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Nonparametric Control Koopman Operators
Petar Bevanda, Bas Driessen, Lucian Cristian Iacob, Stefan Sosnowski, Roland Tóth and Sandra Hirche

Abstract—This paper presents a novel Koopman (composition)
operator representation framework for control systems in repro-
ducing kernel Hilbert spaces (RKHSs) that is free of explicit
dictionary or input parametrizations. By establishing fundamen-
tal equivalences between different model representations, we
are able to close the gap of control system operator learning
and infinite-dimensional regression, enabling various empirical
estimators and the connection to well-understood learning theory
in RKHSs under one unified framework. As a consequence,
our proposed framework allows for arbitrary accurate finite-
rank approximations in infinite-dimensional spaces and leads
to finite-dimensional predictors without apriori restrictions to
a finite span of functions or inputs. To enable applications to
high-dimensional control systems, we improve the scalability of
our proposed control Koopman operator estimates by utilizing
sketching techniques. Numerical experiments demonstrate supe-
rior prediction accuracy compared to bilinear EDMD, especially
in high dimensions. Finally, we show that our learned models are
readily interfaced with linear-parameter-varying techniques for
model predictive control.

Index Terms—Data-driven modeling, Nonlinear control sys-
tems, Kernel methods, Machine learning, Koopman operators,
Reproducing kernel Hilbert spaces

I. INTRODUCTION

RECENT years have seen an ever-growing interest across
different fields in constructing operator-theoretic models

that can provide global insight into physical or biological char-
acteristics of observed phenomena [1], facilitating tractable
analysis and control design for nonlinear dynamics [2]–[5].
While, historically, physical insight based on first principles
was the driving force in modeling, increasing system com-
plexity [6], [7] limits their utility for modeling in engineering,
necessitating the use of data-driven methods. A promising
framework that has recently reemerged and gained traction in
the data-driven modeling community is based on the Koopman
operator [8], whose spectral decomposition can enable linear
superposition of signals for possibly highly nonlinear systems
[5]. This representational simplicity of dynamics inspired a
bevy of applications from system identification [9]–[11], soft
robotics [12], [13], optimal control [14]–[16], to name a few.

Koopman-based representations for control systems: As the
Koopman framework was originally developed for autonomous
systems, to accommodate control inputs, different methods
have been proposed. These range from heuristically selecting
a linear time-invariant (LTI) model class [17], having a finite
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set of input values and describing a switched model [18]
or analytically deriving the lifted representation [19]. It has
become established that control-affine systems can be written
as bilinear lifted models under certain conditions, at least
in continuous-time. The authors of [20] show that for both
continuous- and discrete-time systems with inputs, an invariant
Koopman form can be analytically derived, granted that the
autonomous part is exactly embedded. The resulting model
class contains a state and input-dependent input contribution,
which is often not bilinear, especially in the discrete-time
case. Thus, a globally exact finite-dimensional representation
generally requires a non-affine nonlinear control effect or a
recasting to a linear parameter-varying (LPV) model form.
While this has been shown on an analytic level for finite-
dimensional Koopman operator-based representations, it is an
open question if nonlinear input terms are unavoidable in the
infinite-dimensional case and if approximation errors could be
handled under certain but general assumptions.

Data-driven operator-based approaches for control: A
number of deep learning-enhanced, yet parametric, meth-
ods [27]–[29] have been proposed to capture nonlinear
data relations, but commonly lack rigorous learning-theoretic
foundations. In contrast, kernel-based operator learning pro-
vides a powerful alternative [30] that is mathematically and
implementation-wise simple, but offers rigorously established
avenues for approximation error analysis. Unsurprisingly, the
aforementioned has lead to a recent increase in learning-
theoretic understanding of nonparametric Koopman operator-
based models [31]–[33] for autonomous systems. Neverthe-
less, their control system counterparts do not enjoy a com-
parable level of understanding. For example, Hilbert space
Koopman operators for control systems are not defined to
full generality in existing literature, often requiring restrictive
arguments involving specific generator discretizations [24],
[26] or state inflation [17]. This impedes a connection to strong
approximation results and learning in a flexible nonparametric
(dictionary-free) manner.

A major technical reason for the aforementioned theoretical
gap can also can be traced back to a rather practical desire
for finite-dimensional models. However, early discretization of
the learning problem inspired by finite-section methods, e.g.,
by using an explicit and fixed feature or input dependence
[25], [34]–[37], lead to a systematic loss of precision and
inefficient exploitation of the data [38]. The use of data-
independent finite-dimensional subspace is especially ill-suited
when dealing with unknown large-scale systems that require
a suitably large/rich feature or input space. As summarized in
Table I, existing data-driven operator-theoretic control system
models do not enable input and output spaces to be jointly
infinite-dimensional and require multiple operator regressions.
This exclude data-driven settings, e.g., learning from a dataset,



This is the authors’ electronic preprint version of an article submitted to IEEE for publication.

2

TABLE I
COMPARISON OF EXISTING LINEAR OPERATOR LEARNING APPROACHES FOR CONTROL SYSTEMS. OUR CKOR APPROACH IS BASED ON RISK

MINIMIZATION AND WORKS WITH INFINITE-DIMENSIONAL AUTONOMOUS AND CONTROL EFFECTS.

APPROACH controls dim(input space) dim(output space) |datasets| risk notion ERM scalability

switched u [18] quantized finite finite nu+1 ✗ ✗ ✗
bEDMD: [21], [22]; arbitrary finite finite 1 ✗ ✗ ✓
{EDMD(ui)}nu

i=0 [23]–[26] constant finite finite nu+1 ✗ ✗ ✗
cKOR (ours) arbitrary ∞ ∞ 1 ≥ ∥error∥2op ✔ ✔

ensuring sufficient exploration or safe data collection.
Our proposition: To alleviate the theoretical as well as

practical limitations mentioned above, we formalize a novel
dictionary-free learning approach using reproducing kernel
Hilbert spaces. We connect infinite-dimensional regression
with composition operators of control systems to provide a rig-
orous and self-contained nonparametric learning framework.
This turns out to be crucial to get hold of both the approx-
imation error as well as avoiding explicit tensor products of
the dictionary and the control inputs [22], [39], leading to
arbitrary accurate operator approximation. As our numerical
experiments confirm, this has strong empirical implications:
our nonparametric approach significantly outperforms clas-
sically used (bilinear) EDMD approaches, that commonly
aim at approximating finite-element methods from data [17],
[40]. Moreover, our framework does not need commonly
unavailable derivative information, approximate interpolation
of different fixed-input Koopman operators or multiple regres-
sions found in existing works [18], [25], [26].

A. Contributions

• Derive the control-affine RKHSs (Theorem 1), establish-
ing equivalent operator-theoretic models (Corollary 1).

• Connect regression risk (Lemma 1) to operator norm
error and prove arbitrary accurate control system operator
approximation under minimal assumptions (Theorem 2).

• Prove that any RKHS observable admits arbitrarily accu-
rate prediction using finite-rank operators (Corollary 2).

• Turn finite-rank infinite-dimensional operators to closed-
form finite-dimensional predictors (Proposition 1 and 2).

• Statistically confirm the advantage of our nonparametric
framework on various prediction tasks.

• Show that our nonparametric models can be directly
used in computationally efficient iterated LPV model
predictive control (MPC) methods.

B. Notation

For non-negative integers n and m, [m,n] =
{m,m+1, . . . , n} with n ≥ m gives an interval set of integers.
We use the shorthand [n]≜[1, n]. Given two separable Hilbert
spaces F and Y , we let HS (F ,Y) be a Hilbert space of
Hilbert-Schmidt (HS) operators from F asfasdto Y endowed
with the norm ∥A∥2HS(F,Y) ≡

∑
i∈N∥Aei∥2Y = Tr(A∗A),

where {ei}i∈N is an orthonormal basis of F . For HS-
operators from F to itself, we use the shorthand HS (F).
The operator norm of a linear operator G : F → Y is
denoted as ∥G∥op ≜ sup∥f∥F=1 ∥Gf∥2Y . For simplicity, with

a slight abuse of notation, adjoints of operators as well
as (conjugate) transposes of matrices are denoted as (·)∗.
Lower/upper case symbols denote functions/operators while
bold symbols reserved for matrices and vectors. The space
of square-integrable functions is denoted as L2

µ(·) with an
appropriate Lebesgue measure µ while the vector space
of bounded continuous functions is denoted by C0(·). We
let k : X × X → R be a symmetric and positive definite
kernel function and H the corresponding RKHS [41], with
norm denoted as ∥ · ∥H =

√
⟨·, ·⟩H. For x ∈ X, we use

kx ≡ k(·,x) ∈ H to denote the canonical feature map.

II. PROBLEM STATEMENT

Consider an unknown nonlinear control-affine system

xk+1 = f(xk) +
∑nu

j=1 gj(xk)uj(k) ≡ f(xk,uk) (NCAS)

where xk ∈ X ⊂ Rnx is the state and uk ≜
[u1(k) · · ·unu

(k)]⊺ ∈ U ⊂ Rnu denotes the control variable
and k ∈ N+

0 is the discrete time. Throughout, we consider f
to be continuously differentiable and the sets X and U to be
compact. Control-affinity in (NCAS) is often sufficient to rep-
resent the dynamical behavior of systems in many engineering
applications [42]. Additionally, more general representation of
nonlinear systems characterized by unstructured f , under mild
conditions, can be rewritten in the control-affine form (NCAS)
according to the procedure detailed in [42].

