However, Mn can still be analyzed under
a non-linear scale. As our main results show,

L(Mn)− n logm

converges in law to a distribution with a cumulative distribution function (cdf) given by (1.3).

As is often the case with heavy-tailed distributions, we are able to analyze not only the rightmost
position Mn but also the joint behavior of the rightmost extremes of the BRW Vn. Following the
classical approach (see Resnick (2008)), we formulate our main results in terms of point process
convergence on the right-point compactification of the real line.
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1.2. Historical background. Since the pioneering studies in the 1970s of Biggins (1976), Kingman
(1975), and Hammersley (1974), branching random walks (BRW) have become an active area of
research in probability theory. The BRW is a discrete-time analogue of branching Brownian motion
and is thus closely related to the Fisher-Kolmogorov-Petrovsky-Piskunov (FKPP) equation (see
Kolmogorov (1937); Fisher (1937); McKean (1975); Bovier (2017) for more details).

Beyond its natural interpretation as a model for population fitness, branching random walks are
also connected to fragmentation processes (see Kyprianou et al. (2017); Dadoun (2017)), Mandelbrot
cascade measures (see Liu (2000); Barral et al. (2014)), and the so-called smoothing transform (see
Alsmeyer et al. (2012)). The FKPP equation, in particular, arises in the study of the extremal
positions of the particles. For this reason, the position of the rightmost particle Mn has been one of
the central objects of probabilistic analysis in BRW. As one might expect, the asymptotic behavior
of Mn is closely tied to the asymptotic properties of the displacement distribution L given in (1.1).

In the classical light-tailed case, where the displacement distribution has finite exponential mo-
ments, Mn moves at a linear speed and, after an additional logarithmic correction, converges weakly
to a random shift of the Gumbel distribution (see Aïdékon (2013)). More precisely, assume that

lim inf
t→∞

L(t)/t > 0. (1.4)

Then, under some mild technical assumptions, there exist positive constants c1 and c2 such that

Mn − c1n− c2 log n

converges in distribution to a law with the cumulative distribution function given by

x 7→ E
[
exp{−D∞e−x}

]
,

where D∞ is the limit of the so-called derivative martingale associated with the BRW. For a self-
contained treatment, we refer to Shi (2015). Note that in this case, the local behavior of L affects
the limiting distribution.

In the heavy-tailed case, where the displacements have no finite exponential moments but possess
some finite power moments, one relies on extreme value theory to show that Mn grows faster than
linearly but at most exponentially, with a weak limit that is either a random shift of the Gumbel
law (see Dyszewski and Gantert (2022)) or the Fréchet law (see Durrett (1983)), depending on the
tails of the displacements. More precisely, if L in (1.1) is regularly varying with index r ∈ (0, 1),
then for some slowly varying functions ℓ1 and ℓ2,

(Mn − n1/rℓ1(n))/(n
1/r−1ℓ2(n))

converges in law to a distribution with a cumulative distribution function (1.3).

The case where L grows logarithmically essentially reduces to steps with regularly varying tails.
If we assume, for simplicity, that L(t) = α log t for some α > 0, then

m−n/αMn

converges in law to a random shift of a Fréchet distribution (Durrett, 1983), which is a distribution
with a cumulative distribution function (cdf) given by

x 7→ E
[
exp{−Wx−α}

]
,

where, as before, W is the martingale limit associated with the underlying Galton-Watson process.
Here, and in what follows m > 1 denotes the mean of the reproduction law.

1.3. Organisation of the paper. The article is organized as follows. In Section 2, we introduce
the main terms and notations. Section 3 presents the precise statements of our main results,
Theorem 3.2 and Theorem 3.6. Section 4 provides estimates for random walks, which are used in
the proofs presented in Section 5.
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2. Preliminaries

To state our main results precisely, we first introduce some basic notations, assumptions, and
facts. Throughout the article, we write f(t) = o(g(t)) for functions f, g : R → R if f(t)/g(t) → 0 as
t → ∞. We also use c to denote a generic constant whose specific value is unimportant. Note that
the actual value of c may change from line to line.

One of our standing assumptions is that the genealogical structure is independent of the displace-
ments, and thus we introduce both components separately.

2.1. Galton-Watson process. We begin with the underlying Galton-Watson process, which we in-
troduce by explicitly describing the corresponding random tree. Let U = {∅} ∪

⋃∞
k=1 Zk

+, where
Z+ = {1, 2, . . .} is the set of all possible labels. For x, y ∈ U, we write x ≤ y if y|k = x for some
k ≥ 1, and we define |x| = n if x ∈ Zn

+. Additionally, for x ∈ U, we write x0 = ∅ and xk for the
projection of x onto the kth coordinate for k ≤ |x|.

Consider a family {N(x) : x ∈ U} of iid random variables taking values in Z+∪{0}. We interpret
N(x) as the number of children of the particle labeled by x ∈ U. The aforementioned random tree
is defined as

T = {x ∈ U : xk ≤ N(xk−1) for all 1 ≤ k ≤ |x|} .
The tree T can be given a structure by placing an edge between any two vertices x, y ∈ T such that
y = (x, k) with k ≤ N(x).

Note that T is the genealogical tree corresponding to the Galton-Watson process

Zn = #Tn, Tn = {x ∈ T : |x| = n},

and that Z1 = N(∅). In what follows, we impose conditions on Z1 that allow us to control the
growth of the process {Zn}n∈N.

