
Received: 5 July 2021 Revised: 1 March 2022 Accepted: 9 April 2022 IET Image Processing

DOI: 10.1049/ipr2.12511

ORIGINAL RESEARCH

ROAM: Random layer mixup for semi-supervised learning

in medical images

Tariq Bdair1 Benedikt Wiestler2 Nassir Navab1,3 Shadi Albarqouni1,4,5

1Chair for Computer Aided Medical Procedures &
Augmented Reality, Technical University of Munich,
Munich, Germany

2Department of Neuroradiology, Technical
University of Munich, Munich, Germany

3Whiting School of Engineering, Johns Hopkins
University, Baltimore, MD, USA

4Helmholtz AI, Helmholtz Center Munich,
Neuherberg, Germany

5Clinic for Diagnostic and Interventional Radiology,
University Hospital Bonn, Venusberg-Campus 1,
Bonn, Germany

Correspondence

Tariq Bdair, Chair for Computer Aided Medical
Procedures & Augmented Reality, Technical
University of Munich, 85748 Munich, Germany.
Email: t.bdair@tum.de

Funding information

Deutscher Akademischer Austauschdienst,
Grant/Award Number: Tariq Bdair

Abstract

Medical image segmentation is one of the major challenges addressed by machine learn-
ing methods. However, these methods profoundly depend on a large amount of annotated
data, which is expensive and time-consuming. Semi-supervised learning (SSL) approaches
this by leveraging an abundant amount of unlabeled data. Recently, MixUp regularizer has
been introduced to SSL methods by augmenting the model with new data points through
linear interpolation at the input space. While this provides the model with new data, it is
limited and may lead to inconsistent soft labels. It is argued that the linear interpolation at
different representations provides the network with novel training signals and overcomes
the inconsistency of the soft labels. This paper proposes ROAM as an SSL method that
explores the manifold and performs linear interpolation on randomly selected layers to
generate virtual data that has never been seen before, which encourages the network to be
less confident for interpolated points. Hence it avoids overfitting, enhances the generaliza-
tion, and shows less sensitivity to the domain shift. Extensive experiments are conducted
on publicl datasets on whole-brain and lung segmentation. ROAM achieves state-of-the-
art results in fully supervised (89.5%) and semi-supervised (87.0%) settings with relative
improvements up to 2.40% and 16.50%, respectively.

1 INTRODUCTION

Medical imaging is defined as the process of capturing the
interior of a body for clinical use, medical intervention, as well
as visual monitoring of the function of some organs or tis-
sues [1]. Medical image annotation plays a fundamental role in
the medical field [2] since it provides a tool to examine different
diseases [3], quantify human organs [4], therapy planning [5],
tumor development monitoring [6, 7], diagnostic aid systems
[8], and intra-operative assistance [9]. Nevertheless, manual
segmentation is a tedious task that requires highly experienced
physicians [10] and is subject to intra-/inter-observer variability
[11]. That led to a great interest in automated segmentation
methods estimated at 70% of international image analysis chal-
lenges in the medical domain [12]. Recently, deep learning-based
methods have achieved state-of-the-art performance in medical
image segmentation [13–15], and shown their applicability to
a wide range of datasets without requiring human expert [16].
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However, one major drawback of this approach is the necessity
for a huge amount of annotated data which is oftentimes not
available in medical images.

Fortunately, the semi-supervised learning (SSL) framework
provides the tool to alleviate this problem by utilizing a huge
amount of unlabeled data along with a few annotated ones in
intelligent and efficient ways. Thus, SSL methods have proved
their benefits to real cases which fit the nature of medical data,
where the scarcity of labeled data is the main characteristic.
While surveying SSL methods is out of the scope of this paper,
we refer the reader to references [17, 18] for a useful introduc-
tion. In general, SSL methods can be grouped into four main
categories; (i) generative model, (ii) graph-based methods, (iii)
entropy minimization, and (iv) consistency regularization. Next,
we introduce briefly these methods with the focus on SSL works
on medical images.

Generative models have been extensively used in the past few
years to estimate the density distribution of the data using the
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concept of adversarial learning [19]. Specifically, two networks
were used in the training process, namely the generator and the
discriminator networks. The goal of the generator is to produce
fake data of parallel high quality to that of the original data,
while the goal of the discriminator is to distinguish between
the fake and the original data. This idea has been utilized by
Zhang et al. [20] for gland image segmentation by encourag-
ing the discriminator to distinguish between the segmentation
results of unlabeled and labeled images while encouraging the
segmenter (generator) to produce results fooling the discrimi-
nator. Nie et al. [21] utilized attention-based approach, based
on the confidence map from the confidence network (discrim-
inator), to include the unlabeled data in the adversarial training
for pelvic organ segmentation. Chen et al. [22] encouraged the
model to learn discriminative features for segmentation from
unlabeled images, using an autoencoder trained to synthetic seg-
mentation labels, to segment tumor and white matter hyperin-
tensities in the brain. SCLLD [23] proposed GAN-based archi-
tecture consisting of two training phases to detect COVID-19
infection. First, the weights of generator and discriminator net-
works are initialized using the unlabeled data, then fine-tuned by
exploiting the labeled ones. VTGAN [24], however, proposed a
semi-supervised GAN-based method to synthesize retinal vas-
cular structure angiograms from fundus images while detect-
ing healthy and abnormal retina. Transformer-based discrimina-
tors take the original and generated images then produce feature
maps used for disease classification. Major drawbacks of these
approaches include the computation overhead and the com-
plexity in the architecture. For instance, reference [23] involves
two training stages, while VTGAN [24] consists of four net-
works; two generators and two transformer-based discrimina-
tors. In contrast, our method is easy to implement, consists
of one backbone network, and requires no additional training
phases.

Graph-based methods represent the data, both labeled and
unlabeled, in a graph structure, where the nodes represent
the data points, the edges represent the connectivity, and the
weights represent the distance between the nodes. Graphs
can be used to propagate the labels from the labeled data
to the unlabeled ones based on the connectivity and similar-
ity. Baur et al. [25] introduced this concept as a regulariza-
tion term to the main objective function for MS lesion seg-
mentation. The term is based on the Laplacian graphs and
attempts to minimize the distance between similar unlabeled
and labeled data points in the hidden space. Ganaye et al. [26]
took the advantages of the invariant nature of the brain struc-
ture to build an adjacency graph of the brain structures act-
ing as a constraint to refine the predicted segmentation of the
unlabeled data. Graph convolutional networks (GCNs)-based
approaches have been proposed to handle the unstructured for-
mat of some medical data. For instance, GKD [27] distilled
the knowledge from teacher to a student model. The teacher
graph injects the available information into soft pseudo labels.
Then, the pseudo labels are used to train a student graph for
Autism spectrum disorder or Alzheimer’s disease prediction.
RA-GCN [28], on the other hand, addressed the imbalanced
class distribution in the medical data by representing each class

by a graph-based neural network responsible for the weight-
ing of class samples. The whole architecture, then, is trained in
an adversarial manner such that the classifier adapts itself with
the attention to rare cases. The previous methods have shown
their benefits to unstructured data, yet, it suffers the burden of
graph construction and weighing steps. Moreover, graph-based
approaches are optimized on the unlabeled data, which results
in a lack of scalability. In contrast, our method is optimized on
the whole input space and relaxes the need for any previous
steps.