Objective: Contrasting with the classical representation in
the (immediate) state-space X, one may describe the dynamics
of functions over X based on the so-called composition
(often termed Koopman) operators. From the perspective of
operator theory, (NCAS) only describes the dynamics of a
single function over X: the identity function. Nevertheless, the
knowledge of (NCAS) allows us to capture more than the state-
space dynamics, i.e., describe the dynamics of functions (ob-
servables) that evolve under the dynamics. Hence, we consider
a control Koopman operator G = [AB ] : L

2
µ′(X)→ L2

η(X×U)
describing tensor-product dynamics between Hilbert spaces

yk+1(xk,uk) ≜
〈
Gyk,

[
φ(xk)

uk⊗φ(xk)

]〉
L2

η

(TPS)

for any observable y ∈ L2
µ′ , where the sufficiency of a tensor-

product basis is a common assumption [19], [21], [22], [43],
[44] for a system in the form of (NCAS). For brevity, we often
denote z ≜ [ xu ] so that Z ≜ X×U. Compared to the classical
Koopman operator setting, the true operator maps between
fundamentally different spaces, formally defined as follows.
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L2
µ′ L2

η

HX HZ

G

Sµ′ Sη

G

G|HX

SηG

Fig. 1. The diagram for the approximation G|HX
≈ SηG.

Definition 1 (Control Koopman Operator): The linear op-
erator G : L2

µ′(X) → L2
η(X×U) maps input-independent to

control-affine observables through a composition with (NCAS)

[Gf ](x,u) = f ◦ f(x,u) for all (x,u) ∈ X× U, (CKO)

where η ≜ µ× ν the product measure on X× U.
Assumption 1: To ensure well-posedness, we require that

(CKO) is bounded, i.e., ∃L, s.t. ∥Gf∥L2
η
≤ L ∥f∥L2

µ′
.

Remark 1: For Lipschitz unforced dynamics f(x) ≡ f(·,0),
the above assumption is readily satisfied as they are lo-
cally invertible |det(∇f(x)) | ̸= 0 (singularity-free) almost-
everywhere, describing the transient behavior of large classes
of cyber-physical systems [33], [45]. This extends to (NCAS)
though Lipschitz continuity and the compactness of X, U,
allowing a bounded measure distortion η({z ∈ X× U :
f(z) ∈ A}) ≤ L2µ′(A) for any Borel set A ⊆ X, in turn,
satisfying Assumption 1.

In practice, the operator G is only observed through the
samples of its action on a hypothesis space. This renders
the true domain and range unknown, as inferring one mea-
sure from the other would require complete governing equa-
tions—which are often unavailable. To make estimation over
infinite-dimensional spaces feasible, we restrict the operator to
a reproducing kernel Hilbert space (RKHS) G|HX

: HX → L2
η

to learn a finite-rank operator G : HX → HZ based on a data

Dn=
{
xki+1≡f(xki

,uki
),
[ xki
uki

]}
i∈[n]=

{
x
(i)
+ ,z(i)

}
i∈[n] (1)

where an approximation G ≈ G|H :

1) Rigorously follows from infinite-dimensional regression;
2) Avoids the curse of input dimensionality;
3) Allows for control-uniform observable prediction;
4) Integrates with various estimators for (CKOR);
5) Rigorously turns rank- into dimension-finite models;
6) Scales to large datasets Dn using sketching [46], [47].

III. OPERATOR LEARNING IN INFINITE-DIMENSIONS

Our approach is rooted in the well-studied theory of infinite-
dimensional regression in (reproducing kernel) Hilbert spaces,
leading to an RKHS-valued regression problem for learning
control Koopman operators in a flexible yet principled manner.

RKHSs as subspaces: We consider RKHSsHX /HZ that are
a subset of L2

µ′ /L2
η-integrable functions [41, Chapter 4.3] with

associated canonical feature maps kx : X → HX and kz :
Z → HZ , so that one can approximate the (CKO) restriction
G|HX

: HX → L2
η with an operator G : HX → HZ , as shown

in Figure 1. Notice that despite HX ⊂ L2
µ′ ,HZ ⊂ L2

η , the two

spaces have different norms. To account for this discrepancy,
we introduce inclusions

Sη : HZ ↪→ L2
η s.t. HZ ∋ g 7→ [g]∼ ∈ L2

η, (2a)

Sµ′ : HX ↪→ L2
µ′ s.t. HX ∋ f 7→ [f ]∼ ∈ L2

µ′ (2b)

that send RKHS elements to their point-wise equal equiv-
alence class [·]∼ endowed with an appropriate L2

(·)-norm.
Moreover, the inclusions admit adjoints S∗η : L2

η ∋
g 7→

∫
Z g(z)kzη(dz) ∈ HZ and S∗µ′ : L2

µ′ ∋ f 7→∫
X f(x)kxµ

′(dx) ∈ HX . To avoid being caught up in mea-
surability and integrability issues in defining our learning
approach, we impose the following technical assumptions.

Assumption 2: We impose the following requirements on
the previously defined RKHSs and kernels:

1) HZ ,HX are separable: this satisfied if X and Z are
Polish spaces and the kernels defining HZ ,HX are
continuous;

2) kx and kz are measurable for µ′-almost all x ∈ X and
η-almost all z ∈ Z;

3) k(x,x) and k(z, z) are bounded for µ′-almost all x ∈ X
and η-almost all z ∈ Z, respectively.

The above assumptions are not restrictive in practice, as
well-known kernels, e.g., Gaussian, Laplacian or Matérn ker-
nels [41] satisfy all of the above assumptions over finite-
dimensional Euclidean domains [48]. Moreover, is well-
established that, under Assumptions 1, the inclusions Sη and
Sµ′ are Hilbert-Schmidt (HS) operators [41, Chapter 4.3], so
G|HX

∈ HS
(
HX , L2

η

)
by Assumption 2 [49].

Defining a notion of risk: To learn G, it is natural to
measure the squared L2

η error of the residual G|HX
−SηG – as

Figure 1 suggests – over a separable HX , i.e., its orthonormal
basis

∑
i ∥[(G|HX

−SηG)hi](·)∥2L2
η
. By the Hilbert-Schmidt

norm definition, this amounts to

R(G) = ∥G|HX
− SηG∥2HS(HX ,L2

η)
(RISK)

= ∥PHZ
G|HX

−G∥2HS(HX ,L2
η)︸ ︷︷ ︸

projected risk

+ ∥[I−PHZ
]G|HX

∥2HS(HX ,L2
η)︸ ︷︷ ︸

representation risk

,

where PHZ
is the orthogonal projector in L2

η onto HZ .
The above decomposition is classical in learning theory [41],
[50] and operator regression [31], [32], [49], [51]. While
the projected risk depends on the learned G, mitigating the,
HZ-dependent, representation risk is crucial for achieving
statistical consistency.

While natural from an operator-theoretic perspective,
(RISK) suggests computing the squared error over an
orthonormal basis HX , which does not immediately reveal
a loss function in the conventional sense. Nevertheless,
our supervised learning label is equivalently the target
embedding kf(·): Z → HX of (CKO) in RKHS such that
the reproducing property [G|HX

h] (z) = ⟨h, kf(z)⟩HX
holds.

Then, by Fubini’s theorem, the risk R(G) can rewritten
via RKHS embeddings kf(·) ∈ HX , k(·) ∈ HZ w.r.t. the
Bochner space of square-integrable HX -valued functions
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Learning

G∗([ 1u ] ⊗ kx)

Simulation

(A∗ + M∗(u))kx

Predictive Control

A∗kx+B∗kx
u

Fig. 2. Equivalent control operator-induced RKHS embeddings of the system dynamics for various tasks.

∫
Z
∑

i⟨hi, kf(z)−G∗kz⟩2HX
η(dz)≡∥kf(·)−G∗k(·)∥2L2

η(HX) to
define a (canonical) feature-based risk minimization

min
G:HX→HZ

∥kf(·) −G∗k(·)∥2L2
η(HX), (CKOR)

we refer to as control Koopman operator regression (cKOR).
Notice that the above is essentially equivalent1 to the mean
squared error EZ∼η

[
∥kf(Z) −G∗kZ∥2HX

]
minimization. This

is consistent with standard formulations in learning theory
where the risk is defined as an expected loss [41], here defined
over the states and control inputs, acknowledging that the
predictive performance is judged across η. Note that, solving
(CKOR) using suitably defined infinite-dimensional RKHSs
[41], the representation risk can vanish, enabling arbitrary
accurate learning and, in turn, prediction of HX -observables
under control inputs. Moreover, any continuous observables
can be represented to arbitrary accuracy by their embedding in
universal RKHSs, covering a large class of observables whose
evolution can be approximated while providing a surrogate
model for the state-space dynamics (NCAS) as a special case.

IV. NONPARAMETRIC CONTROL KOOPMAN OPERATOR
APPROXIMATIONS

The flexibility of a nonparametric approach comes from
the fact that given a universal kernel, neither the feature
map nor the feature space is uniquely determined – defining
a dictionary-free approach [41]. Nonetheless, a reproducing
kernel Hilbert space (RKHS) uniquely defines a kernel (and
vice versa) [41], so we impose the structure of (TPS) on the
feature space of an RKHS to derive a kernel that corresponds
to it. As it turns out, such a kernel is crucial for practically
working with infinite-dimensional spaces and getting a hold
on the approximation error of the evolution of observables
in HX . In the conditional expectation operator setting, it
is established that working in infinite-dimensional RKHSs
has various benefits, e.g., overcoming the weak convergence
results [17], [23] of finite-section methods, cf. Mollenhauer
and Koltai [49] for a discussion. In the context of linear
operator learning for control systems, a similarly flexible
framework is missing, which we propose here.

A. Reproducing kernel Hilbert space representations

By the structure of (TPS), tensor product spaces [51], [52]
are of particular importance to endow the Hilbert space-valued
Koopman operators with control effects in a principled manner.

1Probabilism in the data measure η comes, e.g., through random excitation
or data-samples drawn from a probability distribution. We may normalize a
Lebesgue measure w.l.o.g. to construct a probability measure on compact sets.