Assumption 2.1. We assume that the Galton-Watson process {Zn}n∈N is supercritical, i.e., E[Z1] =
m ∈ (1,∞). Furthermore, we assume that E[Z1 log

+(Z1)] < ∞.

The first condition ensures that the process {Zn}n∈N survives with positive probability. More
precisely, we have

P[Zn ≥ 1, ∀n ≥ 1] > 0.

Since our considerations become void when the population dies out, we can restrict our analysis to
the event of survival and work under the conditional probability

P∗[ · ] = P[ · | Zn ≥ 1,∀n ≥ 1].

While our main results can be recast under P∗, it is more convenient to work with P in the proofs.
The second condition in Assumption 2.1 ensures the strict exponential growth of Zn. To describe

this precisely, note that the sequence {m−nZn}n∈N forms a non-negative P-martingale and therefore
converges to

lim
n→∞

m−nZn = W P− a.s. (2.1)

It turns out that, under Assumption 2.1, P∗[W > 0] = 1, and the above convergence occurs in L1(P)
(see Athreya and Ney (1972, Theorem I.10.1)). The distribution of the limiting random variable
W exhibits self-similarity, which translates to an analogous property for the limiting measure of
{Vn}n∈N.

For x ∈ T1, let Zn(x) = #{y ∈ T : y ≥ x, |y| = n+ |x|}. Conditioned on x ∈ T1, the sequence
{Zn(x)}n∈N is distributed as {Zn}n∈N, and thus

lim
n→∞

m−nZn(x) = Wx P− a.s.
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Using Zn =
∑

|x|=1 Zn−1(x), we infer that

W =
1

m

∑
|x|=1

Wx. (2.2)

The key feature of this formula is that the Wx’s are iid copies of W , independent of the length of
the sum, N = Z1 = #T1. The random variable W serves as a shift parameter in the directing
measure for the limit of Vn.

2.2. Displacements and related point process Vn. We now turn our attention to the displacements in
our model. Consider a family {Xy : y ∈ U \{∅}} of iid random variables, where each Xy represents
the shift of particle y from its place of birth. Thus, the position V (x) of the particle x ∈ T can be
expressed as

V (x) =
∑

y∈(∅,x]

Xy,

where (∅, x] = {y ∈ T : y ≤ x, y ̸= ∅}. The position of the rightmost particle

Mn = max
|x|=n

V (x) (2.3)

is the maximum of Zn dependent random walks with step distribution X.
To analyze different order statistics of {V (x)}|x|=n, we study the point process

Vn =
∑
|x|=n

δV (x).

In what follows, Vn is treated as a random element of the space of non-negative Radon measures
(see Chapter 3 in Resnick (2008) and Section 6.1.3 in Resnick (2007)). Let R = (−∞,∞] be a
homomorphic image of (0, 1], and denote by M(R) the space of measures on R that charge finite
mass to each compact subset of R.

Let C+
c (R) denote the space of non-negative bounded continuous functions with compact support.

We say that a sequence of point measures {νn}n∈N converges vaguely to a measure ν on R if

lim
n→∞

νn(f) = ν(f)

for all f ∈ C+
c (R), where ν(f) =

∫
f dν. By Resnick (2008, Proposition 3.17), M(R) equipped with

the vague topology is a Polish space.
In this paper we study the weak convergence of Vn as a random element of M(R). We recall that

measures Θn converges weakly to Θ in M(R) if

E(Θn(f)) = E
(∫

f(x)Θn(dx)
)
→ E(Θ(f)) = E

(∫
f(x)Θ(dx)

)
for all bounded continuous real valued functions f on M(R). We shall use ⇒ to denote weak
convergence of random elements. Moreover, a sequence of point processes Θn converges weakly to
Θ in M(R) if and only if

lim
n→∞

E[exp{−Θn(f)}] = E[exp{−Θ(f)}]

for all f ∈ C+
c (R) (see Resnick (2008, Proposition 3.19)). We shall use Laplace functionals to obtain

the weak limit of Vn.
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2.3. Scaling and a randomly shifted decorated Poisson process. Aiming to provide centring and
scaling for Vn we define the shift and scaling for point measures as follows. For ν ∈ M(R) given via
ν =

∑
i δxi let the the shift by x ∈ R and scaling by y > 0 be defined as

Txν =
∑
i

δxi+x, Syν =
∑
i

δyxi .

We will find sequences {an}n∈N and {bn}n∈N such that

Sa−1
n
T−bnVn =

∑
|x|=n

δ(V (x)−bn)/an (2.4)

converges weakly in M(R) to a non-trivial limit V. By the choice of the space, this provides a
description of the positions of the particles in the n−th generation in the vicinity of the rightmost
one.

To describe this limit we need the following definition of a randomly shifted decorated Poisson
process (SDPPP) from Subag and Zeitouni (2015).

Definition 2.2. A point process Θ is called a randomly shifted decorated Poisson process if there
exists a Radon measure µ, a point process Λ and a random variable S such that

Θ =
∑
k

Tξk+SΛk,

where
∑

k δξk is a Poisson point process with intensity µ, {Λk}k∈N are iid copies of Λ such that∑
k δξk , {Λk}k∈N and S are independent. In this case one writes Θ ∼ SDPPP(µ,Λ, S).