Entropy minimization forces the decision boundary to pass
through low-density regions to minimize the entropy of the pre-
dictions. One way to achieve this, in SSL setting, is to generate
pseudo labels for the unlabeled data using a model trained on
the labeled data. Next, the training process is repeated using
both labeled and pseudo-labeled data [29]. This approach has
been employed by Bai et al. [30] for cardiac image segmentation,
where the pseudo labels were additionally fine-tuned using the
conditional random field (CRF) method. Close to pseudo label-
ing is co-training [31] where confident predictions from sepa-
rate models, trained using different views of the data, are uti-
lized to enhance the training. Xia et al. [32] utilized co-training
by enforcing multi-view consistency of the unlabeled data for
pancreas and multi-organ segmentation. PLAT [33] exploited
an adaptive threshold that avoids the noisy signals and gener-
ates more accurate pseudo labels to detect the cells in micro-
scopic and stained histology images. Reference [34] proposed
a pseudo labeling approach, namely self-loop uncertainty that
exploited self-supervised learning sub-task that solves Jigsaw
puzzles to mine the information from the unlabeled data to help
in the training. While the FCN-based network is optimized to
solve Jigsaw puzzles, it produces different segmentation predic-
tions (corresponding to each stage). Then, these predictions are
averaged and used as uncertainty estimation yielded by ensem-
bling multiple models to improve the segmentation accuracy
in stained tissue and skin lesion images. Our method is simi-
lar to the previous ones in the pseudo labeling step. However,
we are different by two folds. First, the aforementioned meth-
ods generate pseudo labels for the unlabeled data only. Yet, our
method, in addition to that, generates virtual data points and
their corresponding pseudo labels from linear interpolation at
a random layer of the input data. This process augments the
model with novel training signals that have never been seen
before, see Section 2.3 for more details. Second, the previous
methods utilize different post-processing steps to enhance the
quality of the pseudo labels, yet, none of them used a sharpen-
ing operation that pushes the pseudo labels into more confident
regions, which was adopted by our method, check Section 2.3
and Figure 1 for more details.

Consistency regularization methods train the model to pre-
dict the same output for different perturbations or augmen-
tations of the input data. Mean-Teacher [35], one of the
most successful method of consistency regularization, has
been employed by Cui et al. [36] for brain lesion segmenta-
tion. They simply introduce a segmentation consistency loss
to minimize the discrepancy between the outputs of unla-
beled data under different perturbations. A similar approach

 17519667, 2022, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12511 by T

echnische U
niversitat M

unchen-M
U

N
C

H
E

047S, W
iley O

nline L
ibrary on [25/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BDAIR ET AL. 2595

FIGURE 1 Illustrative example. (a, b) Input Mixup: Shows the
inconsistency of the generated soft label of grey-dot resulted from two
different linear interpolations of inputs. (c) Manifold Mixup: The learned
hidden states are better organized in local regions leading to the consistency of
the soft labels. (d) Sharpening operation (red arrow) pushes the soft label of to
a more confident region

was utilized by Bortsova et al. [37] for chest x-ray images
segmentation. Yu et al. [38] included the uncertainty infor-
mation to enable the student model to learn from the reli-
able targets for left atrium segmentation. Li et al. [39] uti-
lized transformation-consistency to enhance the regularization
on the pixel level. Interesting results were demonstrated on
skin lesion, optic disk, and liver segmentation. UDC-Net [40]
forced the so-called dual consistency between the predictions
of unlabeled images on one side and the predictions of its
transformed version and auxiliary decoders on the other side.
Further, the consistency is guided by uncertainty measures
and applied for COVID-19 lesion segmentation in the CT
scans. UATS [41] applied the consistency between the cur-
rent prediction of unlabeled images and its ensemble predic-
tions from previous epochs for prostate segmentation. Yet,
Wang et al. [42], in addition to the consistency between dif-
ferent augmentations of the unlabeled images, forced consis-
tency between the input images and their adversarial direction
to classify breast cancer in ultrasound images and ophthalmic
disease in the OCT scans. Except for UDC-Net, all the previ-
ous methods applied data augmentation at the input space to
force the consistency loss. In contrast, our approach augments
the images at the input and the hidden layers. Although UDC-
Net proposed the perturbations at the features level, they intro-
duced a sophisticated augmentation process consisting of seven
decoders. In contrast, our method handles that by simply uti-
lizing a linear interpolation. Moreover, UDC-Net used seven
decoders fixed at one hidden space to create different varia-
tions. However, our method overcomes this limitation by ran-

domly selecting the hidden spaces on which the augmentation is
performed.

Modern regularization methods such as Input MixUp [43],
and Manifold Mixup [44] have been recently introduced to
avoid overfitting by encouraging the model to be less con-
fident for interpolated data points at the input space or the
latent space, respectively. Both methods have been successfully
employed for fully supervised segmentation frameworks; for
example, cardiac image segmentation [45], brain tumor seg-
mentation [46], knee segmentation [47], and prostate cancer seg-
mentation [48]. While the previous works have shown the effec-
tiveness of MixUp over standard data augmentation methods in
medical images, they depend heavily on fully labeled datasets,
which usually are expensive and not available. Yet, this paper
addresses the scarcity of the labeled data by proposing a SSL
approach.

Recently, MixMatch [49], that inspired our work, introduced
Input MixUp to the SSL paradigm achieving SOTA results
in image classification. MixMatch augments the model with
interpolated data between labeled and unlabeled images at the
input space. While this approach is interesting and indeed
provides the model with diverse data points, it is rather lim-
ited, and suffers from inconsistent soft labels for the interpo-
lated data points. We argue that performing the mixup oper-
ation at randomly selected input and hidden representations of
the labeled and the unlabeled data provides the network with
novel representations and additional training signals that suit
the complexity of medical image segmentation tasks. Moreover,
it provides stable soft labels of the augmented samples. Our
method takes the advantages of both MixMatch and Manifold
Mixup to boost the performance of the model leading to bet-
ter generalizability. Thus, our contributions can be listed as
follows:

∙ Proposing RandOm lAyer Mixup (ROAM) that explores the
manifold by randomly selecting a subset of input and hid-
den layers to perform a linear interpolation of labeled and
unlabeled data points and generate virtual data that fits the
complexity of medical imaging segmentation in both fully and
semi-supervised settings.

∙ ROAM overcomes the limitations of the previous methods
by encouraging the network to be less confident for inter-
polated data points and reducing overfitting and generalizing
well to unseen data.

∙ Performing a comprehensive ablation study showing the
importance of our design choices. Further, we discuss
employing the Manifold Mixup with the presence of skip con-
nections in U-Net-like architectures.

∙ Extensive experiments are performed, following the recom-
mendations of Oliver et al. [50], to evaluate our method under
the presence of domain shift, class mismatch, and different
amounts of un-/labeled data.

∙ We empirically show the effectiveness of ROAM by demon-
strating a SOTA performance in both supervised and semi-
supervised settings in the whole-brain image segmentation
and beating the baseline models in COVID-19 infection and
lung segmentation.
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2596 BDAIR ET AL.

∙ A unified architecture is utilized to implement different SSL
methods for the sake of fair comparison. The code is made
publicly available for benchmarking.

2 METHODOLOGY

2.1 SSL paradigm

In the SSL, we are given a set of labeled L = {L ,L}
and unlabeled data U = {U }, where {L ,U } =
{x1, … ,xL ,xL+1, … ,xL+U } are input images, x ∈ ℝH×W , and
L = {y1, … , y

L
} are the segmentation maps, y ∈ ℝH×W ×C ,

for C organs. Our goal is to build a model  (x; Θ) that takes
input image x and outputs its segmentation map ŷ. To leverage
both labeled and unlabeled data in SSL paradigm, the objective
function takes the form

Total = Supervised + 𝛽Unsupervised, (1)

where Supervised denotes the supervised loss and trained using
labeled data L , LUnsupervised denotes the unsupervised loss
and trained on the unlabeled data U , and 𝛽 is a weigh-
ing factor that controls the contribution of the unsupervised
loss.

The unsupervised loss can have different forms depending
on the employed SSL aforementioned approaches. Here, we will
focus on the consistency regularization approach, where its goal
is to minimize the distance between the feature representations
of the input data point x and its perturbed version x̂. Formally,
LUnsupervised = d ( f𝜃 (x ), f𝜃 (x̂ )), where d (⋅, ⋅) is a distance met-
ric.

2.2 Preliminaries

Input Mixup [43] is a simple data augmentation method that gen-
erates new data points (xk, yk ) through a linear interpolation
between a pair of training examples (xi , yi ) and (x j , y j ),

xk = 𝜆xi + (1 − 𝜆)x j , (2)

yk = 𝜆yi + (1 − 𝜆)y j , (3)

where 𝜆 ∈ [0, 1]. Mixup is considered as a type of data augmen-
tation where the newly generated data points extend the train-
ing dataset following the cluster and manifold assumptions [51]
that linear interpolations of input examples should lead to linear
interpolations of the corresponding labels.

