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Abstract

Mobility-related information systems, such as on-street parking information (OSPI) sys-
tems have become more popular in the original equipment manufacturer (OEM) indus-
try over the last decade. However, there is a lack of methods to assess their quality at a
large scale. This paper introduces a data-driven methodology to measure the true qual-
ity by fleet data prioritization-based subsampling strategies (PSSs). It is applied to the use
case of OSPI using parking events (PE), but is applicable to other mobility-related infor-
mation systems utilizing their respective fleet data. PSSs are defined based on neighbour-
hoods and time periods. Each PSS generates a unique set of spatio-temporally important
areas at different quadkey zoom levels over 168 week-hours, called slices. The impor-
tance weight in each slice depends on the volume of PE within them. The algorithm
for each PSS automatically selects important areas and time frames that are vital to be
observed. Sample prediction models are used for the benefits assessment of the method-
ology by comparing it against non-prioritized randomized selection of ground truth. It
is proven that the methodology can lessen the effort of ground truth collection, while
maintaining the amount of information necessary to assess the true quality of a prediction
model.

1 INTRODUCTION

1.1 Background on quality assessment of
mobility-related information systems

Quality assessment (QA) of mobility-related information sys-
tems (IS) has mainly focused on measuring the discrepancies
in the technical broadcasting and availability of information [1].
The assessments do not necessarily evaluate the accuracy of the
information’s content [1]. Existing QA in the area of mobility,
do not consider the relative importance of information given to
users. For example, the importance of correctly relying informa-
tion to a user about a train with a 15-min headway is higher than
a train that arrives every 2 min. Another instance is, information
about vacant on-street parking is more important for a driver
in a busy central area compared to parking availability in the
periphery of a city with minimal traffic. [2] and [3] refer to this
as the gap between the delivered information quality by a ser-
vice provider and the users’ expected quality based on perceived
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utility. The quality of an IS needs to be assessed based on the
features important to the system objectives and user or manage-
ment expectations [4]. Essentially, to assess the true quality of
an IS, the evaluator must comprehend the needs of its users and
satisfy them to the highest quality. Although quality assessment
methods exist in mobility-related information systems, to the
best knowledge of the authors, there is a gap in knowledge for
comprehensive prioritization-based methods. To address this
gap, in this paper, a methodology is introduced that describes a
procedure on utilisation of fleet data for defining prioritization-
based subsampling for quality assessment. Furthermore, the
viability of the method is demonstrated by assessing the quality
of on-street parking information (OSPI) systems delivered
by different prediction models. OSPI is a chosen special case
where higher efforts are required for QA in comparison to traf-
fic for instance. OSPI involves a high number of small streets
where low volume of on-street parking occurs, whereas the
traffic deals with observing a low number of major roads where
high volume traffic is easier measured. This makes OSPI QA
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comparably more error-prone, and thus, higher efforts and
more precise QA methods are needed. As a limitation in this
research, software and system quality are not tackled and are
out of scope.

1.2 Use case background: On-street parking
information (OSPI)

Vehicles cruising for on-street parking contribute to a signifi-
cant amount of congestion within a city’s inner urban area [5,
6]. Based on 22 studies in different cities ranging from 1927 to
2015 as discussed in [6], the average cruising traffic share in a
city is around 34% and drivers spent around 8 min searching
for parking. OSPI services exist as a guidance system to smartly
navigate drivers in search for on-street parking. A couple of
benefits of OSPI are the reduction of traffic congestion caused
by cruising drivers [7–10] and pre-departure information of
parking situation at destination that increases the chances of
finding a parking spot [11]. The latter can even help drivers
decide whether it is wise to take their vehicles. The state-of-
the-art OSPI systems are mostly developed using complex
machine learning techniques [7, 8, 10, 12–18]. The majority
of models aim to achieve real-time prediction, but there has
also been a study on estimating parking availability for a given
time interval, like 10–20 min [19]. Despite advances in artificial
intelligence, OSPI services still have yet to entice the majority
of potential users, and hence, there is still potential to attract
more users to increase benefits on a system level. Further added
value for drivers comes with the capability to correctly assess
the quality of a service. Thus, as an initial step, the true quality
of OSPI needs to be assessed, which entails considering the
relative importance of the information delivered to drivers,
and thereby satisfy their needs. After all, the true quality of
such systems determines the benefits gained in a transport
network. True quality in this paper refers to the adjusted quality
metric scores based on important or prioritized areas (see
Section 2).

The main difference between state-of-the-art OSPI models
available and how they are validated is the data gathered and
the features considered for training, validating, and testing the
models [19]. Data sources that have been used to validate park-
ing prediction models are: smart parking meters [15, 18, 20, 21],
mobile payments [8, 22, 23], intelligent parking systems [24],
real-time ground sensors [14, 17, 25, 26] images captured by
a camera mounted on a moving vehicle [7, 27], crowd-sensing
information by equipping probe vehicles (e.g. taxis) with on-
board sensors, cameras, or ultrasonic sensors [28, 29], or crowd-
sensing using GPS signals from smartphones [23, 29–31], and
also manual observations [32]. A study aiming to improve auto-
matic extraction of parking spaces used on-street parked out
events from connected vehicles to validate legal and illegal park-
ing spaces in the city [33]. The differences in input data play a
major role in the reliability and quality. The information qual-
ity of models in the studies was validated by the comparison of
randomly observed ground truth (GT) data against prediction
availability estimates.

1.3 Significance of prioritization-based
subsampling for quality assessment

Although many forms of GT strategies exist, there is still no
scalable method that can reduce data collection efforts and
costs. Some alternatives are to randomly reduce subsamples,
which is tested in this study (see Section 3.4), or acquire local
knowledge about the landuse and daily parking behaviour.
However, since these methods are labour-intensive, they are
not scalable. Thus, a fully automated prioritization method is
sought to reduce ground truth efforts and thereby reduce costs,
while maintaining and also potentially improving the system.

