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Abstract— Providing formal guarantees for robust constraint
satisfaction is a crucial problem in safety-critical applications.
We address this problem by combining robust optimal control
with set-based reachability analysis of nonlinear systems. Our
algorithm is built on a recently proposed scheme for optimizing
affine feedback policies by iterating between solving a perturbed
nominal optimal control problem and synthesizing linear feed-
back controllers – however, robust constraint satisfaction is not
guaranteed. To overcome this limitation, we leverage concepts
from robust controller synthesis and set-based reachability
analysis. Our experiments show only a modest decrease in
performance compared to an approximately robust approach,
while we outperform state-of-the-art approaches that guarantee
robust constraint satisfaction.

I. INTRODUCTION

Robust nonlinear optimal control is a promising tech-
nique for planning and control in safety-critical applications:
Since trajectories are generated by solving an optimization
problem, constraints on the state and control input can be
explicitly considered. Formal guarantees for robust constraint
satisfaction can be provided despite disturbances, see e.g.,
[1], [2], but these guarantees usually come at the cost of
compromised control performance.

Robust optimal control problems (OCPs) have mostly been
studied in the context of robust model predictive control
(MPC), where tube-based MPC has emerged as the most
popular technique: Instead of a single trajectory, tube MPC
approaches compute reachable sets, usually referred to as
tube or funnel. The reachable sets are guaranteed to contain
the true system state for every disturbance trajectory with
values constrained within a compact set. To mitigate the
growth of the reachable sets, tube MPC approaches include
a feedback controller.

In rigid tube MPC, the feedback controller and a robust
positively invariant set are computed offline using, e.g., in-
cremental Lyapunov functions [1], [3] or control contraction
metrics [4], [5]. Using such an invariant set as a rigid tube
around a nominal trajectory yields a perturbed nominal OCP
and, thus, the online computational complexity is roughly
the same as for nominal MPC. However, designing the
feedback controller and, hence, the tube offline can introduce
conservatism.

To address this issue, the feedback controller can be cho-
sen as an optimization variable in the robust OCP: Ellipsoidal
tubes are directly predicted in [6], but this approach requires
several auxiliary variables that are difficult to initialize.
Polytopic tubes are usually less conservative than ellipsoidal
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tubes and enable a flexible interpolation-based control law
[7] that results in a large number of optimization variables.
For linear systems with additive disturbances, the robust OCP
can be formulated as a single convex program by leveraging
affine disturbance feedback [8] or system level synthesis [9],
[10]. This approach has recently been extended to optimizing
affine feedback policies of nonlinear systems [11]. However,
the parameterization of the control law, again, leads to a large
number of optimization variables.

Iterating between optimizing a nominal trajectory and
synthesizing linear feedback controllers aims at reducing the
computational burden of optimizing affine feedback policies
online. However, balancing the minimization of the size of
the funnel and the required control effort as in [12] is not
necessarily optimal. In [13], the decoupling of the robust
OCP is derived via its first-order necessary conditions and it
is shown that the optimal linear feedback gains follow as the
solution of a finite-horizon stochastic linear quadratic regula-
tor (LQR) problem. However, the ellipsoidal disturbance sets
are only propagated approximately for reachability analysis,
in a way that is commonly used to formulate stochastic
OCPs [14], [15]. Thus, robust constraint satisfaction cannot
be guaranteed. Recently, this approach has been leveraged to
reduce the computational burden in system level synthesis-
based OCP formulations [16].

Contribution and Outline: In this paper, we propose
a novel approach for solving robust nonlinear OCPs with
affine feedback policies as optimization variables that iterates
between solving perturbed nominal OCPs and optimizing the
tube. In particular, we

• improve the performance compared to [12] by automati-
cally tuning the cost function for the feedback controller
synthesis based on the perturbed OCP solution [13].

• synthesize linear feedback controllers for the nonlinear
error dynamics using concepts from linear matrix in-
equality (LMI)-based robust controller synthesis; and

• formally guarantee robust constraint satisfaction by
leveraging set-based reachability analysis. In contrast,
the linearization error is neglected and ellipsoidal dis-
turbance sets are only propagated approximately in [13].

The remainder of this paper is structured as follows: In
Sec. II, we introduce some preliminaries and provide our
problem statement.. We present our approach for solving
robust OCPs in Sec. III and evaluate it in Sec. IV.

