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Abstract

Granular materials, such as powders and grains, are prevalent in both natural and
industrial processes, including those in the pharmaceutical and food-processing sectors.
To optimize the processing of such materials, simulation technology based on Discrete
Element Method (DEM) is widely employed. DEM uses physics-based contact force and
heat models to simulate interaction between individual particles. In this study, we examine
the force and heat models for spherical particles and present an implementation of DEM
using the node-level short-range particle simulation library, AutoPas. Furthermore, we show
a straightforward implementation of non-spherical DEM by approximating arbitrary particle
shapes using subspheres, utilizing md-flexible, a molecular dynamics simulator integrated
within AutoPas.

Furthermore, to demonstrate the effectiveness of our approach, we provide simulation
results from several scenarios, particularly a rotating square tumbler and a fluidized bed.
In the rotating square tumbler, we observe particle heating resulting due to frictional
interactions, as well as heat conduction along the tumbler walls. These thermal effects can
either amplify or oppose each other, depending on the thermal settings of the walls. In the
fluidized bed, solid particles are initially packed densely. As gas particles exert significant
pressure on these solids, they disrupt the alignment of the solid particles, leading to a
reduction in pressure and the formation of a fluidized state.

Additionally, we highlight the benefits of AutoPas’s auto-tuning capabilities in improving
the efficiency of these simulations. For the rotating tumbler, AutoPas selects the Verlet
Cluster Lists algorithm for neighbor identification with the AoS (Array of Structures)
particle data layout, which proves more efficient than other variants, such as the Linked
Cells algorithm. In the fluidized bed scenario, which involves dynamic changes in particle
density, AutoPas adapts by transitioning from Linked Cells with AoS to Linked Cells with
SoA, and eventually to Verlet Cluster Lists with AoS, as the particle density increases.
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1. Introduction

Advances of computing power and parallelization techniques in recent years opened doors to
perform complex simulations of particle dynamics, particularly of granular materials. To
model flow of such particles, simulation technology based on the Discrete Element Method
(DEM) is widely employed. Here, the particulate system is modeled as an assembly of
singular discrete and interacting particles. This approach allows researchers to deepen their
understanding of granular motion, while engineers can optimize the design and operation
of industrial systems that involve particulate materials. One example is the hopper, an
inverted pyramidal container used in various industries, including the pharmaceutical and
food-processing sectors [GDK21][BAC+14]. Hoppers store materials and discharge them
from the bottom when required. However, the discharge rate, or even the ability of the
particles to discharge, can be influenced by factors such as the angles of the walls and
the shape of the particles [FLS21][Cle99]. By conducting DEM simulations of the hopper,
engineers can identify the ideal wall angles and particle shapes, enabling them to optimize
the industrial process (see Figure 1.1).

Given the broad applicability of DEM, several DEM libraries, such as LIGGGHTS [KGK+12],
are already in use. However, there is still room for further performance optimization, as
currently known DEM packages such as LIGGGHTS use fixed algorithmic configurations. In
contrast, the node-level short-range particle simulation library, AutoPas, dynamically adapts
its algorithmic configuration to the current simulation state, offering greater potential for
performance improvements. This flexibility motivates us to implement a DEM simulator
using AutoPas in this thesis and to validate the benefits of employing it.
This thesis begins by exploring the force and heat models and provides an overview

of AutoPas, including its neighbor identification algorithms and other pre-implemented
configurable options. Following this, we present the implementation of a DEM simulator for
spherical particles and extend it to non-spherical particles using the multi-sphere method
described in [FAKR99]. We then present DEM simulation results for scenarios such as the
rotating square tumbler and fluidized bed, where the auto-tuning capabilities of AutoPas
demonstrate significant benefits. Finally, the thesis concludes with suggestions for future
research and a summary of findings.

Figure 1.1.: DEM simulations of granular flow in a hopper at discharge. (a) active granular
flow (b) no flow due to arching
Source: [FLS21]
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2. Theory

2.1. Discrete spherical particle model

The body shape of granular materials that are subjects of DEM simulations could be various.
For example, sand has its specific crystal shape, which might differ from other grains such
as corn or salt. Moreover, some granular units can deform under stress, which could change
their shape. However, in this study, we make following modeling assumptions to simplify
the implementation:

• The granular units have a spherical shape.

• The shape of particles is unchangable.

These assumptions give rise to our discrete spherical particle model, where the interaction
between a particle pair is determined by the extent of overlap between them (see Figure 2.1).

ri

rj

δ

Figure 2.1.: Two spherical particles in contact with overlap δ
Source: [Lud08b]

2.2. Equations of Motion

The dynamics of granular particles can be expressed with Newton’s equations, which can be
reduced to a system of ordinary differential equations of translational and rotational motion:

mi
d2

dt2
xi = fcontact + fglobal, and Ii

d2

dt2
φi = qcontact + qglobal (2.1)

with the mass mi of particle i, its position xi, and the moment of inertia Ii,sphere =
2
5mir

2
i .

The fcontact and qcontact can be obtained by the sum of all contact forces and torques,
respectively, directed to particle i as we assume existing interaction force and torque only
when contact between two particles is present:

fcontact =
∑

j∈Ci,i ̸=j

fij , and qcontact =
∑

j∈Ci,i ̸=j

qij (2.2)

2



2.3. Time Discretization

with Ci being the set of all particles in contact with i. The global force fglobal and global
torque qglobal represent forces and torques, respectively, that act on all particles in a system,
such as background friction.

For approximating the solutions of these ODEs, numerical integrators are applied, which
will be presented next.

2.3. Time Discretization

Due to practical reasons, the aforementioned problem that is posed on a continuous time
interval has to be transformed to a problem that is posed on discrete time steps. This
brings the necessity of a numeric integrator that is applied to compute the new quantities
for translational and rotational motion.

2.3.1. The Integration Method of Störmer-Verlet

In the context of translational motion, the task is to compute the new positions and velocities
of the particles from the old positions, old velocities, and the relevant forces. The focus of
our simulation lies on observing developments of macroscopic quantities e.g. Energy and
Distribution of Particles. This application makes high-order integrators such as Runge-Kutta
rather unsuitable due to its computational complexity and relatively poor memory scalability.
Instead, a second order symplectic integrator such as Velocity-Störmer-Verlet seems more
promising due to its lower computational complexiy and capability to still capture long-time
patterns well. The formulas for Störmer-Verlet is presented in the following.

xi(tn+1) = xi(tn) + ∆t · vi(tn) +
(∆t)2Fi(tn)

2mi
, (2.3)

vi(tn+1) = vi(tn) + ∆t · Fi(tn) + Fi(tn+1)

2mi
, (2.4)

with the position xi, the velocity vi, the mass mi, and the force Fi of particle i and the old
time step tn and the new time step tn+1 with ∆t = tn+1 − tn.

2.3.2. The Integration Method of Explicit Euler

In the context of rotational motion, we can simplify the integration due to following reasons.

• Due of the assumption of the spherical particle model, the relevance of orientation,
which corresponds to the position in the translational motion, disappears.

• Our main interest lies on observing the development of rotational motion and its
macroscopic quantities such as the rotational energy, rather than calculating the
angular velocity of a particle accurately in the given time step.

This requirement allows us to use a simple first-order integrator of Explicit Euler with its
computational and memory advantages:

wi(tn+1) = wi(tn) + ∆t · qi(tn)
Ii

, (2.5)

3



2. Theory

with the angular velocity wi and the moment of Inertia Ii of particle i.

With the same reasoning, the method of Explicit Euler is also applied for thermal
development:

Ti(tn+1) = Ti(tn) + ∆t ·
∑

j∈Ci
ϕji

mi · Cp
i

, (2.6)

with the temperature T , the heat flux ϕ and the specific heat Cp
i . Details follow in

Sec. 2.5.1.

2.4. Contact Force Laws

The interaction force models can be divided into two main classes: normal and tangential
forces / torques. Here, we introduce the physics-based force and torque models presented by
[Lud08b].

2.4.1. Normal Contact Force Law

Linear Normal Contact Model

The model used for expressing the normal force between particles is the Maxwell model [Roy01],
which consists of a spring generating a linear repulsive force and a damper realizing a dissi-
pative viscosity.

Figure 2.2.: Maxwell’s spring dashpot model with a dashpot and a spring placed in series

This model becomes active if and only if the overlap δ between two particles is positive,
which can be computed as the sum of the radii of the particles subtracted by their distance:

δij = (ri + rj)− ∥xi − xj∥2 = δji (2.7)

with r being the radius of the corresponding particle. As this model expresses force in the
normal direction, which is parallel to the branch vector lji pointing from center position of
particle j to i, the unit vector nji in the normal direction should additionally be computed
to provide a directional meaning to the overlap-dependent normal force:

lji = xi − xj, nji =
lij
∥lij∥2

(2.8)

For every contact with positive overlap δ, the rising normal force fn
ji on particle i from

particle j can be computed by taking into account the repulsion of the spring and the
dissipation of the damper (see Figure 2.2):

4



2.4. Contact Force Laws

fn
ji = fn

elastic + fn
dissipative, (2.9)

fn
elastic = knδ, fn

dissipative = −γnvnji, (2.10)

vnji = vji · nji = (vi − vj) · nji. (2.11)

with the spring stiffness kn, the viscous damping coefficient γn, and the relative velocity
in normal direction vnji. The negative sign of the term −γnvnji explains the damping effect,
reducing the amount of force according to the damping coefficient γn. Multiplying this
scalar force, i.e. fn

ji ∈ R, with the according normal vector nji, produces a three-dimensional
force vector fn

ji with a directional meaning:

fnji = fn
ji · nji (2.12)

However, the viscous damping coefficient γn must be set carefully due to following reasons:

• a large value of γn might lead to unphysical behavour such as abrupt increase of the
force.

• a large value of γn might increase the duration of particle contact. Here, it should
apply: ∆t≪ tcontact.

Refer to A.1.1 and A.1.1 in the appendix for more details and some experiments with
different values of γn.

2.4.2. Tangential Contact Force and Torque Laws

For the tangential contact forces and torques, three laws should be considered:

1. sliding and friction forces and the resulting frictional torque

2. rolling-resisting torque

3. torsion-resisting torque

Sliding and Static Friction

f t

fn

fpush

Object

Ground

Figure 2.3.: Frictional, Normal, and external
forces acting on a square object
on a flat ground
Source: [Lud98]

static
sliding

fpush

f t

Figure 2.4.: Static and sliding friction in re-
lation to the external force
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2. Theory

Sliding and friction forces describe the force resisting the relative motion of surfaces.
Figure 2.3 illustrates the forces acting on the contact surface of a simplified example of a
square object and a flat ground. Besides the normal force fn, which acts as a reaction to the
gravity, the frictional force f t opposes the direction of the relative motion, caused by induced
by the external force fpush. A typical relationship between frictional and external forces is
illustrated in Figure 2.4, which demonstrates the distinct behaviors of static and sliding
friction. While the static friction is proportional to the external force fpush, the sliding
friction is independent of fpush. Moreover, one usually observes greater static friction than
sliding friction, which can be modeled with different coefficients of friction µ, i.e. µs > µd,
with µs and µd denote static and sliding (dynamic) friction coefficients respectively. Using
these coefficients, the frictional forces can be modeled as follows:

f t
static ≤ µs · fn = f t

C

f t
sliding = µd · fn (2.13)

with f t
C frequently referred to as the Coulomb limit [Lud08b], as it sets an upper bound to

the static friction. One way to model the static friction with a better approximation than in
Eq. 2.13 is to use relative velocity, similar to the linear spring model in Sec. 2.4.1 [Lud08b]:

f t =

{
−γt·vt if static

µd · fn · t if sliding
(2.14)

In the static case, the model utilizes the tangential dissipation parameter γt, and the
tangential relative velocity vt, following a similar approach to the linear spring model in
Sec. 2.4.1. However, unlike the linear spring model, we omit the tangential spring that would
correspond to the overlap δ. Although this tangential spring would contribute an additional
force along vt, it is a relatively minor detail. Moreover, it introduces memory overhead,
as each particle would need to store the state of its tangential spring for all surrounding
particles in contact. Refer to [Lud08b] for further details. Furthermore, the negative sign is
attached to account for the fact that the frictional force acts in the opposite direction of the
relative motion vt. The description of the tangential relative velocity vt follows:

vt = vij − nji · (nji · vij)

vij = (vi + ωi × (−αinij))− (vj + ωj × (αjnji))

= vi − vj + αinji × ωi + αjnji × ωj (2.15)

with αi/j = ri/j − δ
2 being the corrected radius, which measures the distance between the

center of the particle and the contact point. For the calculation of the total relative velocity
vij, additional rotational terms are appended to incorporate the velocities occurred from
rotational motion at the contact point. Moreover, to obtain the relative velocity along the
tangential plane, the normal component is subtracted from the total relative velocity in Eq.
2.15.

In the sliding case of Eq. 2.14, the tangential unit vector is approximated as t = − vt
∥vt∥2

providing the direction of the frictional force.
Furthermore, the case distinction between static and sliding friction is derived from

Eq. 2.13. if the magnitude of the computed tangential force f t, assuming a static case, is

6



2.4. Contact Force Laws

Figure 2.5.: Transition from static to sliding friction with their relations to overlap and
Coulomb friction. Used simulation parameters: kn = 5, γn = 5 · 10−5, γt =
0.1, µs = 0.75, µd = 0.5

less than or equal to the Coulomb limit f t
C , then f t can be used as the static frictional force.

Otherwise, the sliding case applies.

Figure 2.5 illustrates the dynamics of an example contact between two particles as they
transition from static to sliding friction, which was simulated using the aforementioned
models. Initially, static friction prevails due to the relatively high overlap and Coulomb
limit (fC ∝ δ). Over time, the magnitude of static friction decreases as the tangential
relative velocity diminishes, which is a result of the decelerating effect of the frictional force.
Meanwhile, the Coulomb limit also decreases as the overlap between the particles reduces.
When the static friction becomes weaker than the Coulomb limit, the transition to sliding
friction occurs. The frictional force of the sliding case has a lower magnitude than the static
case due to the typical relation µd < µs. For further experiments with tangential forces,
refer to A.1.1 in the appendix.

Moreover, this tangential force also causes a torque, as the contact point has a positive
distance to the center of mass i.e. αi/j :

qt
i = (−αi · n)× f ti

qt
j = (αj · n)× f tj (2.16)

with the sign in the formula for qt
i accounting for the fact that the normal unit vector

n = nji points from particle j to i. Moreover, while the tangential forces are equal in
magnitude via the third law of Newton, i.e. f ti = −f tj , such equality does not necessarily
hold for torques, as the corrected radii, i.e. αi and αj , can have different values. However,
unlike the forces, the torques are parallel. Inserting the equality f ti = −f tj into Eq. 2.16
yields:

qt
j =

αj

αi
· qt

i (2.17)

7



2. Theory

For better visualization, Figure 2.7 illustrates the directions of the position vector, which
points from the particle center to the contact point, the tangential force, and the resulting
torque, which is perpendicular to both the force and the position vector.