The hypothesis tested in this study is that with a data-driven
methodology using fleet data; it is possible to get a better insight
for targeted and prioritization-based subsampling GT collection
strategies. No studies exist that provide a prioritized-based sub-
sampling of GT for quality assessment since most are based on
fixed sensors or parking meters and lack large amounts of data
to prioritize areas. This paper looks into the potential usage of
vehicle parking events as a source for prioritizing ground truth
collection at neighbourhoods, which are selected based on the
frequency of visits within a certain time bucket, called slices.
Identifying such priority slices assist GT collection efforts in
areas which are important for customers to have relevant accu-
rate dynamic parking information. Developing a methodology
considering strategical slices of a GT collection set gives a com-
plete picture of the service quality.

The main contribution of this study is the development of
a methodology that measures the true quality of competitive
mobility-related prediction models (see Section 2) and can pro-
vide recommendations to reduce the required ground truth data
for quality assessment. The true quality is assessed by assigning
importance weights to areas and time periods based on the
chosen fleet volume (e.g. parking events, traffic flows). The
methodology is applied on the use case of on-street parking (see
Section 3). The main findings are described in Section 3.4, and
a summary of contributions are described in the last section.

2 METHODOLOGY: USING VEHICLE
FLEET DATA FOR QUALITY ASSESSMENT

Figure 1 shows the workflow for the data-driven methodology
to measure the true quality of a mobility-related information
system. The core idea is to use vehicle fleet data to iden-
tify spatially and temporally important areas as the basis for
prioritization-based subsampling strategies (PSS). This is used
for the reduction in ground truth collection strategies and
subsequently, quality assessment. It allows to smartly reduce
ground truth collection while not missing out important areas
to customer in evaluating the quality of a system.

2.1 Acquire and process vehicle fleet data

First step was to acquire vehicle fleet data as the main source for
determining the fleet data spatio-temporal density spread (see
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FIGURE 1 Methodology workflow

Section 3.1.1) within a city. The data was processed for geo-
graphical analysis using the geographic coordinates and times-
tamps. More specific processing aspects are mentioned in the
strategies defined in the rest of this section.

2.2 Identification of spatio-temporally
important areas for prioritization-based
subsampling strategies (PSSs)

The processed fleet data was used for identifying spatio-
temporally important areas. Importance is defined by the per-
cent volume weight (or density) of fleet data that occur within
a certain area and at a specific period, hereafter referred to as
slices. Prioritization-based subsampling strategies (PSSs) were
identified, that have different slice proportions. Various strate-
gies were tested to have a robust experimental design setup
looking at the fleet data from several perspectives. The PSSs are
further elaborated in the following sections.

2.2.1 PSS 1: Based on neighbourhoods

The first strategy was purely based on spatial slices, referred
to as neighbourhoods. This strategy only considers the density
of fleet data in each neighbourhood within the city over the
entire study period. The spatial method considered was based
on the quadkey concept [34], which is an indexing convention
and unique identifier of a standard map tile at a specific zoom
level. This standardized partitioning of the world map into tiles
is a standard used by Microsoft’s Azure Maps. The zoom level
of quadkeys varies from 0 to 24, corresponding to a tile size of
40,075,017 m x 40,075,017 m to 2.39 m x 2.39 m, respectively.

The finer the tile level, the lower volume of the fleet data per tile,
and thereby increasing relative error. The quadkey approach is
favourable to generate reproducible and comparable results for
similar researches. Each quadkey equates to a slice; the densest
quadkey was then considered the most important area and this
was sorted from highest to lowest.

2.2.2 PSS 2: Based on time

The time-based strategy defines slices as 168 week-hours. An
hour was the selected time interval based on heuristics as it is
not too small, and not too large, while maintaining interval con-
sistency. Half-hour slices were also experimented with, but with
negligible differences in the overall scores calculated in the use
case in Section 3.3, hence, omitted from further analysis. The
busiest week-hour is the densest slice, and thereby the most
important. Typically morning and afternoon peak hours were
the ones with the highest densities and after midnight hours are
the quietest.

2.2.3 PSS 3: Based on a combination of
neighbourhood and time

The third strategy combines the first two. Each neighbourhood
was divided into 168 h slices. The first two PSSs were on a higher
aggregated level, while this PSS created lower aggregated prior-
ity. This PSS was a generic strategy that can be used in any city
use case; it divided the study area spatially based on a standard
quadkey approach and the week-hour basis hourly slices. This
allowed for a precise identification of important areas by pin-
pointing neighbourhoods that are more important at specific
hours during a week. The slices were sorted according to fleet
volume density. Since the division was done both across neigh-
bourhood and time, the sequence of most important slices can
be from different mixtures of neighbourhoods and hour during
the week. For example, the top most could be from neighbour-
hood A at 13:00–14:00, while the second highest could be from
neighbourhood B at 8:00–9:00. Furthermore, different quad-
key zoom levels indicate varying and more precise importance
weighting.