Notation: The sets of natural numbers with and without
zero are denoted by N0 and N, respectively, and the set
{r, r + 1, . . . , q} ⊂ N0 is denoted by N[r:q]. The matrix full
of ones and zeros of appropriate dimension are denoted by 1
and 0, respectively, and the identity matrix of dimension n is



denoted by In. The absolute value |A| as well as equalities
and inequalities between vectors and matrices are evaluated
elementwise. For a ∈ Rn, the operator diag (a) returns a
diagonal matrix with the elements of a on the main diagonal.
Similary, for a finite set of matrices A1, . . . , Am, where
Ai ∈ Rni×ni , diag (A1, . . . , Am) returns a block-diagonal
matrix with the matrices A1, . . . , Am on the main diagonal.
Given a vector-valued function f(x), ∇f(x) denotes the
transpose of the Jacobian of f . In the case of a vector-
valued function g(x, y) with multiple input arguments, we
specify the arguments ∇xg(x, y) if we do not take the
Jacobian with respect to (w.r.t.) all arguments. The support
function of a compact convex set A ⊂ Rn in the direction
of l ∈ Rn is denoted by ρA (l) [17, Sec. 8.1.3]. Given two
sets A,B ⊂ Rn, A× B denotes their Cartesian product and
A⊕B denotes their Minkowski sum. For matrix products of
the form ATBA, we sometimes use [•]TBA for readability.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

We consider perturbed discrete-time nonlinear systems of
the form

xk+1 = f (xk, uk, wk) , (1)

where xk ∈ Rnx is the system state, uk ∈ Rnu is the control
input, and wk ∈ Rnw is the unknown disturbance at time
k∆t for time step k ∈ N[0:N−1] and sampling time period
∆t > 0. The nonlinear function f is assumed to be three
times continuously differentiable. Moreover, wk is always
confined to the disturbance set W ⊂ Rnw , i.e., ∀k : wk ∈ W .
We assume that W =

{
w : ∥w∥p ≤ 1

}
for p ∈ {2,∞}.

Please note that this assumption entails disturbance sets
of the form

{
w : w = c+Gω, ∥ω∥p ≤ 1

}
since the affine

transformation can be considered as part of the dynamics
function f in (1).

Given the initial state xinit and a nominal input tra-
jectory ū(·), we define a nominal state trajectory x̄(·) as
∀k ∈ N[0:N−1] : x̄k+1 = f (x̄k, ūk,0) , x̄0 = xinit. To com-
pensate for disturbances, we not only plan open-loop input
trajectories ū(·) but also consider linear feedback

πk(x) = ūk +Kk(x− x̄k), (2)

with time-varying feedback gains Kk ∈ Rnu×nx .
Next, we define the closed-loop reachable set of the system

in (1) under the control policy in (2).
Definition 1 (Reachable Set): For the system in (1), a set

of initial states X0 ⊂ Rnx , a control policy π0 of the
form in (2), and a set of disturbances W , the reachable set
R+(X0, π0) at the next time step is

R+(X0, π0) = {f (x0, π0(x0), w0) : x0 ∈ X0, w0 ∈ W}.
(3)

By applying (3) recursively starting from X0 = {xinit}, we
obtain the reachable set at time step k denoted by R

(
k, π(·)

)
.

Since the exact computation of reachable sets of general
nonlinear systems is impossible [18], we compute over-

approximations, i.e., R̂
(
k, π(·)

)
⊇ R

(
k, π(·)

)
to ensure ro-

bust constraint satisfaction. We compute R̂
(
k, π(·)

)
using the

discrete-time version of the reachability algorithm in [19]:

R̂
(
k + 1, π(·)

)
= {x̄k+1} ⊕ (Ak +BkKk)∆R̂

(
k, π(·)

)
⊕ EkW ⊕L(k),

with R̂
(
0, π(·)

)
= {xinit} , (4)

where Ak, Bk, and Ek denote the first-order derivatives
of f evaluated along the nominal trajectory and the La-
grange remainder L(k) encloses the set of linearization
errors. We define the reachable set of the error dynamics
as ∆R̂

(
k, π(·)

)
= R̂

(
k, π(·)

)
⊕ {−x̄k}. In the case of an

ellipsoidal disturbance set W , we compute a zonotopic
enclosure for reachability analysis [20].

The state and the control input are constrained by

∀k ∈ N[0:N ] : xk ∈ Xk, (5a)
∀k ∈ N[0:N−1] : πk(xk) ∈ Uk, (5b)

where all Uk are assumed to be compact. Moreover, we as-
sume that there exist nh,k twice continuously differentiable,
scalar functions hk,i (x, u) with {(x, u) : hk,i (x, u) ≥ 0} be-
ing convex so that the constraints in (5) can be equivalently
expressed as

∀k ∈ N[0:N−1],∀i ∈ N[1:nh,k] : hk,i (xk, πk(x)) ≤ 0, (6a)
∀i ∈ N[1:nh,N ] : hN,i (xN ) ≤ 0. (6b)

Figuratively speaking, this assumption implies that the sets of
forbidden states and control inputs can be modeled as a finite
union of convex keep-out zones. Thus, we cover a broad
range of settings from the common polytopic admissible
sets in MPC [2], [21], to collision avoidance constraints for
autonomous systems in dynamic traffic scenarios [22], [23].

