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Summary

Camera-based visual navigation has great potential for various applications,
especially in satellite-signal-degenerated environments. However, the lack of
integrity protection has constrained its utilization in safety-critical applications.
Integrity characterizes the quality of the information that a navigation system
delivers. Integrity frameworks have been developed over decades for satellite
navigation, and continue to play an essential role in safety-critical applications
like civil aviation. Nevertheless, there are several challenges to quantify the risks
associated with visual navigation. Over the last few years, several approaches to
tackle these challenges have been investigated. These developments are the first
steps toward a reliable visual positioning framework with integrity monitoring
capabilities. In this paper, we review the current status, particular challenges,
and development trends in visual positioning integrity monitoring. In addition,
we propose a preliminary framework so that the future developments on visual

navigation integrity can benefit from a systematic approach.
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1 | INTRODUCTION

Global navigation satellite systems (GNSSs) are widely used in applications
nowadays. From maritime transportation to civil aviation, from route guidance to
location-based services on smartphones, GNSS is a core technique for positioning.
However, significant challenges with new applications in specific environments
persist. Autonomous driving, unmanned aerial vehicles (UAV), and urban air
mobility (UAM) require reliable navigation in deep urban areas. In these environ-
ments, the performance of GNSS is degenerated due to shadowing by tall buildings
and strong multipath signals. It is difficult to solve these problems using GNSS
technologies only. Multiple sensor fusion is necessary to deliver sufficient naviga-
tion performance required by such applications.

Visual navigation using cameras as part of a multi-sensor solution offers a
number of advantages in such applications. Firstly, the number of visual cues for
camera-based localization algorithms is large in dense urban environments where
GNSSS faces its greatest challenges. The associated detailed visual information leads
to precise estimates of the camera’s pose (position and orientation). Secondly, the
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development of machine-learning techniques has made enormous progress in
recent years and transforms the complex patterns seen in images into a percep-
tion of the environment (Liu et al., 2017). In addition, this is closest to human
perception and is, thus, the easiest to interpret by humans for both interaction and
verification purposes. Visual simultaneous localization and mapping (SLAM) is a
key element in the estimation process. It estimates the relative pose and corre-
sponding map simultaneously, and has been widely used in robotics over the past
decades (Cadena et al., 2016). Last but not least, digital cameras do not cost much
and are easy to integrate into a system. In many cases, they are already present
due to requirements from other tasks such as monitoring and detection, which
provides a solid foundation for the visual navigation technique’s wide application.

Broadly speaking, visual navigation covers various topics and areas including
perceptions, path planning, positioning, and control, etc. In this survey, we focus
on the positioning and localization (i.e., pose estimation using camera measure-
ments). Cameras are actively used for positioning in applications such as vir-
tual reality, augmented reality, and relative pose estimation in factories already.
However, challenges remain for safety-critical applications such as autonomous
driving and urban air mobility (air-taxi); the lack of a mature integrity monitoring
framework being the most significant obstacle.

In a safety-of-life context, the performance of a given navigation system is char-
acterized by four aspects: accuracy, availability, continuity, and integrity (Langley,
1999). According to the definition from the European Space Agency (ESA),
“Integrity is the measure of the trust that can be placed in the correctness of the
information supplied by a navigation system. Integrity includes the ability of the
system to provide timely warnings to users when the system should not be used
for navigation,” (European Space Agency, 2011). In other words, an integrity risk is
present whenever the system reports a position with sufficient confidence but the
actual error exceeds an acceptable bound.

In order to ensure safety, the navigation system needs to monitor the integrity
of the parameters, usually by setting up some specific test statistics, and to conser-
vatively calculate a protection level (PL) which guarantees that inside the bound
of the PL, the occurrence probability of an undetected error does not exceed the
maximum allowable integrity risk. By comparing the PL value with the alert limit
(AL) set according to application requirements, the system should issue an alert
and should be marked unavailable if the PL is larger than the AL value. Intuitively,
if the PL calculation is overconservative (in which false alerts occur frequently),
the continuity of the navigation solution would be interrupted. In practice, the
PL is calculated according to the maximum allowable integrity risk as well as the
minimum availability and continuity requirements. Since integrity failures may
cause fatal accidents in safety-critical applications, the tolerated integrity risk prob-
ability is extremely low in such scenarios. Table 1 lists a few examples of the integ-
rity requirements’ order for safety-critical navigation applications, according to its
standards and reports (EUSPA, 2021a, 2021b, 2021c; RTCA, 2004).