Furthermore, the development of torque, tangential force, and angular velocities during
an example particle contact is illustrated in Figure 2.6, where only sliding friction for the
tangential force is considered to highlight the direction of the induced torque. The following
observations can be made:

• Magnitudes of frictional forces and torques are proportional to fn and therefore to
overlap δ

• The plots of angular velocities match with those of frictional torques with its relation
qt = I · dωdt

For further details and checks, refer to A.2 in the appendix.

Rolling resistance

Similar to the calculation of the relative tangential velocity vt for determining tangential
frictional forces, the relative rolling velocity vr must also be computed and taken into account
when calculating the torque for rolling resistance. While the relative tangential velocity is
computed by taking the difference between the velocities from translational and rotational
motion of the two contacting particles, the rolling velocity is obtained by accumulating the
velocities from their rotational motion:

v0
r = (ωi × (−αin)) + (ωj × (αjn)) (2.18)

Here, the corrected radii, i.e. αi/j can be further replaced by the reduced radius αij ,
which is always less than or equal to each corrected radius, i.e. αij ≤ αi and αij ≤ αj . The
formula for the reduced radius follows:

1

αij
=

1

αi
+

1

αj
⇔ αij =

αi · αj

αi + αj
(2.19)

Inserting this reduced radius into Eq. 2.18 yields:

vr = αij(n× ωi − n× ωj) (2.20)

The usage of the reduced radius simplifies the formula for the rolling velocity and is
objective in general, which is further discussed in [Lud08a].

This rolling velocity expresses distances per time unit at which the contact surfaces of
the particles roll over each other without translational motion (“slipping”) with directional
meaning [Lud08b] [BK04]. Based on this definition, this velocity vr is identical for both
particles, as they cover the same distance, excluding any “slipped” distances. The rolling
resistance “force” fr, which only serves the purpose of calculating the torque and will not
be applied elsewhere, opposes the rolling velocity and can be calculated using the same
procedure as the tangential frictional forces described earlier [Lud08b]:

8



2.4. Contact Force Laws

Figure 2.6.: Development of frictional forces f t, torques qt, angular velocities ω, overlap δ,
and distance dij during a typical particle contact.

9



2. Theory

i

j

−αin

f ti

Figure 2.7.: Frictional Torque arised at contact between particles i and j. The torque qt
i

is perpendicular to both position vector −αin and tangential force f ti and is
directed outward from the figure, implying a counterclockwise torque on particle
i.

fr =

{
−γr · r if static

µr · fn · r if sliding
(2.21)

with the rolling viscosity γr, the rolling unit vector r = − vr
∥vr∥2 , and the rolling “friction”

coefficient µr with the typical relation µr < µs.
Due to identical rolling velocities, the forces fr remain equal for both particles. With these

forces fr, the rolling torques are computed similarly to the frictional torques from Eq. 2.16:

qr
i = (−αij ·n)× fr

qr
j = (αij ·n)× fr (2.22)

resulting in torques that are equal in magnitude but oppose in direction.
A typical scenario, in which such rolling-resisting torques arise, is illustrated in Figure 2.9.

Two particles i and j have a positive overlap and their total rolling motion would slow
down due to the ”friction” the particles experience in the overlapped region. This reduction
of rolling velocity is further visually verified in Figure 2.8, which illustrates an example
particle contact with only rolling torque (with sliding case only) activated. Refer to A.3 in
the appendix for more details.

Torsion resistance

Another torque to consider is torsion resistance, which acts against rotational deformation
of particles. A typical scenario in which the torsion torque becomes active is as follows. Two
particles are spinning along a common axis, e.g. z-axis, which is aligned with their normal
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Figure 2.8.: Development of (dynamic) rolling torque qr, angular velocities ω, and vr during
an example particle contact. Torques and angular velocities of particle j are
same in magnitude with those of particle i with an inverted sign. Distance and
overlap between particles i and j remain constant as their positions are fixed.

i

j

Figure 2.9.: Typical scenario of arising rolling torque. Two particles i and j are in contact
and are spinning in anti-parallel directions in the tangential plane. The rolling
torque is activated against their rotating direction, i.e. clockwise for particle i
and counterclockwise for particle j.

11
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i
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(a) From Above

i

j

n

z

(b) From Side

Figure 2.10.: Typical scenario of arising torsion torque. Two particles i and j are in contact
and are spinning with different angular velocities parallel to their normal
direction, i.e., in this case, along the z-axis.

vector. However, the particles have different angular velocities along their normal vector,
i.e., ωi,n ̸= ωj,n. Due to the existing overlap, δ > 0, this relative spin induces a twisting
or torsional deformation between the particles. As a reaction, the particles exert restoring
torques that resist such deformation. These restoring torques are referred to as torsion
resistance and are modeled by the torsion torque qo in this context [Lud08b]. This scenario
is further illustrated in Figure 2.10.

Similar to the other torques discussed earlier, torsion torque qo is computed with the
relative torsion velocity v0 and the resulting torsion “force” fo:

vo = αij · (n·ωi − n·ωj)·n
= αij · n·(ωi − ωj)·n

fo =

{
−γo · vo if static

µo · fn·o if sliding

qo
i = αij ·fo = −qo

j (2.23)

The relative torsion velocity vo is a vector parallel to the normal direction of the two
particles, quantifying the difference of their angular velocities along the normal direction, i.e.
the projection of ∆ω onto the normal vector n. The torsion “force”, which, like the rolling
“force”, only helps computing the torsion torque qo, is constituted by its factors: the torsion
viscosity γo, the torsion friction coefficient µo, the normal force fn and the torsion unit vector
o = − vo

∥vo∥2 . The resulting torsion torque q0 is parallel to its torsion unit vector o as well as
the normal vector n. These torques qo

i/j are identical in magnitude and oppose in directions,
changing their affected angular velocities ωi/j such that their rotations around the normal

direction become identical, i.e. vo ⇒ 0, n·ωafter
i = n·ωafter

j = n·ω
before
i +ωbefore

j

2 [Lud08b].

The formula of this torque exhibits structural similarities with the one of rolling torque,

12
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Figure 2.11.: Results of a simple simulation of background friction fb and qb with other forces
and torques deactivated. A particle with following initial velocities and angular
velocities is affected by background damping: (v0x, v

0
y , v

0
z) = (ω0

x, ω
0
y , ω

0
z) =

(1, 1, 1). Lines for each direction, i.e. x, y, and z, overlap due to symmetry.
Simulation parameters: r = m = 1, γb = γbr = 0.9,∆t = 5 · 10−4.

which results in similar behavior during a typical particle contact. For more details, refer to
A.4 in the appendix.

2.4.3. Background Friction

Besides the aforementioned contact laws, a general background friction can be additionally
considered, which models inter-particle medium. Comparing the collision of two particles
in air and water, the forces and torques exerted on each other are significantly weaker in
water due to the damping effect of the medium. Such ”frictional” effect can be modeled as
follows [Lud08b]:

fbi = γbvi, qb
i = γbrr

2
i ωi (2.24)

The translational and rotational background friction coefficients γb and γbr must be chosen
for each set of parameters, particularly for each mass mi, due to the relations between force
and velocity, as well as torque and angula veloctiy in Eq. 2.1. Since damping acts against
the current (angular) velocity of the particle, its translational and rotational motion are
reduced in magnitude. Incorporating this background frictional damping results in following
total forces and torques:

fi =
∑
Ci

(
fnn+ f tt

)
− fbi , qi =

∑
Ci

(
qt + qr + qo

)
− qb

i (2.25)

Here, Ci denotes the set of all particles in contact with particle i, and fn and f t represent
the sums of normal and frictional forces, respectively.

Results of a simple simulation for background friction are shown in Figure 2.11, where
both the velocity and angular velocity are effectively damped over time. Since all other
forces and torques are deactivated, the force and torque at any iteration correspond to
the background frictional force and torque, which are equal to the damping coefficient,
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γb/br, multiplied by the velocity and angular velocity at that iteration. Subsequently, the
background frictional force and torque modify the velocity and angular velocity according
to the integration methods outlined in Sec. 2.3. Therefore, the lines exhibit exponential
growth/decay, as the change in (angular) velocities is directly proportional to the current
(angular) velocity, i.e.,

∆v ∝ γb · v and ∆ω ∝ γbr · ω.

Moreover, the angular velocity ω decays faster than the velocity v for two reasons:

1. For the calculation of velocity and angular velocity changes (∆v and ∆ω), the Störmer-
Verlet method in Eq. 2.4 uses the average of the current and previous forces, i.e.,
f(tn)+f(tn+1)

2 , whereas the explicit Euler method only considers the current torque, i.e.,
q(tn). As a result, the velocity changes computed using Störmer-Verlet are smaller
than those computed using explicit Euler when the force and torque are monotonically
decreasing. However, this leads to only minor differences in the evolution of the two
methods, as the chosen time step, ∆t = 5 · 10−4, is sufficiently small.

2. In the explicit Euler method, the current torque is divided by the moment of inertia, i.e.,
q(tn)

I , which becomes smaller than one when the simulation parameters are inserted,
i.e., Isphere =

2
5 ·m · r

2 = 0.4 < 1. Dividing by a number smaller than one increases
the change in angular velocity (∆ω). In contrast, in the Störmer-Verlet method, the
averaged forces are divided by the mass of the particle, which is one in this scenario,
i.e., m = 1, and therefore does not increase the change in velocity (∆v) subsequently.

2.5. Heat Models

2.5.1. Heat Transfer Model

The models presented above focus solely on motion. To incorporate thermal effects, a heat
transfer model presented by [CMT06] is briefly introduced below.

ϕji = Hc · (Tj − Ti)

Hc
ij = 2kS(

3

4
·
fn∗ · √rirj

Eij
)1/3

fn∗ = kn · δ
(2.26)

Here, ϕji denotes the flux of heat transferred from particle i to j, and Ti/j is the temperature
of the corresponding particle. Furthermore, kS represents the thermal conductivity of the
material, Eij is the effective Young’s modulus for the particles i and j, and Cp

i is the specific
heat of the material. Moreover, fn∗ denotes the simplified normal force, where the dashpot
term is omitted to ensure that the force remains positive throughout the simulation, i.e.
fn∗ > 0. This is necessary because, as shown in Eq. 2.26, Hc

ij becomes a complex number
for a negative fn.
In sum, this is a linear model where the heat flux is directly proportional to the normal

force, and thus to the overlap between surfaces. This assumption is based on the idea that
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i j
ϕji

Figure 2.12.: Heat Flux ϕji between two particles in contact

Figure 2.13.: Results of a simple simulation of heat transfer with other models deactivated.
Simulation parameters: δ = 0.25, kn = 50, γn = 10−3, kS = 0.05, E = Cp =
1, ri = rj = 1,mi = 2 ·mj = 2,∆t = 5 · 10−4. The Linear normal force model
was used solely to compute fn without applying the force.

a larger contact area or volume enables greater heat transfer (see Figure 2.12). Further
assumptions are following [CMT06]:

1. kS , Eij , and Cp
i (see Eq. 2.6) are constant.

2. Temperature T is uniformly distributed over the particle’s volume (cf. Sec. 2.1).

Again, a simulation of an example scenario verifies this heat transfer effect (see Figure 2.13).
The magnitude of heat flux in both directions is identical, as ϕji = −ϕij . The temperature
evolution of particle i is slower due to its doubled mass. The converged temperature is as
follows:

T after
i/j = T before

i/j +
1

mi/jC
p
i/j

·
∫
C
ϕi/jdt

⇒ T after
i = T before

i − 1

3
∆T before

ij ≈ 66.6 = T after
j

as the particles’ positions are fixed in our setup.
Moreover, to note is that this model solely accounts for heat transfer between particles

through conduction and does not account for other forms of heat transfer, such as convection
or radiation. That is, according to our model assumptions, heat transfer occurs only between
overlapping particles. Additionally, since this model only balances initial thermal differences
through heat transfer and does not generate heat, no thermal dynamics will be observed if
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(a) (b)

Figure 2.14.: Results of a simple simulation of heat generation with other models deactivated.
The same scenario as in Figure 2.5.

no initial temperature differences are provided for the particles. To further account for the
conversion of kinetic energy into heat, an additional model for heat generation is introduced
in the following.

2.5.2. Heat Generation Model

We assume the generation of heat by frictional forces. To simplify the model, we only
consider tangential frictional forces and do not incorporate rolling and torsion friction:

ϕji = η · ∥f t∥2 · ∥vt∥2 = ϕij (2.27)

This model resembles the one presented in [HRK+24] with the difference that [HRK+24]
only considers dynamic friction in ∥f t∥. The parameter η < 1 indicates the proportion of the
work done by the frictional forces that is converted into heat. According to the definition of
this model, the resulting heat flux is always non-negative and is equally distributed between
the two particles, i.e., ϕji = ϕij ≥ 0.

Figure 2.14 shows the development of heat flux and temperature in the scenario depicted
in Figure 2.5. The lines in Figure 2.14 (a) resemble those in Figure 2.5, as heat flux is
directly influenced by the frictional force. Specifically, the higher the value of the parameter
η, the greater the heat flux. Figure 2.14 (b) illustrates the relationship between heat flux
and temperature, as shown in Figure 2.13, where a higher value of η leads to a higher final
temperature.

2.6. Non-spherical particle model

While the spherical particle model provides a reasonable approximation for granular particles,
there is still room for refinement when modeling non-spherical particles. In reality, particles
can take on a variety of shapes depending on their crystalline forms. To better capture this
diversity, the multi-sphere model can be employed. This model approximates the particle’s
shape effectively by using multiple smaller sub-spheres (see Figure 2.15). However, this
approach introduces several complexities:
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2.6. Non-spherical particle model

Figure 2.15.: Approximation of a non-spherical particle using the multi-sphere model with
an increasing number of sub-spheres
Source: [WCNT23]

• Unlike the spherical model, this multi-sphere approach requires accounting for spatial
orientation, making the integration of rotational motion more complex. A rotational
velocity Verlet algorithm, as presented in [RK10], can be used for this purpose.

• To maintain the structure of the glued sub-spheres, the relative positions between
them must remain constant. This can be achieved by modeling these non-spherical
particles as rigid bodies with fixed relative positions between sub-spheres.

Refer to [NGNB23] for further details.
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The aforementioned contact models are implemented with the usage of a particle simulation
library, AutoPas. In this chapter, AutoPas and its unique abilities to dynamically tune a
simulation configuration will be presented.