Hilbert tensor products: For y ∈ Y and f ∈ F , the bounded
operator y ⊗ f ∈ L(F ,Y) is the rank-one operator

F ∋ h 7→ [y ⊗ f ](h) ≜ ⟨f,h⟩Fy ∈ Y. (3)

The Hilbert tensor (outer) product Y ⊗F is defined to be the
completion of the linear span of all such rank-one operators
with respect to the inner product

⟨y ⊗ f,f ′ ⊗ y′⟩Y⊗F ≜ ⟨f,f ′⟩F ⟨y,y′⟩Y (4)

We will interchangeably use the isometric isomorphisms
HS (F ,Y)∼=Y⊗F and L2

µ′(Y)∼=L2
µ′(R)⊗Y [52, Chapter 12],

and treat such spaces as essentially identical.
Control-affine kernels: To appreciate the above tensor prod-

uct construction, we start by recognizing that the dynamics
(TPS) satisfy the following pairing for any y ∈ L2

µ′

⟨y,G∗(
[

1
uk

]
⊗ φ(xk))⟩L2

µ′
= ⟨Gy,

[
1
uk

]
⊗ φ(xk)⟩L2

η
(5)

for a bounded (CKO), revealing that the image space of G
is essentially that of vector-valued

[
1
uk

]
-affine L2

η-functions,
helping us uniquely define the image RKHSHZ – equivalently
kernel k : Z× Z 7→ R – for our hypothesis G : HX → HZ .

Theorem 1 (Control-affine kernel): Let HX be a separable
RKHS with corresponding kernel k : X × X 7→ R and v ≜
[ 1u ] ∈ V ⊆ Rnu+1. Then, the completion of v-affine functions
is the tensor product V⊗HX is defined by the kernel

k(z, z′) ≜ k([ xu ], [ xu ]
′
) = k(x′,x)(1+⟨u,u′⟩) (6)

that corresponds to RKHS HZ and equivalently defines [ 1u ]-
affine HX -valued observables via the operator-valued kernel
K(x,x′) ≜ k(x,x′)IdV ∈ L(V), where L(V) is the set of
bounded operators from V to itself.

Proof: Let V ≜ Kxv, V
′ ≜ Kx′v′ belong to vector-valued

RKHS G of v-affine functions defined as

G = span{Kxv | v ∈ V,x ∈ X} (7)

where the closure span{·} is completed w.r.t. the inner product
⟨Kxv,Kx′v′⟩G . Thus, we have ⟨V, V ′⟩G = ⟨Kxv,Kx′v′⟩G =
⟨K∗x′Kxv,v

′⟩V = ⟨K(x′,x)v,v′⟩V = ⟨v′ ⊗ kx′ ,v ⊗
kx⟩V⊗HX

= ⟨kx′ ,kx⟩HX
⟨v,v′⟩V = k(z, z′). □

The structured kernel (6), should not be confused with
parametric models that work with a finite set of observables.
Namely, using an C0-universal HX , guarantees that (6) in-
duces an infinite-dimensional span of functions (7) that is
dense in the space of bounded continuous as well as square-
integrable control-affine functions [41].

Remark 2 (Beyond finite-dimensional controls): Theorem 1
and subsequent results directly hold for infinite-dimensional
control kernels in place of ⟨u,u′⟩, e.g., by changing the
kernel to K(x,x′) = k(x,x′)IdH1

U≜1⊕HU
or equivalently

k(z, z′) = k(x′,x)(1+k(u,u′)) where k(u,u′) may be an
infinite-dimensional RKHS HU . This is particularly useful for



This is the authors’ electronic preprint version of an article submitted to IEEE for publication.

5

the case where an unstructured nonlinear system admits a [ 1u ]-
affine reformulation [42] which is not apriori known.

Representational equivalence: While our hypothesized dy-
namics are modeled by linear operator G∗, the explicit form
of the simulation model is not immediately obvious due to
an “input-evolving” RKHS. Intuitively, given a fixed control
value would collapse the tensor product in (5) and make the
system autonomous in HX . We make such intuition rigorous,
revealing equivalent linear parameter-varying (LPV) operator
formulations of our hypothesis G∗ ∈ HS (HX ,HZ).

Corollary 1: Let HX ,HU be separable and let H1
U ≜

1⊕HU so that HZ = H1
U ⊗ HX in G∗∈HS (HZ ,HX) with

(ei)i∈N the orthonormal basis of HU and (e∗i )i∈N is its dual
basis. Then, the following isometry

G∗ ←→ [ 10 ]
∗⊗A∗ +

∑
i∈N

[
0
ei

]∗⊗B∗ (ei) , (8)

explicitly establishes the isometric isomorphisms between
HS

(
H1

U ⊗HX ,HX

) ∼= H1
U
∗⊗HS (HX) = HS (HX)⊕H∗U⊗

HS (HX) where A∗ ≜ A∗ ([ 10 ]) and B∗(ei) ≜ A∗
([

0
ei

])
.

Moreover HS (HX) ⊕ H∗U ⊗ HS (HX) ∼= HS (HX) ⊕
HS (HU ,HS (HX)), inducing equivalent RKHS embeddings
in Figure 2.

Proof: The isometric isomorphism is a direct consequence
of [52, Theorem 12.3.2. & Proposition 12.3.1.] where we
factored out the control input-independent span. Applying
the former results once more, we have that HS (HX) ⊕
H∗U ⊗ HS (HX) ∼= HS (HX) ⊕ HS (HU ,HS (HX)). To see
the equivalence of representations in Figure 2, consider a
finite-dimensional kernel ⟨u,u′⟩ for HU whose orthonormal
basis is the standard basis (ei)i∈[nu]

of Rnu . Then, since
u=[ei ⊗ ei](u)=

∑[nu]
i=1 ⟨e∗i ,u⟩ ei, we have

G∗(v⊗kx) = A∗kx+
∑[nu]

i=1 ⟨e∗i ,v⟩B∗(ei)kx, (9a)

=(A∗+[
∑[nu]

i=1B
∗(ei) ⟨e∗i ,u⟩])kx≜(A∗+M∗(u))kx, (9b)

=A∗kx+
(∑[nu]

i=1 B∗(ei)kx ⊗ e∗i

)
u≜A∗kx+B∗kx

u, (9c)

leading to Figure 2, and concluding the proof. □
While the above result may seem technical, the established
equivalence is of central importance in practice. Namely, once
the isometric isomorphism between two spaces is established,
one typically works with whichever space is more convenient
for the problem at hand, as those shown in Figure 2. For
example, formalizing a regression problem is shown to be
cumbersome with input-parameterized operators [23]–[26],
particularly in infinite dimensions, while it is extremely helpful
to build predictors with LPV models in mind. On the other
hand, the operator-/vector-valued regression formulation via
(RISK) and Theorem 1 enables straightforward and flexible
regression, but it may not be immediately apparent how
to explicitly form multi-step predictors. As we demonstrate,
the established equivalence allows one to use the best of
both perspectives: vector-valued regression for learning and
analysis and the LPV forms for prediction and control. Not
only do our results describe the equivalence between different
representations, they imply that implicit representations for
control operators are completely described through scalar-
valued kernels, as summarized in Table II. Hence, our equiv-
alence results help bridge an important gap in understanding

linear control operators, enabling the full utilization of the
available RKHS structure, both for analysis and learning.

B. Control Koopman operator approximations in RKHS

After constructively establishing different equivalent RKHS-
based hypotheses, we now study their approximation capabil-
ities. Recall that, under Assumptions 1 and 2, the operator
restriction is Hilbert-Schmidt G|HX

≜ GSµ′ ∈ HS
(
HX , L2

η

)
and approximation of G over functions in HX in operator
norm is feasible with finite-rank operators. This is critical,
as ∥·∥op which measures the worst-case difference between
two operators in a target (image) space, leading to bounds
quantifying the maximum possible error effect on any ob-
servable from the domain HX . However, direct estimation in
operator norm comes at a price, requiring a supremum over
the unit ball in HX , which we cannot consistently estimate
[49]. To make estimation feasible, we restrict the hypothesis
space to Hilbert–Schmidt operators HS(HX ,HZ) via repro-
ducing kernels and interpret the image space as L2

η , which
yields a principled surrogate problem for infinite-dimensional
linear regression. Building on the analysis of Mollenhauer
and Koltai [49], we can guarantee the well-posendness of our
(RISK) objective, demonstrating that reducing the search space
to Hilbert-Schmidt operators in (CKOR) instead of a larger
class, e.g., of bounded operators, (RISK) sharply bounds the
∥·∥2L2

η←HX
-error.

Lemma 1: Under Assumptions 1 and 2, (RISK) sharply sat-
isfies ∥G −G∥2L2

η←HX
≤ R(G) for every G ∈ HS (HX ,HZ).

Proof: Let G ∈ HS (HX ,HZ). We have that

∥G −G∥2L2
η←HX

=sup∥f∥HX
=1 ∥G|HX

f −Gf∥2L2
η

(10a)

=sup∥f∥HX
=1 ∥[G|HX

f ](·)− [Gf ](·)∥2L2
η

(10b)

=sup∥f∥HX
=1 ∥

〈
f, kf(·)

〉
HX
−

〈
f,G∗k(·)

〉
HX
∥2L2

η
(10c)

=sup∥f∥HX
=1 EZ∼η

[〈
f, kf(Z) −G∗kZ

〉2
HX

]
(10d)

≤ sup∥f∥HX
=1 EZ∼η

[
∥f∥2HX

∥∥kf(Z) −G∗kZ
∥∥2
HX

]
(10e)

where we use the definition (CKO) and the reproducing
property in (10b)-(10c) together with the Cauchy-Schwarz
inequality in (10e). We say the upper bound is sharp if it holds
for all f∈HX and ∃h∈HX so R(G)=∥G−G∥2L2

η←HX
. Hence,

the above bound is sharp by considering that we have η-a.e.
kf(Z)−G∗kZ=e for some constant e ∈ HX so the equality is
attained by setting f=e/∥e∥HX

in the supremum. □
With the help of Lemma 1, we obtain an operator norm
approximation guarantee, as the error can be made arbitrarily
small when using a universal RKHS HX .