B. Problem statement

We consider robust OCPs of the form

min
x̄(·),ū(·),
K(·),β(·)

N−1∑
k=0

l (x̄k, ūk) + VT (x̄N ) (7a)

s.t. x̄0 = xinit, (7b)
∀k ∈ N[0:N−1] : x̄k+1 = f (x̄k, ūk, 0) , (7c)

∀k ∈ N[0:N−1] : hk (x̄k, ūk) +
√
βk + ϵ ≤ 0, (7d)

hN (x̄N ) +
√
βN + ϵ ≤ 0, (7e)

∀k ∈ N[0:N−1],∀i ∈ N[1:nh,k] :

βk,i = ρ∆R̂(k,π(·)) (∇hk,i (x̄k, ūk))
2
,

(7f)

∀i ∈ N[1:nh,N ] :

βN,i = ρ∆R̂(N,π(·)) (∇hN,i (x̄N ))
2
,

(7g)

where the stage cost function l (·, ·) and terminal cost
function VT (·) are twice continuously differentiable, and
hk (x̄k, ūk), βk, hN (x̄N ), and βN denote the vertical con-
catenations of all hk,i (x̄k, ūk), βk,i, hN,i (x̄N ), and βN,i,
respectively. The constant ϵ ≪ 1 is added in (7d) and (7e) to



ensure differentiability. We introduced the auxiliary variables
βk to leverage the approach from [13].

It remains to be shown that satisfaction of the constraints
in (7d)-(7g) is sufficient for satisfaction of the constraints in
(6). Inserting (7g) into (7e) yields

0 > hN,i (x̄N ) + ρ∆R̂(N,π(·)) (∇hN,i (x̄N ))

= hN,i (x̄N ) + max
∆x∈∆R̂(N,π(·))

∇hN,i (x̄N )
T
∆x

≥ max
x∈R̂(N,π(·))

hN,i (x) ,

where the first step follows from the definition of the support
function and the second step follows from the first-order
condition for concavity of hN,i (x) [17, Sec. 3.1.3] (which
follows from convexity of the zero-superlevel set). Hence,
satisfaction of (7e) and (7g) is sufficient for satisfaction
of (6b). Analogously, sufficiency of (7d) and (7f) for the
satisfaction of (6a) can be shown.

III. ROBUST OPTIMAL CONTROL

We present our approach to address the robust OCP in (7),
which adopts the core idea of the algorithm in [13]: the robust
OCP is addressed by iterating between solving two subsets of
its first-order necessary conditions – one subset corresponds
to optimizing a nominal trajectory, the other to optimizing
the feedback controllers. In contrast to [13], our approach
ensures robust constraint satisfaction. Each iteration of our
approach consists of the following steps (see Fig. 1):

1) Solve perturbed OCP: We formulate a perturbed nom-
inal OCP by freezing the feedback gains K(·) and,
thus, the reachable sets ∆R̂

(
·, π(·)

)
. We present the

perturbed OCP and the computation of the perturbations
in Sec. III-A.

2) Synthesize feedback controllers: We synthesize linear
feedback controllers for the nonlinear error dynamics by
solving a sequence of semi-definite programs, which we
derive in Sec. III-B.

3) Compute reachable sets: Given the updated policies
π
(j+1)
(·) , we compute the reachable sets of the error

dynamics ∆R̂
(
·, π(j+1)

(·)

)
using the procedure in (4)

starting from the initial set ∆R̂
(
0, π

(j+1)
(·)

)
= {0}.

4) Check constraints: We check satisfaction of the con-
straints in (7d)-(7g) at the end of each iteration to ensure
soundness.

We repeat these steps until the following simple convergence
criterion is satisfied

∆y =

∥∥∥∥∥
[
x̄
(j+1)
(·)

ū
(j+1)
(·)

]
−

[
x̄
(j)
(·)

ū
(j)
(·)

]∥∥∥∥∥
2

≤ ϵy, (8a)

∆K =
∥∥∥K(j+1)

(·) −K
(j)
(·)

∥∥∥
F
≤ ϵK , (8b)

where ϵy ∈ R>0, ϵK ∈ R>0 are user-defined parameters. In
the first iteration, we solve a nominal OCP, i.e., β(·) = 0
in (7), instead of the perturbed OCP. We discuss robust
constraint satisfaction in Sec. III-C.

Solve Perturbed OCP
(Sec. III-A)

Synthesize Feedback
Controllers (Sec. III-B)

Compute Reachable Sets (4)

Check Constraints (7d)-(7g)
K

(j)
(·) , ∆R̂

(
·, π(j)

(·)

)

x̄
(j+1)
(·) , ū(j+1)

(·) , η(j+1)
(·)

Fig. 1: Overview of our algorithm for solving the robust OCP in (7).