AutoPas is a particle simulation library that arised from the following nature of problem.
Many particle simulations are based on short-range pairwise interactions such as the contact
force laws in Sec. 2.4 or the Lennard-Jones (LJ) Potential [GSBN21], which is characterized
by strong short-range repulsive forces and weaker mid-range attractive forces. A key
computational bottleneck in evaluating these short-range forces is the process of identifying
neighboring particles, between which the forces must be applied. Fortunately, various
algorithms exist to accelerate this neighbor identification process. However, each algorithm
comes with its own trade-offs between computational power and memory usage. Interestingly,
their performance can vary significantly depending on a range of factors as the simulation
scenario, the current system state, and the nature of the interaction forces. In addition
to neighbor identification algorithms, other configuration components, such as the choice
of data structures and traversal methods, can also affect performance, with their impact
varying depending on these factors. AutoPas tackles this challenge by dynamically selecting
the optimal algorithmic configuration through auto-tuning, based on the current state of the
simulation. The developers of AutoPas describe their library as “an open-source C++ library
delivering optimal node-level performance by providing the ideal algorithmic configuration
for an arbitrary scenario in a given short-range particle simulation” [GSBN21]. ‘

3.1. Neighbor Identification Algorithms

AutoPas internally implements four distinct algorithms for identifying neighboring particles
within the so-called cutoff radius. The cutoff radius, dcutoff , defines the maximum distance
beyond which the short-range interaction force is considered negligible and is thus ignored,
i.e.:

fji ≈ 0 ∀dij > dcutoff .

In the case of DEM, which is based on particle contacts, the cutoff distance is given
by dcutoff = 2 · rmax with the maximum particle radius rmax, particularly in the case of
polydisperse particles. By introducing the cutoff, small interaction forces—such as the
weak attractive forces from the LJ potential at longer distances—are neglected, leading to
significant computational time savings. The following section provides a brief introduction
to these four algorithms.

• Direct Sum:
The Direct Sum algorithm naively computes the distances to all other particles in
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the domain and checks whether each calculated distance is within the cutoff radius.
In Figure 3.1 (a), all particles, except the red one, are colored grey, indicating that
distances have been calculated to all other particles in the domain. Therefore, this
algorithm needs to compute distances between all particle pairs in the domain and
scales very badly, i.e. O(N2).

• Linked Cells:
LinkedCells subdivides the domain into a grid of cells. Each cell has a width greater
than or equal to the cutoff radius, which is, in turn, at least as large as the diameter
of any particle, i.e.

dcell ≥ dcutoff ≥ 2 · rmax,

and tracks the particles within it by maintaining a list of particles inside each cell. This
grid structure significantly reduces the number of distance calculations, as computations
are only necessary inside the region surrounding the corresponding cell, also referred
to as base cell (see Figure 3.1(b)). For particles in cells outside this region, it is safe
to assume they are beyond the cutoff radius, thanks to the relationship between cell
width and the cutoff radius. Compared to DirectSum (Figure 3.1a), Linked Cells
reduces the number of distance calculations considerably (Figure 3.1b), mitigating
the time complexity to O(N) [GSBN21]. The main disadvantage is the computational
and memory overhead associated with updating the list of particles within each cell in
every iteration.

• Verlet Lists:
Figure 3.1(b) shows that the Linked Cells algorithm still computes distances to many
grey particles that are far beyond the cutoff radius, which is due to the overly large
search (blue) region. In contrast, the Verlet Lists algorithm maintains a list of
particles within the so-called interaction length [GSBN21], indicated by the yellow
circle in Figure 3.1(c), which is typically larger than the cutoff radius. By selecting
an appropriate interaction length, the Verlet Lists can be maintained for several
iterations. For (re)generation of Verlet Lists, which should occur periodically when
their lifetime “expires”, a background grid structure like Linked Cells can be used to
identify particles within the interaction length. Since the enlarged interaction length
circle better approximates the cutoff radius than the 3 × 3 grid of Linked Cells, the
Verlet Lists algorithm often enjoys a small constant-factor advantage in hitrate and
time complexity over the LinkedCells algorithm. However, it still has memory overhead,
as the Verlet Lists must be stored across multiple iterations [GST+19a][GST+19b].

• Verlet Cluster Lists:
The Verlet Cluster Lists algorithm takes advantage of the fact that nearby particles
often share similar Verlet Lists by clustering a predefined number of neighboring
particles together. Each cluster maintains a Verlet list for the entire cluster rather
than for individual particles, reducing both the number of Verlet lists and their lengths.
The rest of the algorithm operates similarly to the Verlet Lists method. While Verlet
Cluster Lists offer a memory advantage by clustering neighboring particles, they may
lower the hitrate and increase the number of distance calculations, as the interaction
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Figure 3.1.: Neighbor identification algorithms used in AutoPas:
The red circle represents the cutoff radius of the red particle. The color distinc-
tions (white, grey, blue) indicate the need for a distance calculation and the
actual distance to each corresponding particle. White particles are considered
outside the cutoff radius according to the algorithm, so distance calculations to
them are skipped. Grey particles require a distance calculation, and among them,
the blue particles are within the cutoff radius, meaning that interaction forces
will be evaluated for these particles. In the case of Verlet Lists (Figure 3.1(c)),
many grey particles are not marked with an arrow because distance calculations
are not required in every iteration; they are only necessary when the Verlet lists
need to be (re)generated. For cell-based algorithms, the base cell, in which the
red particle resides, is colored red. Source: [GSBN21]

length circle must now be centered around the entire cluster of particles (see the larger
yellow circle in Figure 3.1(d)) [GSBN21].

3.2. Traversal Methods

Another component of the algorithmic configuration is the traversal method, which determines
the order in which particles in the domain are processed. Specifically, for cell-based neighbor
identification algorithms like Linked Cells, the 3 × 3 grid surrounding the base cell can
be adjusted or reduced by applying Newton’s third law, thereby improving computational
efficiency. This reduced grid space, where distance calculations are necessary, is referred to
as base steps in [GSBN21], representing the area covered by each forward step of the base
cell as it progressively spans the entire domain. Three base steps implemented in AutoPas
are presented briefly in the following.

• c01 base step:
This standard base step considers the full 3 × 3 grid surrounding the base cell, as
described earlier, and does not utilize Newton’s third law further (see Figure 3.2(a)).

• c18 base step:
This base step applies Newton’s third law and only considers the “upper” half of its 3
× 3‘ surrounding grid space, including the base cell itself, for distance calculations.
Due to Newton’s third law, interactions with particles in the omitted “lower” half of
the grid region are handled by the cells in the lower half (see Figure 3.2(b)).

• c08 base step: This base step applies Newton’s third law and further reduces the
full 3 × 3 grid to a 2 × 2 square, with the base cell positioned in the lower left corner
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Figure 3.2.: Base steps in AutoPas: The background displays the cell grid, where the cell
width is equal to the cutoff radius. The base cell, colored red, is surrounded
by the full 3 × 3 grid region, shown in blue. The reduced grid area covered by
the base step is outlined with red lines. Black arrows indicate the necessary
distance calculations between particles in the cells at the arrow’s ends. Source:
[GSBN21]

(Figure 3.2(c)). In addition, it accounts for the interactions between the particles in
the upper left and lower right corner cells, ensuring that all interactions between the
base cell and the surrounding cells of the original 3 × 3 grid are fully covered (see
Figure 3.2(c)).

These base steps can be further optimized by combining them with coloring and slic-
ing techniques, enabling more time-efficient processing through parallel computation. A
comprehensive description of all available traversal methods can be found in [GSBN21].

3.3. Data Layouts

A further aspect of the configuration is the layout of particle data, which determines how
particle attributes are stored in memory. AutoPas supports two primary approaches for this:

• Array of Structures (AoS):
In this layout, each particle is represented by a C++ structure (or object) that
encapsulates its attributes, such as x/y/z-positions. These structures are then stored
in a contiguous array, typically implemented as a std::vector<Particle>, where
each element corresponds to a single particle.

• Structures of Arrays (SoA):
In this layout, the attributes of particles are stored in separate, contiguous arrays, which
are grouped together within a structure. For instance, the x, y, and z coordinates
of all particles could be stored in distinct arrays, such as std::vector<double>

posX, std::vector<double> posY, and std::vector<double> posZ, all encapsu-
lated within a SoA object.

Using the AoS layout for particles may be more efficient for random access to individual
particles, as each particle’s data is stored together. On the other hand, the SoA layout offers
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improved memory access efficiency by storing attributes of all particles in contiguous arrays,
enabling operations to be performed on specific attributes across all particles. This layout is
particularly advantageous in performance-critical scenarios, as it enables easy parallelization
or vectorization of operations [GSBN21].

3.4. Further Configurable Options

Furthermore, AutoPas offers two further configuration options, i.e. Cell Size and Newton3.

• Cell Size:
The cell size defines the width of the cell grid used for Linked Cells or Verlet Lists.
Depending on this, the number of necessary distance calculations and the overall time
efficiency of the simulation might vary [GSBN21].

• Newton3:
By applying Newton’s third law, the number of force calculations is reduced by half, as
the forces between pairs of particles are computed only once. However, this optimization
can introduce challenges for parallelization, as force updates may involve interactions
between particles in two different cells and therefore bring about synchronization
overhead [GSBN21]. This trade-off makes the use of Newton3 a configurable option.

3.5. User Perspective

From the user’s perspective, AutoPas functions as a black-box container that provides
various methods for constructing a simulation loop. The user can add particles to the
simulation using addParticle(Particle), iterate over all particles with begin(), trigger
the evaluation of interaction forces among all particle pairs via iteratePairwise(Functor),
or update the particle container (e.g., regenerating Verlet lists or re-tracking particles in
each cell). These operations are invoked through an interface, while AutoPas handles the
underlying logic, including auto-tuning, automatically. In addition to the aforementioned
methods, which are visualized in Figure 3.3 AutoPas also offers options for configuring
simulation-wide parameters, such as adjusting the domain size [GSBN21].

3.5.1. Custom Particle and Functor

To perform a particle simulation with custom interaction forces in AutoPas, the user
must implement custom particle and functor classes, both inheriting from the base classes
Particle and Functor [GSBN21]. Through inheritance, objects of these custom classes can
call the interface methods outlined earlier (see Figure 3.3).

The custom particle class should encapsulate all the necessary attributes required to
calculate the interaction force between particles. These attributes typically include particle
position, velocity, mass, and other relevant properties. The interaction force itself should be
implemented in the custom functor class, which should overwrite multiple methods defined in
the base class. Each method should be designed to support different neighbor identification
algorithms, tailored to various data layout types. The implementation of these methods is
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Figure 3.3.: The AutoPas interface, along with its key methods, which can be called with
arguments from user code. Source: [GSBN21]

(a) Base Class Particle (b) Base Class Functor

Figure 3.4.: Simplified diagrams of class Particle and Functor. The symbol <<get/set>>
indicates the presence of getter and setter methods for the corresponding
attribute within the class.

necessary to fully leverage AutoPas’s auto-tuning capabilities to use different algorithms
and data layout types as configurable options.
The base classes Particle and Functor are illustrated in their simplified forms in Fig-

ure 3.4.

3.5.2. Simulation Loop

By utilizing the methods provided by the AutoPas interface, a simulation loop can be
constructed. This loop evaluates interaction forces, computes the affected (angular) veloc-
ities based on the integration methods (see Sec. 2.3), and updates the particle positions.
Additionally, various boundary conditions, such as reflective or periodic boundaries, can
be applied to control the behavior of particles at the domain boundaries. An example of a
simplified simulation code is shown in Listing 3.1.

1 // Create and i n i t i a l i z e an AutoPas ob j e c t :
2 AutoPas<CustomParticle> autopasContainer ;
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3 autopasContainer . i n i t ( ) ;
4
5 CustomPartic le p ;
6 autopasContainer . addPar t i c l e (p) ;
7
8 CustomForceFunctor f ;
9
10 // Simulat ion Loop
11 for ( needsMore I t e ra t i ons ( ) ) {
12 c a l c u l a t ePo s i t i o n s ( ) ;
13 autopasContainer . updateContainer ( ) ;
14 applyBoundaryConditions ( autopasContainer ) ;
15 autopasContainer . i t e r a t ePa i rw i s e (& f ) ;
16 c a l c u l a t eV e l o c i t i e s ( ) ;
17 c a l c u l a t eAngu l a rVe l o c i t i e s ( ) ;
18 }

Listing 3.1: Simplified example of a simulation

3.6. md-flexible

To enhace the user friendlibility, AutoPas additionally provides code of an example simulation
called md-flexible. md-flexible supports both single-site and multi-site molecular dynamics
(MD) simulation using the Lennard-Jones 12-6 potential with Störmer-Verlet time integration
[GSBN21][NGNB23].
Notably, the md-flexible framework for multi-site MD simulations includes already

implemented algorithms for updating spatial orientation, along with angular velocities and
torques, while ensuring the structural integrity of molecules by maintaining fixed positions of
their sites. Advantageously, this framework is also applicable to the multi-sphere approach
of DEM described in Sec. 2.6 where non-spherical particles are treated as molecules, with
their sub-spheres acting as molecular sites. Here, users only need to specify the relative
positions of these sites with respect to the center of mass and provide the inertia tensor of
the molecule.

Moreover, md-flexible also offeres code for reflective and periodic boundary conditions,
printing VTK files for visualization etc. The structure of the functor methods implemented for
simulating the Discrete Element Method in Sec. 4.2 also closely follows the preimplemented
methods in md-flexible.
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In this chapter, the implementation of the models from Sec. 2 will be described from the
perspective of an user of AutoPas.

To simulate the Discrete Element Method (DEM), custom classes GranularDEM for particles
and DEMFunctor for contact forces have been implemented, that are presented briefly in the
following.

4.1. Custom Classes GranularDEM and DEMFunctor

On the one hand, the GranularDEM class extends the base Particle class by incorporating
additional attributes that are needed to implement the contact force and heat models from
Sec. 2.4 and 2.5:

• The attributes angularVel (angular velocity) and torque are added to model rotational
dynamics. Due to the spherical particle model (see Sec.2.1), spatial orientation is
neglected.

• The oldForce attribute is stored, as the Störmer-Verlet integration method is used
for translational motion (see Sec.2.3).

• The typeId attribute is utilized to differentiate particles with varying radii, provided
that the number of distinct radii remains manageable.

• The attributes temperature and heatFlux are included for heat modeling.

On the other hand, the DEMFunctor class implements interaction forces based on the
contact force and heat models. It encapsulates the coefficients used in these models and
provides various functor methods. The structures of these base classes are further illustrated
in Figure 4.1, while the details of these functor methods are presented in the following.

4.2. Functor Methods in DEMFunctor

As illustrated in Figure 4.1, the DEMFunctor class encompasses multiple methods designed
to utilize configurable options such as data layouts and neighbor identification algorithms.
The following provides a concise overview of the structure of these methods.