Theorem 2 (Arbitrary accuracy): Let Assumptions 1 and 2
hold. Also let k : Z × Z 7→ R be associated with an RKHS
HZ
∼= V⊗HX , and let PHZ

be the orthogonal projector onto
the closure of Im(Sη) ⊆ L2

η(Z). Then, for every δ > 0, there
is a finite-rank G ∈ HS (HX ,HZ), such that

1) E(G) ≜ ∥G −G∥L2
η←HX︸ ︷︷ ︸

operator norm error

< ∥[I−PHZ
]G∥L2

η←HX︸ ︷︷ ︸
representation bias B(HZ)

+ δ,

2) E(G) < δ if and only if B(HZ) = 0. Consequently,
when HX is a C0-universal RKHS, B(HZ) = 0.
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TABLE II
POPULAR EXISTING OPERATOR-THEORETIC REPRESENTATIONS FOR CONTROL SYSTEMS. CKOR INCLUDES ALL CONTROL-AFFINE REPRESENTATIONS

WITH STRAIGHTFORWARD MODIFICATION OF SAMPLING/EMBEDDING OPERATORS.

METHOD embedding dynamics output kernel ⟨·, ·⟩HZ
input kernel ⟨·, ·⟩HX

DMD [53] Ax ⟨x,x′⟩ ⟨x,x′⟩
DMDc [35] Ax + Bu ⟨x,x′⟩+ ⟨u,u′⟩ ⟨x,x′⟩
kEDMD [54], [55] A∗kx k(x,x′) k(x,x′)
kEDMDc [56] A∗kx + B∗u k(x,x′) + ⟨u,u′⟩ k(x,x′)
cKOR A∗kx + B∗(ku⊗kx) k(x,x′) + k(u,u′)k(x,x′) k(x,x′)

Proof: Let δ > 0. By the triangle inequality

E(G) ≤ ∥[I − PHZ
]G∥L2

η←HX
+ ∥PHZ

G −G∥L2
η←HX

≤ B(HZ) + ∥Sη∥∥PHZ
G −G∥HZ←HX

where the error splits into representation bias B(HZ) and rank
reduction error ∥PHZ

G −G∥HZ←HX
. By the fact that finite-

rank operators from HX → HZ are dense in HS (HX ,HZ),
we have that ∥Sη∥∥PHZ

G −G∥HZ←HX
< δ so that E(G) <

B(HZ) + δ.
“ ⇒ ”: For a C0-universal RKHS HX inducing HZ , (6)
is dense in L2

η , i.e., Im (G|HX
) ⊆ cl(Im(Sη)) so that

∥[I − PHZ
]G∥L2

η←HX
= B(HZ) = 0 [41, Chapter 4].

“ ⇐ ”: Let T be the vector-valued RKHS generated by
HS (HZ ,HX) ∼= HZ ⊗HX :

T ≜ {T : Z→ HX | T=G∗k(·), G
∗∈HS (HZ ,HX)}, (11)

induced by the kernel K(z, z′) ≜ k(z, z′)IHX
. Then follow-

ing [49, Corollary 4.5], every operator G∗ ∈ HS (HZ ,HX)
corresponds to a function G∗kz for all z ∈ Z and vice versa.
Using a C0-universal RKHS HX to define (7) that is isometri-
cally isomorphic to HZ makes the embedding T (11) densely
embedded into L2

η(HX) ≡ L2
η(Z,HX) ∼= HS

(
L2
η(Z),HX

)
,

and, for every δ > 0 we therefore have an operator G∗ ∈
HS (HZ ,HX) such that the bound

∥∥T (·)−G∗k(·)
∥∥2
L2

η(HX)
≡

R(G) < δ holds. Applying Lemma 1 we have E(G) <
B(HZ) + δ = δ, completing the proof. □

The above result reveals that whenever the RKHS HX used
to define (6) is C0-universal, then there is no representation
bias/error B(HZ) = 0 and one can find arbitrarily good finite-
rank approximations of control Koopman operators. Note that
Assumption 2 on the RKHS HX is non-restrictive and not
actually an assumption on the problem – it solely depends on
the choice of the kernel and is readily satisfied by popular
kernels such as Gaussian, Laplacian or Matérn kernels [41].
Moreover, notice that we do not require the true operator
G : L2

µ′ → L2
η to be compact let alone Hilbert-Schmidt for

Theorem 2 to hold.

C. Approximating the dynamics of observables

One of the practical appeals of control operator models
is the ability to forecast of any observable belonging to the
hypothetical domain HX . For that, operator norm approxima-
tion is critical, allowing arbitrarily accurate prediction of any
measurement/observable y ∈ HX . We formalize this in the
following corollary.

Corollary 2: Let the conditions of Theorem 2 hold and
denote the true one-step evolution of an observable y ∈ HX

as y+(z) ≜ [GSµ′y](z). Then, for any y ∈ HX and every
ε > 0, there exists a G ∈ HS (HX ,HZ), so that

∥y+ − SηGy∥L2
η
< ε (12)

Proof: Applying the Cauchy-Schwartz inequality gives

∥(GSµ′ − SηG)y∥L2
η
≤ E(G)∥y∥HX

.

which is well-defined by y ∈ HX =⇒ ∥y∥HX
<∞. After

setting δ = ε/∥y∥HX
in Theorem 2, the assertion follows. □

The main added assumption in the above result is y ∈ HX ,
which may be straightforwardly fulfilled for known observ-
ables of interest, e.g., components of the full-state observable,
by adding a linear kernel component to the hypothetical
domain to include the state:Hid = H⊕Id(X), which is induced
by the kernel kid(x,x′) = kX(x,x′) + ⟨x,x′⟩. Still, such a
composite RKHS is universal if kX(x,x′) is C0-universal,
allowing Theorem 2 to hold with a vanishing representation
bias B(·) = 0. However, the existing approaches append
the state to a data-independent and finite dictionaries [17],
[39] or evaluate an empirical inner product that is only an
approximation of the canonical kid(x,x′). As such, there is no
guarantee for unbiased representations B(·) = 0 (cf. Theorem
2), which is crucial for achieving statistical consistency [41].
Note that we do not require (CKO) to be compact (let alone
Hilbert-Schmidt), while our hypothesis does not need to be
invariant w.r.t. (CKO) to admit arbitrary accurate prediction.

Remark 3 (Improved analysis): In contrast to our nonpara-
metric and discrete-time setting, existing operator approxi-
mation error analyses for control use pre-RKHS hypothesis
approaches [25] even when using kernels [26] and do not di-
rectly benefit from the structure of an RKHS. Additionally, the
analysis therein comes with an irreducible time-discretization
error and explicitly depends on control input dimensionality,
e.g., using infinite-dimensional control spaces (cf. Remark 2)
would render regression and analysis infeasible for existing
approaches [23]–[26]. Although the aforementioned works do
focus on probabilistic finite-data error bounds for a set of
constant input Koopman operators, our theoretical analysis
indicates that sharper and more flexible results should be
readily available. Exploring this further is, however, out of
the scope of this work.

V. ESTIMATING CONTROL KOOPMAN OPERATORS OVER
RKHSS

Regularized risk minimization: After establishing the
Hilbert-Schmidt (HS) representations over RKHSs, we con-
tinue with formulating a well-posed regression problem to
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solve (CKOR). Recognizing the fact that L2
η(HX) ∼= L2

η ⊗
HX

∼= HS
(
L2
η,HX

)
, it is easy to see that (RISK) has an

equivalent, Hilbert-Schmidt norm, formulation

∥kf(·)−G∗k(·)∥2L2
η(HX)≡ ∥G|HX

−SηG∥2HS(HX ,L2
η)
, (13)

so it is apparent that it admits a unique minimizer in the
form of a Galerkin projection

(
S∗ηSη

)†
S∗ηG|HX

, where † is
the Moore-Penrose pseudoinverse operator. However, the latter
often leads to a poorly-conditioned system of equations. To
ensure well-posedness, we use Tikhonov regularization

Gγ ≜ argmin
G∈HS(HX ,HZ)

R(G) + γ∥G∥2HS

= (CZZ + γ IdHX
)−1CZX+

, γ > 0. (rRM)

where the cross-covariance CZX+
and covariance CZZ are

CZZ ≜ S∗ηSη =

∫
Z
kz ⊗ kzη(dz) : HZ→HZ , (14a)

CZX+
≜ S∗ηG|HX

=

∫
Z
kz ⊗ kf(z)η(dz) : HX→HZ . (14b)

It is easy to confirm that the objective in (rRM) is continuous,
coercive and strictly convex, making (rRM) a unique minimizer
[57] of the regularized (RISK), incurring no loss of precision
as existing finite-dimensional finite-section approaches [26],
[58].

A. Estimating control Koopman operators from data

Since we do not have access to population level quantities
to compute (rRM) in practice, we have to rely on data samples
from a dataset (1). For that, we define sampling operators

ŜZ : HZ → Rn, ŜZg = [g(z(1)) · · · g(z(n))]⊺ (15a)

ŜX : HX → Rn, ŜXf = [f(x(1)) · · · f(x(n))]⊺ (15b)

Ŝ+ : HX → Rn, Ŝ+f = [f(x
(1)
+ ) · · · f(x(n)

+ )]⊺. (15c)

so their adjoints, the sampled embedding operators [59], are
defined as Ŝ∗Z : Rn → HZ s.t. a 7→

∑n
i=1 kz(i)(a)i,

Ŝ∗X : Rn → HX s.t. b 7→
∑n

i=1 kx(i)(b)i and Ŝ∗+ : Rn →
HX s.t. c 7→

∑n
i=1 kx(i)

+
(c)i.