To provide a detailed description of the limit let {Ak}k∈N be a collection of iid random variables
distributed as

P[Ak = j] =
1

v

∞∑
l=0

m−lP[Zl = j], j ∈ N,

where v is the normalising constant

v =
∞∑
l=0

m−lP[Zl > 0]. (2.5)

Let {ℓk}k be a Poisson point process on R with intensity e−xdx. Our limiting process V of (2.4)
can be written as

V =
∑
k

Akδℓk−log(vW ). (2.6)

Note that V is SDPPP(e−xdx,A1δ0, log(vW )). Moreover V is a cluster Cox process with Laplace
functional given via

f 7→ E

[
exp

{
−

∞∑
l=0

m−lW

∫ (
1− e−f(x)Zl

)
e−xdx

}]
for measurable f : R → [0,+∞).

3. Main results

3.1. Statements. To provide the normalization for Vn, we need to introduce the conditions imposed
on the step distribution. We work in two cases namely sub- and sup-logarithmic regimes. We begin
with the latter, since in this case the classical extreme value theory applies. As we will see later, in
the latter case, extreme value theory does not apply.
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Assumption 3.1. We assume that the random variable X has a distribution of the form

P[X > t] = a(t)e−L(t), t ∈ R,
where a(t) → a > 0, L(·) is C2 function such that L′ is slowly varying and

lim
x→∞

L′′(x)

L′(x)2
= 0, lim

x→∞

L(x)

xL′(x)
√
log log(L(x))

= ∞ (3.1)

and the function x 7→ x−1/3L(x) is eventually decreasing, that is, there exists x0 such that
x
−1/3
1 L(x1) ≤ x

−1/3
2 L(x2) for all x1 ≤ x2 such that x1 ≥ x0. Assume moreover the following

left tail condition
P[X < −t] ≤ t−ε.

for some ε > 0 and sufficiently large t > 0.

We denote
bn = inf{t ≥ 0 : P[X > t] ≤ m−n}, an = 1/L′(bn). (3.2)

This is the first main result of this paper.

Theorem 3.2 (The suplogarithmic case). Under Assumptions 2.1 and 3.1, one has for the sequences
{an}n∈N and {bn}n∈N given in (3.2) the convergence

Sa−1
n
T−bnVn ⇒ V

in M(R) as n → ∞, where V is defined in (2.6).

Remark 3.3. We note that the appearance of
√
log log(L(x)) in the second condition in (3.1) might

be an artefact of our proof. The first condition in (3.1) implies in particular that L grows faster
than logarithmic. Assumption 3.1 ensures that e−L(x) is a von-Mises function which is used in the
proof.

Note that under Assumption 3.1 both bn and an grow faster than any polynomial. For example,
in the case of lognormal displacements where

L(t) = ((log t)2 + 2 log log t)/2,

one has

bn = exp
{√

2n logm− 2 log(2n logm)
}
(1 + o(1)) and an = bn/

√
2n logm(1 + o(1)).

Taking bn and an as in (3.2) gives

mnP[X > bn + anx] → e−x

as n → ∞ for any x ∈ R and furthermore the maximum of mn independent copies of (X − bn)/an
converges in law to the Gumbel law. Note that at this point one uses the limiting relations in
Assumption 3.1. We use this limit theorem in the proof of Theorem 3.2.

Results in terms of point process convergence allow to treat joint convergence of the extremes
of {V (x)}|x|=n by standard arguments (see Bhattacharya et al. (2017, Section 4.6) for details). In
particular the following fact holds true.

Corollary 3.4 (Weak convergence of the normalized rightmost position). Under Assumptions 2.1
and 3.1, for the sequences {an}n∈N and {bn}n∈N given in (3.2) and Mn given via (2.3), we have

P [Mn ≤ bn + anx] = P
[
Sa−1

n
T−bnVn(x,+∞] = 0

]
→ E

[
e−vWe−x

]
for any real x, as n → ∞, where v is defined in (2.5).

To analyse the sublogarithmic case we introduce the following assumption.
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Assumption 3.5. We assume that the random variable X is non-negative and has distribution of
the form

P[X > t] = e−L(t), t ∈ R,

where L(·) is slowly varying such that L(x) = o(log x) as x → ∞.

To study Vn under the above conditions we need to use a non-linear scale. For ν ∈ M(R) given
via ν =

∑
i δxi let

Lν =
∑
i

δL(xi).

Our second main result is the following theorem.

Theorem 3.6 (The sublogarithmic case). Under Assumptions 2.1 and 3.5,

T−n logmLVn ⇒ V

in M(R) as n → ∞ where V is the point process given in (2.6).

As it is the case for Theorem 3.2, we may infer limit theorems for the extremes getting the
following corollary.

Corollary 3.7 (Weak convergence of the normalized rightmost position). Under Assumptions 2.1
and 3.5, for Mn given via (2.3), as n → ∞, we have

P [L(Mn) ≤ n logm+ x] = P [T−n logmLVn(x,+∞] = 0] → E
[
e−vWe−x

]
for any real x.

Remark 3.8. The above result is similar to the limit theorem for random walks with increments
having log-slowly varying tails where one has to apply a non-linear scale (see Darling (1952, Theorem
4.1)).