2.2.4 PSS 4: Based on neighbourhood clusters
and time

Neighbourhood clusters was generated based on fleet data
behaviour within the different neighbourhoods in a city. The
idea was to group together neighbourhoods that have similar
behaviour and can be treated as one entity. This was done by
first defining the behaviour of each neighbourhood through an
aggregation method of the fleet data and then performing clus-
tering on the behavioural pattern. The behavioural modelling
and clustering concept used for this paper can be found in Sec-
tion 2.5. The next step was to divide the clusters into 168 h
slices as previously and then sort according to density to get the
importance.
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2.3 Measure the quality for different PSS by
a key performance indicator (KPI)

Once the PSSs were identified and applied on the ground
truth data, the different slices for each strategy were then pro-
duced. The slices were used for subsampling of the collected
ground truth data. A key performance indicator was used
as the quality metric. The logic behind calculating the KPI
for all the strategies was to ensure that these prioritizations
were consistent at different slices and measure the real quality
correctly. Random sampling has in most cases been the norm
[35] to reduce any biases in sampling. This paper introduces
PSS as a competing method to the traditional random sampling
for true quality assessment of prediction models. Moreover,
an experimental design is defined to test the strategies against
thousands of random sampling trials. The experimental design
setup is defined to test the chances of selecting a sample, that is,
areas at a specific time span that would falsely assess the quality.
A popular KPI that was used is the Brier Score, as described
below:

KPI =
1
N

N∑

t = 1

(
pt − ot

)2
, (1)

where p is the predicted outcome, o is the observation at
instance t (0 means there was no occurrence, 1 means there was
an occurrence), and N is the total number of instances.

The KPI was calculated for each slice within a strategy. A total
KPI score for a strategy was calculated based on the evidence-
based multi-criteria decision making method called weighted
sum model (WSM) as described in Equation (2). WSM was the
chosen technique for its objectivity and not being prone to score
skewness.

KPIPSS =

N∑

s = 1

KPIs × ws , (2)

ws =
PEVolumes

∑N
s = 1 PEVolumes

, (3)

where KPIs is the KPI of a slice, w is the importance weight
assigned to a slice, s is a slice within a PSS, and PEVolumes is the
parking events volume at a slice

The calculation of the KPI is dependent on two variables:
estimations from different types of prediction models and the
strategy from different PSS. Only two weighting techniques
were applied in this paper, equally weighted for all slices, which
was computed by one divided by total number of slices and
importance weighted based on fleet percent volume share at
each slice. This was done to see the impact of weighted KPI
on the overall PSS KPI, and whether the weights play a role in
shifting the penalty or incentive to the important areas. After
the KPIs were calculated for all PSS, the next step was to check
the true quality measurement. This was done by comparing the

results against the baseline, which is randomized subsampling
of ground truth.

2.4 Benefits validation of PSS against
non-prioritized randomized subsampling of
ground truth

The experimental design for random subsampling of ground
truth was necessary to assess and ensure the robustness of the
PSS method. One objective was to ensure that if any of the PSSs
are followed for ground truth collection, they can be representa-
tive of the actual quality of a prediction system. The goal of ran-
dom subsampling was to generate different random slices not
following fleet data density. The ideal, however, unrealistic ran-
domized subsampling that gives the best quality measurement
for a certain prediction model was also calculated as a base com-
parison for the benefits of the PSS implemented. This validation
aimed to identify weakly designed prediction models that only
perform well in rare instances. The experimental design ensured
that the random trials cover the majority of the possible combi-
nations for randomized subsampling that eventually selected all
the ground truth data in different experiment setups.

The comparison of top importance-weighted fractions of the
PSS with fractions of the randomized ground truth subsampling
was done to compare the effects of subsample size reduction.
This also provided the opportunity to check the benefits of the
PSS at smaller sample sizes, which have higher relative error.
It must be noted that the top importance-weights are corre-
sponding to the fleet percent share that is attributed to a slice,
and therefore not corresponding to the fraction of the ground
truth observations. For instance, within the top 50th percentile
importance-weighted slices, it is possible to only have a sam-
ple size of 30% of ground truth observations occurring in these
specific areas and time. In summary, the following steps were
followed for the benefits validation:

1. Sort the slices of each PSS based on their corresponding
importance weights.

2. Take the top 30th up to 90th percentile importance-weighted
slices, at 10th percentile interval steps, and calculate the KPI
scores for all PSS.

3. Get the equivalent sample size % of the ground truth for the
randomized selection.

4. Run n-number of trials that covers different fraction combi-
nation in consideration of the ground truth dataset size and
calculate the KPI scores.

5. Get the KPI variation of the m-number of PSS.
6. Get the KPI variation of the n-number of random trials.
7. Use the interquartile range (IQR) method of outlier detec-

tion for robustness of KPI scores.

IQR = Q3 − Q1, (4)

where Q3 is the third quartile value (75th percentile), and Q1 is
the first (25th percentile)
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Media

Q QIQR

Min. Max.

1.5*IQR1.5*IQR

Lower bound outliers < Q1 − 1.5 ∗ IQR, (5)

Upper bound outlier > Q3 + 1.5 ∗ IQR. (6)

1. Compare the score variance for random trials with the score
variance for PSS.

2. Make conclusion on findings about robustness of PSS.
3. Is it feasible to safely reduce ground truth collection to only

important areas and time for the quality assessment that
needs to be made? Will this be representative of the true
quality?

2.5 The use case of on-street parking
prediction

This paper applied the described methodology to the use case
of on-street parking. The parking events dataset was used as the
main source for analysis and the PSSs. The entire methodology
can be applied as already described, but for PSS 4, a specific on-
street parking behaviour modelling and clustering concept was
used.

The neighbourhood clusters identified in this study were
based on a specific parking behaviour dynamics concept taken
from the study of [36] about temporal trend of parking dynam-
ics (TTPD) inferred from parking events. TTPD is a week-hour
time-series of the cumulative sum of the difference of the week-
hour normalised average parked-in and parked-out events per
30-min intervals at quadkey zoom level 14. For the case of on-
street parking, zoom level 14 was selected as the optimum since
a more localised level would generate high relative errors given
that the volume of parking events within 30-min intervals was
small. Each neighbourhood at zoom level 14 has a particular
normalised TTPD. These TTPDs were used as the base for clus-
tering similar neighbourhoods. Each cluster consisted of multi-
ple neighbourhoods and was spatially treated together, and then
the cluster is divided into 168 h slices. The logic in this strategy
was that, the important slices of different neighbourhoods with
similar parking behaviour can be analysed on the same level and
therefore combined in the cluster.