A. Perturbed Optimal Control Problem

We solve the following perturbed OCP to update the
nominal state and input trajectory while freezing K(·) and
∆R̂

(
·, π(·)

)
:(

x̄
(j+1)
(·) , ū

(j+1)
(·)

)
=

argmin
x̄(·),ū(·)

N−1∑
k=0

l (x̄k, ūk) + c̃Tk

[
x̄k

ūk

]
+ VT (x̄N ) + c̃TN x̄N

+ κy

(∥∥∥x̄(·) − x̄
(j)
(·)

∥∥∥2
2
+
∥∥∥ū(·) − ū

(j)
(·)

∥∥∥2
2

)
(9a)

s.t. x̄0 = xinit, (9b)
∀k ∈ N[0:N−1] : x̄k+1 = f (x̄k, ūk, 0) , (9c)
∀k ∈ N[0:N−1] : hk (x̄k, ūk) + bk ≤ 0, (9d)
hN (x̄N ) + bN ≤ 0, (9e)

where the constraint tightenings bk in (9d) and bN in (9e)
are obtained by evaluating the constraints in (7f) and (7g),
respectively, for the solution from the previous iteration.

The coefficients c̃k of the cost correction terms denote the
gradients w.r.t. x̄k, ūk of (see [13, Sec. III-A])

Φ =

N−1∑
k=0

nh,k∑
i=1

ηk,iρ∆R̂(k,π(·)) (∇hk,i (x̄k, ūk))
2

+

nh,N∑
i=1

ηN,iρ∆R̂(N,π(·)) (∇hN,i (x̄N ))
2

(10)

evaluated at the solution from the previous (jth) iteration
x̄
(j)
(·) , ū(j)

(·) , K(j)
(·) , and η

(j)
(·) , where ηk,i denote the Lagrange

multipliers associated with the constraints in (7f), (7g).
Thus, computing c̃k requires differentiating the algorithms
for synthesizing the feedback controllers and computing the
reachable sets w.r.t. to the input arguments x̄(·), ū(·). Among
others, this would require the computationally expensive
evaluation of third-order tensors of the dynamics function f ,
see (4). For simplicity, we therefore propose to neglect the
sensitivity of K(·) w.r.t. x̄(·), ū(·). To prevent the approxima-
tion error from growing too large, we add the penalty term to
the cost function in (9a), which penalizes large deviations of
x̄(·), ū(·) from the solution of the previous iteration x̄

(j)
(·) , ū

(j)
(·) .

Since the proposed simplification corresponds to the case of
fixed feedback gains (see also [24]), we introduce a similar
penalty term when synthesizing K

(j+1)
(·) in Sec. III-B.2. Such

penalty terms are regularly used in iterative algorithms for



optimal control to facilitate convergence [12], [14].
To compute c̃k, we use the differentiable approximation

of the support function ρ∆R̂(k,π(·)) (l) proposed in [25]: We
compute the shape matrix Γk of an ellipsoidal approximation
∆R̃E

(
k, π(·)

)
≈ ∆R̂

(
k, π(·)

)
by propagating the ellipsoidal

approximation {w : ∥w∥2 ≤ 1} of W , i.e.,

Γk+1 =(Ak +BkKk)
T
Γk (Ak +BkKk) + ET

k Ek,

with Γ0 = 0,

where the Minkowski sum in (4) is approximated by adding
the shape matrices. Using Γk, the approximation of the
support function is defined as [25]

ρ̃
∆R̂

(
k,ū(·),K

(j)

(·)

) (l) =
ρ
∆R̂

(
k,π

(j)

(·)

) (l)
ρ
∆R̃E

(
k,π

(j)

(·)

) (l)ρ∆R̃E

(
k,ū(·),K

(j)

(·)

) (l) ,
with ρ∆R̃E(k,ū(·),K(·)) (l) =

√
lTΓkl + ϵ,

where ρ
∆R̃E

(
k,ū(·),K

(j)

(·)

) (l) is scaled to ensure that the

approximation of the support function is exact for the current
candidate policy π

(j)
(·) , i.e.,

ρ̃
∆R̂

(
k,ū

(j)

(·) ,K
(j)

(·)

) (l) = ρ
∆R̂

(
k,ū

(j)

(·) ,K
(j)

(·)

) (l) .
Note that we expanded the policy in the input arguments to
indicate which parameters of the policy are (not) fixed. In-
serting ρ̃

∆R̂
(
k,ū(·),K

(j)

(·)

) (l) into (10) enables the computation

of c̃k ≈ ∇(x,u)Φ.
By freezing the feedback gains K(·) and the reachable

sets ∆R̂
(
·, π(·)

)
, the constraints in (7f), (7g) are eliminated

from the perturbed OCP, compare (7) and (9). However, we
require the Lagrange multipliers ηk,i associated with these
constraints in (10). Given the Lagrange multipliers λ

(j+1)
(·)

associated with the tightened constraints in (9d), (9e), we
obtain ηk,i by evaluating (see [13, Sec. III-A])