One major drawback of this approach is that the interpola-
tions between two samples may lead to inconsistent soft labels
at interpolated points. Thus Input Mixup can suffer from under-
fitting and high loss. This can be better understood by examples.
Figure 1 shows an illustrative example, where the red and the
blue circles represent two classes. In Figure 1a, the grey-dot is

generated by the linear combinations of a blue labeled exam-
ple (X1) and a red unlabeled example (U2). Since the grey-dot
is located in the middle distance between the two classes, based
on the mixing factor 𝜆, the generated soft label has an equal
probability of blue and red classes (50% each). In contrast, in
Figure 1b, the same data point (grey-dot) has been generated
from a combination of X2 (red class) and U1 (blue class) with
probability of 90% of being blue and 10% of being red, as it
is located closer to U1, which leads to the inconsistency of the
generated soft labels between the different scenarios.

Manifold Mixup [44], on the other hand, overcomes the above
limitations by performing the mixup operation at the hidden
layers. Thus, training is carried out on the convex combinations
of the hidden representations of data samples. The learned rep-
resentations lead to better organization of the hidden state for
each class, where it is more concentrated and organized. As a
result, the inconsistency of soft labels at interpolated points can
be avoided. This can be shown in Figure 1c, where the generated
soft label of grey-dot is consistent, with an equal probability of
each class, regardless of the interpolated data points (X1 and U2
or X2 and U1).

2.3 ROAM

The core components of our method are (a) Pseudo labeling:
Given a pre-trained model for a few epochs on labeled data, the
initial labels for the unlabeled batch were produced, then refined
by applying a sharpening operation. (b) ROAM: The labeled
batch and the unlabeled batch were concatenated, then passed
to the network as normal. Then, a mixup operation is applied
at a random layer, where the paired examples are randomly
selected. At the same time, a mixup operation is applied to the
corresponding labels. Finally, the process is continued from that
layer to the output layer. In the following sections, we illustrate
our methodology in detail, while the entire framework and the
algorithm are shown in Figure 2 and Algorithm 1, respectively.

2.3.1 Pseudo labels

First, the unlabeled data along with the labeled set are leveraged
using two steps: (i) sharpening the initial predictions for unla-
beled data to minimize its entropy following reference [49], and
(ii) mixup the labeled and unlabeled data at random layers fol-
lowing reference [44]. The unlabeled data are first fed to the
model outputting the initial predictions

ŷ
i
=  (xi ; Θ); where xi ∈ U , (4)

before being post-processed by a sharpening operation, param-
eterized with T , which is highly inspired by the entropy mini-
mization literature [49, 52]. The pseudo label set is then defined
as ̃U = {ỹ

i
, … , ỹ

U
}, where

ỹ
i
= 𝚂𝚑𝚊𝚛𝚙𝚎𝚗𝚒𝚗𝚐(ŷ

i
, T ) j ∶= ŷ

1

T

i j

/ C∑
j=1

ŷ
1

T

i j , (5)
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BDAIR ET AL. 2597

FIGURE 2 Illustration of ROAM. (a) First, initial labels for the unlabeled
batch are produced from a pre-trained model, then, a sharpening step is
applied to fine-tune the labels. (b) Second, the labeled and unlabeled batches
are fed to the network, and mixed at a random layer. Both models in (a) and (b)
are the same, yet we freeze the parameters in step (a)

ALGORITHM 1 ROAM: Random Layer MixUp for SSL

Require: pre-trained model  (⋅; Θ(0) ), labeled dataset L , unlabeled dataset
U , batch size B, number of iteration K , The hyper-parameters {T , 𝛼, 𝛽}

Initialize: k ⟵ 0, Θ ⟵ Θ(0)

1: while k ≤ K do

2: L ∼ (L , L ); U ∼ U //sample labeled and unlabeled batches

3: ŷ
i
=  (xi ; Θ); xi ∈ U //initial labels forU ; Equation (4)

4: ỹ
i
= 𝚂𝚑𝚊𝚛𝚙𝚎𝚗𝚒𝚗𝚐(ŷ

i
, T )//pseudo labels; Equation (5)

5:  = {L ,U }, = {L , ̃U }//concatenate both batches, ̃U from

Equation (5)

6: 𝜅⟵ randomly select layer

7:  = ⨖ ( )//pass the data to the network, and extract; Equation (6)

8: ̃, ̃ = 𝙿𝚎𝚛𝚖𝚞𝚝𝚎(, )//randomly shuffle the data

9: ′, ′ = 𝙼𝚒𝚡𝚞𝚙(𝛼,, , ̃, ̃ )//perform mixup operation; Eqs. (7,8)

10: ⟵ resume passing ′ from layer 𝜅 to the output layer

11: , = 𝚂𝚙𝚕𝚒𝚝( ); ′

, ′


= 𝚂𝚙𝚕𝚒𝚝( ′ )//split the predictions and

labels

12: Θ ⟵ arg minΘ CE ( ′
L ,L ) + 𝛽MSE ( ′

U
,U ) //calculate the loss;

Equation (9)

13: end while

where ŷ
i

is given by Equation (4), j ∈ C , and C is the total
number of classes. Note that as T → 0, yi approaches one-hot
encoding. Applying the sharpening operation to the initial labels
produces more stable predictions through pushing the labels
away from the decision boundaries, specifically, to more confi-
dent regions for each class by minimizing its entropy. This effect
can be easily seen in Figure 1d where the unlabeled data point
U1 is moved closer to the right distribution.

2.3.2 Random layer mixup

Given the unlabeled data U and its pseudo labels ̃U , along
with the labeled data L and its one-hot encoding labels L , the
two sets are concatenated as  = {L ,U }, = {L , ̃U }. To
enable running the mixup operation at randomly selected latent
space, we first define (, ), where

 =

{
 , 𝜅 = 0

𝜅 ( ), otherwise
, (6)

where 𝜅 (⋅) is the hidden representation of the input data at
layer 𝜅. Note that the input data is selected when 𝜅 = 0. To
introduce a noisy interpolated data, a permuted version of the
original data is created ̃, ̃ = 𝙿𝚎𝚛𝚖𝚞𝚝𝚎(, ), and fed to the
𝙼𝚒𝚡𝚄𝚙 operation as

′ = 𝜆′ + (1 − 𝜆′ )̃, (7)

 ′ = 𝜆′ + (1 − 𝜆′ )̃ , (8)

where 𝙿𝚎𝚛𝚖𝚞𝚝𝚎(.) randomly shuffles the data, ′ and  ′ are
the interpolated mixed-up data, where the paired examples are
selected randomly.

To favour the original data over the permuted one, 𝜆′ is set
to max(𝜆, 1 − 𝜆), where 𝜆 ∈ [0, 1] is sampled from a Beta(𝛼, 𝛼)
distribution with 𝛼 as a hyper-parameter. Further, to keep the
flow of the original data, we run some experiments without the
mixup operation, and denoted as 𝜅 = Φ. In practice, this can be
achieved by setting 𝜅 and 𝜆′ to 0 and 1, respectively. To this end,
the mixed-up data ′ are fed to the model from layer 𝜅 along
the way to the output layer at which the segmentation maps are
predicted  . Eventually,  is split back into labeled and unla-
beled predictions  = {L ,U }, and similarly  ′ into  ′

L and
 ′

U
.

2.3.3 Overall objective function

Our overall objective function is the sum of the cross entropy
loss CE on the mixed-up labeled data, and the consistency
mean squared loss MSE on the mixed-up unlabeled data,

arg min
Θ

CE( ′
L ,L ) + 𝛽MSE( ′

U
,U ), (9)

where 𝛽 is a hyper-parameter.