For the use case of on-street parking prediction model qual-
ity assessment, various parking prediction models were utilised
to generate availability predictions. However, the model devel-
opment was not of essence in this paper, and was only consid-
ered as sample models that generate adequate results to allow
quality comparison between models. A number of real feature-
based models and random parking prediction models were used
as later described in the Section 3.3.

The code to carry out the analysis in this paper was writ-
ten in Python. The main packages used were: Pandas, GeoPan-
das, Folium, Numpy, OSMnx, Matplotlib, Seaborn, Statsmodel,
PySal, and Scikit-learn.

3 QUALITY ASSESSMENT OF
COMPETING ON-STREET PARKING
PREDICTION MODELS

The application results of the methodology introduced in this
paper is described in this section. The experimental design setup
of the PSSs implemented is in Table 1. The experimental design
was designed to cover all possible combinations of the defined
spatio-temporal slices.

3.1 Study area and description of data

3.1.1 Study area and parking events

The study area of this paper is BMW’s OSPI service area for the
city of Munich, Germany. Together with the defined polygon,
the on-street parking capacity of blocks or number of parking
spots was also collected from BMW’s parking map.

The main data source used in this study as the importance
indicator was parking events (PEs). PEs data are gathered from
the fleet of BMW vehicles. Hence, there is a bias towards BMW
users. This is within the bound of this study since importance
is relative to the OEM or the agency of concern; this means for
example, the share of BMW vehicles in an area is what is defined
as important for BMW, while if importance is to be defined
by the city the share of BMW vehicles amongst all other vehi-
cles need to be known to classify whether it is representative.
The data collection happens at BMW’s backend services which
includes anonymisation according to EU defined data privacy
standards. A PE is generated when a vehicle switches off or
on the engine, triggering a parked-in event or parked-out event,
respectively. The PE event was also post processed to contain
only events within 10 meters of a street. An example of the spa-
tial distribution of data collected can also been seen in Figure 2.

For this paper, the PE data from February 2020 to September
2020 was taken. It was observed that the PEs from Mondays to
Friday evening have a similar temporal distribution with small
day to day discrepancies (see Figure 3), hence, can be grouped
together in later analysis [36] During a normal weekday there
are peaks in the morning and afternoon, as expected since the
study area is quite commercial. On weekends, the peak occurs at
around noon during lunch hours and shopping before or after.

3.1.2 Ground truth data

The ground truth (GT) data used was collected between June
2018 and October 2020. The GT dataset is used for testing the
methodology. For this study, more than 20000 random observa-
tions spread across the city’s service area were used in Munich.
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TABLE 1 PSS experimental design setup

Neighbourhood zoom level TTPD cluster zoom level Time slice

Setup # PSS # 14 15 16 17 14 168 week-hour

1 1 x

2 x

3 x

4 x

5 3 x x

6 x x

7 x x

8 x x

9 2 x

10 4 x x

FIGURE 2 The weight importance distribution in neighbourhoods for PSS 1

FIGURE 3 The weight distribution importance during the week-hour for PSS 2
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Each observation is made on a block at the time of the test. A
block is the stretch of a street measured from one intersection
to the other. When at least one legal parking spot is observed on
a block, this was recorded as available. Regardless of the number
of open spots, for this paper, the observations were recorded as
a binary outcome—available or not available.

3.2 Spatio-temporally important areas for
the use case of on-street parking in Munich

For the specific case of this paper, the volume of parked BMW
vehicles is the indicator of importance. Only parking event pairs
with a duration of more than 5 min were considered to eliminate
noise generated by standing by cars. The hundreds of thousands
of PEs that happened in Munich during the indicated collection
period show the spatio-temporal importance of an area in the
city. The results of the PSSs are described below.

3.2.1 PSS 1: Based on neighbourhoods

For the neighbourhood-based prioritization (see Figure 2), the
total volume of PEs in each quadkey was considered as the
importance weights. Quadkey partitioning is described in Sec-
tion 2.2.1. The highest and lowest quadkey zoom levels con-
sidered as a neighbourhood were level 14 (2457.6 × 2457.6 m)
and 17 (250 × 250 m), respectively. These quadkey zoom levels
were heuristically determined for this research as an assumption
of the cruising distance range for on-street parking search. The
spread of the events are mainly focused on hubs (see Figure 2)
within the polygon as seen in the figures; this corresponds to
the prioritized areas to focus on for the KPI calculation.

3.2.2 PSS 2: Based on time

The global hourly based PSS applied on the PEs dataset shows
(see Figure 3) that the peak importance occurs in the early
mornings during the weekdays and at noon during the week-
ends. It is observed that on a global level, the importance by
time is not that distinguishable as the weights are similar during
the day hence making it difficult to prioritize. This prioritiza-
tion confirms the nature of the study area as being mainly com-
mercial and business centres. With prioritization only based on
global time slices, a small trend shift of ground truth resources
can be done by taking the following top prioritized hours as
important: period 7:00–15:00 during weekdays, 9:00–14:00 on
Saturdays, and Sundays can essentially be left out, as it is not as
busy as weekdays. The observations here can change once this
is looked further in detail by neighbourhood.