4.2.1. AoSFunctor

The AoSFunctor takes C++ Particle objects as arguments, along with a boolean flag indicating
whether Newton’s third law should be applied. Due to the AoS layout, particle properties,
such as position, can be directly accessed and modified from the particle objects. An example
structure of this method is provided in Listing 4.1.
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1 void AoSFunctor ( Pa r t i c l e &i , P a r t i c l e &j , bool newton3 ) {
2 // Ignore p a r t i c l e s ou t s id e the c u t o f f r ad iu s
3 const double d i s t ance = ca l cu l a t eD i s t an c e ( i . getPos ( ) , j . getPos ( ) ) ;
4 i f ( d i s t ance > c u t o f f ) return ;
5
6 // Compute over lap , normal un i t vector , t r a n s l a t i o n a l r e l a t i v e v e l o c i t y , . . .
7
8 // Compute l i n e a r normal f o r c e
9 const double normalContactForceScalar = e l a s t i c S t i f f n e s s ∗ over lap −

normalVi scos i ty ∗ dot ( normalUnitVec , r e lVe l ) ;
10 const std : : array<double , 3> normalForceVector = mulScalar ( normalUnitVec ,

normalContactFScalar ) ;
11
12 // Compute other f o r c e s
13
14 i . addF( tota lF ) ;
15 i f ( newton3 ) {
16 j . subF ( tota lF ) ;
17 }
18
19 // Compute and apply torques
20 // . . .
21
22 }

Listing 4.1: Simplified version of AoSFunctor()

(a) Cutustom Particle Class GranularDEM (b) Custom Functor Class DEMFunctor

Figure 4.1.: Simplified diagrams of custom class GranularDEM and DEMFunctor.
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4.2. Functor Methods in DEMFunctor

4.2.2. SoAFunctor

The SoAFunctor accepts a SoAView as argument, which mirrors the concept of std::string view

from C++17, offering a view into a segment of the actual SoA by referencing its start and
endpoint [GSBN21]. In contrast to AoS, SoA requires an access via pointer-indexing to
retrieve a particle’s attributes. Initializing such pointers can be simplified by defining an
inner enum class AttributeNames inside the custom particle class, which contains the names
of all particle attributes. This enum can then be used by SoAView to provide pointers to the
corresponding attribute arrays. Moreover, in contrast to AoS, the SoAFunctor evaluates the
interaction forces between multliple particles “simultaneously”. This enables vectorization
with e.g. OpenMP, using SIMD instructions with a reduction to the force and torque
accumulators. An example is provided in Listing 4.2.

1 void SoAFunctor (SoAView soa , bool newton3 ) {
2 // I n i t i a l i z e po i n t e r s to SoA data
3 const auto ∗const xptr = soa . template begin<Pa r t i c l e : : AttributeNames : :

posX>() ;
4 const auto ∗const yptr = soa . template begin<Pa r t i c l e : : AttributeNames : :

posY>() ;
5 // . . .
6 double ∗const f xp t r = soa . template begin<Pa r t i c l e : : AttributeNames : : forceX

>() ;
7 double ∗const f yp t r = soa . template begin<Pa r t i c l e : : AttributeNames : : forceY

>() ;
8 // . . .
9
10 // Nested for−l oops
11 for (unsigned int i = 0 ; i < soa . s i z e ( ) ; i++) {
12 // I n i t i a l i z e accumulators f o r f o r c e and torque
13 double f xacc = 0 . ;
14 double f yacc = 0 . ;
15 // . . .
16
17 #pragma omp simd reduct ion (+ : fxacc , fyacc , . . . ) // v e c t o r i z a t i o n
18 for (unsigned int j = i + 1 ; j < soa . s i z e ( ) ; ++j ) {
19 // Force and torque c a l c u l a t i o n s
20 // . . .
21
22 // Add computed f o r c e s and torques to accumulators
23 f xacc += totalFX ;
24 f yacc += totalFY ;
25 // . . .
26
27 i f ( newton3 ) { // Apply f o r c e s and torques to Pa r t i c l e j ( newton3 )
28 f xp t r [ j ] −= totalFX ;
29 f yp t r [ j ] −= totalFY ;
30 // . . .
31 }
32 }
33 // Apply f o r c e s and torques
34 f xp t r [ i ] += fxacc ;
35 f yp t r [ i ] += fyacc ;
36 // . . .
37 }
38 }
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4. Implementation

Listing 4.2: Simplified version of SoAFunctor() using omp simd, though other vectorization
methods are also possible.

4.2.3. SoAFunctorVerlet

The method SoAFunctorVerlet takes as arguments a Verlet-List (&neighborList), the
index of the base particle (indexParticleI), and the corresponding SoAView. It defines the
hyper-parameter vecsize, which specifies the number of particles processed “simultaneously”
in a vectorized manner. The method handles n · vecsize particles from the Verlet-List in
parallel, where

n = ⌊neighborList.size()
vecsize

⌋.

The remaining neighborList.size()−n ·vecsize are handled in a non-vectorized manner.
An example is shown in Listing 4.3.

1 void SoAFunctorVerlet (SoAView soa , const s i z e t i nd exPa r t i c l e I , const
NeighborLis t &ne ighborL i s t , bool newton3 ) {

2 // I n i t i a l i z e po i n t e r s to SoA data
3 const auto ∗const xptr = soa . template begin<Pa r t i c l e : : AttributeNames : : posX

>() ;
4 // . . .
5
6 // I n i t i a l i z e accumulators
7 double f xacc = 0 . ;
8 // . . .
9
10 constexpr s i z e t v e c s i z e = 12 ; // hyper−parameter
11
12 i f ( ne i ghborL i s t . s i z e ( ) >= ve c s i z e ) {
13 // I n i t i a l i z e r e g i s t e r s to load computation−r e l e van t va lue s and s t o r e

the r e s u l t s
14 a l i g n a s (64) std : : array<double , v e c s i z e> xtmp , . . . , xArr , . . . , fxArr , . . .
15
16 // Load va lue s o f Pa r t i c l e i to r e g i s t e r s
17 for ( s i z e t tmpj = 0 ; tmpj < v e c s i z e ; tmpj++) {
18 xtmp [ tmpj ] = xptr [ i n d e xPa r t i c l e I ] ;
19 // . . .
20 }
21
22 // Loop over the Ver let−L i s t from index 0 to the h i ghe s t mu l t ip l e o f

v e c s i z e
23 for ( s i z e t j o f f = 0 ; j o f f < ne ighborL i s t . s i z e ( ) − v e c s i z e + 1 ; j o f f +=

ve c s i z e ) {
24
25 // Load va lue s o f Pa r t i c l e j
26 #pragma omp simd s a f e l e n ( v e c s i z e )
27 for ( s i z e t tmpj = 0 ; tmpj < v e c s i z e ; tmpj++) {
28 xArr [ tmpj ] = xptr [ mapToSoAIndex ( j o f f + tmpj ) ] ;
29 // . . .
30 }
31
32 #pragma omp simd reduct ion (+ : fxacc , . . . ) s a f e l e n ( v e c s i z e )
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4.3. Simulation Code

33 for ( s i z e t j = 0 ; j < v e c s i z e ; j++) {
34 // Actual f o r c e and torque c a l c u l a t i o n s
35 // . . .
36
37 // Add computed f o r c e s and torques to accumulators
38 f xacc += totalFX ;
39 // . . .
40 i f ( newton3 ) {
41 // Store the va lue s temporar i ly to r e g i s t e r s
42 fxArr [ j ] = totalFX ;
43 // . . .
44 }
45 }
46
47 i f ( newton3 ) { // Apply the va lue s that were s to r ed in r e g i s t e r s
48 #pragma omp simd s a f e l e n ( v e c s i z e )
49 for ( s i z e t tmpj = 0 ; tmpj < v e c s i z e ; tmpj++) {
50 const s i z e t j = mapToSoAIndex ( j o f f + tmpj ) ;
51 f xp t r [ j ] −= fxArr [ tmpj ] ;
52 // . . .
53 }
54 }
55 }
56 }
57
58 // Handle the remaining p a r t i c l e s ( fewer than v e c s i z e ) without

v e c t o r i z a t i o n ( s im i l a r to approach in SoAFunctor ( ) )
59 // . . .
60 }

Listing 4.3: Simplified version of SoAFunctorVerlet() using omp simd

4.3. Simulation Code

Using the presented custom particle and functor classes, the simulation code can be con-
structed similar to the structure in Listing 3.1. However, a few further elements have been
added (see Figure 4.2), which are presented briefly in the following.

4.3.1. Background Friction

Inside the functor methods described above, all contact models can be implemented, except
for the background friction model. The background friction model subtracts the background
friction force from the sum of all applied forces by neighboring particles, making its imple-
mentation more complex within these functor methods. However, at the simulation loop
level, after evaluating all interaction forces, this can be easily done in an “embarrassingly”
parallel manner.

1 void Simulat ion : : ca l cu la t eBackgroundFr i c t i on ( const double gamma b , const
double gamma br ) {

2 #pragma omp p a r a l l e l shared ( autopasContainer )
3 for (auto p = autopasContainer−>begin ( ) ; p a r t i c l e . i sVa l i d ( ) ; ++p a r t i c l e ) {
4 const auto dampedForce = p−>getV ( ) ∗ gamma b ;
5 p−>subF ( dampedForce ) ;
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4. Implementation

6
7 const double rad iu s = re t r i ev eRad iu s (p−>getTypeId ( ) ) ;
8 const auto dampedTorque = p−>getAngularVel ( ) ∗ ( rad iu s ∗ rad iu s ∗ gamma br

) ;
9 p−>subTorque ( dampedTorque ) ;
10 }
11 }

Listing 4.4: A simplified version of the Simulation::calculateBackgroundFriction()

method, designed for use within the simulation loop of the Simulation class.

4.3.2. StatisticsCalculator

The StatisticsCalculator class computes various statistical values, including stress and
density, and outputs these results into a CSV file.

Figure 4.2.: Simplified diagram of classes used to perform a simulation. PPL abbreviates
the original class name ParticlePropertiesLibrary, which stores different
particle attributes in a map with keys as typeIds (size t).

4.4. Implementation of Non-spherical Model

For the non-spherical model from Sec. 2.6, one can utilize the multi-site MD framework in
md-flexible without changes to contact force or heat models.

As mentioned in Sec. 3.6, the user only needs to provide the relative positions of the
sub-spheres with respect to the center of mass and the inertia tensor. Specifying these
relative positions is straightforward. However, obtaining an analytical solution for the
inertia tensor of an arbitrary particle shape is often challenging. Therefore, it is typically
approximated using the Monte Carlo method.

In this approach, a large number of infinitesimally small mass points are sampled uniformly
from the volume of the desired non-spherical particle shape. The inertia tensor for each
point mass is computed using the analytical solution for a single point mass, and the results
are summed to approximate the inertia tensor of the entire non-spherical particle. The
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4.4. Implementation of Non-spherical Model

Algorithm 1: Approximation of Inertia Tensor using Monte Carlo method

Input: num samples, mass, domain
Output: inertia tensor

1 Function compute pointMass inertia(position, mass):
2 Ixx ← mass · (position.y2 + position.z2);
3 Iyy ← mass · (position.x2 + position.z2);
4 Izz ← mass · (position.x2 + position.y2);
5 ...

6 return Tensor(Ixx, Ixy, Ixz, ...)

// Actual Approximation

7 Function approximate inertia(num samples, mass, domain):
// Initialize parameters

8 dm ← total mass / num samples; drawn num samples ← 0;
current inertia tensor ← 0

9 while drawn num samples < num samples do
10 sample ← sample uniformly from domain (domain);
11 current inertia tensor += compute pointMass inertia(sample, dm);
12 ++drawn num samples;

13 return current inertia tensor

Figure 4.3.: Algorithm to approximate the inertia tensor using Monte Carlo method. One
samples point masses from the volumetric domain of the multispherical particle
and adds up the inertia of the point masses.

algorithm for this approach is shown in Figure 4.3, and the generated point masses for
approximation of an example non-spherical particle shape are illustrated in Figure 4.4.
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4. Implementation

Figure 4.4.: Approximation of the inertia tensor using the Monte Carlo method, with
generated point masses shown. Together, these point masses approximate the
particle’s shape, represented by four sub-spheres in a quadratic alignment.
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5. Simulation Results

This chapter presents results of six simulation scenarios with the relevant macroscopic
statistical values and the auto-tuning results.

5.1. Settling

Settling scenario simulates falling and settling down of particles. For this simulation, all
contact force models have been used.

5.1.1. Scenario Description

Initially, N = 1500 particles were positioned in a cubic arrangement, uniformly distributed
at a height of z = 2 above the ground within a relatively small domain D. This domain is
defined by the corners Dmin = (0, 0, 0) and Dmax = (25.25, 25.25, 50.25), with surrounding
reflective boundaries. The particles are subject to gravity, gz = −9.8, causing them to settle
downward. As the reflective boundaries do not dissipate the particles’ energy e.g. as heat,
the friction coefficients have been increased, and a background friction has been introduced
to accelerate the settling procedure. The following parameters were used:

kn = 50,

γn = 10−3, γt = 10−1, γr = γo = 10−2, γb/br = 0.05

µs = 7.5, µd = µr = µo = 5,

dcutoff = 3,∆t = 5 · 10−5

5.1.2. Simulation Results

The plots in Figure 5.2 provide evidence of particle settling, with a gradual decrease in
overall movement over time.
In particular, the general decreasing development of kinetic energy shown in Figure 5.2

(a) effectively illustrates the settling process. The mean kinetic energy in all directions
starts at zero, as no initial velocities are provided. The kinetic energy in the z-direction
initially increases due to gravity but rapidly decreases as particles at the bottom of the
initial cube bounce upward and collide with the still-falling particles above. This process
repeats, exhibiting a quasi-“damped” oscillation, until the bouncing ceases and the kinetic
energy approaches zero. As many collisions occur along the z-axis, tangential forces mostly
act along the xy-plane. This is observable in the nearly identical kinetic energy increments
along the x- and y-axes, which also settle over time.

A similar trend is observed for the rotational energy in Figure 5.2 (b). Rotational energy
increases in all directions as particles collide with each other. However, as mentioned

33



5. Simulation Results

(a) Iteration 0 (b) Iteration 125000

(c) Iteration 250000 (d) Iteration 375000

Figure 5.1.: Snapshots of Settling Scenario

previously, the rotational energy along the x- and y-axes increases more rapidly, as these
axes are parallel to the tangential plane of many collisions, and reaches a higher peak than
the rotational energy along the z-axis. Nevertheless, the rotational energy along the z-axis
also increases continuously, as the domain size is larger than the initial cube. This allows
the particles to spread out more, which results in more frequent collisions along tangential
planes parallel to the z-axis. Again, due to friction, the rotational energy in all directions
gradually settles down over time.