3 EXPERIMENTS

Our experiments involve two parts; the whole-brain segmen-
tation (Section 4) and lung segmentation (Section 5). First,
a comparison with SSL methods for medical image segmen-
tation is performed (Section 4.1), followed by a comparison
with SOTA methods for whole-brain segmentation in a fully
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2598 BDAIR ET AL.

supervised setting (Section 4.4). Then, extensive experiments,
following the recommendations of reference [50], are per-
formed (Section 4.5). Further, the performance of ROAM is
investigated in the presence of the domain shift (Section 4.5.1).
In the second part, lung segmentation results are reported in
semi and fully supervised fashions (Section 5.1). Then, ROAM
is investigated in the presence of domain shift and classes mis-
match (Section 5.2). Finally, the performance versus infection
size is discussed (Section 5.3).

3.1 Datasets

3.1.1 Brain

For whole-brain segmentation, we opt for three publicly avail-
able datasets as follows: (i) MALC [53], which consists of 30 T1
MRI volumes, with manual segmentation for the whole brain
which is provided by reference [54]. This dataset is divided into
15 training volumes and 15 testing volumes (∼2500 slices each).
The training volumes further split into three labeled (∼500
slices), nine unlabeled volumes (∼1500 slices), and three valida-
tion volumes (∼500 slices). (ii) IBSR [55], which consists of 18
T1 MRI volumes (∼2000 slices). This dataset is provided with
manual segmentation for the whole brain. (iii) CANDI [56],
which consists of 13 T1 MRI volumes (∼1500 slices). The man-
ual segmentation for whole brain for this dataset is provided
by Neuromorphometrics, Inc. The labels for whole-brain seg-
mentation include 27 classes (27 internal structures); Left Cor-
tical WM, Left Cortical GM, Right Cortical WM, Right Cortical
GM, Left Lateral Ventricle, Left Cerebellar WM, Left Cerebellar
GM, Left Thalamus, Left Caudate, Left Putamen, Left Pallidum,
3rd Ventricle, 4th Ventricle, Brain Stem, Left Hippocampus,
Left Amygdala, Left Ventral DC, Right Lateral Ventricle, Right
Cerebellar WM, Right Cerebellar GM, Right Thalamus, Right
Caudate, Right Putamen, Right Pallidum, Right Hippocampus,
Right Amygdala, and Right Ventral DC.

3.1.2 Lung

Two publicly available datasets for lung segmentation are used.
(i) COVID-19-CT-Seg-Benchmark [57]: which consists of 20
CT volumes with the segmentation of three classes; right lung,
left lung, and infection. The data is divided into 10 training vol-
umes and 10 testing volumes (∼2000 slices each). The training
data is further divided into two labeled volumes (∼300 slices),
seven unlabeled volumes (∼1400 slices), and one validation vol-
ume (∼300 slices). (ii) MedSeg: which consists of 100 axial CT
images (i.e. slices) from more than 40 patients with COVID-19.
The images are divided into 80 training images and 20 validation
images. The labels include three classes; ground-glass, consoli-
dation, and pleural effusion classes. The whole-lung masks for
this data set are provided separately. Thus, we combined them
with the previous three classes to create labels of four classes.

In all previous data settings, a patient-wise random splitting
strategy was considered to avoid any overlaps, such that all slices

for a specific volume/patient appear in one splitting. All images
are resized to the dimension of 256 × 256, where the resolution
is 1.5 mm for the brain images, and in the range of ∼ 0.86 to
1.2 mm for the lung images. The intensity values normalized to
[0, 1].

3.2 Baselines

Our baselines include: (i) The lower bound models, which
trained on the labeled volumes. (ii) The SSL models, which
trained on the labeled and the unlabeled volumes. (iii) The upper
bound models, which trained on the labeled volumes and the
nine unlabeled volumes. However, all labels are revealed. (iv)
Regularized ROAM: to evaluate our contributions, our method
is introduced as a regularizer to the fully supervised lower and
upper bound models, denoted as ROAM-LB, and ROAM-UB,
respectively. For the SSL setting, the following methods are
selected. (i) Bai et al. [30], (ii) Baur et al. [25], (iii) Cui et al. [36],
and (iv) Zhang et al. [20]. We opt for these methods based on
the following criteria. First, one method from each of the SSL
approaches is chosen. Second, the easiness of implementation
and the compatibility with the unified architecture. Third, we
rule out the 3D methods or the methods that introduce sophis-
ticated training mechanisms, such as multi-view training, uncer-
tainty estimations, and domain adaptation.

3.3 Implementation details

2D U-Net [58] is employed as backbone architecture, where the
2D slices are the input for the network. The weights are ini-
tialized using Xavier initialization and trained using Adam opti-
mizer. The learning rate, weight decay, and batch size are set to
0.0001, 0.0001, and 8, respectively. The initial models denoted
lower bounds trained for 40 epochs, the other semi-supervised,
and the upper bound models further trained for an additional 40
epochs. The hyper-parameters are set to T = 0.5, 𝛼 = {0.75, 1},
and 𝛽 = {75, 1} for the brain and lung datasets, respectively. The
mixup layer 𝜅 is selected randomly from the input, the first, and
the last convolution layers, which is denoted as 𝜅 = {0, 1,L}
for the brain images and 𝜅 = {Φ, 0, 1,L} for the lung images,
where Φ means no mixing of the data performed. All the exper-
iments are performed using PyTorch framework hosted on an
NVIDIA GTX 1080 8GB machine. The training time is about 6
h. The model with the best validation accuracy is used to report
the testing results. Our code is available at ROAM.

3.4 Evaluation metrics

The statistical summary of the Dice score [59], in addition
to the Hausdorff distance (HD) [60], and the mean surface
distance (MSD) [61], are reported. Dice score measures the
overlapped area between the ground truth and the prediction
divided by the overall area of prediction and the ground truth,
Equation (10). The distance metrics measure the deviation
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BDAIR ET AL. 2599

between the outer surfaces S and S ′ of the segmentations Y

and Y ′, such that the distance between a point s on surface S

and the surface S ′ is given by the minimum of the Euclidean dis-
tance d (s, S ′ ) = mins′∈S ′ ‖s − s′‖2. Calculating this for all pixels
gives the total distance between the surfaces S and S ′: d (S , S ′ ).
Now, the largest difference between the surface distances is
defined as the Hausdorff distance (HD) and calculated as HD =
max[d (S , S ′ ), d (S ′, S )]. The MSD, on the other hand, measures
the average variation between the surfaces, that is, the segmen-
tation and the GT, and is given as Equation (11). Note that we
follow the One versus ALL methodology for calculating previ-
ous metrics such as for the multi-class segmentation, the mean
value of any metric, that is, Dice, HD, or MSD is calculated by
taking the value of each class individually and averaging them.

DSC(pi , yi ) =
2
∑

j
pi gi∑

j
p2

i +
∑

j
g2
i

. (10)

MSD =
1

ns + ns′

(
ns∑

s=1

d (s, S ′ ) +
ns′∑

s′=1

d (s′, S )

)
, (11)

where ns and ns′ are the number of pixels for the surfaces S and
S ′, respectively. A relative improvement (RI) w.r.t the baseline is
also reported such that RI of a over b is : (a − b)∕b.

3.5 Ablation study

ROAM introduces the sharpening and concatenation opera-
tions to the Manifold Mixup. Also, it involves a set of hyper-
parameters, that is (𝛼, 𝛽) and design choices, that is 𝜅 in the
training process. Thus, for the model selection, an ablation
study and sensitivity analysis are conducted. In all these experi-
ments, the training is done for 80 epochs, where the model with
the highest validation accuracy is selected to report the testing
results. The results are presented in Table 1.

3.5.1 The selection of the random layer 𝜅

First, a set of layers are examined to realize on which the mixup
operation will obtain the best results. That includes the input
layer, the hidden layers, and a no-mix option, where the data
passed to the network as per the usual training procedure. Note
that 𝜅 is investigated when 𝛼 and 𝛽 are equal to 0.75 and 75,
respectively. Please refer to Section 3.5.3 for why these values
were selected. It is seen from the results in Table 1 that mix-
ing the data at different random layers achieves better results
than using only one fixed layer, except for 𝜅 = 2. This correla-
tion emphasizes the importance of alternating the hidden space
with the input space during the training process, which pro-
vides the model with novel variations of the data that can not
be generated using either the input or the hidden layers. Based
on these results, 𝜅 = {0, 1,L} is fixed before the selection of
the other parameters is investigated as presented in the next
sections.