Now we formulate a control system operator representation
from a dataset (1) leading to the empirical risk R̂(G)

1
n

n∑
i=1

∥k
x

(i)
+
−G∗kz(i)∥2HX

≡ 1
n∥Ŝ+−ŜZG∥2HS(HZ ,Rn) (R̂ISK)

and the regularized empirical risk minimization

Ĝγ≜ argmin
G∈HS(HX ,HZ )̂

R(G)+γ∥G∥2HS=(ĈZZ + γ IdHX
)−1ĈZX+

=
(

1
n Ŝ
∗
Z ŜZ + γ IdHX

)−1 (
1
n Ŝ
∗
Z Ŝ+

)
, (r̂RM)

called kernel ridge regression (KRR) [31], [41], [60]. While
this estimator is predominantly used in this work, Appendix
A includes other popular estimators from dynamical systems
literature, such as principal component (PCR) [55], [61] and
recently proposed reduced rank (RRR) regression [31].

Finite-dimensional predictors: When HX and HZ are
infinite-dimensional universal RKHSs, we can not directly
compute the estimate in (r̂RM). Still, the finiteness of the
data makes (r̂RM) finite in rank, allowing practical finite-
dimensional computations. Before we show a formal result
on this, we introduce the input sampling operator Û : u 7→
[⟨u(1),u⟩· · ·⟨u(n),u⟩)]⊺ and kernel matrices K ≜ ŜX Ŝ∗X =

[k(x(i),x(j))]i,j∈[n],KZ ≜ K + (Û Û∗)⊙K and K+ ≜

Ŝ+Ŝ
∗
X=[k(x

(i)
+ ,x(j))]i,j∈[n], where ⊙ denotes the element-

wise (Hadamard) product.
Proposition 1 (Control Koopman Operator Models): The

minimizer of (r̂RM) equals to

Ĝγ ≜ Ŝ∗ZW Ŝ+ =
[
Âγ

B̂γ

]
∈ HS (HX ,HZ)

where W≜(KZ+nγI)−1 ∈ Rn×n and the (k ≥ 1)-step
evolution of any observable y ∈ Hny under control inputs
uk∈N0 ∈ U are exactly represented by the predictor

z1 = (I +Mu0
)kX(x0), (16a)

zk+1 = (A+
∑nu

i=1⟨ei,uk⟩Bi)zk, (16b)
ŷk = Czk, (16c)

where zk≥1 ∈ Rn, kX(x) = [k(x,x(1)) · · · k(x,x(n))]⊺ and

M(·) ≜ diag(Û(·)), Y ⊺
+≜[y(x

(1)
+ ) · · ·y(x(n)

+ )] (17a)

A ≜ (WK+)
⊤
, Bi ≜ Mei

A, C ≜ (WY+)
⊺. (17b)

Proof: By the push-through identity and the reproducing
property, we rewrite (r̂RM) as (Ŝ∗Z ŜZ + nγIHZ

)−1Ŝ∗Z Ŝ+ =

Ŝ∗Z(ŜZ Ŝ
∗
Z + nγI)−1Ŝ+ = Ŝ∗ZW Ŝ+ ≜ Ĝγ so that

Âγ = Ŝ∗XW Ŝ+ ∈ HS (HX ,HX) , (18a)

B̂γ = (Û⊛ŜX)
∗
W Ŝ+ ∈ HS (HX ,Rnu ⊗HX) , (18b)

where ⊛,⊚ denote the column- and row-wise Kronecker
product. By definition of sampling operators (15) and their
adjoints. Moreover, KZ ≜ ŜZ Ŝ

∗
Z ∈ Rn×n and equals to K+

(Û Û∗)⊙K after using (Û⊛Ŝ)(Û⊛Ŝ)
∗
= (Û⊛Ŝ)(Û∗⊚Ŝ∗) =

(Û Û∗)⊙(ŜŜ∗). For Ĝ∗γ = Ŝ∗+W ŜZ , or equivalently, Â∗γ , B̂
∗
γ ,

we can identify the weighted forward embedding F̂ ∗ = Ŝ∗+W

so that A = ŜX F̂ ∗ ∈ Rn×n and consider propagating a scalar-
valued observable y ∈ HX , which by definition amounts to

ŷ+(z) ≜ [Ĝy](z) =⟨Ĝγy,kz⟩HZ
=⟨y,Ĝ∗γkz⟩HX

(19)

=⟨y,Â∗kx+B̂∗(u⊗ kx)⟩HX
(20)

where by propagating canonical features for one step we obtain

HX ∋ k̂t+1
x = Â∗ktx + B̂∗(ut⊗ktx) (21)

= F̂ ∗(ŜXktx + (Û⊛ŜX)(ut ⊗ ktx)) (22)

= F̂ ∗(kX(x) + Ûut⊙ŜXktx) (23)

= F̂ ∗(kX(x) + Ûut⊙kX(x)) (24)

= F̂ ∗(kX(x) + diag(Ûut)kX(x)) (25)

= F̂ ∗(I+diag(Ûut))kX(x) (26)

= F̂ ∗(I +Mut)kX(x) ≜ F̂ ∗zt (27)
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after some some algebraic manipulation and the definition of
sampling and embedding operators. For t+2, we plug in the
previous solution for k̂t+1

x

HX ∋ k̂t+2
x = Â∗k̂t+1

x + B̂∗(ut+1⊗k̂t+1
x ) (28)

= F̂ ∗(Azt + Ûut+1⊙Azt) (29)

= F̂ ∗(Azt+diag(Ûut+1)Azt) (30)

= F̂ ∗(I + diag(Ûut+1))Azt (31)

= F̂ ∗(I +Mut+1)Azt. (32)

It is straightforward to verify by induction that k̂t+H
x =

F̂ ∗(Mut+H−1A)H−1zt so that

ŷt+H(zt) = ⟨y,F̂ ∗((I +Mut+H−1)A)H−1zt⟩HX
(33)

= ⟨F̂ y,((I +Mut+H−1)A)H−1zt⟩ (34)

= ⟨W Ŝ+y,((I +Mut+H−1)A)H−1zt⟩ (35)

which directly extends to vector-valued observables y ∈
(HX)ny as ⟨WY+,((I + Mut+H−1)A)H−1zt⟩, leading to
(16) after plugging in (17). □

Embracing infinite-dimensions with RKHS: The above re-
sult show that, given a sequence of controls and the initial
feature map kx0

, the prediction involves only matrix-vector
multiplication. While the above predictor is finite-dimensional,
it follows from an infinite-dimensional finite-rank control
Koopman operator after meticulously applying algebra in
RKHS. In turn, Proposition 1 eliminates auxillary regression
problems, e.g., for state reconstruction, as the full-state is
readily reconstructed by setting y = id in the above derivation.
To appreciate the gap the above result closes in the context of
learning linear operators of nonlinear control systems, a the
following remark is in order.

Remark 4 (Finite-rank ̸= finite-dimensional): In contrast
to our results, existing kernel-based approaches for control
systems operators [26], [58], [62] use finite-dimensional hy-
pothesis spaces defined over data-based RKHS subspaces and
sidestep infinite-dimensional regression [31], [49], [51], [60].
Technically, this amounts to learning a matrix between pre-
RKHSs, incurring additional approximation errors w.r.t. truly
RKHS-bound hypotheses.

VI. EFFICIENT APPROXIMATIONS VIA SKETCHING

Like any other nonparametric approach, our cKOR algo-
rithm is only suitable for small-scale systems due to the com-
putational time-complexity of order O(n3) w.r.t. the data car-
dinality n. For approximating kernel methods, random Fourier
features (RFFs) stand out as a popular and straightforward way
to reduce the time-complexity of estimation [63]. Recently,
they have been utilized for control system identification [26].
Unfortunately, the algorithm in [26] is hardly useful in data-
driven applications as it requires data gathered under constant
inputs to estimate the Koopman operator for a few fixed input
levels – prohibiting most realistic system identification scenar-
ios that involve rich excitation signals or safe data collection,
e.g., under an auxiliary controller. Moreover, RFFs being data-
independent, they may not adapt well to the data at hand,
limiting performance for an equivalent complexity as sketching

schemes [64]. Random sketching or Nyström approximations
estimate the kernel matrix by selecting a small subset of m
data points known as inducing points or Nyström centres,
that define a low-dimensional subspace of the RKHS the
dataset is projected to [46], [47]. The Nyström approximation
is accurate under the assumptions that an appropriate sampling
is carried out and the kernel matrix has a low rank, where the
latter is often satisfied, e.g., for Gaussian kernels whose Gram
matrix eigenvalue spectrum rapidly decays [65]. We remark
that, concurrent to our work, [56] proposes sketched operator
estimation, but only for the restrictive case of LTI RKHS
dynamics that is recovered as a special case of our approach
(cf. Table II).

To put our developments in perspective, recall that the
popular parametric bEDMD [12] or [15] have the time-
complexity of O(n3

z(nu + 1)3) – where nz is the dictionary
dimension – due to a cubic magnification of complexity in case
of control systems based on the dimensionality of the inputs.
This is primarily due to a lack of kernel trick for the control-
affine effects – an inherent limitation of a parametric model.
In contrast, the proposed combination of our nonparametric
cKOR framework and random sketching that we will work
out in this section preserves the “kernel trick” at a reduced
set of samples of cardinality m to deliver a handy complexity
reduction that is independent of input-dimensionality, in turn,
amounting to the time-complexity O(m3 + m2n), where
m ≪ n is the number of inducing points – identical to the
one known for autonomous systems [66].