The graph of the number of contacts in Figure 5.2 (c) particularly confirms the aforemen-
tioned development of kinetic energy in the z-direction. The oscillation of the number of
contacts at the beginning corresponds with the kinetic energy in the z-direction in such a
way that an increase in contacts results in a decrease in kinetic energy due to friction. The
number of contacts then reaches a plateau as the particles settle down.

Finally, the development of potential energy, which is proportional to the mean elevation
of all particles along the z-direction, as shown in Figure 5.2(d), further supports the observed
bouncing phenomenon and the general settling process.

5.2. Thermal Equilibrium of Stacked Particles

The thermal equilibrium scenario simulates the settling process in a more confined and
elongated domain, incorporating the heat transfer model from Sec. 2.5.1.
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5.2. Thermal Equilibrium of Stacked Particles

(a) (b)

(c) (d)

Figure 5.2.: Plots of Settling Scenario: Evolution of mean kinetic, rotational, and potential
energy, and number of particle contacts throughout the simulation

5.2.1. Scenario Description

Two cubic blocks, each consisting of N = 1484 particles, are positioned above one another
with a distance of 2 units. Initially, the two blocks have a temperature difference of 100
units, and they gradually undergo thermal equilibration as they settle down due to the
downward gravity. Used parameters follow:

kn = 100, kS = E = Cp = 1, ∥g∥ = 1

All other parameters are the same as those used in the settling scenario. The magnitude
of the downward gravitational force has been reduced to account for the large number of
particles stacked on top of each other.

5.2.2. Simulation Results

The snapshots and plots generally show strong similarities to the settling scenario, with a
few key differences (see Figures 5.3 and 5.4). In Figure 5.4 (a), the first bump represents the
initial settling phase. Following this, the entire particle pillar bounces upward in the second
bump. During this second bump, the upward movement of the lower particles (typeId=0) is
blocked by the upper particles (typeId=1), pushing the upper particles even further upward
(similar to two balls bouncing on top of each other). This is further evidenced by the great
difference in kinetic energy along y-axis between upper and lower particles. The kinetic
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5. Simulation Results

(a) Iteration 0 (b) Iteration 100k (c) Iteration 200k

(d) Iteration 300k (e) Iteration 500k (f) Iteration 1000k

Figure 5.3.: Snapshots of Thermal Equilibrium of Stacked Particles Scenario. Color is scaled
by temperature.
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5.2. Thermal Equilibrium of Stacked Particles

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4.: Plots of Thermal Equilibrium of Stacked Particles Scenario: Evolution of mean
kinetic and rotational energy, mean heat flux and temperature, profiles of
temperature and number of particles along y-axis.
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5. Simulation Results

energy plots along the x- axis, as well as the rotational energy, show similar trends, while
the energy evolution along the z-axis follows a pattern comparable to that along the z-axis.
This occurs because the lower particles are spatially constrained as they are blocked by
the upper particles, leaving little room for movement or rotation (for snapshots, refer to
Figure A.11 in the appendix). Additionally, the relatively high density further limits their
motion (see Figure 5.4 (h)). In contrast, the upper particles have more space to move and
rotate due to the relatively low density in the upper half of the pillar (see Figure 5.4 (h)).
This dynamic is further reflected in Figure 5.4 (b) to (d). The energy for the lower particles
levels off after the first bump, while the upper particles move and rotate freely after they
are bounced up.

Moreover, since only the heat transfer model from Section 2.5.1 is used here (and not the
heat generation model), the heat flux is proportional to the overlap between particles. This
overlap is maximized when the particles have settled or bounced down. As a result, the
heat flux exhibits peaks after the first, third, and fifth bumps of the kinetic energy along
the y-axis (see Figure 5.4 (e)) as the bumps correspond to alternating phases of settling and
upward bouncing, beginning with settling. The heat flux also shows a bump during the
first phase due to the great initial temperature difference and the present overlaps between
particles during the initial settling phase. Furthermore, the temperature plot in Figure 5.4
(f) corresponds to the heat flux plot in such a way that the slope and change in temperature
since the beginning of the simulation align with the value and integral of the heat flux,
respectively. Lastly, Figure 5.4 (g) shows the mean temperatures along the y-axis, with the
initial thermal difference gradually balancing out over time.

In summary, this scenario shares many similarities with the settling scenario. However,
the effect of stacked balls is amplified due to the smaller bottom ground area and the greater
number of particles stacked along the y-axis. Additionally, the effect of thermal equilibrium
is observable.

5.3. Square Tumbler

This scenario simulates a tumbler, which is a machine commonly used in industry to
granularize, dry, or to serve other purposes [GSL+16]. However, instead of the typical
circular form, we use a square-shaped tumbler. The circular boundary complicates the
boundary conditions, so a square domain is chosen to simplify the problem.

5.3.1. Scenario Description

This simulation models dynamics of N = 4500 particles confined within a domain surrounded
by reflective boundaries. Each particle has a radius r = 0.5 and mass m = 1. After
initialization, gravity is applied in the negative y-direction, simulating a settling scenario
similar to the one described in Sec. 5.1. After the particles have settled, the direction
of gravity is rotated to simulate the motion of a rotating tumbler. The rotation of the
gravitation is formulated as follows:
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5.3. Square Tumbler

θ(t) = ω · (t− t0)

gx(t) = g · sin(θ(t))
gy(t) = g · cos(θ(t)) (5.1)

The angular frequency ω represents the rotational speed, t0 denotes the time at which the
rotation begins after the settling phase, and g defines the magnitude of the gravitational
force. Used parameters are presented in the following:

Dmin = (−0.5,−0.5,−0.5), Dmax = (30.5, 30.5, 7.5)

γb/br = 0.01, g = 17.5, ω =
π

16
,∆t = 5 · 10−4

All other parameters are the same as those used in the settling scenario.

5.3.2. Simulation Results

Figure 5.5 presents snapshots of the square tumbler scenario. Snapshots (a) and (b) depict
the initial settling process, followed by a quarter-turn rotation of the gravity (see Figure 5.5
(c)–(f)). Unlike a circular tumbler, which allows particles to cascade continuously, the square
tumbler causes cascading movements to occur in bursts every quarter turn.

This effect is further evidenced in the plots in Figure 5.6. All three plots initially depict
the settling process as expected. The mean kinetic energy decreases rapidly with some
oscillations. This kinetic energy is subsequently converted into rotational energy, which also
decays quickly. The number of contacts starts at zero and increases, reaching a constant value
after some oscillation. Once the gravity begins to rotate, the mean kinetic energy increases
periodically, alternating between the x- and y-directions, corresponding to the cascades
occurring with each quarter turn of the xy-plane. This periodic increase in kinetic energy
also subsequently leads to a rise in rotational energy, which predominantly occurs along
the z-axis, perpendicular to the rotating xy-plane. The cascading motion first decreases
the total number of contacts, but it later increases them again as the particles reach the
opposite corner. The number of iterations that correspond to a quarter turn is computed as
follows:

f =
ω

2π
= 32(s) = Nfull

Iterations ·∆t

N quarter
Iterations =

32

4 ·∆t
= 1.6 · 104,

i.e. the particles cascade every N quarter
Iterations = 1.6 · 104 iterations, which matches Figure 5.5

(a) approximately.

5.3.3. Auto-Tuning and Performance

Figure 5.7 presents the auto-tuning results of this scenario. Following aspects can be noticed:
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(a) Iteration 0 (b) Iteration 60k

(c) Iteration 66k (d) Iteration 68k

(e) Iteration 70k (f) Iteration 72k

Figure 5.5.: Snapshots of Square Tumbler Scenario
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(a) (b)

(c)

Figure 5.6.: Plots of Square Tumbler Scenario: Evolution of the mean kinetic and rotational
energy, as well as the number of particle contacts, throughout the simulation.

• At the start of the simulation, the traversal method switches from vcl cluster iteration

to vcl c01 balanced, which governs the remainder of the simulation. The vc c01 balanced

traversal utilizes Verlet Cluster Lists (VCL) for neighbor identification and c01 base
step, as described in [GSBN21].

• In Figure 5.7 (a) and (b), the computation time for VCL shows the typical two-line
behavior, as rebuild iterations require significantly more time compared to regular
iterations.

• In Figure 5.7 (a) and (b), computation time of both Verlet Cluster Lists (VCL) and
Linked Cells depend on the number of contacts (or particle density) in the iteration.
However, computation time of Linked Cells exhibits higher fluctuations.

• AutoPas selects VCL over Linked Cells, which turns out to be reasonable. VCL shows
faster computation time and lower fluctuations throughout the simulation.

• One explanation for the more efficient VCL compared with Linked Cells is the high
density of the system of particles (due to high gravity). Higher hitrate of Verlet Cluster
Lists profits from the high density showing its effect on lower computation time and
lower fluctuation.

• A further reason for favoring VCL over Linked Cells and Verlet Lists (VL) is the
continuity of neighborhoods and the lower cost of rebuilding Verlet Lists. In this
scenario, particles that are neighbors directly after initialization remain neighbors
throughout the settling and rotation phases of the tumbler, at least at short distances.
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This leads to neighboring particles also being located close to each other in memory.
As a result, VCL offers efficiency benefits, as particles that are neighboring in memory
are grouped together in the same Verlet List, reducing data loading costs. Moreover,
using VCL over VL benefits from shorter rebuild iterations, likely as a constant facter
fewer VLs are needed, outweighing the drawback of the relatively lower hitrate.

• Figure 5.7 (c) compares the data layouts AoS and SoA with each other for VCL. The
typical double lines are visible again due to rebuild iterations. AoS presents higher
computational efficiency in the current implementation.

5.4. Heating Square Tumbler

This scenario incorporates the two heat models from Section 2.5 into the square tumbler
scenario from above.

5.4.1. Scenario Description

The simulation setting is largely identical to the square tumbler scenario, with the key
differences being the increased number of particles and the reduced magnitude of the
gravitational force:

Nparticles = 1620,

kn = 100, kS = E = Cp = 1, η = 0.1,

γb/br = 0.1, g = 2.5, ω =
π

16
,∆t = 10−4

5.4.2. Simulation Results

In general, the simulation results show strong similarities to the square tumbler scenario,
especially the development of kinetic and rotational energy (see Figure 5.9 (a) and (b)).

Moreover, Figure 5.9 (c) and (d) show the developments of heat flux and temperature for
different rotational speed variants, i.e., ω ∈ {ω0 =

π
16 , 1.5 · ω0, 2 · ω0}. Here, the magnitude

of gravity has been scaled by the square of the rotational speed multiplication factor, i.e.,
g ∈ {g0 = 2.5, 1.52 ·g0, 22 ·g0}, according to the centrifugal force F centrifugal = m ·ω2 ·rdomain.
It can be observed that in Figure 5.9 (c) and (d), the multiplication factors of gravity
correspond to the values of heat flux and temperature, respectively. Specifically, from about
iteration 200k, the heat flux and temperature values for the doubled rotational speed, i.e.,
ω = 2 · ω0, are quadrupled compared to those for the original rotational speed. A similar
pattern is observed for the rotational speed ω = 1.5 · ω0.

An additional observation from the snapshots is that particles near the boundaries or at
the corners have higher temperatures compared to those located more centrally within the
domain. Due to gravity, particles near the boundaries are compressed more as they must
endure the weight of the particles above them. This results in a higher normal force needed.
Since frictional forces are proportional to normal forces, the particles near the boundaries
experience greater heat generation.
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(a) Auto-Tuning

(b) Auto-Tuning (Zoomed in)

(c) AoS vs SoA

Figure 5.7.: Auto-tuning results of Square Tumbler scenario. (a) Auto-tuning results com-
pared with using Linked Cells only as a fixed configuration: The colored vertical
lines in the background indicate the selected traversal method by auto-tuning,
while the color of the scatter points represents the chosen data layout (AoS or
SoA) determined by auto-tuning. (b) Zoomed-in version of Plot (a) focusing
on the interval with rotations of tumbler. (c) Comparison of AoS and SoA
with fixed configuration (VerletClusterLists with vcl c01 balanced). Relevant
tuning parameters: cell-size = 1, tuning-strategy = predictive-tuning,
verlet-rebuild-frequency = 10, tuning-interval = 2500
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Lastly, Figure 5.4 (e) illustrates the development of temperature variance among the
particles. Initially, the variance is negligible, but it increases after the first cascade and
eventually stabilizes due to the relatively high thermal conductivity.

5.4.3. Variant with surrounding Walls

A variant of the heating square tumbler scenario can be created by adding surrounding walls.
Reflecting the assumption that the surface of the tumbler walls generates more friction than
the granular particles inside in reality, these walls are assigned friction coefficients that are
three times greater than those of the particles themselves:

knwall = 3 · knsolid, γn,wall = 3 · γn,solid, ...

Moreover, to enhance the effect of the surrounding walls, the heat conductivity of the
granular particles has been reduced, i.e. kS = 0.05. The results are presented in Figure 5.10
and 5.12. The following observations can be made from the snapshots in Figure 5.10:

• Particles near boundaries experience higher friction and increased heat generation (as
in Sec. 5.4.2, see Figure 5.10 (b)).

• The higher temperature of the walls, relative to that of the particles, further amplifies
the heat generation near the walls (see Figure 5.10 (d)).

These observations are also reflected in the plots of Figure 5.12:

• Figure 5.12 (a)

– Adiabatic walls increase heat generation compared to the scenario without walls.

– Cooled non-adiabatic walls produce two competing effects. On the one hand,
the high friction between the particles and the walls attempts to increase the
temperature of the particles. On the other hand, the low temperature of the
walls, which remains nearly constant due to their extremely high specific heat,
acts to cool the particles down. In this scenario, the cooling effect has a stronger
influence, as evidenced by the lower temperature compared to the case without
walls. However, the cooling effect does not completely dominate over the friction
between particles and between the walls and particles, as the overall temperature
of the particles still increases over time.

– Heated non-adiabatic walls initially enhance heat generation. However, as the
temperature of the particles surpasses that of the walls, the heating of the particles
slows down, as seen in the decreasing slope from around Iteration 350k.