TABLE 1 Mean Dice for brain validation and testing datasets. ROAM,
with 𝜅 = {0, 1,L}, sharpening, concatenation, 𝛼 = 0.75, and 𝛽 = 75, obtains
the best validation results, hence, will be our model selection

Ablation Value Validation Testing

ROAM {0, 1, L} 0.898 0.870

𝜅 0 0.881 0.852

1 0.867 0.843

2 0.894 0.872

3 0.868 0.825

4 0.863 0.828

5 0.877 0.847

L 0.865 0.843

{0, 2, L} 0.884 0.851

{1, 2, L} 0.883 0.863

{0, 1, 5} 0.881 0.860

{Φ, 0, 1, L} 0.882 0.864

{All} 0.882 0.858

𝛼 0.25 0.880 0.851

2 0.885 0.836

𝛽 0 0.893 0.844

Sharpening(✓) Concatenation(×) 0.878 0.850

Sharpening(×) Concatenation(✓) 0.861 0.823

Sharpening(×) Concatenation(×) 0.870 0.843

Abbreviations: Φ, no data mixup; All, all hidden layers; L, last layer. First, 𝜅 is examined
when 𝛼 and 𝛽 are equal to 0.75 and 75, respectively. Based on the results, 𝜅 = {0, 1,L} is
used before the selection of the other parameters is investigated.

3.5.2 The concatenation and the sharpening
operations

In this experiment, we study removing the sharpening step on
the soft labels and(or) concatenation of labeled and unlabeled
batches, which resulted in three combinations as shown in the
last rows in Table 1. Overall, a drop in the Dice score was
observed when removing one or both steps. Yet, the worst result
was obtained when applying the mixup operation on a concate-
nated batch without the sharpening. That is attributed to the
mixing of the initial labels without minimizing their entropy
through the sharpening step, which could harm the quality of
the mixed-up data.

3.5.3 The hyper-parameters 𝛼 and 𝛽

First, three values of 𝛼 = {0.25, 0.75, 2} are examined, where
𝛼 = 0.75 as in reference [49], 𝛼 = 0.25 to favor one sample over
the other, and 𝛼 = 2 to make more balance between the differ-
ent samples. It is noticed from Table 1 that ROAM obtains the
best results when selecting 𝛼 = 0.75 because this value makes
the mixed-up data closer to the original data while maintaining
the novelty of the generated points. In the final part of our anal-
ysis, two values of 𝛽 = {0, 75} are investigated, where 𝛽 = 75 as
in reference [49], and 𝛽 = 0 to evaluate the effectiveness of the
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2600 BDAIR ET AL.

TABLE 2 Mean (Median) ± Std. of different evaluation metrics are reported on the MALC testing set for baselines and different SSL methods, including ours

Model Name Dice coefficient ↑ RI (%) ↑ HD ↓ MSD ↓

Lower Bound 0.747(0.769) ± 0.071* 0 4.16 ± 0.43 1.06 ± 0.088

ROAM-LB 0.823(0.841) ± 0.052 10.17 4.07 ± 0.35 1.05 ± 0.071

Bai et al. [30] 0.800(0.815) ± 0.055* 7.10 4.06 ± 0.43 1.02 ± 0.086

Zhang et al. [20] 0.819(0.851) ± 0.060* 9.64 4.02 ± 0.44 1.00 ± 0.089

Cui et al. [36] 0.829(0.847) ± 0.045* 11.00 3.97 ± 0.38 1.03 ± 0.089

Baur et al. [25] 0.778(0.795) ± 0.071* 4.15 4.06 ± 0.40 1.05 ± 0.082

ROAM (𝜿 = 0)† 0.852(0.866) ± 0.037 14.05 3.91 ± 0.35 0.99 ± 0.067

ROAM (𝜿 = 2) 0.872(0.881) ± 0.024 16.73 3.78 ± 0.28 1.00 ± 0.077

ROAM (𝜿 = {0, 1,L}) 0.870(0.873) ± 0.023 16.50 3.87 ± 0.31 1.00 ± 0.061

Upper Bound 0.871(0.886) ± 0.044* 16.60 3.72 ± 0.42 0.95 ± 0.087

ROAM-UB 0.893(0.902) ± 0.024 19.54 3.56 ± 0.34 0.91 ± 0.075

Abbreviations: *, significant improvement; L, last layer; †, MixMatch [49]. ↑ (↓): The higher (lower) the better

newly-generated data on the training where we do not propa-
gate the unlabeled loss. The results in Table 1 show that ROAM
makes use of the unlabeled loss effectively, where the accuracy
when 𝛽 = 75 is better than the accuracy when 𝛽 = 0. Further-
more, the obtained results at 𝛽 = 0 show that the ROAM opera-
tion boosts the performance without the unlabeled loss. That is
because the mixup between the labeled and the unlabeled exam-
ples augments the model with new virtual data.

In summary, the above analysis shows that ROAM, with
𝜅 = {0, 1,L}, sharpening, concatenation, 𝛼 = 0.75, and 𝛽 = 75,
obtains the highest validation accuracy. Unless stated otherwise,
we opt for these selections in the next experiments. In some
experiments, we report the results at the input space, that is,
ROAM(𝜅 = 0) to compare our method with MixMatch. Also,
we report the results for ROAM(𝜅 = 2) because it obtains the
second-highest validation accuracy, and to evaluate our method
at the Manifold Mixup.

On the other hand, model selection experiments on lung
validation data are conducted. Similarly, the hyper-parameters
{𝜅, 𝛼, 𝛽}, concatenation, and sharpening steps are examined.
The results in these experiments show that ROAM with
𝜅 = {Φ, 0, 1,L}, sharpening, concatenation, 𝛼 = 1, and 𝛽 = 1,
obtains the highest validation accuracy. Thus, we opt for this
selection for lung segmentation testing results.

Taken together, the ablation study from both datasets shows
the essential role of each component of our method on the seg-
mentation task justifying its design choice. The testing results
will be presented in the next section, while further analysis of
the hyper-parameter tuning will be discussed in Section 6.

4 WHOLE-BRAIN SEGMENTATION
RESULTS

4.1 Comparison with SSL methods

Table 2 illustrates the results for whole-brain segmentation. It is
apparent from this table that our method outperforms the lower
bound, upper bound, and all SSL methods with a statistical sig-
nificance (p < 0.001).

FIGURE 3 Dice score for selected structures. Our method significantly
outperforms all other SSL methods in most brain structures

The best result, with average Dice of 87.0% and RI about
16.50%, is obtained by ROAM(𝜅 = {0, 1,L}). Further analy-
sis shows that ROAM(𝜅 = {0, 1,L}) outperforms its variant
ROAM(𝜅 = 0), which is similar to MixMatch. The justification
is that ROAM(𝜅 = {0, 1,L}) introduces a lot of variations and
generates novel data points that have never been seen before
via its ROAM. Thus, it avoids overfitting.

Interestingly, a similar performance is reported for
ROAM(𝜅 = 2).

Further statistical tests revealed that our method achieves the
best HD and MSD scores of 3.87 and 1.00, respectively. More-
over, ROAM-LB and ROAM-UB models outperform their
competitors significantly with average Dices of 82.3% and
89.3%, and RI of 10.17% and 19.54%, respectively. That is
strong evidence that applying ROAM as a regularizer provides
the model with new data points. Consequently, it boosts the per-
formance without the need for any additional data. Surprisingly,
ROAM-LB outperforms most SSL methods by significant mar-
gins, confirming its advantages as a strong regularizer.