η
(j+1)
k,i =

1

2bk,i
λ
(j+1)
k,i . (11)

B. Feedback Controller Synthesis

The crucial step for decomposing the robust OCP is
interpreting the gradient of the Lagrangian w.r.t. K(·) as the
first-order necessary condition of (see [13, Sec. III-A])

K
(j+1)
(·) = argmin

K(·)

Φ
(
x̄
(j+1)
(·) , ū

(j+1)
(·) ,K(·), η

(j+1)
(·)

)
. (12)

Figuratively speaking, this optimization problem returns a se-
quence of feedback gains K(·) that minimizes the size of the
reachable set ∆R̂

(
·, π(·)

)
, measured via the support func-

tions ρ∆R̂(k,π(·)) (·), in the direction of the active constraints
(indicated by ηk,i > 0 assuming strict complementarity).

Directly solving the optimization problem in (12) requires
optimization over ∆R̂

(
k, π(·)

)
, which is computationally

expensive. In the approximately robust setting in [13], solv-
ing (12) is equivalent to solving a finite-horizon discrete-
time stochastic LQR problem. To preserve the dynamic
programming structure of the finite-horizon stochastic LQR

problem and, thus, to reduce the computational burden, we
rewrite the optimization problem in (12) as

min
K(·)

max
w(·)∈W

N−1∑
k=0

∆xT
k

[
Inx

KT
k

] [Qk 0
0 Rk

] [
Inx

Kk

]
∆xk

+∆xT
NQN∆xN (13a)

s.t. ∆x0 = 0, (13b)
∀k ∈ N[0:N−1] : ∆xk+1 = (Ak +BkKk)∆xk

+ Ekwk + pk, (13c)
pk = ϕ (∆xk,Kk∆xk, wk) , (13d)

where the cost matrices are defined as[
Qk 0
0 Rk

]
= ∇hk (x̄k, ūk) diag (ηk)∇hk (x̄k, ūk)

T
,

QN = ∇hN (x̄N ) diag (ηN )∇hN (x̄N )
T
,

and the function ϕ captures the linearization error.

Instead of minimizing over a sequence of control in-
puts u(·), a solution to problems of the form in (13)
can be obtained by solving the Bellman equation for
k = N − 1, . . . , 0:

Vk (x) =min
u

max
w∈W

l (x, u) + Vk+1 (f (x, u, w)) ,

with VN (x) = VT (x) ,
(14)

where Vk (x) denotes the value function. Differential dy-
namic programming [26] approximates this procedure by
iterating between solving quadratic approximations of the
Bellman equation (backward pass) and computing a new
trajectory using the updated u(·) (forward pass). Based on
[27], [28], we combine differential dynamic programming
with concepts from robust controller synthesis to handle the
maximization over w and the linearization error in (13d).

To formulate the quadratic approximations of the Bellman
equation, the control policy in differential dynamic program-
ming is restricted to affine feedback policies [26], [27]. We
only perform the backward pass once, since we compute ū(·)
and x̄(·) (result of the forward pass) by solving the perturbed
OCP in (9) and consider the linearized dynamics around
(x̄(·), ū(·)) in (13).

Backward pass: For k = N − 1, . . . , 0, we obtain the
feedback gain K

(j+1)
k by solving the following relaxation of

the Bellman equation

0 ≥ min
K

max
w∈W

∆x
(
Qk +KTRkK

)
∆x

+ Ṽk+1

(
∆x+

)
− Ṽk (∆x) ,

(15)

where ∆x+ = (Ak +BkK)∆x+Ekw+p and the relaxation
is due to the quadratic approximation of the value function

Ṽk (∆x) =

[
1
∆x

]T [
sk,11 sk,12
sk,21 Sk,22

]
︸ ︷︷ ︸

=:Sk

[
1
∆x

]
,

with SN = diag (0, QN ) ,

(16)

where Sk,22 is a symmetric positive-definite matrix. We



show how to approximate (15) as the solution of an LMI in
Sec. III-B.1. In Sec. III-B.2, we use this LMI to formulate a
semi-definite program approximating (15).

1) Recasting the Bellman Equation as an LMI: To arrive
at a semi-definite programming approximation of (15), we
have to avoid the nonlinear equality constraint in (13d) and
the non-convex maximization over w in (15). To this end, we
relax the constraint in (13d) with the quadratic inequality[

p
yp

]T [
Mk,11 0
0 Mk,22

]
︸ ︷︷ ︸

=:Mk

[
p
yp

]
≥ 0,

with yp = (C +DK)∆x+Gw,

(17)

for a negative definite matrix Mk,11 and a positive definite
matrix Mk,22 ∈ Rnq×nq . The matrices C, D, and G are
matrices full of ones and zeros that extract the entries of x,
u, and w, which enter any nonlinear term in f . In Sec. III-
B.3, we derive a suitable matrix Mk via the reachability
algorithm from [19].