We will consider uniform random sampling because it is
a simple algorithm that is generally applicable and it is well-
known that random projections are suitable for extracting a low
rank matrix approximation [67]. There exist more advanced
sampling approaches, which have the potential to minimize the
number of inducing points necessary, but reviewing these is out
of scope for this work. Still, our sketched scalable estimators
are not limited to uniform random sampling. We note that
the concept of Nyström approximation is rigorously studied
in context of autonomous operators with KRR, PCR and RRR
estimators, in [66]. In the remainder of this section, we extend
these results to control Koopman operator regression. This
approach starts by sampling a small subset of the data matrices
with m datapoints/columns, where m ≪ n is the number
of inducing points. With these datasets, the subsampling
operators S̃X , S̃+ : HX → Rm and S̃Z : HZ → Rm are
introduced to explicitly represent the orthogonal projections

P̃+ ≜S̃∗+(S̃
∗
+)
† = S̃∗+K

†
+̃
S̃+ ≜ Ẽ+Ẽ

∗
+ : HX → HX (36)

P̃Z ≜S̃∗Z(S̃
∗
Z)
† = S̃∗ZK

†
Z̃
S̃Z = ẼZẼ

∗
Z : HZ → HZ . (37)

with kernel matrix shorthands K+̃ ≜ S̃+S̃
∗
+ =

[k(x
(i)
+ ,x

(j)
+ )]i,j∈[m], KZ̃ ≜ S̃Z S̃

∗
Z = [k(z(i), z(j))]i,j∈[m]

and Ẽ(·) partial isometries2, satisfying Ẽ∗(·)Ẽ(·) = I . With
these projection operators, the original variational problem

2The input and output space partial isometries are Ẽ+ = S̃∗
+(S̃+S̃∗

+)†/2 ≜

S̃∗
+K

†/2
+̃

, ẼZ = S̃∗
Z(S̃Z S̃∗

Z)†/2 ≜ S̃∗
ZK

†/2

Z̃
, respectively.
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(rRM) and (r̂RM) are projected following [66] to a lower-
dimensional subspace, leading to sketched risk minimization

Gm,γ≜ argmin
G∈HS(HX ,HZ)

R(P̃ZGP̃+)+γ∥G∥2HS (SrRM)

and its empirical risk counterpart

Ĝm,γ≜ argmin
G∈HS(HX ,HZ )̂

R(P̃ZGP̃+)+γ∥G∥2HS

= (P̃Z Ŝ
∗
Z ŜZ P̃Z + nγI)−1P̃Z Ŝ

∗
Z Ŝ+P̃+. (ŜrRM)

Though the above expression may not be directly com-
putable, we will arrive at a finite-dimensional form for
them after meticulously applying algebra. Let us first in-
troduce the input subsampling operator Ũ : u 7→
[⟨u(1),u⟩· · ·⟨u(m),u⟩)]⊺ and kernel matrices KX̃ ≜ S̃X S̃∗X =

[k(x(i),x(j))]i,j∈[m], KZ̃ ≜ KX̃+(Ũ Ũ∗)⊙KX̃ , K+̃ ≜

S̃+S̃
∗
+=[k(x

(i)
+ ,x

(j)
+ )]i,j∈[m], KZZ̃ ≜ KXX̃+(Û Ũ∗)⊙KXX̃

with KXX̃ ≜ [k(x(i),x(j))]i∈[n],j∈[m] and K++̃ ≜

[k(x
(i)
+ ,x

(j)
+ )]i∈[n],j∈[m].

Proposition 2: The minimizer of (ŜrRM) equals to

Ĝm,γ ≜ S̃ZW S̃+ =
[
Âm,γ

B̂m,γ

]
∈ HS (HX ,HZ)

where W≜(K⊺
ZZ̃

KZZ̃ + nγKZ̃)
†K⊺

ZZ̃
K++̃K

†
+̃
∈ Rm×m

and the (k ≥ 1)-step evolution of any observable y ∈ Hny

under control inputs uk∈N0
∈ U are exactly represented by

the following predictor

z1 = (I +Mu0
)kX̃(x0), (38a)

zk+1 = (A+
∑nu

i=1⟨ei,uk⟩Bi)zk, (38b)
ŷk = Czk, (38c)

where kX̃(x) = [k(x,x(1)) · · · k(x,x(m))]⊺,M(·) ≜

diag(Ũ ·), Ỹ ⊺
+≜[y(x

(1)
+ ) · · ·y(x(m)

+ )], A ≜ (WK+̃)
⊺,Bi ≜

Mei
A, C ≜ (WỸ+)

⊺.
Proof: Writing out the estimator (ŜrRM) gives

(P̃Z Ŝ
∗
Z ŜZ P̃Z + nγI)

−1

P̃Z Ŝ
∗
Z Ŝ+P̃+ (39a)

=ẼZ(K
†/2

Z̃
K⊺

ZZ̃
KZZ̃K

†/2

Z̃
+nγI)

−1

Ẽ∗Z Ŝ
∗
Z Ŝ+Ẽ+Ẽ

∗
+ (39b)

=S̃∗Z(K
⊺
ZZ̃

KZZ̃+nγKZ̃)
†K⊺

ZZ̃
K++̃K

†
+̃
S̃+ (39c)

where we used PZ = ẼZẼ
∗
Z and the push-through

identity together with Ẽ∗ZẼZ = I , By following the
proof of [66, Proposition C.2] we have W≜(K⊺

ZZ̃
KZZ̃ +

nγKZ̃)
†K⊺

ZZ̃
K++̃K

†
+̃

. Finally, we arrive at (38) following
the proof of Proposition 1. □

The inverses in Ny-cKOR only take O(m3), which is a
significant improvement compared to O(n3), since m≪ n.

VII. MODEL ORDER REDUCTION

For cKOR and Ny-cKOR, the lifted state dimension scales
with the dataset cardinality n and inducing points m, re-
spectively. For relatively few inducing points, the lifted state
dimension can still be high—posing challenges for efficient
control design and real-time execution on low-level hardware.

A compelling approach for ordering and reducing the lifted
states is based on proper orthogonal mode decomposition

(POD), because it has been successfully applied in obtaining
low-dimensional representations based on large-scale datasets
in many applications [68]. The dynamic mode decomposition
(DMD) algorithm actually makes use of this reduction [69]
where it involves taking an SVD of the state “data matrix” –
analogous to the SVD of the empirical embedding operator Ŝ∗X
in our RKHS setting, which ranks the orthogonal structures of
this matrix based on the singular values. With this ranking,
the r dominant modes/coordinates can be selected to describe
the dynamical behavior of the underlying system.

The aforementioned reduction approach in the context of
cKOR (and Ny-cKOR), starts by taking the r-truncated SVD
of the kernel matrix [[K]]r = VrΣrV

⊺
r , with the POD modes

Vr ∈ RNz×r and Σr = diag(σ1, . . . , σr).3 With these POD
modes, the original bilinear lifted system can be transformed
into the following reduced bilinear lifted form

z1 = V ⊺
r (I +Mu0

)kX(x0), (40a)
zk+1 = (V ⊺

r AVr +
∑nu

i=1⟨ei,uk⟩V ⊺
r BiVr)zk, (40b)

ŷk = CVrzk, (40c)

In context of cKOR, this method is coined as reduced cKOR
(r-cKOR). For Ny-cKOR, the reduction approach is identical
to cKOR with the difference that the truncated SVD is applied
to the kernel matrix [[K̃]]r. In this case, the method is coined
as reduced Ny-cKOR (r-Ny-cKOR).

VIII. NUMERICAL EXAMPLES

In this section, we present numerical studies to illus-
trate the implications of the theoretical results and show-
case the advantages of our cKOR approach in practice.
For comparison, the bilinear EDMD baseline [21], [22] is
used with the same data- or subsample-based dictionary
span{k(x(1),x), . . . , k(x(n),x)}.

A. Model learning for the Duffing oscillator

As the first example, a controlled damped Duffing oscillator
described by the state-space representation

ẋ =

[
x2

x1 − x3
1 − 0.5x2

]
+

[
0

2 + sin (x1)

]
u, (41)

is used, where the state is simulated using RK4 integrator
measured at sampling time Ts = 0.01s while the input is
actuated in a synchronized zero-order-hold (ZOH) manner.

Prediction performance w.r.t. hyperparameters: First we
compare the cKOR, Ny-cKOR and bEDMDc approaches over
a range of the hyperparameters µ ∈ R+ of the Gaussian (RBF)
kernel k(x,x′) = e−∥x−x′∥22/µ in terms of the Ttest-ahead
prediction performance, quantified using the root mean square
error (RMSE) (1/Ttest

∑Ttest

t=1 ∥yt − ŷt∥22)
1/2, where Ttest de-

notes the number of steps and yt−ŷt is the difference between
the true system response and the predicted solution. For the
training dataset, 200 trajectories with n = 1000 samples (10
sec) are generated, starting from a 14 by 14 grid of initial
conditions within the limits |x1| ≤ 2.25 and |x2| ≤ 2.25. For

3We select r thorough a threshold τ such that
∑r

i=1 σ2
i/

∑n
j=1 σ2

j ·100% ≤
τ , but there are various other methods for choosing r, see [70].
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Fig. 3. Averaged RMSE of the 1-step-ahead prediction for the cKOR, Ny-
cKOR and bEDMDc models over the test set for various choices of the kernel
width µ for the case of predictor dimension nz = 1000.
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Fig. 4. Averaged RMSE of the 1-step-ahead prediction for the cKOR, Ny-
cKOR and bEDMDc models over the test set for various choices of the kernel
width µ for the case of predictor dimension nz = 200.

the test dataset, 40 trajectories of Ttest = 100 samples (1s)
are generated, starting from random initial conditions sampled
within the limits |x1| ≤ 2 and |x2| ≤ 2 using a uniform
distribution. Both datasets are generated using uniform random
input sequences within the interval [−2, 2]. From the training
dataset, m = 200 inducing points are randomly sampled.
The considered approaches are used with a regularization
parameter γ = 10−9. Figure 3 confirms the superior accu-
racy of our nonparametric cKOR estimator as it reaches a
significantly lower error then bEDMDc across µ values –
showing a greater hyperparameter range of increased accuracy.
Additionally, when lowering the regularization, the accuracy
of our cKOR estimate increases, achieving up to an order of
magnitude better accuracy than bEDMDc, cf. Appendix B.
Even when we reduce complexity by projecting on a subset
of data for our sketched Ny-cKOR estimator, a similar, but
slightly reduced advantage can be observed in Figure 4.