4.2 Structure level results

The segmentation results for some internal structures are
reported in Figure 3. The results show that ROAM signifi-
cantly outperforms all SSL methods in most structures. Besides,
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BDAIR ET AL. 2601

FIGURE 4 Qualitative results of brain segmentation. The first row shows a coronal view of one case from the MALC dataset. The second row shows a
cropped version highlighting selected structures for the same case. Another case is shown in the third row. Further, the segmentation results in the presence of
domain shift are shown in the fourth and fifth rows of IBSR and CANDI datasets, respectively. In these cases, ROAM obtains the best results, where the red boxes
show the false predictions made by different models

ROAM excels over the upper bound in the Right Hippocampus
and 3rd Ventricle.

Additionally, the performance of our method is consistent
across different structures. That is clearly shown in the Left Pal-
lidum, 3rd Ventricle, Left Amygdala, and Right Hippocampus.
Our model achieves a lower performance in Left Cortical GM,
yet the difference is not statistically significant.

4.3 Qualitative results

To provide more insights on the performance, the qualitative
results are shown in Figure 4. The first row shows the predic-
tions on the MALC dataset. The second row shows a cropped
version, where we highlighted the right and left lateral ventricle,
right thalamus, right hippocampus, left palladium, left amygdala,
and 3rd ventricle. Despite the complexity of these small struc-
tures, ROAM performs more reliably than all SSL methods. To
support our findings, we also include another case from the
MALC dataset in the third row. Likewise, ROAM surpasses all
SSL methods. Finally, the predictions under cross-domain set-

tings are shown for IBSR and CANDI datasets in the fourth
and fifth rows, respectively. In general, ROAM predicts more
accurate results than other SSL methods indicating its general-
ization ability to other domains. Together, the quantitative and
the qualitative results show the superiority of ROAM against all
SSL methods.

4.4 Comparison with SOTA for whole-brain
segmentation

To realize the effectiveness of ROAM in a fully supervised fash-
ion, we run our method using the labeled data. In this experi-
ment, the batch is mixed with its permuted version, where no
sharpening nor pseudo labeling steps are performed. Also, 𝛽
is set to 0 so that the unsupervised loss is not propagated.
The MACL dataset is used for the training for 80 epochs,
where the model at the last epoch is saved. Our method is
compared with U-Net[58], and QuickNAT [15]. In contrast
to U-Net and our model, QuickNAT is pre-trained using 581
labeled volumes from IXI dataset. Table 3 shows the testing
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2602 BDAIR ET AL.

TABLE 3 Dice score for fully supervised models. ROAM significantly
outperforms both U-Net and on par with QiuckNAT without sophisticated
pre-training mechanism

Model name Mean (median) ± std RI (%)

U-Net 0.874(0.888) ± 0.039 0

QuickNAT 0.895(N/A) ± 0.055 2.40

ROAM (𝜅 = 0) 0.890(0.898) ± 0.025 1.83

ROAM (𝜅 = {0, 1,L}) 0.895(0.901) ± 0.022 2.40

ROAM (𝜅 = 2) 0.897(0.906) ± 0.025 2.63

FIGURE 5 Domain shift results. The domain shift has a lower effect on
ROAM than the other methods

results on the MALC dataset. All ROAM variations signifi-
cantly outperform U-Net and are on par and sometimes out-
perform QuickNAT, without a sophisticated pre-training mech-
anism. Note that ROAM (𝜅 = 0) is a special case of our method
where the mixup is performed at the input space, that is,
MixMatch. Further, the results show that our models achieve
lower standard deviations compared to other methods. In sum-
mary, the results show that our simple but elegant ROAM
operation leads to SOTA results without the need for large
datasets.

4.5 Realistic evaluation of ROAM

The purpose of the next set of experiments is to (i) assess
ROAM in the presence of domain shift, (ii) show the correla-
tion between the amount of labeled and unlabeled data on the
overall performance, following the recommendations of refer-
ence [50].

4.5.1 Domain shift results

The trained models were picked and tested on IBSR and
CANDI datasets. The results in Figure 5 show a drastic drop
in all models, including the baseline ones. This drop is higher
on the ISBR dataset. However, ROAM(𝜅 = {0, 1,L}) performs
just as well in both cases and is less sensitive to the domain shift

problem compared with other models, including ROAM(𝜅 =
2) and ROAM(𝜅 = 0). Surprisingly, although ROAM(𝜅 = 2)
achieves one of the best results on the MALC dataset, it has less
generalization ability than ROAM(𝜅 = {0, 1,L}). The results
indicate that the domain shift has a lower effect on ROAM than
the other methods.

4.5.2 Changing amount of labeled data

At first, we fix the number of unlabeled data at 1500 slices while
gradually increasing the amount of labeled data from 100 to 500.
With successive increases in the amount of the labeled data, our
model displayed a higher performance and confidence com-
pared to other models (cf. Figure 6a). This confidence level is
inconsistent in other models.

The same superiority is also observed at the lowest amount
of labeled data (100 slices), where the obtained Dice scores
are 0.622, 0.402, 0.500, 0.571, 0.400 for ROAM, Bai et al. [30],
Zhang et al. [20], Cui et al. [36], and Baur et al. [25], respectively,
cf. Figure 6a, the results on the far left.

4.5.3 Changing amount of unlabeled data

In this experiment, we fix the labeled data at 500 slices while
gradually reducing the unlabeled from 1500 to 500. The results
are shown in Figure 6b. In contrast to other methods, our
model shows its superior w.r.t variable amount of unlabeled
data.

The figure shows that our approach still outperformed when
the amount of unlabeled data is the lowest (500 slices) with con-
siderable margins. The obtained Dice scores for ROAM against
the other methods are 0.820, 0.795, 0.798, 0.809, and 0.760,
respectively, cf. Figure 6b, the results on the far right.

Yet, [36] achieves insignificant higher Dice at 1000 unla-
beled slices.

Both results confirm the superiority of our method at a low
data regime.

5 LUNG SEGMENTATION RESULTS

In the second part of our experiments, ROAM is validated on
lung CT images for lung segmentation. Note that our model
selection for this dataset is ROAM(𝜅 = {Φ, 0, 1,L}), 𝛼 and 𝛽
= 1.

5.1 COVID-19-CT-seg-Benchmark results

5.1.1 Quantitative results

The segmentation results, reported in Table 4, show that ROAM
and ROAM-LB surpass their competitors in the overall results,
see the foreground column in Table 4. The obtained relative
improvements are 10.86%, 17.09%, and 18.09%, respectively, for
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BDAIR ET AL. 2603

FIGURE 6 Varying amount of data. The shaded region represent the standard deviation. The more labeled or unlabeled data being used, the higher the
performance and confidence of our model compared to others

TABLE 4 Lung CT images segmentation results. ROAM outperforms SSL methods for the infection and lung classes, while it outperforms the lower bound in
the overall and lung results. ROAM shows lower performance in the infection segmentation comparing to U-net. The foreground column includes the infection, the
left, and the right lung classes. (), negative value

Foreground Infection Lung

Setting Model Mean (median) ± std RI(%) Mean (median) ± std RI(%) Mean (median) ± std RI(%)

Lower bounds U-Net 0.702(0.738) ± 0.176 0 0.543(0.657) ± 0.254 0 0.782(0.897) ± 0.231 0

ROAM-LB 0.777(0.839) ± 0.126 10.68 0.528(0.606) ± 0.275 (2.76) 0.902(0.942) ± 0.121 15.35

SSLs Bai et al. [30] 0.730(0.772) ± 0.154 3.99 0.552(0.599) ± 0.233 1.66 0.819(0.881) ± 0.153 4.73

Zhang et al. [20] 0.736(0.775) ± 0.161 4.84 0.606(0.717) ± 0.251 11.60 0.802(0.880) ± 0.213 2.56

Cui et al. [36] 0.810(0.873) ± 0.116 15.38 0.605(0.672) ± 0.239 11.42 0.913(0.953) ± 0.102 16.75

ROAM 0.822(0.887) ± 0.122 17.09 0.632(0.710) ± 0.252 16.39 0.918(0.957) ± 0.103 17.39

Upper bounds U-Net 0.849(0.888) ± 0.096 20.94 0.675(0.737) ± 0.229 24.31 0.936(0.974) ± 0.091 19.69

ROAM-UB 0.829(0.872) ± 0.107 18.09 0.630(0.686) ± 0.218 16.02 0.929(0.974) ± 0.102 18.80

ROAM-LB, ROAM, and ROAM-UB. In line with the whole-
brain segmentation results, it also observed that ROAM-LB out-
performs the other SSL methods by considerable margins. In
contrast to that, ROAM-UB performs just lower than the upper
bound. Surprisingly, ROAM-LB’s segmentation score for the
infection dropped by 2.76% compared to the U-Net. In sum-
mary, ROAM outperforms all SSL methods for all classes, and
outperforms the lower bound in the overall and lung results.
Yet, ROAM shows lower performance in the infection segmen-
tation when compared to U-net. Further discussion is presented
in Section 6.1.