Remark 3.9. Observe that the limiting point process V given in (2.6) as a randomly shifted decorated
Poisson process is superposable (see Brunet and Derrida (2011, Section 3.2)), which means that a
union of independent copies of V when viewed from the point of the rightmost particle has the same
law as V viewed from the position of the rightmost particle. As in Dyszewski and Gantert (2022,
Section 3) this can be also seen directly by appealing to (2.2) which implies that

Z1∑
k=1

V(k) d
= TlogmV,

where V(k) are iid copies of V independent of Z1. If we thus define

V
∑
i

δxi =

{ ∑
i δxi−maxj xj if maxj xj < ∞

o otherwise,

where o denotes the null measure, we see that

V

Z1∑
k=1

V(k) d
= VV.

Furthermore, if the branching is deterministic then V is exponentially stable (see Maillard (2013)
and Dyszewski and Gantert (2022, Remark 3.5) for details).
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3.2. Idea of the proofs. In the proof of Theorem 3.2 given in Section 5, we use the principle of one
big jump to approximate Vn via

Tn =
∑
|x|=n

δT (x), T (x) = max
y∈(∅,x]

Xy.

In other words, we use the fact that asymptotically two displacements coming from the same parent
can not be large simultaneously. Next, we use a stopping line argument which is based on grouping
vertices into groups determined by these stopping lines. We consider

Tn =

{
|v| ≤ n : ∃|x| = n, x ≥ v, max

y<v
Xy ≪ bn, Xv ≈ bn

}
,

with a rigorous definition given in (5.1). One then approximates Tn via∑
v∈Tn

En−|v|(v)δXv , En(v) = # {|x| = n+ |v| : x ≥ v} .

The main advantage of the above representation is that {En−|v|}v∈Tn are independent given Tn.
Now one shows two facts. Firstly,∑

v∈Tn

δ(Xv−bn)/an ⇒
∑
k

δℓk−log(vW ),

where
∑

k δℓk is a Poisson point process with intensity e−xdx. Secondly,

{En−|v|(v)}v∈Tn ⇒ {Ak}k∈N.
This in turn allows us to infer that Sa−1

n
T−bnTn ⇒ V which further implies Sa−1

n
T−bnVn ⇒ V.

To the best of our knowledge this is a first instance of an application of stopping-line argument in
the study of a BRW with heavy tailed displacements. We believe that this approach is robust and
allows for an efficient analysis of a BRW in the presence of heavy tails in other cases.

The proof of Theorem 3.6 goes along the same lines as the arguments used for Theorem 3.2. It
turns out that the stopping line argument can be used in this case as well with the stopping line of
the form

Sn =
{
|v| ≤ n : ∃|x| = n, x ≥ v, max

y<v
L(Xy) ≪ n logm, L(Xv) ≈ n logm

}
.

4. Random walk estimates

In this section, we present large deviation estimates for random walks with steps distributed as
in Assumption 3.1 or Assumption 3.5. We begin with some auxiliary estimates on the truncated
exponential moments for random variables with logarithmically slowly varying tails. These estimates
are later used to establish deviation estimates for the corresponding random walk. In the next two
lemmas, we assume that

P[X > t] = e−L(t),

for a slowly varying function L(·).

Lemma 4.1. Suppose that for some ξ ∈ (0, 1), the function t 7→ t−ξL(t) is eventually decreasing.
Then for any γ ∈ (0, 1) and y > 0 one has

E
[
eγL(y)X/y

1{X≤y}

]
≤ 1 + (1 + o(1))L(y)(1−1/ξ)/2.

Proof : Recall from the assumption before the lemma. Write s = γL(y)/y. Firstly note that we
have a simple bound

E
[
esX1{X<0}

]
≤ P [X < 0] .
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Secondly, by integrating by parts we get

E
[
esX1{X∈[0,y]}

]
=

∫ y

0
sestP[X > t]dt+ P[X ≥ 0]− esyP[X > y]

≤
∫ y

0
sestP[X > t]dt+ P[X ≥ 0].

For the integral we have ∫ y

0
sestP[X > t]dt =

∫ 1

0
γL(y)eγtL(y)−L(ty)dt.

Put ε = (1/ξ − 1)/2 and take my = L(y)−1−ϵ and My = L(y/L(y)1+ε)/L(y). We can write the
integral on the right-hand side of the last display as a sum of integrals over the intervals (0,my),
[my,My) and [My, 1). The first one is easily bounded above by (1 + o(1))L(y)−ε. The second one
can be estimated above by

L(y) exp{(γ − 1)L(y/L(y)1+ε)}.
Note that under the proviso concerning the monotonicity, for sufficiently large y,

L(y/L(y)1+ε) ≥ L(y)(1−ξ)/2.

Finally, for the third interval we use the above inequality in combination with the estimate L(ty) ≥
tξL(y) ≥ tL(y) for t ∈ (0, 1). In this way we derive the following inequality∫ 1

My

L(y)eγtL(y)−L(ty)dt ≤
∫ 1

My

L(y)e(γ−1)tL(y)dt ≤ (1− γ)−1e(γ−1)L(y)(1−ξ)/2
.

Combining all the above estimates yields our claim. □

Lemma 4.2. Let Assumption 3.1 be in force. Then for any γ ∈ (0, 1) there exists x sufficiently
large such that for any y > x/2 and z ≤ x/2 one has

E
[
eγL(y)X/y

1{X∈(y,x−z]}

]
≤ ce−L(y)e(γL(y)/y−L′(y)/3)(x−z)+yL′(y)/3 + e(γ−1)L(y).