Statistical performance & time-complexity evaluation:
Next, the training data is varied in terms of the number of
samples. To generate the data snapshots, the initial conditions
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Fig. 5. RMSE of the 200-step-ahead prediction RMSE for the cKOR, Ny-
cKOR and bEDMDc models w.r.t. increasing training data size. Our (Ny)-
cKOR estimators attain significantly lower errors.

are sampled from a square and equidistant grid within the
limits |x1|, |x2| ≤ 2 and the system is driven for 2.0s by
uniformly at random generated control inputs within the limits
|u| ≤ 2. The test data consists of 20 trajectories of length 2.0
sec (Ttest = 200) with the same initial condition generation,
but driven by an input sequence of ut = 2 sin (10πt). All
the approaches use the Gaussian kernel to construct the lifted
states with hyperparameter µ = 0.25 and a regularization
parameter of 10−7. These values are empirically determined
as “optimal” for the prediction RMSE and choosing the
same settings allows for a fair comparison between cKOR,
Ny-cKOR and bEDMDc. Note that, the bEDMDc approach
takes the inducing points as centers, which are 200 uniformly
randomly sampled points from the training dataset. Figure
5 illustrates the RMSE of the Ttest-step-ahead prediction
averaged over the test trajectories versus the number of
training datapoints. The solid lines represent the average
RMSE over 20 runs and the shaded area gives the variation
of the RMSE per run. For each run, a new training data
set and inducing points are generated to provide statistically
relevant results. Figure 6 shows the computation times,
i.e., the estimation time of the predictor along with the
n-step-ahead prediction/rollout time. Strikingly, both the
average RMSE of cKOR and Ny-cKOR stays below of
bEDMDc, confirming the inherent advantages of estimators
derived using a nonparametric paradigm. This also illustrates
the common bottleneck of full KRR estimators well over the
number of datapoints, since the full cKOR scales with O(n3),
compared to bEDMDc with O((nz(nu +1))3) and Ny-cKOR
O(m3). In line with our expectation, Ny-cKOR continues the
trend of cKOR for larger datasets, as the computation time
becomes intractable for the full cKOR estimator. For a single
input, the bEDMDc complexity is comparable to Ny-cKOR,
however it is important to stress that Ny-cKOR is substantially
more computationally efficient than bEDMDc for higher input
dimensions – by a factor of (nu+1)3 – as it does not require
taking a tensor product of features and inputs.
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Fig. 6. Computation time for the cKOR, Ny-cKOR and bEDMDc models
over increasing training data size. Our Ny-cKOR estimator effectively attains
the complexity of the parametric approach.

B. Learning the high-dimensional Kalman vortex street

Tackling high-dimensional systems in a parametric man-
ner, often comes with challenges as the suitable basis for
representation is of critical importance. Through this sim-
ulation study, we want to showcase the superiority of our
nonparametric learning paradigm even when it is based on
a fraction of the data points, which is highly important for
scalability. Figure 8 schematically illustrates the considered
nonlinear system which generates a flow as a result of
transverse non-slip movement of an oscillating cylinder as
input. This flow exhibits vortex shedding causing vortex-
induced vibrations on the structure, which accelerate material
fatigue and may lead to failure [71]. In [72], the considered
system is created and simulated using the Computational
Fluid Dynamics (CFD) environment OpenFOAM. For the
data generation, we refer to [72]. The system identification
procedure is performed with the same setting as in [73].

U
ni

fo
rm

 in
flo

w

Oscillating
Cylinder

Observation region  

Fig. 8. An oscillating cylinder in a
uniform flow.

For completeness, these set-
tings are repeated here: the
pressure, horizontal veloc-
ity and vertical velocity are
observed in the rectangu-
lar wake region of 41 ×
45, which amounts to a
high state dimension of
nx = 5535. The flow
conditions correspond to a
Reynolds number of 100
and a Strouhal number of

0.167. The dataset consists of 11 timeseries of length T =
1520, with samples measured at 50Hz. These 11 timeseries
correspond to 11 input sequences with a swept-sine input
profile with different amplitudes and cylinder diameter ra-
tios. The timeseries are randomly split into: 6 series for
training, 3 for validation, and 2 for testing. For statistically
significant comparison, we assess the prediction performance
of the methods on the test data over 20 randomly assigned
splits. The training, validation and test datasets are normalized

to constrain the states and inputs to values ≤ 1. For a
fair comparison, all approaches use the same 400 inducing
points for learning, meaning bEDMDc uses 400 RBF cen-
tres based on the inducing points of Ny-cKOR (and r-Ny-
cKOR). Also all models are fitted using a hyperparameter and
regularizer grid search on the validation data with the grids
µ ∈ {0.1, 0.5, 1, 10, 20, . . . 60, 150, 175, . . . 400} and γ ∈
{10−11, 10−10, . . . , 10−6} for the multi-step (Tvalid = 100)
state prediction RMSE. The rank r of the POD reduction
is obtained for τ = 99.99% (cf. Section VII). As shown in

TABLE III
TEST NORMALIZED RMSE (NRMSE) FOR THE ESTIMATED MODELS ON
THE ACTUATED KARMAN VORTEX STREET FOR MULTI-STEP PREDICTION

OVER TTEST = 3TVALID FROM 20 TEST-VALIDATION-TRAIN SPLITS.

Ny-cKOR r-Ny-cKOR bEDMDc

NRMSE 0.157±0.049 0.206±0.109 0.412±0.976

Table III, on average, both models from r-Ny-cKOR and Ny-
cKOR significantly outperform those of bEDMDc. Strikingly,
the error variance compared to bEDMDc for our Ny-cKOR
and r-Ny-cKOR models is 20× and 10× smaller, respectively.
Figure 7 shows an examples of the significant performance
loss due to the large error variance of bEDMDc models. By
just comparing the flow plots, it becomes clear that bEDMDc
quickly deteriorates and does not resemble any aspect of the
flow, as opposed to Ny-cKOR, which stays quite accurate
over the entire horizon. The reduced model of r-Ny-cKOR
comes with an offset to Ny-cKOR, but does not exhibit the
performance loss of bEDMDc. This example demonstrates
the superiority of the nonparametric paradigm, through the
significantly better prediction accuracy of our (r-)Ny-cKOR
models for an unknown high-dimensional control system.

C. Model predictive control with cKOR predictors

Here we integrate our control operator predictors from
(Proposition 1 and 2) in an iterated LPV-MPC scheme [74],
that we call control Koopman operator LPV-MPC (cKoLPV-
MPC), whose description is delegated to the Appendix C. In
a nutshell, we solve a single QP at every time-instant where
the cKoLPV-MPC updates the scheduling iteratively over the
simulation time in a receding horizon manner. This may cause
some loss of performance, but convergence is still observed in
practice, similar to SQP schemes.

Damped Duffing oscillator: First we consider the MPC
design for the Duffing oscillator (41). The autonomous dy-
namics have two stable equilibrium points while the origin
is unstable. The vector field of the system is plotted in
Figure 9 to illustrate if the control trajectories leverage the
dynamics to gain performance. In this example, the cKoLPV-
MPC (cf. Appendix C), the sequential linearization approach
based we name LPV-MPC4, and a linear MPC (LMPC) based on
a linearized model of (41) are compared. The nonlinear MPC

4This scheme is equivalent to applying the LTV-MPC from [75] in a non-
robustifed (“tube-free”) fashion.
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Fig. 7. A prediction of the flow in the Kalman Vortex Street example, showing the reduced prediction error of our higher fidelity Ny-cKOR models.

(NMPC) with the exact nonlinear model of (41) is considered
as the ground truth.

The initial condition of the simulated scenario is set to [1 1]⊺

and the state reference consists of the two equilibra: [−1, 0]⊺
and [0, 0]⊺, for 9s and 3s, respectively. The weighting matrices
are chosen as Q = diag(6, 1), R = 5 and QT = 100Q. The
horizon is set to 100 steps, i.e. T = 100 with a sampling
time of Ts = 0.01s . Lastly, the constraints are sets as
−2 ≤ u ≤ 2, −3 ≤ x1 ≤ 3 and −3 ≤ x2 ≤ 3. These
settings are such chosen such that knowing nonlinear system
behavior accurately is rewarded and that the desired setpoints
are reached.

The linear MPC (LMPC) model is obtained by linearizing
the system equations around the origin. LPV-MPC linearizes the
system along the prior predicted states and optimized inputs
where its initial guess is the initial condition over the horizon
and zero inputs. The same initial guess is used for NMPC,
which also has access to the system equations. Our cKoLPV-
MPC does not have access to the system equations, instead,
it uses training data (n = 704) in a state domain of −2 ≤
x1 ≤ 2 and −2 ≤ x2 ≤ 2 and an input domain of [−2, 2].
The bilinear model is constructed via r-Ny-cKOR with 100
uniformly randomly sampled inducing points, r = 29 and a
hyperparameter grid search over validation data.