• Figure 5.12 (b)

– The variants without walls and with adiabatic walls exhibit similar behavior.
After the settling, the variance of temperature increases as particles near the
boundaries or walls heat up but it eventually stabilizes over time. However,
the variant with adiabatic walls reaches a higher maximum variance (relative to
the variance in the settled state) due to the increased friction on the walls, and
decreases more quickly as the relatively cooler particles heat up more easily when
they come into contact with the walls.
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5.4. Heating Square Tumbler

(a) Iteration 0 (b) Iteration 100 k

(c) Iteration 175 k (d) Iteration 250 k

(e) Iteration 325 k (f) Iteration 400 k

(g) Iteration 475 k (h) Iteration 550 k

Figure 5.8.: Snapshots of Heating Square Tumbler Scenario. Color is scaled by temperature.
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5. Simulation Results

(a) (b)

(c) (d)

Figure 5.9.: Plots of Heating Square Tumbler Scenario: Evolution of mean kinetic and
rotational energy, mean heat flux and temperature over time. Plots (a) and (b)
show the scenario with ω = π

16 . Start of rotation is at Iteration 100 k.
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5.5. Fluidized Bed

– The variant with cold non-adiabatic walls (i.e., T 0
wall = 0) shows a generally

upward trend in variance. This is due to the continuous thermal discrepancies
created by heating inside the particles (from friction) and cooling near the walls
(see Figure 5.11). However, the variance plateaus after a sufficiently high number
of iterations due to the positive conductivity of the particles (see Figure 5.12 (e)).

– The variant with hot non-adiabatic walls (i.e., T 0
wall = 5) initially shows an

increasing variance as the hot walls accelerate the heating process. However, after
a certain point, the variance decreases due to the same reason as for adiabatic
walls. Eventually, once the temperature of the particles increases sufficiently above
that of the walls, the variance rises again. This occurs as the relatively cooler
walls begin to cool the particles near them, while the inner particles continue to
heat up due to friction, analogous to the behavior seen in the variant with cold
non-adiabatic walls.

• Figure 5.12 (c) and (d)

– The plots show the mean temperature along the axes for different variants after
the first one-eighth turn (see Figure 5.10).

– Temperature profiles in Figure 5.12 (c) exhibit U-shaped patterns. At lower
x-coordinates, the mean temperature is higher due to the close distance to the left
wall. At higher x-coordinates, the mean temperature increases as well, because
the number of particles near the wall rises relative to those positioned further
inside (see Figure 5.10. In contrast, at intermediate x-coordinates, the majority
of particles are away from the walls, resulting in a lower mean temperature.
The exception occurs in the variant with cold walls. At lower x-coordinates,
the mean temperature is higher due to friction and insufficient time for cooling.
However, at higher x-coordinates, the mean temperature decreases as a greater
number of particles have already cooled down. A similar trend is also shown for
y-coordinates in Figure 5.12 (d).

5.5. Fluidized Bed

A fluidized bed is a physical phenomenon in which granular material is subjected to both
downward gravitational forces and upward gas or fluid flow. This upward flow, which opposes
the gravity, converts the solid particles into a dynamic fluid-like state, resulting in a massive
increase in the surface area exposed to the surrounding environment. This fluidized state
enhances processes such as heat transfer or chemical reactions, e.g. under addition of a
catalyst. Due to its effectiveness, fluidization is widely used in various industrial applications
as a critical step in the processing [CKK14].

5.5.1. Scenario Description

The system contains Ntotal = 26155 particles, comprising Nsolid = 2142 solid particles and
Ngas = 24013 gas particles. For solid particles, reflective boundary conditions (BC) are
applied to all six walls, while, for gas particles, periodic boundary conditions are used for the
top and bottom walls. The implementation of two different BCs on a single wall is achieved
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5. Simulation Results

(a) Without walls (b) With adiabatic walls

(c) With non-adiabatic walls,
T 0
wall = 0

(d) With non-adiabatic walls,
T 0
wall = 5

Figure 5.10.: Snapshots of heating square tumbler scenario with surrounding walls at Itera-
tion 225k. Color is scaled by temperature. Start of rotation is at Iteration 150
k with ω = π

16 .
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5.5. Fluidized Bed

(a) Without walls (b) With adiabatic walls

(c) With non-adiabatic walls,
T 0
wall = 0

(d) With non-adiabatic walls,
T 0
wall = 5

Figure 5.11.: Snapshots of heating square tumbler scenario with surrounding walls at Itera-
tion 600 k. Color is scaled by temperature. Start of rotation is at Iteration
150 k with ω = π

16 .
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5. Simulation Results

(a) (b)

(c) (d)

(e)

Figure 5.12.: Plots of Heating Square Tumbler Scenario with and without surrounding
walls: Evolution of the mean and variance of temperature over time, along
with temperature profiles along the x- and y-axes at iteration 225k. Used
parameters: ω = π

16 , kS = 0.05. Start of rotation is at Iteration 150 k.
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5.5. Fluidized Bed

by distinguishing the boundary conditions using different typeId values. As a result, the
solid grains are confined within the domain, whereas the periodic BC allows for continuous
upward flow of gas.

The system is initialized with solid particles positioned beneath the gas particles (see
Figure 5.13). Initially, downward gravity is applied only to the solid particles (as in a settling
scenario) to ensure an isotropic, dense arrangement of the solid particles. Once the settling
phase is complete, gas particles are subjected to an upward gravitational force, simulating
an upward flow originating from the bottom of the domain. Used parameters are presented
in the following:

Dmin = (−0.75,−0.75,−0.75), Dmax = (25.25, 25.75, 25.25)

msolid = 1, rsolid = 0.75, gdown = 9.8

mgas = 0.001, rgas = 0.1, gup = 7.5 · 10−2 · gdown

γb/br = 0,∆t = 5 · 10−5

All other parameters are the same as those used in the square tumbler scenario.

5.5.2. Simulation Results

Figure 5.13 shows snapshots of the fluidized bed scenario. After the particles are initialized
(see Figure 5.13 (a)), the solid particles undergo a settling process (see Figure 5.13 (b)).
Following this, the upward gravity is activated for the gas particles, which initiates the
expected upward gas flow (see Figure 5.13 (c)). However, due to the dense packing of the
solid particles, which is a result of the settling process, the gas flow is unable to break
through the solid layer (see Figure 5.13 (d)). Once sufficient pressure has accumulated at
the bottom boundary, the densly aligned solid particles begin to misalign, creating gaps
between them. Through these gaps, the gas particles start to flow upward, (see Figure 5.13
(e)), leading to the release of gas pressure and an increase in the flow rate (see Figure 5.13
(f)). Finally, Figure 5.13 (g) shows the fluidized state with larger inter-particle distances,
resembling the behavior of a fluid or even a gas.

These observations are reflected in the plots in Figure 5.14. Figure 5.14 (a) and (b) depict
the initial settling process, followed by the breakthrough (pressure release) and the fluidized
state with higher kinetic and rotational energy. Figure 5.14 (c) shows the development of
the volumetric flow rate Qapprox, which is calculated as:

Qapprox = vflow ·Abottom

where vflow denotes the flow velocity and Abottom is the cross-sectional area of the bottom
wall. To approximate the flow velocity, the average velocity along the y-axis of gas particles
positioned in either the bottom sixth or the top sixth of the domain has been computed, i.e.:

xygas <
1

6
·Dy

max || xygas >
5

6
·Dy

max
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5. Simulation Results

The number of particles considered in the computation of the flow rate, has also been
plotted in Figure 5.14 (c). After the settling process, Qapprox increases rapidly due to the
upward movement of gas particles at the top of the domain (see Figure 5.13 (c)), which,
however, drops as expected (see Figure 5.13 (d)). The flow rate rises again due to the
breakthrough (see Figure 5.13 (e)) and reaches a plateau in the fluidized state (see Figure 5.13
(g)). Figure 5.14 (d) shows the radial distribution functions throughout the simulation. The
probability to find a pair of near solid particles with a distance less than approximately 2 is
hightest at the end of the settling process (around Iteration 150k). However, it drops rapidly
after the breakthrough (≈ Iteration 200k) and then gradually increases, as the solid particles
transition toward the fluidized state, eventually reaching a plateau around Iteration 400k.

5.5.3. Auto-Tuning Results

Figure 5.15 and 5.16 present the results of auto-tuning. Following trends can be noticed:

• Figure 5.15 (a) and (b):

– The force computation time generally correlates with the number of contacts
produced by the gas particles as Ngas ≫ Nsolid. Up until ca. Iteration 150k, the
computation time remains relatively low, as the gas particles are stationary and
do not produce overlaps yet. Between Iteration 155k to 175k, the computation
time peaks due to the accumulation of pressure from the gas particles, which leads
to a densely packed configuration with the highest number of contacts. After this
point, as the interparticle distances increase and the system reaches a fluidized
state (see Figure 5.14 (a) and (d)), the number of contacts levels off.

– Apart from the interval with the highest density, the data layout AoS dominates.
This is likely due to the relatively low number of particles per cell, which results
from both the lower density and the small cell size relative to the particle radius
or interparticle distance, i.e. cell-size = 1, rsolid = 0.75, d0,intergas = 0.85 with
d0,intergas being the initial particle spacing between gas particles, which would allow
maximum of approximately five to six particles per cell. In such situations with
a lower number of particles per cell, random access in data layout AoS can be
more efficient than SoA. However, during the interval with the highest density,
the data layout SoA brings more efficiencies, as the number of particles per cell
is sufficiently high, and is also chosen by AutoPas (see Figure 5.16 (a)).

– At around iteration 167k, the particles reach their highest density, with gas
particles placed among solid particles (see Figure 5.16). At this point, the
algorithmic configuration shifts from Linked Cells to Verlet Lists, using lc c01 and
vl list iteration as their respective traversal methods. Detailed explanations
of such traversal methods are given in [GSBN21]. Lower computation time with
typically more expensive Verlet Lists rebuild iterations are visible on Figure 5.15
(b) between Iteration 167.5k and 170k. Despite of the expensive rebuild iterations,
the average computation time of Verlet Lists (with vl list iteration and AoS)
is expected to be lower than the one using Linked Cells (with lc c01 and SoA)
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5.5. Fluidized Bed

(a) Iteration 0 (b) Iteration 150 k

(c) Iteration 154 k (d) Iteration 160 k

(e) Iteration 170 k (f) Iteration 180 k

(g) Iteration 230 k

Figure 5.13.: Snapshots of Fluidized Bed Scenario: Gas and solid particles are colored red
and blue, respectively. (a) Initial State, (b) Settled State, (c) Accelerated Gas,
(d) Accumulated Pressure At Bottom, (e) Release of Pressure, (f) Fluidized
State
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5. Simulation Results

(a) (b)

(c) (d)

Figure 5.14.: Plots of the Fluidized Bed Scenario: Evolution of the mean kinetic and rota-
tional energy, volumetric flow rate, and radial distribution functions throughout
the simulation

54



5.6. Strain-Stress

(see Figure 5.15 (c)):

trebuildvl ≈ 137 · 106 ns, tregularvl ≈ 101 · 105 ns,

taveragevl =
trebuildvl + tregularvl · (rebuild period− 1)

rebuild period

= 228 · 105 ns with rebuild period = 10,

tlc ≈ 279 · 105 ns.

Here, these values are obtained from the outputs of TuningDataLogger. Refer
to [GSBN21] for further information about loggers in AutoPas.

– One possible explanation for the higher efficiency of Verlet Lists is the transition
to a quasi-homogeneous state (see [NGM+24]). Due to the high density, the
number of particles per unit volume becomes relatively uniform. As a result, the
benefit of the higher hit rate of Verlet Lists outweighs the cost of the expensive
rebuild iterations.

• Figure 5.15 (d):

– In general, AoS exhibits faster computation times, as indicated by AutoPas.

– An exception occurs around iteration 159k, where SoA slightly outperforms AoS.

5.6. Strain-Stress

The strain-stress scenario discusses the reaction of the particles if they are opposed to strain,
i.e. compression. This scenario takes reference of the parameters and results in [Lud08b].

5.6.1. Scenario Description

This simulation models dynamics of N = 1845 particles, each with a radius r = 0.5, mass
m = 1. The particles are initially arranged in a closely packed diagonal formation within a
cubic domain D, where the minimum corner is at Dmin = (0, 0, 0) and the maximum corner
is at Dmax = (15.5, 15.5, 5.5).

The upper wall of the domain, which is parallel to the xz-plane, moves slowly downward
according to a predefined maximum strain. This downward movement is modeled using a
cosine function, which reaches the maximum strain after its half-period. Once the maximum
strain is reached, the position of the upper wall remains fixed for the rest of the simulation.
In contrast, the right wall, which is parallel to the yz-plane, moves in response to the balance
of forces acting on it from both inside and outside the domain. The external force is specified
by a predefined pressure applied to the right wall, which is opposed by the repulsive forces
exerted by the particles within the domain. The front wall along the z-axis remains fixed
throughout the simulation. This experimental setup is illustrated in Figure 5.17 and the
boundary conditions described above are formulated as follows [Lud08b]:

y(t) =

{
yf +

y0−yf
2 (1 + cos(ωt)) for t ∈ [t0,

T
2 ]

yf for t > T
2

(5.2)
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5. Simulation Results

(a) Auto-Tuning (b) Auto-Tuning (Zoomed in)

(c) Auto-Tuning vs Linked Cells Only (d) AoS vs SoA of Linked Cells (Zoomed in)

Figure 5.15.: Auto-tuning Results of Fluidized Bed Scenario. (a) Auto-tuning results: The
colored vertical lines in the background indicate the selected traversal method
by auto-tuning, while the color of the scatter points represents the chosen data
layout (AoS or SoA) determined by auto-tuning. (b) Zoomed-in version of
Plot (a) focusing on the interval with configurational changes. (c) Comparison
of Auto-Tuning and fixed configuration (lc c01) (d) Zoomed-in comparison of
AoS and SoA with fixed configuration (lc c01). Relevant tuning parameters
are same as in Figure 5.7

(a) First Change to SoA (b) Change to Verlet Lists

Figure 5.16.: Snapshots of Fluidized Bed Scenario at iterations of configuration changes. (a)
First change from AoS to SoA around Iteration 156k (b) Change from Linked
Cells to Verlet Lists around Iteration 168k
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5.6. Strain-Stress

xz

y ϵyy

p

Figure 5.17.: Setup of strain-stress scenario: strain-controlled top wall and stress-controlled
right wall
Source: [Lud08b]

where y(t) represents the size of the domain along the y-axis at time t. y0 and yf denote
the initial and final sizes, respectively, while ω and T represent the rate of deformation and
the period, respectively, with the following relation:

ω = 2πf, T =
1

f
(5.3)

The front wall remains unchanged:

z(t) = z0 (5.4)

The movement of the right wall is controlled as follows:

ẍwall =
1

mwall
· (Finside − p ·Awall) (5.5)

∥∆xmax∥ = kr · r, kr ∈ (0, 1) (5.6)

∥∆x0∥ = ∥
kx
2
· ẍwall · (∆t)2∥ (5.7)

∆x = sign(ẍwall) ·min(∥∆x0∥, ∥∆xmax∥) (5.8)

The term mwall represents an imaginary mass of the right wall, introduced to dampen fast
oscillations of the wall. Finside is the total force exerted on the right wall by the particles
within the domain, p denotes the predefined pressure, and Awall refers to the current area of
the right wall. With these values, the acceleration of the wall, i.e. ẍwall, is computed (see
Eq. 5.5), which is used to compute the movement of the wall, i.e. ∆x, via the following
displacement-time-relationship:

∆x = v∆t+
1

2
a(∆t)2 +O((∆t)3) (5.9)

As the velocity information, i.e. v, is not given, the constant kx is added control the
underestimated ∆x.
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5. Simulation Results

In summary, the motion of the right wall is governed by the difference between the
internal forces (from within the domain) and external forces (acting on the wall). However,
excessively large movements of the wall within a single timestep can cause particles near the
wall to escape the domain, which is undesirable. To prevent this, the maximum allowable
movement of the wall, denoted as ∥∆xmax∥, is defined as a proportion of the particle radius.
Consequently, the resulting ∆x is computed as the minimum of the maximal allowable
movement and the computed movement, while preserving the direction of motion using
sign(ẍwall).