Proof : Put s = γL(y)/y. By yet another appeal to the integration by parts formula,

E
[
esX1X∈(y,x−z]

]
=

∫ x−z

y
sestP[X > t]dt+ esyP[X > y]

− es(x−z)P[X > x− z] ≤
∫ x−z

y
sestP[X > t]dt+ esyP[X > y]. (4.1)

The second term present in the last display is equal to exp{(γ − 1)L(y)}. To estimate the integral,
we recall that s = γL(y)/y and we write∫ x−z

y
sestP[X > t]dt =

∫ x−z

y
seste−L(t)dt =

∫ x−z

y
γ
L(y)

y
eγL(y)t/y−L(t)dt.

By the mean value theorem and regular variation of L′, for sufficiently large x,

L(t)− L(y) = (t− y)L′(θt) ≥ (t− y)L′(y)/3, t ∈ (y, x− z), θt ∈ (y, t).

Therefore ∫ x−z

y
γ
L(y)

y
eγL(y)t/y−L(t)dt ≤ ce−L(y)e(γL(y)/y−L′(y)/3)(x−z)+yL′(y)/3.

Inserting the last equation into (4.1) completes the proof. □
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4.1. The suplogarithmic case. Let {Sn}n∈N be a random walk generated by X. That is, S0 = 0
and for n ≥ 1, Sn = X1 +X2 + . . .+Xn, where {Xk}k∈N are iid copies of X with a law satisfying
Assumption 3.1. Let

Nn = max
k≤n

Xk.

In what follows, we suppose that Assumption 3.1 is in force. Write

xn = xn(K) = bn +Kan, yn = (1− δ)bn,

where K ∈ R, δ ∈ (0, 1) are fixed and

bn = inf{t ≥ 0 : P[X > t] ≤ m−n}, an = 1/L′(bn).

We recall that for two function f(n) and g(n) we write f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0.

Lemma 4.3. Suppose that for some ξ ∈ (0, 1), the function t 7→ t−ξL(t) is eventually decreasing.
Then, for any K ∈ R and δ ∈ (0, 1),

P[Sn > xn, Nn ≤ yn] = o
(
m−n

)
.

Proof : Take s = γL(yn)/yn for some γ ∈ (0, 1) and consider the following upper bound

P[Sn > xn, Nn ≤ yn] ≤ e−sxnE
[
esX1{X≤yn}

]n
which follows form Chebyshev’s inequality. An appeal to Lemma 4.1 yields that for some universal
constant c,

E
[
esX1{X≤yn}

]
≤ 1 + cn(1−1/ξ)/2. (4.2)

We use the inequality 1− x ≤ e−x, x ∈ R, to conclude that

P[Sn > xn, Nn ≤ yn] ≤ exp
{
−γL(yn)xn/yn + Cn(3−1/ξ)/2

}
. (4.3)

Note that
lim
n→∞

γ(L(yn)xn)/(ynL(bn)) = γ/(1− δ)

so taking γ sufficiently close to 1 we can get for sufficiently large n,

P[Sn > xn, Nn ≤ yn] ≤ exp
{
−n logm/(1− δ/2) + Cn(3−1/ξ)/2

}
which yields our claim. □

Let
zn =

Tbn log n

L(bn)

for some (sufficiently large) constant T > 0 that depends on δ ∈ (0, 1). Note that under Assump-
tion 3.1, zn = o(bn) and an = o(zn).

Lemma 4.4. Let Assumption 3.1 be in force. Then there exists sufficiently small δ ∈ (0, 1) and
sufficiently large T > 0 such that for any value of K ∈ R,

P[Sn−1 +X > xn, Nn−1 ≤ yn, X ∈ (yn, xn − zn]] = o
(
nm−n

)
.

Proof : Take s = γL(yn)/yn for some γ ∈ (0, 1). Use the following simple estimate:

P[Sn−1 +X > xn, Nn−1 ≤ yn, X ∈ (yn, xn − zn]] ≤

exp{−γL(yn)xn/yn}E
[
eγL(yn)X/yn1{X∈(yn,xn−zn]}

]
E
[
esX1{X≤yn}

]n
.

The last factor is already bounded in the proof of Lemma 4.3. To bound the second one we appeal
to Lemma 4.2. Using the fact that

L(yn) = L(bn)− δbnL
′(θn).
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for some θn ∈ ((1− δ)bn, xn) combined with regular variation of L′ we arrive at

P[Sn−1 +X > xn, Nn−1 ≤ yn, X ∈ (yn, xn − zn]] ≤
c exp

{
−L(bn) + (δ/(1− δ)− (1 + δ)/3) bnL

′(bn)− γL(yn)zn/(2yn)
}
.

If δ is small enough the last bound is smaller than

c exp {−L(bn)− γL(yn)zn/(2yn)}
which is o(nm−n) provided that T is sufficiently large. This implies the claim. □

5. Proofs of main results

In this section, we present the proofs of our main results. The arguments used in the corresponding
proofs of the main results differ slightly in technical aspects, but they are based on the same idea.
Namely, we approximate Vn using the point process

Tn =
∑
|x|=n

δT (x), T (x) = max
y∈(∅,x]

Xy.

Next, we show that Tn converges to the desired limit.

5.1. The suplogarithmic case. We now present the proof of Theorem 3.2. Throughout this subsec-
tion, Assumption 2.1 and Assumption 3.1 remain in force. Recall that

bn = inf{t ≥ 0 : P[X > t] ≤ m−n}, zn = Tbn log n/L(bn)

and
yn = (1− δ)bn, an = 1/L′(bn), xn = xn(K) = bn +Kan.