5.1.2 Qualitative results

The segmentation predictions for the previous models are
shown in Figure 7. The first two columns in the first row
show the input image with its ground truth. The next four
columns present the segmentation results for the lower and
upper bounds, respectively. The second row shows the predic-
tions for the SSL methods and ROAM. The red boxes are drawn
to show the false predictions made by different models. Except
for the upper bound, ROAM makes fewer false positives and
generates more accurate predictions than the other models in
all settings. Moreover, ROAM-LB performs better than U-Net

lower bound and better than some SSL methods such as in ref-
erences [30] and [20].

5.2 MedSeg: Cross domain and class
mismatch results

MedSeg dataset consists of 100 CT images divided into 80 train-
ing images and 20 validation images, with four classes of lung,
ground-glass opacity, consolidation, and pleural effusion. In this
experiment, the model trained on MedSeg while it was tested on
the COVID-19-CT-Seg-Benchmark dataset. Notice that the last
dataset contains segmentation of the right lung, left lung, and
infection classes. Thus, the goal of this experiment is to inves-
tigate the ability of ROAM cross domains and class mismatch
conditions. Note that the training and the testing images come
from different datasets with a domain shift problem. Further,
the training and testing classes differ, making it a very challeng-
ing task.

To resolve this issue, we perform two steps. First, after train-
ing the models, we generate the four-class predictions. Then, we
assemble the predictions of ground-glass opacity, consolidation,
and pleural effusion as one class called the infection class, yet
the lung predictions remain without any modification. The
result from the previous step is predictions of two classes; lung
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2604 BDAIR ET AL.

FIGURE 7 Qualitative results of lung segmentation. Red boxes represent the false positives. ROAM generates more accurate predictions than the other models
with the exception of the U-Net-UB

TABLE 5 Cross domain and class mismatch results. The models are
trained on MedSeg dataset, while tested on COVID-19-CT-Seg-Benchmark
dataset. ROAM enhances the prediction of the baseline

Foreground Infection

Model Mean (median) ± std RI(%) Mean (median) ± std RI(%)

U-Net 0.675(0.684) ± 0.107 0 0.449(0.496) ± 0.233 0

ROAM 0.714(0.728) ± 0.111 5.78 0.522(0.501) ± 0.224 16.26

and infection. The second step, however, is performed on the
testing data. Specifically, the right and lung masks are assembled
as one class called the lung class, while the infection masks
remain without any modification. The result from this step is
labels with two classes; lung and infection. Having performed
these two steps, our results for this experiment are generated.

The results are reported in Table 5. We notice that ROAM
enhances the predictions by 16.26% and 5.78% for the infection
and foreground, respectively. The results of this experiment are
in line with the results reported for brain images. That is, both
are consistent and highlight the ability of ROAM to generalize
to unseen data.

5.3 Performance versus infection sizes

Thus far, the performance of ROAM at different data settings,
domain shift, and class mismatch has been reported. In this
experiment, we try to analyze the effect of the COVID-19
infection size w.r.t the lung size. Figure 8 shows the individual
Dice score for each test volume from the COVID-19-CT-Seg-
Benchmark dataset. The percentage below each column rep-
resents the infection size. It stands out that the same pattern
for all SSLs models is found. First, when the infection size is
below 3%, all SSL methods produce uncertain results. Second,
the best results are obtained when the classes are balanced (at

FIGURE 8 Dice versus infection. The x-axis represents the percentage of
the infection size to the lung size. When the percentage below 3%, SSLs
produce uncertain results. The best obtained when the classes are balanced (at
30%). The percentage of (59%) is an outlier case

30%). In this case, the infection represents one third of the lung
size, while the remaining percentages are one third for the left
lung and one third for the right lung. Third, the results at 59%
represent outlier cases that fool all models because the infection
represents the minor class in the image in the usual cases. In
general, ROAM obtains the best results regardless of the infec-
tion percentage.

6 DISCUSSION

This paper proposes ROAM as an SSL method that utilizes the
modern regularization methods, that is, MixUp and Manifold
Mixup to boost the model with newly generated data points.
Our method overcomes the limitations of the previous works by
exploring the manifold and performing the linear interpolation
at a randomly selected subset of input and hidden layers. Con-
sequently, it generates new data points and additional training
signals that suit the complexity of medical image segmentation
for SSL. Moreover, our method utilizes the better organized
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BDAIR ET AL. 2605

hidden representation of classes and produces consistent soft
labels for the corresponding data points generated via the
mixup operation.

6.1 ROAM performance across different
datasets

Our method is validated using five publicly available datasets for
the brain and lung images. These datasets are heterogeneous.
While the structures in the brain images are almost rigid and
geometrically constrained, the lung images contain highly vari-
able sizes of COVID-19 infection. The results show that ROAM
performs consistently and outperforms all SSL methods with
large margins across these datasets. Further, the robustness of
ROAM is significant in the brain segmentation, where ROAM
always obtains the best results. The main advantage of ROAM is
the generating of new virtual data points. This process enriches
our method with a wide range but free training signals which
are explored not only in the input space but also at the hid-
den representations. Further, what makes our new data benefi-
cial is selecting the mixing factor 𝜆, which has been selected to
keep the virtual points in the vicinity distribution of the train-
ing examples. In contrast, the other methods are limited to the
original training examples such that whatever approach is used,
the knowledge gain is still limited. Another advantage is that our
method enhances the quality of the pseudo labels by the sharp-
ening operation, while none of the remaining approaches make
use of this post-process step. However, one limitation has been
noticed in the lower bound for the COVID-19 infection seg-
mentation. Even though ROAM enhances the overall predic-
tion, it fails to enhance the segmentation of the infection class.
This could be attributed to the fact that mixing highly imbal-
anced classes, that is, infection pixels versus lung pixels, at a
low data regime, could bias the model to the dominant class. In
another anticipated finding, ROAM-UB achieves lower perfor-
mance than the upper bound baseline model. A possible expla-
nation might be that the amount of data—at the upper bound
setting—is enough for the training. Therefore, augmenting the
model with additional virtual data points may not be useful.
Also, it has been shown that our lower bound model (ROAM-
LB) consistently outperforms many SSL methods. That means
this regularization technique, with just a few labeled data, could
surpass the other SSL methods which have access to a large
amount of unlabeled data. Moreover, ROAM generates new
data points through its linear interpolation. The effectiveness
of this operation is essential at a lower data regime where the
data is crucial for the training. Interpretability might be another
limitation of our method. The generated data from the mixup
operation could be hard to interpret, especially when the two
mixed-up samples are randomly selected. Consider, for exam-
ple, in brain experiments, an image containing the white mat-
ter was mixed with another one containing grey matter or any
other brain structure. For a human or an expert, the resulting
image will not be recognized as a known structure in the brain.
Thus, instead of augmenting the training, this should confuse
the model. Although, our experiments showed that this opera-

tion boosted the performance, the explainability of our method
needs further investigation.