Reflective Boundary and Finside

As described in the scenario, the entire domain is confined by reflective boundaries to ensure
that all particles remain within the domain. To achieve this, repulsive forces based on the
Lennard-Jones 12-6 potential are used by default to push particles near the boundaries back
into the domain. Using normal forces from Sec. 2.4 would be unsuitable because these forces
require a positive overlap with the boundary to become active, which could allow particles to
cross the boundary—an undesirable outcome. Consequently, Finside i.e. the sum of the forces
exerted by particles on the wall, is approximated by the sum of the Lennard-Jones repulsive
forces on the right boundary, with the zero-crossing set to match the radius of the particles,
i.e., σLJ = r. However, since the Lennard-Jones (LJ) potential generally produces a much
stronger repulsive force than the normal contact forces for distances between particles and
walls less than sigma, i.e. d < σLJ , this approach does not perfectly control the boundary
condition with appropriate scaling. This issue should be further addressed in the parameter
settings.

Parameter Scaling

The reference paper [Lud08b] provides the parameters used in their simulation, expressed in
standard units. This information can be utilized to appropriately scale the parameters.
The reference parameters are:

r ≈ 10−3m, kn = 105
N

m
, p ∈ (20, 40, ...) (5.10)

Our parameters, i.e. m̃, r̃, k̃, can be used to compute scalars:

r∗ =
r

r̃
=

10−3m

0.5
= 2 · 10−3m, k∗ =

k

k̃
=

105 N
m

100
= 103

N

m
= 103

kg

s2

⇒ p∗ =
k∗

r∗
= 5 · 105 N

m2
assuming Pa as pressure unit. (5.11)

The scaled pressure p̃ = p
p∗ ≈ 4 · 105 can be further increased to about 104 considering

higher repulsive forces of LJ potential.

5.6.2. Simulation Results

The results of this scenario are illustrated in Figure 5.18, which allow following observations
and realizations:
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5.7. Alignment of Non-spherical Particles

• The domain box exhibits a spring-like behavior as a whole, which aligns with the
underlying linear spring model of the discrete particles.

– Development of density v = N ·π·r2
V (see Figure 5.18 (b)) suggests initial com-

pression (increasing v) followed by strong dilation (decreasing v, eventually
approaching a quasi-steady-state (decreasing dv

dt )).

– This trend is further reflected in the evolution of volumetric strain ϵV = ∆V
V . Ini-

tially, ϵV decreases to below zero, indicating compression, followed by a significant
increase until it slowly plateaus.

– Similar trend is also visible on the development of domain size along x-axis (see
Figure 5.18 (a)).

• Static stress, which describes kinetic energy of particles, is greatest along the direction
of dilation (x-axis).

• Dynamic stress, which summarizes active contact forces, is greatest along the direction
of active strain (y-axis).

Further details of formulas and stress calculation are given in [Lud08b]. Moreover, details
of these results differ from the reference experiments in [Lud08b], presumably due to the
mentioned scaling issue (see Sec. 5.6.1). However, the overall trend of initial compression
followed by dilation is consistent with the reference results in [Lud08b].

5.7. Alignment of Non-spherical Particles

This scenario discusses the alignment of non-spherical particles if they are subjected to some
background flow.

5.7.1. Scenario Description

Over the domain D, small Ngas = 2750 gas particles are uniformly distributed. A global
force is applied in the positive x-direction for these gas particles. However, a velocity cap is
enforced to prevent these particles from undergoing endless acceleration. Alongside, larger
Nsolid = 50 solid particles with a square shape, as shown in Figure 4.4, are also uniformly
distributed. The normal vectors of these solid particles are aligned along the x-axis, i.e.
their flat sides face the yz-plane. Unlike the gas particles, no global force is applied to these
solid particles.
The domain boundaries along the x-axis employ periodic BC, while reflective BCs are

applied to other walls. During the simulation, the solid particles are expected to naturally
align themselves in the direction that minimizes the collision rate with the moving gas
particles. Specifically, the x-component of the normal vectors of the solid particles is expected
to decrease. Used parameters follow:

Dmin = (0, 0,−2.5), Dmax = (52.5, 20.0, 12.5),

msolid,subsphere = 0.5, rsolid,subsphere = 0.75

mgas = 0.3, rgas = 0.2

γb/br = 0.25,∆t = 5 · 10−5
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5. Simulation Results

(a) (b)

(c) (d)

(e)

Figure 5.18.: Plots of strain-stress scenario: Evolution of domain size along each axis,
density, volumetric strain, as well as static and dynamic stress throughout the
simulation.
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5.7. Alignment of Non-spherical Particles

5.7.2. Simulation Results

Figure 5.19 and 5.20 present the simulation results of this scenario. Comparing Figure 5.19
(a) and (d), it is noticable, that solid particles have rotated in such a way, that their flat
surfaces face not the yz-plane anymore, but rather the xz-plane.
This observation is also reflected in the plots of Figure 5.20. Figure 5.20 (a) suggests

decreasing ∥nx∥, while ∥ny∥ and ∥nz∥ remain relatively large. However, contrary to our
initial expectation, ∥nx∥ does not approach zero, but instead plateaus at a non-zero value.
One possible explanation for this is that, over the course of the simulation, the solid and gas
particles undergo spatial segregation. As the particles exhibit minimal movement along y-
or z-axis (see Figure 5.20 (c) (d)) and no mechanism exits to fill empty space (in contrast to
gas dynamics), the solid and gas particles naturally separate from each other over time. As
a result, only a few collisions occur between them toward the end, which is insufficient to
further reduce ∥nx∥.
Moreover, the variance of ∥nx∥ is over the simulation lower than ∥ny∥ and ∥nz∥ (see

Figure 5.20 (b)), which aligns with our expectations. When a solid particle is oriented along
the x-axis (i.e. its normal vector is parallel to the yz-plane), it can freely rotate around
the x-axis, i.e. parallel to the yz-plane, and it would not increase collision rate with gas
particles. Therefore, the variance of ∥ny∥ and ∥nz∥ is expected to be relatively large.

Regarding the Figure 5.20 (c) and (d), the movement of gas particles along the x-axis is
nearly constant at its velocity cap over time. In contrast, the movement of solid particles
decreases over time, primarily due to the positive background friction coefficient γb/br, as
well as the decreasing number of collisions with gas particles, which, in contrast, continue to
move at a constant speed.

Lastly, to better address the above-mentioned issue of spatial separation in future simula-
tions, one potential approach is to extend the reach of the repulsive forces from the reflective
boundaries. Currently, the Lennard-Jones potential is used to model these reflective forces.
However, employing an alternative function with a gentler slope and a larger zero-crossing
could better maintain the particles near the center of the domain and prevent spatial
separation.
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5. Simulation Results

(a) Iteration 0 (b) Iteration 480k

(c) Iteration 960k (d) Iteration 1920k

Figure 5.19.: Snapshots of Alignment of non-spherical particles scenario. Gas and solid
particles are colored red and blue, respectively.
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5.7. Alignment of Non-spherical Particles

(a) (b)

(c) (d)

Figure 5.20.: Plots of Alignment of non-spherical particles scenario. (a) Mean of absolute
normal vector, i.e. nabs := (∥nx∥, ∥ny∥, ∥nz∥)T (b) Variance w.r.t. nabs. Plots
(c) and (d) display mean kinetic energy of solid and gas particles, respectively.
For Plots (c) and (d), the data before Iteration 50k is truncated for better
visualization, as both types of particles exhibit chaotic movement (high kinetic
energy) directly after their initialization due to the initial overlaps between
them.

63



6. Future Work

The models implemented in md-flexible as part of this work already yield promising results
and capture physical phenomena relatively well. However, there is room for further enhance-
ment to achieve more accurate simulations. Below are some ideas for improvements and
interesting topics for future exploration.

• Addition of heat dissipation model:
A model for heat dissipation could be introduced to balance the heat generated in the
heating square tumbler simulations from Sec. 5.4. This heat dissipation would account
for the transfer of heat from the heated particles and wall elements to the air inside
the tumbler. Such a model can be found in [HRK+24].

• Framework for generation of objects with smooth surfaces:
A framework for generating boundary objects with smooth surfaces, such as flat
walls, could be implemented in md-flexible to improve simulation accuracy and user
friendliness. While walls composed of small overlapping spherical particles, as used
in the square tumbler scenarios from Sec. 5.3, can approximate flat walls, they suffer
from computational inefficiencies when there are too many wall particles and lack
accuracy when there are too few as the surface would then not be flat. Moreover, such
a framework would also simplify the setup of simulations for scenarios such as square
tumbler with walls, strain-stress from Sec. 5.6, or hopper in Figure 1.1, if it would offer
ways to easily generate such boundary objects. In a similar context, the framework
could also support the creation of circular walls, which would enable the simulation
of a circular tumbler—widely used in granular processes such as mixing, granulation,
and coating [EKB+21]—instead of a square one.

• CFD-DEM coupling:
AutoPas could be further coupled with a computational fluid dynamics (CFD) solver
to enhance the accuracy of simulations involving granular materials subjected to
gas or liquid flows. Scenarios from Sec. 5.5 and Sec. 5.7 simulate gas flows using
small DEM-applied granular particles. However, this approach does not fully capture
gas-specific behaviors, such as the flow from high to low pressure. Similar limitations
apply to liquid flows simulated with DEM. By coupling AutoPas with a CFD solver,
more accurate and realistic results could be achieved, capturing these dynamic gas
and fluid behaviors. For further details, refer e.g. to [GSGZ+20].

• More complex modeling of non-spherical particle shapes:
The multi-sphere method from Sec. 2.6 provides promising approximations. However,
it would suffer from computational inefficiencies when more sub-spheres are needed
to mimic the particle shape. To address this, more sophisticated models, such as
polyhedral models or spline-based approximations, can be employed, which include
their own specialized contact detection methods. For further details, refer to [ZYL+16]
and [LCGR20].
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• Hierarchical grids for polydisperse particles:
The Linked Cells algorithm requires the cell size to be greater or equal to the diameters
of all particles (see Sec. 3.1). Therefore, in simulation scenarios involving polydisperse
particles with a wide size range, such as the fluidized bed from Sec. 5.5, the cell
size may become too large relative to the diameters of smaller particles, leading to a
lower hit rate and reduced contact detection efficiency. One potential solution is to
introduce hierarchical grids with varying cell sizes. These multi-level grids could better
accommodate particles of different sizes, improving the contact detection efficiency.
Fur further details, refer to [CZ24].
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7. Conclusion

To summarize, this thesis introduced Discrete Element Method (DEM) and extended the
MD simulator, md-flexible, to simulate granular particles using AutoPas. This thesis first
explored the theoretical foundations of DEM, including contact force and heat models.
Next, These theoretical models were implemented in md-flexible and employed for DEM
simulations of scenarios such as square tumbler and fluidized bed. The simulation results
highlighted substantial benefits of AutoPas’s auto-tuning capabilities in optimizing the
simulation runtime.

In conclusion, DEM demonstrates significant potential as an application area for AutoPas,
benefiting from relatively straightforward implementation of forces using a custom functor
class and optimized algorithmic configurations during the simulation through auto-tuning.
This potential makes the idea compelling to further extend the DEM simulator, implemented
in this thesis, with the goal of enhancing simulation accuracy while continuing to leverage
the benefits of auto-tuning.
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A.1. Contact Force Laws

A.1.1. Linear normal contact model

This section contains experiments of the linear normal contact model from Sec. 2.4.1 with
different values of γn. Furthermore, for better understanding of the experimental results,
this chapter also derives the differential equation of the damped harmonic oscillator.

Experiments with varying γn

Figure A.1 and Figure A.2 show a simple simulation to verify the effect of the linear normal
contact force. Figure A.2 (a) and (b) show the repulsive effect of the force when the overlap
is positive. As a consequence, the particles i and j move apart from each other in the normal
direction, which can be observed in all cases with varying γn. However, the variations in the
normal viscosity coefficient γn show interesting effects:

• Figure A.2 (b) suggests, cases with higher γn experience lower maximum of overlap,
i.e. max(δ), implying higher repulsion and deceleration.

• In Figure A.2 (a), cases with greater γn show bigger differences between their velocities
before (vbefore) and after (vafter) the collision with decreasing ratio of

vafter
vbefore

for higher
γn.

• In Figure A.2 (c), cases with higher γn show longer contact duration.

• In Figure A.2 (c), cases with high γn ∈ {0.5, 1, 5} experience negative / adhesive force
at the end of their particle contacts (ca. Iteration ∈ (12500, 13000) for γn = 1).

(a) Initial State (b) In Contact

Figure A.1.: A simple simulation of linear normal contact force with a collision of two
particles i (right), j (left), color scaled by ∥fn

ji∥. Simulation parameters of the
initial state: ri = rj = 0.5, vnji = 6. (a) Initial state of the particles. (b) State
of the particles in contact.
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Figure A.2.: Development of distance (∥xi − xj∥2 ), overlap (δ), and force (fn
ji over time in

scenario described in Figure A.1. Simulation parameters: kn = 50, γn ∈ {0.01,
0.1, 0.5, 1, 5}, ∆t = 5 · 10−5, number of total iterations = 20000 (a) Distance
between particles i and j vs Iteration. (b) Overlap δ vs Iteration. (c) Linear
normal force fn

ji vs Iteration .
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(a) γn = 1

(b) γn = 5

Figure A.3.: Development of overlap (δ), (-1) · relative normal velocity (−vnji), force (fn
ji)

over time in scenario described in Figure A.1. Same parameter setting as in
Figure A.2.
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These effects arise as the dissipative force fn
dissipative = −γn · vnji becomes increasingly

dominant due to higher γn, as Figure A.3 suggests. At the point of contact where vi changes
its sign due to the repulsive normal force, the sign of relative velocity vnij changes too.
As the term −vnji becomes negative, this can negatively affect the force and make it from
repulsive to adhesive, if it is supported with high γn. This (negative) pulling force serves
as an explanation for the higher deceleration effect for cases with higher γn. Plus, great
fn
dissipative = −γn · vnji also explains the abrupt increase of force fn

ji at the beginning of the
contact of the particles (δ ≈ 0).