We first consider the following subsets of the set of particles in the n-th generation Tn:

A(1)
n = {x ∈ Tn : T (x) ≤ yn},

A(2)
n = {x ∈ Tn : ∃v1, v2 ≤ x, v1 ̸= v2, min{Xv1 , Xv2} ≥ yn},

A(3)
n = {x ∈ Tn \ (A(1)

n ∪ A(2)
n ) : T (x) ≤ bn − zn}.

We aim to show that the particles in An = A(1)
n ∪ A(2)

n ∪ A(3)
n do not contribute to the limit.

Lemma 5.1. Let
VAn

n =
∑
x∈An

δV (x).

Then, under Assumptions 2.1 and 3.1,

Sa−1
n
T−bnV

An
n ⇒ o,

weakly in M(R), where o denotes the null measure.

Proof : It suffices to show that for any K ∈ R,

lim
n→∞

VAn
n [[xn(K),+∞]] = 0

in probability. We appeal to the decomposition An = A(1)
n ∪A(2)

n ∪A(3)
n and treat the sets A(j)

n one
by one. For the first one, we write

P[∃x ∈ A(1)
n : V (x) > xn] ≤ mnP[Sn > xn, Nn ≤ yn].

Invoke Lemma 4.3 to get
P[Sn > xn, Nn ≤ yn] = o(m−n).
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To treat A(2)
n , simply note that

P[A(2)
n ̸= ∅] ≤ mne−2L(δbn) = o(1).

Finally, for A(3)
n , we argue similarly to A(2)

n , but instead of using Lemma 4.3, we use Lemma 4.4. □

Lemma 5.2. Suppose that Assumptions 2.1 and 3.1 hold. Let

M (A)
n = max {|V (x)− T (x)| : x ∈ Tn \ An} .

Then, for any δ ∈ (0, 1) and T > 0, we have

lim
n→∞

M (A)
n /an = 0

in probability.

Proof : Take ε > 0 and write

P
[
M (A)

n > εan

]
≤ nmnP[X > bn − zn]P[|Sn−1| > εan].

The logarithm of the second term can be expressed as follows:

logP[X > bn − zn] = L(bn)− znL
′(θn)

for some θn ∈ (bn − zn, bn). Since znL
′(θn) = o(log n), it is sufficient to consider a generous upper

bound
P[|Sn−1| > εan] ≤ nP[|X1| > εan/n] ≤ n

(εan
n

)−ε
.

Since an grows faster than any polynomial, this yields

P
[
M (A)

n > εan

]
≤ C/n

and secures the claim. □

Using the above lemma, we can approximate Vn via Tn. We present the analysis of the latter,
followed by an approximation lemma. Consider the stopping line

Tn =
{
|v| ≤ n : ∃x ∈ Tn \ An, x ≥ v, max

y<v
Xy ≤ bn − zn, Xv > bn − zn

}
. (5.1)

For v ∈ U and n ∈ N, consider

En(v) = # {|x| = n+ |v| : x ≥ v} .

Then, for any f ∈ C+
c ((−∞,∞]), for sufficiently large n, on the event {A(2)

n = ∅}, we have∑
|x|=n

f

(
T (x)− bn

an

)
=

∑
v∈Tn

f

(
Xv − bn

an

)
En−|v|(v).

Note that En−|v|(v) denotes the number of descendants of the vertex v in the n-th generation. The
sum on the right-hand side can be linked to yet another point process on (−∞,∞]× N, given by

Nn =
∑
x∈Tn

δ(Xx−bn)/an ⊗ δn−|x|.

To state a limiting result for the latter, define a measure on N by

ρ(·) =
∞∑
j=0

m−jδj(·),

and consider a Poisson point process N on R× N given by

N =
∑
k

δℓk−log(aW ) ⊗ διk ,
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where {(ℓk, ιk)}k is a Poisson point process with intensity e−x dx ρ(dj). Then, N has a Laplace
functional of the form

E
[
e−

∫
f(x,j)N(dx,dj)

]
= E

[
exp

{
−W

∫ (
1− e−f(x,l)

)
e−x dx ρ(dl)

}]
.

Proposition 5.3. Under Assumption 2.1 and Assumption 3.1, we have

E
[
e−

∫
f(x,j)Nn(dx,dj)

]
→ E

[
exp

{
−W

∫ (
1− e−f(x,l)

)
e−x dx ρ(dl)

}]
for any continuous, nonnegative function f : (−∞,∞]×N such that f(x, i) = 0 for sufficiently large
|x|. In particular, Nn converges weakly in M((−∞,∞]× N) to N.

Proof : For a function f as in the statement, we have

E
[
e−

∫
f(x,j)Nn(dx,dj)

]
= E

exp
−

∑
|v|≤n

f

(
Xv − bn

an
, n− |v|

)
 .

Conditioning on the Galton-Watson process, we get

E

[
n∏

k=1

E
[
exp

{
−f

(
X − bn

an
, n− k

)}]Zk
]
.