While this relaxation inevitably introduces conservatism, it
enables us to leverage the S-procedure to formulate an LMI
that is sufficient for satisfaction of the inequality in (15):
Combining (17) and (15) entails that a feedback gain K is
a feasible solution of the problem in (15) if it satisfies

0 ≥∆x
(
Qk +KTRkK

)
∆x+ Ṽk+1

(
∆x+

)
− Ṽk (∆x) ,

(18)

robustly, i.e., for all w ∈ W and ∆x, p that satisfy (17).
From the S-procedure [29, Sec. 2.6.3], it follows that (18)
holds if there exist λw > 0 and λp > 0 so that

0 ≥ Ṽk+1

(
∆x+

)
+∆xT

(
Qk +KTRkK

)
∆x− Ṽk (∆x)

+ λp

[
p
yp

]T
Mk

[
p
yp

]
+ λw

(
1− ∥w∥22

)
, (19)

for all ∆x, w, p. Thus, every K solving (19) is also a
feasible solution of (15). Please note that this step requires
approximating W by the ellipsoid {w : ∥w∥2 ≤ 1}.

A matrix inequality that is sufficient for the condition in
(19) and, thus, (18), is given in (20), which can be easily
verified by multiplying

[
1 ∆xT wT pT

]
to both sides. From

positive semi-definiteness of the Schur complement [17, Sec.
A.5.5], we obtain that (20) holds if and only if the matrix Pk

defined in (21) is positive semi-definite. Since Qk and Rk

might only be positive semi-definite, we add ϵInx and ϵInu ,
ϵ ≪ 1, to Qk and Rk, respectively, before computing the
respective square roots. We multiply both sides of Pk with
T = diag

(
Inx+1, Inw

, λ−1
p Inx

, Inx+1, Inx
, Inu

, λw, Inq

)
,

which yields the LMI TTPkT ⪰ 0 that implies (18).

2) Computing the Feedback Gain and the Value Function
Approximation: As in [27], our value function approxima-
tion, which we obtain by solving TTPkT ⪰ 0, is an upper
bound on the optimal value function. Therefore, we adopt
the cost function from [27, Eq. (14)] in the following semi-
definite program to obtain a possibly tight upper bound on

the value function:

min
K,Sk,λw,λ−1

p

trace (Sk) + κK

∥∥∥K −K
(j)
k

∥∥∥
F

(22a)

s.t. TTPkT ⪰ 0, (22b)

λw > 0, λ−1
p > 0, (22c)

where κK ∈ R>0 is a user-defined weight. We add a soft
penalty term to the cost function due to our simplified
cost correction terms in (9): To support the assumption
that the sensitivity of Φ

(
x̄
(j)
(·) , ū

(j)
(·) ,K(·), η

(j)
(·)

)
w.r.t. K(·)

is negligible (see Sec. III-A), we aim to compute feedback
gains that are close to our current candidate solution K

(k)
j .

Moreover, we have found empirically that the penalty term
in (22a) helps to stabilize the active set, which is crucial for
the algorithm to converge.

3) (Approximate) Quadratic Bound on the Linearization
Error: We show how to approximate the matrix Mk in (17)
using a symmetric Lagrange remainder L(k) (see (4))

L(k) =
{
x : |x| ≤ ℓ

(
R̂

(
k, π(·)

))}
where ℓ

(
R̂

(
k, π(·)

))
∈ Rnx

≥0 bounds the Lagrange remain-
der, see e.g. [19, Proposition 1]. By combining (4) with (13c)
and (13d), it follows that

|pk| ≤
∣∣∣ℓ(R̂ (

k, π(·)
))∣∣∣ (23)

holds. We use the approach from [19, Proposition 1] for
computing ℓ

(
R̂

(
k, π(·)

))
, i.e.,

ℓi

(
R̂

(
k, π(·)

))
= 1

2∆zTHi∆z,

where ∆z collects the edge lengths of Z , which denotes the
smallest box enclosure of R̂

(
k, π(·)

)
×KR̂

(
k, π(·)

)
×W ,

and Hi = maxz∈Z
∣∣∇2fi(z)

∣∣. To obtain a quadratic bound
on p as in (17), we use the following approximation of (23):

pT p ≤

∥∥∥∥∥∥∥
 1/2∆zTH1

...
1/2∆zTHnx


︸ ︷︷ ︸

=:Ĥ

 ∆x
K∆x
w


∥∥∥∥∥∥∥
2

2

=
∥∥∥Ĥx∆x+ ĤuK∆x+ Ĥww

∥∥∥2
2

≤ 3
∥∥∥Ĥx

∥∥∥2
F
∥∆x∥22 + 3

∥∥∥Ĥu

∥∥∥2
F
∥K∆x∥22

+ 3
∥∥∥Ĥw

∥∥∥2
F
∥w∥22 ,

where the last step follows from Jensen’s inequality [17, Sec.
3.1.8] and Ĥx, Ĥu, and Ĥw denote the respective columns
of Ĥ . Hence, we obtain Mk,11 = −Inx

and

Mk,22 =

diag

(
3
∥∥∥Ĥx

∥∥∥2
F
Inx

, 3
∥∥∥Ĥu

∥∥∥2
F
Inu

, 3
∥∥∥Ĥw

∥∥∥2
F
Inw

)
.
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•
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(20)