3.2.3 PSS 3: Based on a combination of
neighbourhood and time

PSS 3 applied to the on-street PE data provides detailed pri-
oritized subsamples in specific areas of Munich at certain

periods of time (see Figure 4). The PSS was performed for zoom
levels 14 to 17, but only level 14 is discussed in this section as
an example. For simplification of 14-digit labels of quadkeys in
the example, a basic label encoder was used to assign a number
label to each of the 23 level 14 neighbourhood quadkeys gen-
erated (see right image in Figure 4). In the final analysis of KPI
scores (see Section 3.3), all levels were considered. The neigh-
bourhoods at quadkeys 6 and 8 have the highest hourly impor-
tance contribution. It can be seen that neighbourhood 8, which
is located around the central station of Munich, has the high-
est share, and the hourly weights are consistent throughout the
day. Within the duration of 6:00 – 18:00, most neighbourhoods
have stable hourly importance. In neighbourhood 14, a slight
increase in importance is observed on Saturday afternoon; this
neighbourhood mainly consists of shopping and dining activi-
ties. Neighbourhoods 0, 4, 10, and 18 are located at the periph-
ery of the service area (see Figure 4) and have low volume of
parking events - illustrated by light yellow indicating low impor-
tance in the upper left image in Figure 2, hence, considered as
less important.

As an example, the slices that are within the top 50th per-
centile of importance weights are illustrated in the lower image
in Figure 5. It must be noted that the weights were not normal-
ized, and the representation in heatmap is essentially extractions
from considering all slices in Figure 4. In comparison to the
heatmap showing all the weights, the top 50th percentile has pri-
oritized 539 (14.7%) slices out of 3671. And instead of looking
at 23 neighbourhoods, the choices have already been reduced to
10 neighbourhoods. At higher priority areas, within top 10th per-
centile of importance weights, only 76 (2.0% of all) slices within
3 neighbourhoods are considered, at top 20th percentile, there
are 167 (4.5%) slices in 7 neighbourhoods, at top 30th percentile,
276 (7.5%) slices within 7 neighbourhoods, and within top 40th

percentile, 398 (10.8%) slices inside 7 neighbourhoods as well.
Depending on the urgency to check the quality of a certain area,
this PSS provides narrowed down areas and time slots that need
to be checked first for quick quality measurements.

3.2.4 PSS 4: Based on neighbourhood clusters
and time

This strategy builds on the previous PSS by aggregating similar
neighbourhoods. The logic behind neighbourhood clustering,
as explained in [36], is to group based on same temporal trend
of parking dynamics (TTPD) (see Section 2.5). The proposed
method of [36] suggests using hierarchical clustering and deter-
mining the optimum number of clusters based on the silhou-
ette score metric and the analysing its dendrogram. Applying
this for the use case of on-street parking in Munich generates 7
neighbourhood clusters, where 2 (i.e. clusters 3 and 5) of them
occurring at peripheries have negligible importance for BMW
as they have low volume shares. Having 5 valid clusters in the
study area is sufficient, as also validated in the study of [36],
since the neighbourhoods within central Munich are quite sim-
ilar based on the BMW PE dataset. The PSS was only applied
on zoom level 14 as the considered optimal size for modelling
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GOMARI ET AL. 609

FIGURE 4 Importance weight distribution by PSS 3 on neighbourhood zoom level 14 and time (left); and encoded neighbourhood labels within Munich (right)

FIGURE 5 Importance weight of the same PSS 3 but for weights within top 50th-percentile

FIGURE 6 Importance weight distribution by PSS 4 on neighbourhood clusters and time (left); spatial distribution of neighbourhood clusters (right)

of temporal trends of parking dynamics (TTPD) in 15-min
intervals.

The importance weights of this PSS slices are shown in Fig-
ure 6. Cluster 1 contains the majority of areas in Munich city
centre and is considered important in almost all week-hours
between 6:00 and 18:00, with lesser importance on Sundays.
For the same period, Cluster 2 has the same stable hourly dis-
tribution with lesser magnitude in the weight. For cluster 6 the
important weights are lower in the morning and intensify late
afternoon and evening hours, and then fade shortly after the
evening. Clusters 0 and 4 are neighbourhoods in the periphery,
where the weights are lower in magnitude, but uniform during
the week. The benefit of PSS 4 is that instead of being lim-
ited to certain neighbourhoods in PSS 3, similar slices can be
selected from the neighbourhoods belonging to the same cluster
that fits the spatio-temporal behaviour for overall ground truth

strategy. The spatial distribution of the clusters showing the
grouped neighbourhoods are illustrated on the right of Figure 6.

3.3 Quality measurement of sample parking
prediction models using PSSs

The generated spatio-temporally important slices from the
prioritization-based subsampling strategies in Section 3.2 are
now used as the input for quality measurement (see Section 2.3)
of the different sample on-street parking prediction models.
The Brier Loss Score was used as the KPI. This study is
focused mainly on assessing the quality of various prediction
models and not model improvement or development. Hence,
the details of the models are not highlighted here. Only the
output of the models is presented here and are evaluated
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610 GOMARI ET AL.

TABLE 2 Sample model algorithms

Avg. KPI

Model Algorithm Features KPI Eq. Imp.

1 Xgboost T 0.249 0.249 0.249

2 Random Forest 0.303 0.306 0.307

3 Xgboost T, C, L 0.227 0.224 0.229

4 Random Forest 0.236 0.233 0.238

5 Xgboost Model 3 features + hTTPD 0.228 0.226 0.231

6 Random Forest 0.231 0.231 0.235

7 Xgboost T, h-TTPD, rt-TTPD 0.233 0.232 0.232

8 Random Forest 0.248 0.247 0.248

9 Random Rand {0:1} 0.332 0.334 0.335

10 Optimistic Random Rand {0.7:1} 0.273 0.267 0.273

11 Pessimistic Random Rand {0:0.3} 0.486 0.493 0.487

12 Single Optimum Value Average available spots 0.226 0.224 0.227

T: temporal features; C: on-street parking capacity per street; L: GT GPS location; h-TTPD: historic TTPD; rt-TTPD: real-time TTPD; Rand: random uniform between {lower limit: upper
limit}; average available: average availability value of all ground truth observations for both train and test sets.

using the introduced quality assessment for comparison of
the models. Twelve models were used as samples for testing
the quality assessment methodology introduced in this paper.
The algorithms implemented in the sample models, and some
general information about the models are displayed in Table 2.