Using the facts that

mnP
[
X − bn

an
∈ dx

]
→ν e−x dx

and that for any fixed l,
m−nZn−l → mlW,

we infer that for any fixed l,

E
[
exp

{
−f

(
X − bn

an
, l

)}]Zn−l

→ exp

{
−m−lW

∫ (
1− e−f(x,l)

)
e−x dx

}
,

since f(·, l) ∈ C+
c ((−∞,∞]). Combining this with the assumption concerning the support of f and

using a standard approximation of an infinite product by finite ones, we get

E
[
e−

∫
f(x,j)Nn(dx,dj)

]
= E

[
n∏

k=1

E
[
exp

{
−f

(
X − bn

an
, n− k

)}]Zk
]

→ exp

{
−

∞∑
l=0

m−lW

∫ (
1− e−f(x,l)

)
e−x dx

}
as n tends to infinity. □

We use the last proposition to prove a limit theorem for

N∗
n =

∑
x∈Tn

δ(Xx−bn)/an ⊗ δEn−|x|(x).

The proof relies on the observation that the random variables {En−|x|(x)}x∈Tn are independent and
independent of {Xx}x∈Tn given Tn. Furthermore,

P[En−|x|(x) ∈ · |x ∈ Tn] = P[Zn−k ∈ · |Zn−k > 0] for |x| = k.

If we consider iid copies {Z(v)}v∈U of the underlying Galton-Watson process Z = {Zk}k∈N, we can
conclude that

N∗
n =

∑
x∈Tn

δ(Xx−bn)/an ⊗ δEn−|x|(x)
d
=

∑
x∈Tn

δ(Xx−bn)/an ⊗ δ
Z

(x)
n−|x|

.
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We use this representation in the proof of the next proposition. Define

ρ∗(dk) =

∞∑
j=0

m−jP[Zj ∈ dk],

and a Poisson point process N∗ on R× N given by

N∗ =
∑
k

δℓk−log(aW ) ⊗ δι∗k ,

where {(ℓk, ι∗k)}k is a Poisson point process with intensity e−x dx ρ∗(dj). Then, N∗ has a Laplace
functional of the form

E
[
e−

∫
f(x,j)N∗(dx,dj)

]
= E

[
exp

{
−W

∫ (
1− e−f(x,l)

)
e−x dx ρ∗(dl)

}]
.

Proposition 5.4. Under Assumption 2.1 and Assumption 3.1, we have

E
[
e−

∫
f(x,j)N∗

n(dx,dj)
]
→ E

[
e−

∫
f(x,j)N∗(dx,dj)

]
for any continuous, nonnegative function f : (−∞,∞]×N such that f(x, i) = 0 for sufficiently large
|x|. In particular, N∗

n converges weakly in M((−∞,∞]× N) to N∗.

Proof : We have ∫
f(x, j)N∗

n(dx, dj)
d
=

∑
x∈Tn

f

(
Xx − bn

an
, Z

(x)
n−|x|

)
.

On the event {A(2)
n = ∅}, for sufficiently large n,∑

x∈Tn

f

(
Xx − bn

an
, Z

(x)
n−|x|

)
=

∑
|x|≤n

f

(
Xx − bn

an
, Z

(x)
n−|x|

)
.

With this last representation in hand, we can consider

f∗(x, j) = − logE[exp{−f(x, Zj)}]

and write, by conditioning on the Xx’s,

E
[
exp

{
−
∫

f(x, j)N∗
n(dx, dj)

}]
= E

[
exp

{
−
∫

f∗(x, j)Nn(dx,dj)

}]
.

Since the function f∗ satisfies the hypothesis of Proposition 5.3, we conclude the proof.
□

We are now ready to prove the main proposition.

Proposition 5.5. Under Assumption 2.1 and Assumption 3.1, we have

Sa−1
n
T−bnTn ⇒ V,

where V is a point process given in (2.6).

Proof : Fix f ∈ C+
c (−∞,∞]. As noted previously, for sufficiently large n, on the event {A(2)

n = ∅},∑
|x|=n

f

(
T (x)− bn

an

)
=

∑
v∈Tn

f

(
Xv − bn

an

)
En−|v|(v).

The last sum is equal to ∫
f(x)j N∗

n(dx,dj).



488 A. Bhattacharya et al.

By an appeal to Proposition 5.4,∫
f(x)j N∗

n(dx,dj) →d

∫
f(x)j N∗(dx,dj).

The result follows, since by construction∫
f(x)j N∗(dx,dj)

d
=

∫
f(x)V(dx).

□

We are now in a position to give a final touch to the proof of our first main result.

Proof of Theorem 3.2: At this point, it suffices to approximate Vn through Tn. Fix ε > 0. Any
function f in Cc((−∞,∞]) is uniformly continuous. Hence, we have

ωf (δ) = sup{|f(x)− f(y)| : |x− y| < δ} → 0

as δ → 0+. Note that∣∣∣∣∫ f(x)(Vn −Tn)(dx)

∣∣∣∣ ≤ ∫
f(x)V(A)

n (dx) + ωf

(
M (A)

n

)
Tn

[
supp(f) +

(
−M (A)

n ,M (A)
n

)]
.

By an appeal to Lemma 5.1, the first term vanishes. The second term also vanishes by Proposi-
tion 5.5 and Lemma 5.2.

□

5.2. The sublogarithmic case. The arguments follow along the lines of the proof of Theorem 3.2.
Therefore, we omit some of the simpler steps. Firstly, recall the generalized inverse of L, given by

L−1(y) = inf{s ∈ R : L(s) ≥ y}.
Since L is right-continuous, L(x) ≥ y if and only if x ≥ L−1(y). Consider

Bn = {x ∈ Tn : L(T (x)) ≤ 3n(logm)/4}.
We first show that the positions of the particles in Bn do not contribute to the limit of Vn.