6.2 ROAM(𝜿 = 2) results

Interestingly, ROAM (𝜅 = 2) achieves one of the best results on
the MALC dataset. We attributed this to hidden representation
at this layer, where it might be the most organized and concen-
trated among all layers. Thus, the inconsistency in soft labels
is minimized. Despite that, ROAM (𝜅 = 2) has less generaliza-
tion ability than ROAM (𝜅 = 0, 1,L), indicating the possibility
of overfitting to the training data. Further investigation might
lead to more explanations.

6.3 Generalizability and domain mismatch

One way to alleviate the need for a large amount of annotated
data is to utilize datasets generated from different sources. Usu-
ally, these datasets come with many challenges, that is, different
cohorts, scanning protocols, and scanners. That leads to a tech-
nical challenge, the so-called domain shift. This problem has
been investigated in this paper and have noticed that all SSL
methods, including ROAM, suffer in the presence of domain
shift. Yet, ROAM was less sensitive, see Figure 5 and Table 5.
Nevertheless, we make no claim here that our approach is
domain agnostic. Thus, further research in handling the domain
shift in the SSL methods is of high importance.

6.4 Convergence

Manifold Mixup is guaranteed to be converged when the mixup
operation is performed at a hidden layer, as long as the dimen-
sionality of that layer is greater than the number of the classes
[44]. Here, this condition is satisfied where the dimensionality
of the hidden layers > 32, which is greater than the number
of segmentation classes, that is, 28 for brain images and 4 for
lung images.

6.5 Handling skip connections

An important question is how to handle the skip connections
when mixing at a random layer. Do the skip connections get
interpolated using the same lambda as the convolution layers
or just forwarded without any mixup? For example, when mix-
ing two samples x1 and x2 at a random hidden layer, that is,
𝜅 = 2, the skip connections related to that layer still hold the
original data from the first hidden layer. Therefore, they will
not correspond to the mixed-up labels properly, which might
cause a problem. One suggestion to handle this issue is to per-
form the mixup for a given layer and the skip connections
up to that layer with the same lambda and the same exam-
ple pairing. Practically, we investigate this solution on MALC
and COVID-19 datasets when 𝜅 = 2, and report the results in
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2606 BDAIR ET AL.

Table 6. It is shown that ROAM performs differently, and no
such approach produces consistent performance. For instance,
the skip-connections mixup at SSL settings impairs the results
while it has almost no effect or a negligible positive effect at
the upper bounds. The issue of handling the skip connections
is intriguing and could be usefully explored in further research.
Fortunately, this problem did not happen in our main scenarios,
that is, performing random mixup at 𝜅 = {0, 1,L} because the
mixed labels correspond to the mixed data as well. Yet, it is not
the case for the manifold mixup when 𝜅 = 2, which surprisingly
shows a superior result. One of the reasons could be attributed
to the choice of the beta distribution parameter, that is, 𝛼. For
instance, when 𝛼 is less than 1, the mixed data tend to preserve
the original data point. Therefore, performing manifold at the
bottleneck or other layers might not have such an expected neg-
ative impact.

6.6 Infection size

ROAM can be affected by the highly imbalanced dataset as can
many SSL methods. Figure 8 shows that the best performance
is obtained when the classes are equally distributed. Thus, per-
forming mixup operations with highly imbalanced data remains
a challenging question. Our preliminary analysis in this direction
paves the way for further investigation.

6.7 Validation datasets

One problem of using small validation datasets is the inconsis-
tency of the results, which may not reflect the actual perfor-
mance of the model [50]. The smaller the validation set, the
larger the variations in the output. Moreover, reference [50] also
argued that a comparison between different SSL models is pos-
sible when the validation set is equal to the training one. Here,
we consider all these recommendations in our implementation.
Consequently, the reported results fairly reflect the actual per-
formance of each model.

TABLE 6 The results for whole-brain and lung segmentation at 𝜅 = 2
with/out skip-connections mixup. ROAM works better without
skip-connections mixup at SSL setting, while it performs just lower at the
upper bounds

Dataset Model SK Mean (median) ± std

Brain ROAM-SSL ✓ 0.834(0.853) ± 0.047

× 0.872(0.881) ± 0.024

ROAM-UB ✓ 0.892(0.898) ± 0.024

× 0.890(0.898) ± 0.023

Lung ROAM-SSL ✓ 0.779(0.849) ± 0.137

× 0.797(0.860) ± 0.121

ROAM-UB ✓ 0.851(0.889) ± 0.100

× 0.850(0.901) ± 0.107

Abbreviation: SK, skip-connection miuxp

6.8 The unsupervised loss

Interestingly, 𝛽 = 0 shows the third-highest validation results. 𝛽
is a hyperparameter that controls the contribution of the unsu-
pervised loss. Setting 𝛽 = 0 implicitly means that our model is
still augmented with new data points from our random mixup
yet without the unlabeled single. Based on the selected 𝜆 in
Equations (7) and (8), the newly generated data points are close
to the labeled data. In other words, the new data are in the
vicinity distribution of the labeled data, that is, high-quality data
is generated, justifying the boost in the performance. On the
other hand, setting 𝛽 > 0 means that we propagate the training
signals from the unlabeled data. These signals might be noisy
and introduce uncertainty to the model because of the low qual-
ity of the pseudo labels. Hence, a decrease in performance was
observed. However, after applying the sharpening, an enhance-
ment is noticed in the model performance because the sharpen-
ing operation helps to generate more accurate pseudo labels, as
shown in Figure 1d.

6.9 Hyper-parameters tuning

ROAM involves a set of hyper-parameters and design choices
besides the standard ones. Although fine-tuning such an amount
of parameters is a tedious task, our results show that ROAM
outperforms all SSL methods in a wide range of hyper-
parameter choices. Thus, with a little effort, one can achieve
SOTA performance. Our argument can be supported by the
following examples. First, ROAM outperforms all SSL mod-
els regardless of the selected layer 𝜅. Also, the lowest scores
obtained by ROAM, when 𝜅 ={3 or 4}, are better than all other
SSL methods, with one exception of reference [36]. Third, all
ROAM variations, that is, the sharpening and concatenation
steps, outperform all other SSL models. Fourth, we show that
the newly generated data boosts the performance without the
need for the unlabeled loss when 𝛽 = 0.

That is, the number of hyper-parameters can be reduced sig-
nificantly by fixing 𝜅 = {0, 1,L} and just fine-tuning 𝛼 and 𝛽,
which is the standard procedure in many SSL methods. Con-
sequently, our method does not require any extra effort or
exhausting design choices.

Based on that, our approach is easy to implement and can
be generalized to different datasets, which have been shown in
the brain and lung segmentation. Further, our code is publicly
available for benchmarking and reproducibility.

7 CONCLUSION

Here, we propose ROAM for SSL in medical images. ROAM
takes the advantages of both MixMatch and Manifold Mixup to
boost the performance of the model with new generated data
points that fit the complexity of the medical images. While both
methods depend on either the input layer or the hidden repre-
sentations to generate new data points, our method makes use
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BDAIR ET AL. 2607

of a random combination of these layers. Our experiments show
that ROAM is less prone to overfitting and has a better general-
ization property.

Our method shows a superior and SOTA performance on
the whole brain, lung, and COVID-19 infection segmentation
compared to other SSL methods. We tested ROAM in both
supervised and semi-supervised settings and we have shown its
preference against other approaches. Our comprehensive anal-
ysis shows that our method utilizes both labeled and unlabeled
data efficiently, proving its stability, superiority, and consistency.
Further, the mixup operation has been investigated at skip con-
nections, in the U-net architecture, which has not been studied
by any of the previous methods.

So far, the quality of the pseudo labels mainly depends on
the initial guess and the mixup coefficient 𝜆. However, one
could think of modeling this coefficient as a function of uncer-
tainty measures. Also, to generate more realistic mixed-up data,
one could investigate performing the mixup operation on dis-
entangled representations [62]. Our experiment demonstrates a
robust performance of our method under domain shift. Never-
theless, domain invariant SSL methods should be further inves-
tigated. ROAM, as with other SSL methods, can be affected by
the class-imbalance datasets. Instead of naive mixup, one could
investigate more intelligent ways of data mixing.
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