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A Heated Sphere
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https://docs.google.com/file/d/1Sk0x_AEUjnZsp0not01rsFqWq6NKlwmt/preview

A Heated Sphere
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Short-Range Particle Simulation Methods

To simulate this efficiently, we need a:

e Neighbour ldentification Algorithm/Particle Container. E.g.

Linked Cells Verlet Lists
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Images from Newcome et al., 2023
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Short-Range Particle Simulation Methods

To simulate this efficiently, we need a:

e Neighbour ldentification Algorithm/Particle Container.
e Shared Memory Traversal e.g. cell colouring schemes

Co8 Co4 C04_HCP
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C08 Image from Newcome et al., 2023
C04 and C04_HCP Images are from Tchipev, 2020
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Short-Range Particle Simulation Methods

To simulate this efficiently, we need a:

e Neighbour ldentification Algorithm/Particle Container.
e Shared Memory Traversal.
e Data Layout e.g. Array-of-Structures or Structure-of-Array
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Short-Range Particle Simulation Methods

To simulate this efficiently, we need a:

e Neighbour ldentification Algorithm/Particle Container.
e Shared Memory Traversal.
e Data Layout e.g. Array-of-Structures or Structure-of-Array

We also have various parameters to tune:

e Size of Cells
e \lerlet Skin size
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An Exploding Liquid

A thin slice of molecules is placed at the centre of a long domain
split into 6 MPI ranks.
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An Exploding Liquid

It explodes outwards, leaving behind small clusters of molecules.
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An Exploding Liquid
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There are different computational profiles in each region, leading to
different best algorithms that change over the course of the simulation
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An Exploding Liquid

Technical
University
of Munich

T

It explodes outwards, leaving behind small clusters of molecules.
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Rayleigh-Taylor Instability

e Simulation starts with “blue” molecules of higher mass and density and
smaller size above the “red” molecules.
e 40 MPI ranks are used with MPI load balancing.
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Rayleigh-Taylor Instability

e The optimal algorithmic configuration is different depending on the mixture of
red/blue particles and empty space, and therefore also changes over time and
in different regions.
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No “Silver Bullet”

Heating Sphere Exploding Liquid Rayleigh-Taylor
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=> There is no best algorithmic configuration

* This configuration timed out. Expected 1-2 order of magnitude
worse than best.

Samuel J. Newcome | Technical University of Munich | Leogang, Austria | Feb 2025 ** This experiment is still running, but currently expected ~1 order
of magnitude worse than best.
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AutoPas: A Rank-Level Algorithm Selection Library

e General black-box short-range particle simulation library.
e Users can build their simulator by providing a particle class and an
interaction functor class. They don’t need to choose an optimal algorithm.

e 100+ configurations & growing

o Neighbour Identification Algorithms

o Shared Memory Parallel Traversals

o Data Layouts

o Tunable Parameters e.g. cell-size factor
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AutoPas & Distributed Memory
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AutoPas is rank-level
Each rank get its own AutoPas container and can make its own choices.
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e AutoPas periodically makes algorithm selection choices every number of
timesteps. We call the selection process a tuning phase.

By default, in each tuning phase, each algorithm is trialled for a few iterations.
The best is used until the next tuning phase.

Best = Fastest Time or Least Energy Consumed

No accuracy difference between algorithms => timesteps spent trialling can
still advance the simulation.

Algorithm Selection
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As previously seen, the worst algorithms can be orders of magnitude worse.

Algorithm Selection

=> We need methods to avoid trialling bad algorithms.

Samuel J. Newcome | Technical University of Munich | Leogang, Austria | Feb 2025



Technical
University
of Munich

Algorithm Selection Strategies
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Predictive Tuning

A
/\ Perform 2 Full Searches

Time
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lteration
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lteration

Samuel J. Newcome | Technical University of Munich | Leogang, Austria | Feb 2025



Technical
University
of Munich

Predictive Tuning

A
In the next tuning phase, extrapolate a line to
predict how these algorithms will perform
Time
Per
lteration x/x _________________________ %

lteration
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Predictive Tuning

A
Time
Per Only trial algorithms with
lteraton | T % predicted performances
x/x """ ~ within a threshold of the
best

lteration
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Predictive Tuning
Q/%( ———————————————————————————— Occasionally retrial

algorithms even if not
expected to perform well, in
case they have improved

Time X
Per
teration | T % X

lteration
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Predictive Tuning

Pros:

e Easy to use (requires no user input or training).

e => Generalises easily to any arbitrary user simulator.

Cons:

e Predictions can be very unsuitable.
e Requires some naive full searches.
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Expert-Knowledge Fuzzy Logic Tuning

e Take “information” from simulation: E.g.
o Mean number of particles per cell
o Median
o Standard Deviation
e An expert develops (fuzzy logic) rules to describe how suitable a method is
depending on this information.
e If a method passes a suitability threshold, it will be trialled.
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Expert-Knowledge Fuzzy Logic Tuning

Pros:

e Highly performant with suitable rules.
e Use of fuzzy logic helps realise “fuzzy” understandings of relationships
between statistics and algorithm performance.

Cons:

e Relative algorithm performance varies between interaction models and
hardware => A universal set of rules is not feasible

e Relationship between statistics and best algorithm is highly complex =>
Requires a lot of human-effort even with same model and hardware.

T

=> Develop rules that are targeted towards the type of simulations being run.
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Train a Random Forest model that predicts optimal algorithm from statistics.
Random Forest to deal with overfitting of Decision Trees.

Provides single supposedly optimal configuration.

Implemented through C/Python API to aid in extensibility.

Trained on “fake” simulations generated with (random) statistical distributions
that are easy to obtain.

Random Forest Tuning

Samuel J. Newcome | Technical University of Munich | Leogang, Austria | Feb 2025



Technical
University
of Munich

Results
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Results

Heating Sphere Exploding Liquid 166 Rayleigh-Taylor
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Expert-Knowledge Fuzzy Logic best.

Not necessarily any better than picking a single best configuration.
Random Forests not far behind, and generally more user-friendly.
Predictive Tuning is the worst.
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Conclusion & Future Work
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We have a portfolio of tuning strategies to serve a range of different effort
levels of users.

But overall, these results suggest a ML-driven approach for future
development would be best:
o Much less effort than expert-knowledge
o Not much worse performance.
o No reason why similar or better performance could be achieved with
more development or data.

Coming up with suitable training data depends on use case => Online
Learning?
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