The model features and algorithms were developed with the
knowledge gained from existing literature in model develop-
ment for parking [7, 8, 10, 12–16]. Each model developed was
either based on XGBoost [37], Random Forest [38], or random
generation of probabilities. The default hyper-parameters of the
model algorithms were taken without tuning. The train and test
split was taken as 0.7 and 0.3, respectively, and also depending
on the features that were employed. The following features in
different combination were used: temporal features including
time of day, month, type of day, on-street parking capacity of
blocks, GPS coordinates of the ground truth observation, and
temporal trend of parking dynamics (TTPD) [36].

For the calculation of the KPIs as shown in Equation (2),
two weighting techniques were applied: equally weighted slices
and importance weighted, respectively. Table 2 and Figure 7
display the normal KPI score without any PSS setup for each
model using Equation (1), as well as the average equally and
importance weighted KPI scores from the 10 PSS experimental
design setups (see Table 1) using Equation (2). Models 1 to 8
use actual on-street parking related features, while 9 to 11 are
random models. Model 12 is essentially an unrealistic random
guesser model that only has a single optimum prediction value
determined based on the expected parking availability from the
ground truth data; meaning it is not forecasting, but based on
all the ground truth availability, what was the average probabil-
ity of finding one spot open. Nonetheless, model 12 is used as a
baseline reference for comparison of quality and to test whether
the quality assessment method can detect its weakness. The best
models were: 3, 5, 7, and 12, whereas the worst model by large
was model 11.

FIGURE 7 The KPI scores of each sample model

The KPI scores were calculated considering the PSSs and
subsequent weightings. The range of scores per PSS can be
observed in Figure 8. The figure shows the heatmaps of equally
and importance weighted scores for all models against each PSS.
The average scores from the heatmaps are illustrated for com-
parison to the normal KPI calculation in Figure 7. All feature-
based models have on average a slightly worse importance
weighted KPI (Brier Loss) compared to the equally weighted
and normal KPI.

Figure 9 presents the average relative differences depend-
ing on the model (upper graph) and PSS (lower graph) scores,
respectively. It is observed again that, on average the impor-
tance weights do not shift the scores by much from the equally
weighted scores, although for each model and PSS combina-
tion the difference varies (see Figure 8). The KPI scores are on
average -1.06% worse considering importance weighted for all
models, while -1.07% for the PSSs. The neighbourhood-based
PSSs (PSS 1) setups 1 to 4 had the largest negative relative dif-
ference between the equally and importance weighted. Setups 5
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GOMARI ET AL. 611

FIGURE 8 Heatmaps of equally (upper) and importance (lower) weighted KPI scores for all models considering each PSS

FIGURE 9 Average relative difference between equally and importance weighted KPI scores based on models (upper) or PSS setup (lower)

to 8, representing neighbourhood and time-based PSSs (PSS 3),
starting at zoom level 14 and 168 week-hours incurred a positive
difference but as the zoom level increased (i.e. smaller spatial
scope), there was a gradual decrease in scores. For time-only-
based PSS 2 setup 9, and PSS 4 neighbourhood clusters and
time PSS setup 10, the calculated importance weighted scores
were higher compared to the equally weighted score.

In instances when temporal aspects are considered in the
experiments, the sample models’ scores indicate a better perfor-
mance score compared to the measured normal KPI as shown
by PSS 2 setup number 9 (see Figure 9), while when a design
setup includes spatial importance, the models’ KPI scores are
punished as shown by the average scores of PSS 1 in Fig-
ure 9 and Table 4. In the case of setup number 9, time-only-
based importance assignment dilutes the goal of a prioritization-
based quality assessment by disregarding the spatial factor, that
is, location of parking. Hence, experimental design setup 9 is
not the deciding test setup. The same can be said for PSS
4 or setup 10, in which different neighbourhoods were clus-
tered and undermined the spatial importance of on-street park-
ing location. PSS 4 could possibly work in a polycentric city
use case, where a city has multiple equally busy centres and

neighbourhoods could be more similar. However, this is not the
case for Munich, as it only has one centre.

In the experimental design setups, the temporal and spatial
aspects of the PSSs create a push and pull effect in the KPI
measurements, thus, the average difference between equally
weighted and importance weighted cannot be clearly distin-
guished for PSS 3 that contains setups 5 to 8 (see Figure 9),
where both neighbourhood levels and the time component are
considered. Further investigation shows that the reason this
happens with PSS 3 is there are so many slices that are removed
in the calculation of the KPI because of the lack of available
ground truth for those slices (see Table 3). Table 3 displays the
diminishing prioritization problem as more slices are excluded
due to the lack of ground truth observations for the period of
study. The lower the zoom level, the more slices are generated—
this lessens the influence of prioritization-based quality assess-
ment, unless there would be available ground truth observations
at every short segment of a street within 1 h intervals. Therefore,
given different PSSs, it is necessary to select a PSS that covers
sufficient amount of slices generated that ensures a logical spa-
tial aggregation and weight assignment that better represents an
importance weighted or prioritization-based assessment.