From Figures 9 and 10, it can be observed that cKoLPV-
MPC, LPV-MPC and NMPC are almost identical, while they
showcase a clear performance improvement compared to
LMPC. Specifically, LMPC requires extra input effort between
1s and 3s, because around x1 = −0.2 and x2 = −1.25,
the LMPC solution goes against the vector field. The other
approaches use the vector field to reach the setpoint and
thus requiring less input. In addition, there is an large offset

-1.5 -1 -0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

Fig. 9. State-space response of the simulated Duffing oscillator under
piecewise constant reference tracking for the MPC.

between the settled state of LMPC and the setpoint, which then
leads to an additional input effort to stabilize in the origin.
The other approaches are almost identical, which implies that:
1) the system and/or control task is not challenging enough
and that; 2) the bilinear Koopman model accurately identifies
the nonlinear system.

Unstable system with linearly uncontrollable origin: For the
next example, the following Van der Pol oscillator

ẋ =

[
x2

−x1 − 1
2x2(1− x2

1)

]
+

[
0

x1u

]
, (42)

where the state is measured with sampling time Ts = 0.05s
and the input is actuated in a synchronized ZOH manner.
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Fig. 10. Comparing position responses of LMPC, LPV-MPC, cKoLPV-MPC and
NMPC for piecewise constant references on the simulated Duffing oscillator.

This is an interesting example for three reasons: the origin
is linearly uncontrollable, the optimal solution to drive the
system from arbitrary initial condition to the origin is known,
i.e., the infinite-horizon optimal controller for the cost function
J(x, u) = x2

2+u2 is u = −x1x2 [76]. Thus, the MPC control
task is to minimize the aforementioned cost function over
a finite-horizon. In other words, this system can showcase
the potential of nonlinear control techniques as opposed to
controllers based on linear state-space models. We evaluate
the performance on, the initial conditions [−2,−2]⊺, [−2, 2]⊺,
[2,−2]⊺ and [2, 2]⊺ with Q = diag(0, 1), QT = Q and R = 1
to match the above cost function. The horizon is chosen as
the minimal one such that NMPC stabilizes the origin. This
resulted in a horizon of 100 steps, which is relatively big
and thus another indicator of a difficult to control system.
The latter in combination with being open-loop unstable in
the considered region, complicates the data-gathering step for
learning. For the training and the validation data, the NMPC
controller is used to control the system to the origin with an
exploratory uniform random disturbance within the interval
[−2, 2]. The hyperparameter and regularization parameter
are obtained by employing a grid search on the validation
data. The same initialization of the scheduling is used as in
the previous example. Figure 11 shows the resulting control
trajectories for NMPC and cKoLPV-MPC. For these settings,
the LPV-MPC and LMPC controllers fail to stabilize the origin,
due to linearization limitations and the linearly uncontrollable
property. The latter clearly highlights an advantage for the
cKoLPV-MPC scheme. However, the control trajectories of
cKoLPV-MPC deviate from the trajectories of the NMPC with
full exact model knowledge. The aforementioned deviations
are quantified with RMSE: RMSE of cKoLPV-MPC is
2.83 · 10−1 and of NMPC: 1.01 · 10−1. Due to its data-driven
nature, the model is inherently approximative, while the NMPC
works with perfect system knowledge. The latter is illustrated
in Figure 12 by requiring a higher input as opposed to follow-
ing the vector field. Note that cKoLPV-MPC solves a single
QP at every timestep and does not require any initial guess
for the scheduling or employment of model-based planners.
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Fig. 11. State-space responses of the simulated Van der Pol oscillator for the
cKoLPV-MPC vs NMPC.

Fig. 12. Comparing cKoLPV-MPC and NMPC control input signals form the
initial condition x0 = [2,−2]⊺ for the simulated Van der Pol oscillator.

IX. CONCLUSION

We introduce a novel framework for learning Koopman op-
erators for control-affine systems in reproducing kernel Hilbert
spaces (RKHS), grounded in risk minimization and infinite-
dimensional regression. By establishing the equivalence of var-
ious operator formulations, we enable the simultaneous use of
vector-valued regression for learning and LPV Koopman forms
for prediction and control. This equivalence demonstrates that
control operators can be fully described using scalar-valued
kernels, bridging a critical gap in existing operator represen-
tations and fully leveraging the available RKHS structure.
Our proposed empirical estimators based on data samples
form finite-rank operators over RKHSs that are independent
of feature and input dimensions, and form finite-dimensional
predictors without any loss of precision. Furthermore, we
prove that our approach allows arbitrarily accurate operator
norm approximations under minimal assumptions using finite-
rank operators. Additionally, we propose sketched estima-
tors to improve the scalability of our method by reducing
computational complexity to O(m2) for large-scale problems,
where m may be much smaller than the data cardinality. As
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implied by our theoretical analysis, the numerical experiments
demonstrate superior prediction accuracy compared to bilinear
EDMD, especially for high-dimensional systems. Finally, our
learned models integrate seamlessly with LPV techniques
for model predictive control, offering a viable alternative to
standard MPC approaches.
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APPENDIX

A. Additional Control Koopman Operator Estimators

We can state the result that readily follows as a slight
modification of the results in [31], [77]. The RKHS control
Koopman operators can be empirically estimated by Ŝ∗ZW Ŝ+,
where W ∈ Rn×n follows:
(1) from the Kernel Ridge Regression (KRR) algorithm, pro-

vided that Ĝγ minimizes (r̂RM) without rank constraint,
resulting in

Ĝγ = Ŝ∗Z(KZ + γI)−1Ŝ+; (KRR)

(2) from the Reduced Rank Regression (RRR) algorithm,
provided that (r̂RM) minimized under a rank constraint
Ĝ ∈ {HS (HX ,HZ) | rank(Ĝ) ≤ r} so that

ĜRRR
γ ≜C

− 1
2

γ [[C
− 1

2
γ T ]]r = Ŝ∗ZUrV⊺

r Ŝ+, (RRR)

where Cγ≜CZ + γIdHX
and Vr = KZUr with Ur =

[u1 | · · · | ur] ∈ Rn×r is such that (σi,ui) are solutions
to the generalized eigenvalue problem K++KZui =
σ2
i (KZ + γI)ui, s.t. u⊺

i KZ(KZ + γI)ui = 1;
(3) from the Principal Component Regression (PCR) algo-

rithm, giving

ĜPCR
γ ≜[[C]]†rTZ = Ŝ∗ZUrV⊺

r Ŝ+, (PCR)

where [[KZ ]]r = VrΣrV ∗r is the r-truncated SVD of KZ ,
and Ur = VrΣ

†
r.

B. Additional ablation

We expand the numerical study of the Duffing oscillator
VIII-A, with an ablation study for even lower levels of
regularization γ = 10−10 and γ = 10−11. As shown in Figures
13 and 14, our cKOR approach continues to significantly
outperform the parametric approaches with its sketched Ny-
cKOR version on par or better.

C. Koopman-Based Iterated LPV-MPC

To provide an efficient scheme for controlling the original
nonlinear system via the cKOR method provided surrogate
models, we propose a model predictive control (MPC) ap-
proach that extends the iterated LPV scheme of [74] to our
control operator setting. The control problem that we want to
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Fig. 13. RMSE of 1-step-prediction for cKOR, Ny-cKOR and bEDMDc
models over values of µ and regularizer γ = 10−10 for the Duffing oscillator
example VIII-A.
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Fig. 14. RMSE of 1-step-prediction for cKOR, Ny-cKOR and bEDMDc
models over values of µ and regularizer γ = 10−11 for the Duffing oscillator
example VIII-A.

address is that given a measurement of the state x(k) of the
original nonlinear system (NCAS) at time-instant t, based on
a cKOR model, solve a predictive control problem on a finite
time horizon T with computation cost close to an LTI-MPC to
obtain a control sequence {ui|t}T−1i=0 such that the predicted
response of (NCAS) follows a prescribed reference trajectory.
Then, u0|t is applied to the system and at the next time-instant
(t+1), x(t+1) is measured to start the next control cycle. For
our cKOR model, the cKoLPV-MPC optimization problem is

min
u0|t···uT−1|t

T∑
i=1

(
∥zi|t−zi|t∥2Qz

+∥ui|t−ui|t∥2R
)
+qT |t (43a)

s.t. zi+1|t = Azi|t + B(pi|t)ui|t (43b)

xmin ≤ Czj|t ≤ xmax (43c)
umin ≤ ui|t ≤ umax (43d)

where Qz = CQxC, qT |t=∥zT |t − zT |t∥2Qz(T ) and the
measured state at time t, i.e., x0|t = x(t), is lifted to deter-
mine z0|t = z(x0|t). The variables xi|t and ui|t correspond
to the reference state and input, respectively. In addition,

Q ∈ Rnx×nx , R ∈ Rnu×nu are weighting matrices and
QT ∈ Rnx×nx represents the terminal weight matrix. These
matrices have to be tuned with respect to user specified
performance expectations w.r.t. the tracking problem. The
bounds xmin, xmax, umin and umax limit the state and input
sequences of the system. Lastly, to efficiently handle the bi-
linearity of the cKOR model, a scheduling variable taken as
pi|t is introduced so that B(pi|t) = [B1pi|t | · · · | Bnupi|t].
The core idea is that at any given time-instant t, for a fixed
scheduling sequence {pi|t}

T−1
i=0 , (43b) is used to formulate

a linear MPC problem that can be solved efficiently as a
quadratic program (QP). Then, the resulting control sequence
{ui|t}T−1i=0 is used to forward simulate the cKOR model to
compute a new sequence pi|t = z(i + t) on which a new
sequence of control matrices B(pi|t) is computed in a receding
horizon fashion akin to the iterated MPC scheme of [74].
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