Damped harmonic oscillator

The explanations in A.1.1 are further supported by the differential equation of the damped
harmonic oscillator with the oscillation frequency ω0 and the effective viscosity η [Lud98] :

δ̈ + 2ηδ̇ + ω2
0δ = 0 (A.1)

with the solution:

δ(t) = e−ηt v0
ω
sin(ωt) (A.2)

In the following, this differential equation of the damped harmonic oscillator is derived
and solved.

First, the overlap between spherical particles i and j is computed as:

δji = (ri + rj)− ∥xi − xj∥2

= (ri + rj)−
(∥xi − xj∥2)2

∥xi − xj∥2

= (ri + rj)−
1

∥xi − xj∥2
· (xi − xj) · (xi − xj)

= (ri + rj)− (xi − xj) · nji. (A.3)

Using Eq. A.3 to express fn
dissipative gives:

fn
dissipative = −γnvnji

= −γn · (vi − vj) · nji

= −γn ·
xi − xj

∥xi − xj∥2
· d

dt
(xi − xj)

= γn ·
(
− d

dt
∥xi − xj∥2

)
= γn ·

dδji
dt

= γn · δ̇. (A.4)
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Computing the second derivative of δ yields:

δ̈ = − d

dt

(
(vi − vj) · nji

)
= −(ẍi − ẍj) · nji, using nji = const during contact

= −
(
fn
i

mi
−

fn
j

mj

)
, with fn

i = mi · (ẍi · nji)

= −
(
fn
i

mi
+

fn
i

mj

)
, with fn

j = fn
i (Newton’s 3rd Law)

= − fn
i

mij
, with mij =

mi ·mj

(mi +mj)
. (A.5)

Inserting Eqs. A.4 and 2.10 into A.5 results in:

δ̈ +
fn
i

mij
= δ̈ +

fn
elastic + fn

dissipative

mij

= δ̈ +
1

mij
·
(
kn · δ + γn · δ̇

)
= δ̈ +

γn
mij
· δ̇ + kn

mij
· δ

= δ̈ +
γn
mij
· δ̇ + kn

mij
· δ

= δ̈ + 2ηδ̇ + ω2
0δ = 0, with ω0 =

√
kn

mij
, η =

γn
2mij

. (A.6)

Eq. A.6 describes the differential equation of damped harmonic oscillator with the oscil-
lation frequency ω0 and the effective viscosity η [Lud98]. Various methods can be applied
here to solve this differential equation. One of it proceeds as following.

Reformulating Eq. A.6 yields:

δ̈ = −2ηδ̇ − ω2
0δ. (A.7)

where term of the multiple derivatives contains the original overlap function itself. This
leads to the assumption of the structure of δ(t) = eλ·t and following consequences:

δ̇ = λ · eλ·t, δ̈ = λ2 · eλ·t (A.8)

Substituting Eq. A.8 into A.6 gives the characteristic equation:

λ2 + 2ηλ+ ω2
0 = 0, (A.9)

λ1/2 = −η ±
√

η2 − ω2
0,

= −η ± i
√
ω2
0 − η2,

= −η ± iω, with ω =
√
ω2
0 − η2, (A.10)
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which yields complex roots λ1/2 as η2 < ω2
0 usually holds (also for all scenarios from

Figures A.1, A.2, and A.3). Applying the general solution gives:

δ(t) = C1 · eλ1t + C2 · eλ2t

= e−ηt ·
[
C1 · eiωt + C2 · e−ωt

]
= e−ηt · [(C1 + C2)cos(ωt) + i(C1 − C2)sin(ωt)]

= e−ηt · i(C1 − C2)sin(ωt)

= e−ηt · C · sin(ωt), with C = i(C1 − C2) (A.11)

using the equalities eiωt = cos(ωt) + isin(ωt), e−iωt = cos(ωt)− isin(ωt) and assuming
zero overlap at the beginning of contact (δ(0) = (C1 + C2) = 0).

The derivative of δ(t) is:

δ̇(t) =
d

dt
(d−ηtCsin(ωt))

= −ηe−ηtCsin(ωt) + e−ηtCωcos(ωt)

= C · e−ηt · (−ηsin(ωt) + ωcos(ωt)) (A.12)

Assuming δ̇(0) = v0 yields:

δ̇(0) = C · ω = v0,

C =
v0
ω
,

δ(t) = e−ηt v0
ω
sin(ωt). (A.13)

which matches the result shown in [Lud98]. This solution in Eq. A.13 represents a
sinusoidal oscillation with its amplitude decaying exponentially due to the damping term
e−ηt, which is plotted in Figure A.4. This solution of the differential equation allows us to
compute further interesting values for the simulation, which are presented in the following.

Contact duration

The contact of colliding particles only lasts for the first half period of oscillation in Figure A.4,
as the contact ends as soon as δ(t) < 0. The contact duration of particles can be approximated
with the help of the solution of the differential equation:

tcontact =
π

ω
. (A.14)

This emphasizes the importance of selecting a sufficiently small ∆t≪ tcontact to perform
well-approximated integration steps. With an appropriate ∆t, Figure A.2 (b) matches the
function graph of Figure A.4 well up to the truncation before and after the half period of
oscillation.
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Figure A.4.: Damped Harmonic Oscillation of Eq. A.1 with parameter settings from Fig-
ure A.1, A.2, γn ∈ {0.01, 0.1, 0.5, 1.0, 5.0}

Restitution coefficient

Moreover, the expected change in relative normal velocity before and after the collision of
two particles (i and j) can be explored by looking into the so-called restitution coefficient
en [Lud98]:

en = −
(vafter

i − vafter
j ) · n

(vbefore
i − vbefore

j ) · n

= −
vafter
i n

vbefore
i · n

, assuming vi = −vj

= − δ̇(π/ω)

δ̇(0)

= −−v0 · e
−(πη)/ω

v0

= e−(πη)/ω (A.15)

The restitution coefficient eempirical
n computed by empirical results from Figure A.3 match

well with this derived theoretical etheoreticaln :

Empirical result for γn = 1, vbeforeji = −6 : vafterji = 4.37521.

⇒ eempirical
n = −4.37521

−6
≈ 0.72920

Theoretical result for γn = 1 :
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(a) Before Contact from above,
Iteration 125

(b) Before Contact from side,
Iteration 125

(c) In Contact from side,
Iteration 625

(d) In Contact from side,
Iteration 1225

(e) In Contact from side,
Iteration 2000

Figure A.5.: Simple simulation of (sliding) tangential frictional torque qt with only the
frictional force f t activated. The smaller particle i falls down with nega-
tive initial velocity in z-direction, the bigger particle j, placed diagonally
below the particle i at the beginning, causes frictional torque with the other
particle. Simulation parameters are set in the following way: (x0i , y

0
i , z

0
i ) =

(2.2, 2.2, 3.5), (x0j , y
0
j , z

0
j ) = (1, 1, 1), kn = 5, γn = 5 · 10−5, µd = 1, ri = 1.0, rj =

1.2, ω0
i = ω0

j = 0,∆t = 5 · 10−4. Color is scaled by ωz.

⇒ etheoreticaln = e(πη)/ω = e−(π·1)/
√
99 ≈ 0.72925

Empirical result for γn = 5, vbeforeji = −6 : vafterji = 0.97760.

⇒ eempirical
n = −0.97760

−6
≈ 0.16293

Theoretical result for γn = 5 :

⇒ etheoreticaln = e(πη)/ω = e−(π·5)/
√
75 ≈ 0.16303

Furthermore, the maximum overlap δmax at tmax can additionally be computed by setting:

δ̇(tmax) = 0

and searching for smallest tmax > 0 satisfying the condition.
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i

j

f t

n

z

xy-plane

(a) Start of Contact

i

j

f t

n

z

xy-plane

(b) Middle of Contact

i

j f t

n

z

xy-plane

(c) End of Contact

Figure A.6.: Diagrams of snapshots in the simulation of Figure A.5 with only approximate
radius and vector scaling due to simplicity reasons. During the whole contact
between the particles i and j, the frictional torque on particle j, i.e. qt

j is
directed outward from the figure. The resulting direction of angular velocity
ωj is indicated with curved arrows. As the frictional torques on particle i is
parallel to the one on particle j, i.e. qt

i ∥ qt
j (see Eq. 2.17), they are both

directed outward from the figure and are parallel to the xy-plane.
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A.2. Tangential torque

This section provides further analysis of the simulation results in Figure 2.6 and verifies the
emprical values gained from the simulation (see Figure A.5). Following observations can be
made first:

• Magnitudes of tangential forces and torques are proportional to overlap δ due to
f t ∝ fn ∝ δ

• Due to the third law of Newton, the relation f ti = −f tj is visible on the plots of frictional
forces.

• The plots of frictional torques on particle i and j confirm the parallel and radius-
dependent torques (see Eq. 2.17).

Furthermore, the radius-dependency of torques and their effect on angular velocities can
be verified for empirical values from the simulation. First, the corrected radii at the highest
overlap, i.e. δmax ≈ 0.52, can be approximated as following:

αi = ri −
δmax

2
≈ 0.74

αj = rj −
δmax

2
≈ 0.94

The scalar computed with these approximated corrected radii match the empirical torque
values at the highest overlap:

qt
j,empirical,max = (−0.87, 0.87, 0)T

≈ (−0.864, 0.864, 0)T

=

(
0.94

0.74

)
·(−0.68, 0.68, 0)T

=

(
αj

αi

)
·qt

i,empirical,max

Moreover, the frictional torque in z-direction remains zero during the whole contact, i.e.
qtz = 0, as the produced torque qt is parallel to the xy-plane (see Figure A.6). The plots of
angular velocities also match the plots of frictional torques due to their following relation:

qt = I · dω
dt

(A.16)

with I as the moment of inertia, i.e. the torques are proportional to the time derivative of
angular velocities. Due to unequal torque values, the two particles i and j have different
angular velocities after the collision, i.e. ωafter, which can be approximated for verification:
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(a) Initial State (b) Iteration 120 (c) Iteration 250

Figure A.7.: A simple simulation of (dynamic) rolling torque qr with other forces and
torques deactivated. The two particles i (upper) and j (lower) have anti-parallel
initial angular velocities and zero translational velocities. The activated rolling
torque qr acts against their rolling motion and reduces their angular velocities
to zero. Simulation parameters are set in the following way: (xi, yi, zi) =
(1, 1, 2.75), (xj , yj , zj) = (1, 1, 1), kn = 5, γn = 5 · 10−5, µr = 5, ri = rj = 1, ω0

i =
(0.5, 0.5, 0.5), ω0

j = (−0.5,−0.5,−0.5),∆t = 5 · 10−4. Color is scaled by ωx

ωafter
j = ωbefore

j +
1

Ij
·
∫
C
qt
j dt using Eq. 2.17 and Isphere (A.17)

=
1

0.4 ·mj · r2j
· αj

αi
·
∫
C
qt
i dt

⇒
ωafter
j

ωafter
i

=
r2i
r2j
· αj

αi

≈ r2i
r2j
·
rj − 0.5·δmax

2

ri − 0.5·δmax
2

≈ 0.854

ωafter
j,empirical = (−0.655, 0.655, 0)T

≈
ωafter
j

ωafter
i

· ωafter
i,empirical

= 0.854 · (−0.753, 0.753, 0)T

= (−0.643, 0.643, 0)T

For simplicity reasons, this approximation assumes constant corrected radii αi/j that in
reality depends on the overlap δ and changes during the contact.

A.3. Rolling torque

This section shows results of a simple simulation of rolling torque (only with dynamic rolling
frictional “force”) to verify the expected behavior of the torque. Following observations and
realizations can be made from results in Figure A.7 with its according plots in Figure A.8.

• The snapshots in Figure A.7 suggest the effect of the rolling torque, which opposes
the rolling motion in the tangential plane of the two contacting particles, gradually
reducing the magnitude of the rolling velocity ∥vr∥2 to zero. In this case, the rolling
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Figure A.8.: Development of rolling torque qr and angular velocities ω in the simulation of
Figure A.7. The lines for qrx and qry, as well as those for ωx and ωy overlap due
to symmetry.

torque reduces the angular velocities along the xy-plane, i.e. ωx and ωy, eventually to
zeros.

• The constant rolling torques qr
i/j can be explained with its constant factors (see

Eq. 2.22), i.e. the reduced radius αij , the normal unit vector n, and the (dynamic)
rolling “force” fr. The reduced radius αij and the normal unit vector n remain constant
due to the constant overlap δ and the fixed positions of the particles i and j. The
rolling “force” fr stays constant due to its constant terms (see Eq. 2.21), i.e. µr, f

n,
and r. Moreover, in this scenario, the rolling unit vector r stays constant as the angular
velocities in the affected directions are decelerated by the same amount. This can be
observed in plots of angular velocities in Figure A.8, in which the lines for ωx and ωy

overlap.

A.4. Torsion torque

This section shows a simple simulation for torsion resistance to verify its correctness in the
implementation and explore it further (see Figure A.9, A.10). Similar to the simulation in
Sec. 2.4.2, only the dynamic case is activated here. The plots show similar developments
of torques and angular velocities as for rolling torques in Figure A.8 due to the structural
similarities of the formulas. The resulting torques are in both cases dependent only on
constant factors until the torques are reduced to zero. Moreover, the relation between the
projected final angular velocities and the projected average of initial velocities agrees with
these simulation results:
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(a) Initial State (b) Iteration 100 (c) Iteration 200

Figure A.9.: A simple simulation of (dynamic) torsion torque qo with other forces and
torques deactivated. The two particles have different initial angular velocities,
especially along their normal direction, i.e. z-axis, and zero translational
velocities. The activated torsion torque qo reduces the difference between their
angular velocities, i.e. ∆ω, such that ωi/j ⇒ 0. Simulation parameters are set
as in Figure A.7 with the only following change: µo = 5. Color is scaled by ωz

Figure A.10.: Development of (dynamic) torsion torque qo and angular velocities ω in the
simulation of Figure A.9.
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n = ẑ = (0, 0, 1)T

ωafter
i = (0.5, 0.5, 0)T = −ωafter

j

ωbefore
i = (0.5, 0.5, 0.5)T = −ωbefore

j

n·ωafter
i = n·ωafter

j = n·
ωbefore
i + ωbefore

j

2
= 0

A.5. Simulation Results

A.5.1. Thermal Equilibrium of Stacked Particles

(a) Iteration 200 k (b) Iteration 375 k (c) Iteration 525 k

(d) Iteration 675 k

Figure A.11.: Snapshots of Thermal Equilibrium of Stacked Particles Scenario at iterations
where the kinetic energy, shown in Figure 5.4, approximately reaches local
minima. Color is scaled by typeId.
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