 17519578, 2022, 5, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12160 by T

echnische U
niversitat M

unchen-M
U

N
C

H
E

047S, W
iley O

nline L
ibrary on [25/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



612 GOMARI ET AL.

TABLE 3 Excluded important slices without GT observation

Setup # PSS #

# of

Slices

# of Slices

Used

Cumulative percentage

of excluded important

slices

1 1 23 22 0%

2 83 76 1%

3 285 232 4%

4 952 662 15%

5 3 3671 725 66%

6 12246 1264 83%

7 36756 1980 92%

8 103545 2781 97%

9 2 168 114 11%

10 4 1090 416 36%

Since the ground truth set in this study was based on random
observations made throughout Munich and does not cover as
many generated important slices as desired, it can only partially
differentiate between equally and importance weighted KPI for
PSS 3. Nonetheless, the differentiation is clear for experimen-
tal design setups 1 to 4 for PSS 1 using only spatial slices.
Thus, since the results of PSS 2 and PSS 4 show the under-
mining of location importance, PSS 1 stands out amongst the
four prioritization-based subsampling strategies tested. Further-
more, as the disparity between equally and importance weighted
has been proven with PSS 1 when a significant portion of the
slices are covered, the importance weighted approach is used in
the benefits assessment as the basis.

Having calculated the KPI scores considering the different
PSSs and weighting techniques, the next step is to check the
true quality measurement. This is done by proving that this qual-
ity assessment methodology using PSSs which provides priority
slices can give better insights about on-street parking prediction
models as compared to doing random ground truth slices. This

section covered the KPI scoring when the entire ground truth
was used for the KPI measurement, while the next section cov-
ers the impact of smartly reducing ground truth data on the KPI
scores.

3.4 Benefits assessment based on
comparison against non-prioritized randomized
subsampling of slices

The benefits assessment (see Section 2.4) of the methodology
was done by comparing the top important PSS KPI scores
against the scores determined by the baseline case of non-
prioritized randomized subsampling (NPRS) of ground truth.
The NPRS selection was done on the slices generated from
the PSS, but the importance weight was not considered, hence
non-prioritized. Specifically, this section presents the impacts
of top importance-based subsample reduction of ground truth
size on the PSS KPI scoring and the robustness check that
the methodology can eliminate the weakness of unfortunate
random ground truth sampling. The ground truth sample size
reduction was implemented by sorting the importance weights
of the PSS slices and then taking a certain top fraction per-
centile. For example, using the prioritization-based reduction of
GT considering only important slices of PSS setup 6 within the
top 90th percentile, the GT sample size is reduced to 3563 (30%
decrease) out of 5152 observations. However, if reduction was
to be done randomly, 90% of the GT observations are 4637
observations. There are two reasons for the large reduction:
(1) slices are only generated in areas and time frames that have
recorded a parking event, hence, the GT outside of these slices
are automatically disregarded as less important, in the case of
the example, only 4838 observations (6% decrease) exist for
PSS setup 6; and (2) there is a disproportionate distribution
of the GT observations throughout the city since they were
conducted randomly, and based on the performed reduction, a

TABLE 4 Percent (%) difference between weighted KPI scores and each model’s normal KPI score
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GOMARI ET AL. 613

FIGURE 10 Comparison of KPI scores from NPRS against top 50th percentile important PSS

substantial amount of the collected GT were outside important
areas and have sparse coverage in comparison to the number of
slices for setup 6.

Further prioritization-based reduction was performed at
percentile fractions ranging from 30th to 90th at 10 percentile
intervals as a preliminary heuristic step. It was decided as a use
case, for the main analysis here, the tiles within 50th percentile
top fraction is considered. The same experimental design was
setup for the NPRS. For the NPRS, at each fraction, 1000
random subsampling sets were created from the combination
of 10 PSS setups and 100 unique random sampling trials. For
both cases, this was done to understand the difference in the
information retained about quality as compared to calculating
the KPI score for the entire GT dataset. As a counterpart to
the average sample size of the top 50th percentile importance
fraction based on the different PSSs, only 30% GT fraction was
used for NPRS. Top 50th percentile importance was selected, as
the variances of scores from this fraction size onwards to 90%
are relatively small.

The robustness indicator used in this analysis is the IQR
method of outlier detection (see Section 2.4). This was used to
measure the spread of the KPI variation for each sample model
and to identify scores that were far from the central tendency.
Scores that are considered as outliers are interpreted as sub-
sampling strategies that have made an unfortunate selection of
subsampling; these are not wrong, but are an indication that a
strongly biased quality assessment is present. Outliers are not
to be considered as part of the decisive factors. Furthermore, it
can be observed on the right graph in Figure 10, the KPI scores
on average are measured worse in the case of PSS compared to
NPRS on the left. In the case of NPRS, 60% of scores across the
first 8 feature-based models were worse than the normal KPI,
while this was 69% for the PSS importance approach. This is
also visible in right graph on Figure 10 as the normal KPI is
consistently below the median. This signifies that, the areas and
time frames belonging in the top 50th percentile important slices
are harder to predict, thus, the scores are worse. This proves the
need to highlight PSS important spatio-temporal slices during
ground truth to measure the true quality and value of an on-
street parking prediction system. Moreover, it is observed that

for the pessimistic model (number 11), the scores improve in a
PSS-based quality assessment (see Table 4) since the important
areas are busy areas, suggesting some pessimism is necessary for
a model to perform well in such areas. This is the opposite for
the optimistic model number 10.

The benefits assessment proves to detect weakly designed
ground truth collection strategies that give a false perception of
the true quality and performance of models because of unfor-
tunate quality testing subsampling selection. The introduced
approach reveals the true performance scores. Moreover, the
method can also be used to conduct a marginal benefits compar-
ison between several competing models. This is demonstrated
by investigating feature-based models 3, 5, and the top base-
line unrealistic retrospective average parking availability model
12. Model 2 essentially is always just a single optimal pre-
diction value that is equal to the average of all ground truth
observations.