Pk =



sk,11 sk,12 1 1

sTk,12 Sk,22 (Ak +BkK)T
(
Q

1/2
k

)T (
R

1/2
k K

)T
(C +DK)T

λwInw ET
k GT

−λpMk,11 ITnx

1 s̃k+1,11 s̃k+1,12

(Ak +BkK) Ek Inx s̃Tk+1,21 S̃k+1,22

Q
1/2
k Inx

R
1/2
k K Inu

1 λ−1
w

C +DK G λ−1
p M−1

k,22


(21)

with S̃k = S−1
k .

Computing the entries in Mk,22 requires the reachable set
R̂

(
k, π

(j+1)
(·)

)
, which, in turn, requires the feedback gain

K
(j+1)
(·) , which requires Mk,22. To resolve this mutual de-

pendency, we use K
(j)
(·) and R̂

(
k, π

(j)
(·)

)
, i.e., the solution

from the previous iteration, for computing Mk,22. Thus, we
recover the correct matrix Mk,22 at a stationary point of our
algorithm. A similar idea has been used in [12] to estimate
the Lipschitz constant of a nonlinear system. We use this
approximation of the quadratic constraint in (17) for the
numerical experiments in Sec. IV.

C. Robust Constraint Satisfaction

To formulate the perturbed OCP and synthesize the feed-
back controllers, we employ several approximations of reach-
able sets. Nevertheless, any solution that passes the constraint
check at the end of each iteration ensures robust constraint
satisfaction since we compute over-approximations of the
reachable sets ∆R̂

(
·, π(j)

(·)

)
under the updated policy π

(j)
(·) .

Please note that the computational overhead is negligi-
ble since we can re-use the computed support functions
ρ∆R̂(k,π(·)) (∇hk,i (x̄k, ūk)) for the formulation of the per-
turbed OCP in the next iteration.

If we embed the proposed robust optimal control algorithm
in an MPC scheme, we can ensure recursive feasibility
by employing a polytopic robust control invariant set Ω
with an invariance-preserving affine policy πΩ as a terminal
constraint set: Assuming a feasible solution at the initial time
step k0 - as is standard in MPC - we can always obtain a safe
policy by appending πΩ to the safe policy from the previous
time step. Note that we require a polytopic set Ω to formulate
the constraint R̂

(
N, π(·)

)
⊆ Ω in the form of (7e),(7g).

IV. NUMERICAL EXPERIMENTS

In this section, we apply our approach to a mass-spring
damper system, a unicycle, and a planar quadrotor collision
avoidance task. We use CORA [30] for reachability analysis,
IPOPT [31] via the MATLAB interface from the OPTI tool-
box1 for solving (9), CasADi [32] for computing derivatives,
YALMIP [33] for modeling and Mosek [34] for solving (22).

We compare our approach with
1) the approximately robust approach proposed in [13],

which optimizes over affine feedback policies;
2) designing the matrices Qk, Rk in the cost function in

(13a) for synthesizing the feedback controllers offline,
which corresponds to the approach in [12]; and

3) open-loop robust optimal control, i.e., K(·) = 0, see
e.g., [24].

In the second case, we chose the cost matrices in (13a) as
Qk = Inx , Rk = 0.1Inu , and QN = 10Inx . Table I provides
the relative nominal costs, i.e., we excluded possible cost
correction terms for comparison. For the same reason, we
normalized the costs w.r.t. the cost achieved using the ap-
proach in [13]. To create a more challenging control problem,
we not only considered the ellipsoidal disturbance sets from
[6] and [12], respectively, (sixth column in Table I) but
also the respective interval enclosures as the disturbance
set W (seventh column in Table I). In the mass-spring-
damper system experiment, the approach from [13] oscillated
between a feasible and an infeasible solution due to an
unstable active set. For comparison, we picked the cost
for the feasible solution. In the open-loop case, no feasible
solution was found, as the reachable set grew too large.

Comparing the performance of our approach and [13] to
the case of fixed cost matrices Qk, Rk in (13a) as well

1https://github.com/jonathancurrie/OPTI

https://github.com/jonathancurrie/OPTI


TABLE I: Comparison of costs for three benchmarks, normalized w.r.t the approach in [13].