Lemma 5.6. Under Assumption 2.1 and Assumption 3.5, we have∑
x∈Bn

δL(V (x))−n logm ⇒ o

in M(R).

Proof : As in the proof of Lemma 5.1, it is sufficient to show that for any C ∈ R,

P[L(Sn) > n logm+ C, L(Nn) ≤ 3n(logm)/4] = o(m−n).

We once again apply Lemma 5.1. Denote ℓn = L−1(3n(logm)/4) and ϖn = L−1(n logm+C). Note
that ℓn = o(ϖn). Consider s = n logm/(2ℓn) and write

P[L(Sn) > n logm+ C, L(Nn) ≤ 3n(logm)/4] ≤ e−sϖnE
[
esX1{X≤ℓn}

]n
. (5.2)

We now present a suitable bound for the integral that appears on the right-hand side. First, note
that

E
[
esX1{X≤ℓn/n}

]
≤ m.

For any ε > 0, consider

E
[
esX1{ℓn/n≤x≤εℓn}

]
≤

∫ εℓn

ℓn/n
sesyP[X > y]dy + eP[X > ℓn/n]

≤
∫ ε

1/n
n logmesℓnt−L(ℓnt)dt+O(1).



Branching random walk and log-slowly varying tails 489

Using Potter bounds,
L(ℓnt) ≥ tδL(ℓn) ≥ εδ−1tL(ℓn)

for t ∈ [1/n, ε]. If we plug this into the integral, we get, with sufficiently small ε,

E
[
esX1{ℓn/n≤x≤εℓn}

]
= o(1).

Finally, for the last part, write

E
[
esX1{εℓn≤x≤ℓn}

]
≤

∫ ℓn

εℓn

sesyP[X > y]dy + eεsℓnP[X > εℓn] =

∫ 1

ε
n logmesℓnt−L(ℓnt)dt+ o(1),

and the last integral converges to 0 exponentially fast due to the uniform slow variation of L. This
yields

E
[
esX1{x≤ℓn}

]
≤ C.

Returning to (5.2), we get

P[L(Sn) > n logm+ C, L(Nn) ≤ n(logm)/2] ≤ exp

{
−n logm

ϖn

2ℓn
+ Cn

}
.

Since ϖn/ℓn → ∞, our claim follows.
□

We now state the result that allows us to approximate Vn via Tn. Define

M (B)
n = max{L(V (x))− L(T (x)) : |x| = n, L(T (x)) > 3n(logm)/4}.

Lemma 5.7. Let Assumption 2.1 and Assumption 3.5 be satisfied. Then, as n → ∞,

M (B)
n → 0

in probability.

Proof : We recall that {Sn}n∈N is a random walk generated by X and Nn = maxk≤nXk. Using
Potter bounds, for any δ > 0, x ∈ R and y > 0,

L(x+ y)− L(x) ≤ CL(x)

((
1 +

y

x

)δ
− 1

)
.

The right-hand side, by the Bernoulli inequality, is further bounded by CL(x)δ y
x . Thus, for So

n =
Sn −Nn, we have, for sufficiently large n,

{L(Sn)− L(Nn) > ε, Nn > L−1(3n(logm)/4)} ⊆
{
So
n >

εs1
δ log s1

}
,

where s1 = L−1(3n(logm)/4). Now we show that if L(x) = o(log x), then

lim
n→∞

s1/ log s1
s2

= ∞ where s2 = L−1(2n(logm)/3). (5.3)

By the Karamata representation,

L(t) = c(t) exp

{∫ t

1

ε(x)

x
dx

}
for c(t) → c > 0 and ε(x) → 0. Since L(x) = o(log x), we must have

ε(z) ≤ 1

log z
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for sufficiently large z. Then,

3n(logm)

4
≤ L(s1) = L

(s2
2

) c(s1)

c(s2/2)
exp

{∫ s1

s2/2

ε(z)

z
dz

}

≤ L
(s2
2

) c(s1)

c(s2/2)

log s1
log(s2/2)

.

This leads to
(1 + o(1))

9

8
≤ log s1

log s2
,

which means that for sufficiently large n, by the monotonicity of the function x 7→ x
log x ,

s
1/8
2

9(log s2)/8
≤ s1/ log s1

s2
.

Since s2 grows faster than exponentially in n, this secures (5.3). We infer that

P
[
L(Sn)− L(Nn) > ε, Nn > L−1(3n(logm)/4)

]
≤

P
[
Nn > L−1(3n(logm)/4), So

n > nL−1(2n(logm)/3)
]
≤ Cn2m−n(2/3+3/4).

The lemma now follows by a first moment argument since for any ε > 0,

P[M (B)
n > ε] ≤ mnP

[
L(Sn)− L(Nn) > ε, Nn > L−1(3n(logm)/4)

]
≤ n2m−5n/12.

□

Proof of Theorem 3.6: We apply the same arguments as in the proof of our first result. This time,
we consider the stopping line

Sn =
{
|v| ≤ n : ∃x ∈ Tn \ Bn, x ≥ v, max

y<v
L(Xy) ≤ 3n(logm)/4, L(Xv) > 3n(logm)/4

}
.

Now, for any compactly supported and continuous f , with high probability,∑
|x|=n

f (L(T (x))− n logm) =
∑
v∈Tn

f (L(Xv)− n logm)En−|v|(v).

One then uses the same procedure, taking into account that

mnP[L(X)− n logm ∈ dx] →ν e−x dx.

□
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