Models 3 and 5 both have a similar KPI value with model
12 (see Table 2) showing that these two models are high
performing. To understand whether the two models are on
average better than model 12, the scores are first all adjusted by
applying all PSSs introduced. Model 12 had a normal KPI score
ranking among the best (see Table 2) and when the scores were
calculated using NPRS, the model was assessed as even better
than the normal KPI in 49% of cases. Upon the selection of
ground truth within the top 50 percentile important PSS slices,
this occurred only in 10% of the PSS design setups (1 out of the
10) as highlighted in bold inside Table 4, and indeed detecting
the model as initially falsely assessed. For models 3 and 5, the
scores were better in the random NPRS scenario 52.4% and
39.2%, respectively, while as illustrated in Table 4, these feature-
based models are performing better in 30% of the scores (3 out
of 10 for both models) compared to the normal KPI. Based
on the adjusted performances, thus, it can be gauged that the
feature-based models marginally outperform the top baseline
unrealistic model 12 based on a simple tally of whether the
models’ scores improve or get worse. In a real-world compar-
ison, model 12 cannot exist. Hence, if the comparison is now
focused on choosing between the two models 3 and 5, the next
step is to select a PSS strategy that is best suited to the use
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614 GOMARI ET AL.

case considering the available ground truth observations. As
concluded in Section 3.3, PSS 1 can be the deciding factor for
this study. In this case, as shown in Table 4 after adjusting the
scores to setup number 2 a prioritization-based subsampling
strategy (PSS 2) that focuses on neighbourhood level 15, it is
concluded that model 3 is better than model 5, with KPI scores
of 0.253 and 0.257, respectively, which roughly puts model 5 as
1.58% worse than model 3 after the adjusted scores.

3.5 Synopsis of analysis

An elaborate discussion in Section 3.3 proved that PSS 1 is the
most suitable for the use case presented in this paper among the
4 PSSs introduced. PSS 2 and 4 undermine spatial importance,
and this is a big weakness that cannot be overcome in these
PSSs. PSS 3 despite its promising approach, could not be utilised
for further benefits analysis, as there was a big gap between the
available ground truth observations and the number of slices
generated. As presented in Table 3, although important slices
can be generated using the parking events data, there is a lack
of observations in order to consider the importance weights in
the final score calculation for true quality. Also, it was difficult
to distinguish the difference between equally and importance
weighted KPI scores. However, PSS 1 does not suffer from any
of these gaps, as not too many but sufficient slices are generated,
that were capable of aggregating the importance and assigning
reasonable weights that primarily consider the neighbourhood
importance. Specifically, the most critical design setup among
the 10, is setup number 2, which adjusted the models’ scores on
average by−6.6% as shown in Table 4. In Section 3.4, the bene-
fits were shown by the comparison of non-prioritized random-
ized subsampling (NPRS) versus the PSSs. The adjustments for
the worse in KPI scores were apparent and it proved that there is
a need to calculate the true scores and assess models’ true qual-
ity. In summary, with the application of the introduced method,
it was possible to assess the true quality by reducing the ground
truth subsample to areas most important to the customers, and
also help decide between competing models.

4 CONCLUSIONS AND
RECOMMENDATIONS

The proposed data-driven methodology in this paper has shown
that it is possible to smartly reduce ground truth and still
assess the true quality of different prediction models by mul-
tiple prioritization-based subsampling strategies (PSSs). The
approach automatically identifies important neighbourhoods
(space) and time periods, called slices, based on the volume
share of the fleet’s parking events within them. Different PSSs
were introduced that can be applied to any type of fleet data
prioritization strategy. For the use case of on-street parking
information (OSPI), the method was applied using the parking
events dataset of Munich, Germany.

The methodology benefits assessment confirms that, the
prioritization-based technique is capable of identifying false

assessment of models. This was evaluated based on a compari-
son with non-prioritized randomized subsampling (NPRS) on a
30% fraction of the ground truth dataset. The NPRS approach
was done to quantify the chances of misfortunately randomly
selecting areas and time periods that do not necessarily repre-
sent the true quality. This was accomplished by assessing the
quality metric scores at the automatically defined slices across
the 10 PSS design setups that were tested. The PSS approach
considered the top 50% important slices as the subsample to
assess the true quality of the different OSPI models. In majority
of the cases, the measured scores at important slices that are
more valuable to potential customers, the models performed
worse in comparison to NPRS. This implies that assessing the
quality at the defined important slices must be checked first
before other areas and time periods are observed. The prioriti-
zation method then immediately gives a robust first impression
of a model’s performance.

In conclusion, it is possible to make mistakes of wrongly
assessing the true quality of a model when the ground truth
data is collected randomly. The usage of the prioritization-based
quality assessment is that, collectively, the PSSs can robustly
evaluate the performance of a mobility-related prediction
model, where it matters most to the users of the system. The
methodology also allows the quality managers to gain first valu-
able insights fast at a lower cost with less ground truth needed.
Thus, the introduced methodology in this study can directly be
used by companies that are maximizing their resources for qual-
ity testing of mobility-related information systems.

The next possible directions of this research are to conduct
a comprehensive study on the optimized minimum fraction of
ground truth required for the true quality assessment check, the
application of the methodology on other mobility use cases,
and the extension of prioritization-based subsampling strate-
gies using other factors such as the density of points-of-interest
(POIs) or local contextualized information and so on. The pre-
diction models presented in this paper were only used as exam-
ples to demonstrate the capability of the quality assessment
methodology introduced in this research. As research contin-
uous, there are plans to do a study on model development and
improvement.
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