Our approach Fixed Qk, Rk Open-loop

Experiment nx nu nw [13] ∥w∥2 ≤ 1 ∥w∥∞ ≤ 1 ∥w∥2 ≤ 1 ∥w∥2 ≤ 0.5

Mass-spring-damper system (based on [6]) 2 1 2 1 1.008 1.019 1.133 -
Unicycle (based on [12]) 3 2 2 1 1.009 1.011 1.042 1.104
Planar quadrotor (based on [5]) 6 2 1 1 1.008 1.008 1.051 223

as the open-loop robust case demonstrates the efficacy of
(automatically) tuning the cost function for the feedback
controller synthesis: by minimizing the size of the reachable
set in the direction of the active constraints, lower costs
can be achieved. As expected, propagating the disturbances
approximately and neglecting the linearization error as in
[13] enables a more aggressive controller, which results in
the lowest cost throughout all three examples. However,
our approach only results in a modest increase of the cost
compared to [13], while guaranteeing safety : To demonstrate
the robust constraint satisfaction properties, we uniformly
sampled 1000 disturbance trajectories from W and simulated
the closed-loop system under the optimal policies. Our ap-
proach always satisfied the constraints, whereas the approach
from [13] resulted in a constraint violation in 20.5% and
6.7% of the runs for the mass-spring-damper system and the
unicycle, respectively.

We now take a closer look at the unicycle benchmark. The
dynamics of the unicycle are governed byṙxṙy

θ̇

 =

u1 cos(θ) + 0.1w1

u1 sin(θ) + 0.1w2

u2

 , (24)

where rx, ry , and θ, denote the position and orientation,
respectively, u1 is the velocity, and u2 is the angular velocity.
The inputs are bounded by |u1| ≤ 4m/s and |u2| ≤ 2.5 rad/s.
The prediction horizon is N = 30 with the sampling time
∆t = 0.1 s. To obtain the discrete-time dynamics, we use one
step of a fourth-order Runge-Kutta integrator with step size
∆t, while keeping the control input u and the disturbance
w constant. The control goal is to minimize the control
effort, i.e., l (x̄k, ūk) = ∥ūk∥22, while avoiding the ellipsoidal
obstacles, see Fig. 2. The initial state is xinit = 0 and the
system must reach the target region 4.5m ≤ rx, ry ≤ 5.5m,
|θ| ≤ 20π/180 at k = N .

The resulting tube and the nominal trajectory for
∥w∥∞ ≤ 1 are shown in Fig. 2. The unicycle can navigate
close to the obstacles despite the uncertainties. At the final
time step, the size of R̂

(
N, π(·)

)
in rx-direction is mini-

mized to reach the target region with minimum control effort.

TABLE II: Average computation times per iteration for the unicycle bench-
mark.

Perturbed OCP (9) Feedback
Synthesis

Reachability
Analysis

Our Approach 0.06 s 0.29 s 0.19 s
[13] 0.06 s 0.03 s 0.01 s

0 1 2 3 4 5
0

1

2

3

4

5

rx in m
r y

in
m

Fig. 2: Results for the unicycle benchmark with ∥w∥∞ ≤ 1. Shown are:
ellipsoidal obstacles (red), target region (black box), reachable sets (light
blue), and nominal trajectory (black with x’s).
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Fig. 3: Convergence plots for the unicycle benchmark. The dashed lines
denote the thresholds ϵy = 10−5 and ϵK = 10−4 for the convergence
criteria in (8a) and (8b), respectively.

The computation times and convergence plots for the
approach from [13] and our approach are shown in Table II
and Fig. 3, respectively. Solving the semi-definite program
in (22), which is more expensive than the stochastic LQR
in [13], (feedback synthesis) and the additional computation
of the Lagrange remainder in (4) (reachability analysis) in-
crease the computational effort compared to [13]. Promising
directions to reduce the computational burden of our ap-
proach include developing structure-exploiting semi-definite
programming solvers as demonstrated in [35]. For a better
comparison of the convergence behavior, we consider the
algorithm from [13] to have converged if the criteria in (8)
are satisfied. The approach in [13] converges within a smaller



number of iterations, see Fig. 3. Compared to [13], treating
the disturbances robustly and accounting for the linearization
error increases the level of uncertainty. As observed in [13],
increasing the level of uncertainty slows down convergence.

V. CONCLUSION

We presented an algorithm that solves robust OCPs with
affine feedback policies as optimization variables by iterating
between optimizing the nominal trajectory and linear feed-
back controllers. To ensure robust constraint satisfaction, we
leverage concepts from robust controller synthesis and set-
based reachability analysis. The cost function for synthesiz-
ing the feedback controllers is tuned automatically based on
the solution of the perturbed OCP to improve the perfor-
mance. Our results demonstrate the improved performance
compared to open-loop formulations and tuning the cost
function for synthesizing the feedback controllers offline. We
observe only a modest decrease in performance compared to
an approximately robust approach, while guaranteeing robust
constraint satisfaction.
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