In order to satisfy both accuracy and integrity requirements in challenging envi-
ronments such as urban canyons, the integrity monitoring for a multi-sensor navi-
gation system is essential. This further requires the monitoring and fault detections
for each individual sensor and their corresponding processing procedures. For
GNSS, the core integrity monitoring methods are already well investigated and
have been practiced for years (Blanch et al., 2015; Joerger et al., 2014). However,
for camera-based navigation techniques, a common agreement on framework is
still missing. From our point of view, developing a framework for visual navigation
integrity monitoring is an important step toward reliable solutions and the future
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TABLE 1
Examples of Positioning Integrity Requirements for Safety-
Critical Applications
Application Integrity risk  Alert limit
CAT I landing! <1077 <10m
CAT II/1II landing <107 <10m
Autonomous driving <10 <2.5m
Train track change <1078 <2.5m

standardization of techniques for safety-critical applications. In the following sec-
tions of this paper, we briefly introduce the basics of visual navigation techniques.
Then, a brief review of integrity concepts and discussion on particular challenges
for visual positioning integrity are presented, followed by a review of the current
development states of vision integrity monitoring approaches. Furthermore, we
propose a preliminary integrity description framework for visual positioning that
stresses monitoring error sources in various domains. The framework focuses on
feature-based methods given that there are additional unsolved challenges in integ-
rity description of machine-learning-based approaches, which will be discussed in
more detail in the following sections. Last but not least, we discuss the prospects for
the research community to further develop integrity-oriented methods in the future.

2 | THE BASICS OF VISUAL NAVIGATION

In this section, the basic concepts of visual navigation and common error sources
are briefly introduced. For more detailed background content, one can refer to
the classic book by Hartley and Zisserman, Multiple View Geometry in Computer
Vision (2003), and more detailed review sections in the study by Zhu (2020). In
the remainder of this paper, a superscript with parentheses () is used to denote the
reference frame in which vectors are represented. Vectors and matrices are denoted
with bold symbols, while scalars are not. Vectors such as XS.W) e R3 with geomet-
ric meanings are written with an arrow.

The raw sensor measurement of digital cameras is a discrete image I, which rep-
resents an amplitude measure of the illuminance during the exposure time on the
image plane Q — R?. For visual navigation applications, it is essential to extract geo-
metric information from the luminance of the images, and the processing should be
in real time. The gain afforded by using color information is usually insignificant com-
pared to monochrome luminance, because processing colored images requires at least
three times as much computational power as processing grayscale images with the
same resolution. As a result, for navigation purposes, grayscale images are typically
used (i.e., Ie ZNwNw denoting the amount of intensity values at each pixel with N,
and N,, as the number of the pixels in the dimensions of the height and the width,
respectively). The intensity values in the image I are noisy due to various error sources.
‘We model measurement noise as additive noise on top of the error-free image I, as:

I=1,+n, (1)

ICategory I/1I/II1 (CAT I/II/1II) are defined by the ICAO (International Civil Aviation Organization) and FAA
(Federal Aviation Administration) to categorize operations of precision instrument approach and landing. Different
categories have distinct parameters including decision heights and visibility. For example, a CAT I landing has
a decision height no lower than 200 feet (60 meters) and with a visibility of no less than 800 meters or a runway
visible range of no less than 550 meters. A higher category operation has more stringent demands on the navigation
system.
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FIGURE 1 Reference frames in visual positioning; the blue stars with different shapes
illustrate four feature points in the 3D space, and the round dots are their 2D projection in the
image plane (the projection rays are denoted by dashed lines).

The noise n; is normally referred to as photometric noise in the literature, since it
represents the raw error in the image intensity values.

The location of pixels in the image plane and the corresponding light sources fol-
lows projective geometry. A simple example with four points in the space projected
to the image plane is shown in Figure 1. The origin of the camera reference frame
(C) is set at the optical center. The projection model is dependent on the applied
lens. A review of different camera models and selection methods can be found in the
works by Polic et al. (2020) and Sturm et al. (2011). Most systems can be well approx-
imated using the classic pinhole model (fisheye lenses are the only common optical
system that may significantly depart from that). For the pinhole camera model, the
two-dimensional (2D) position of an image point u, = [ui,x,ui,y]T e QcR? can be
related to the corresponding 3D point [X(©), X;C), X;C) 1" as:

xo N x© N7
g f 2
X© 277 X© 2

u=f

with fdenoting the focal length. Potential lens distortions would be corrected using
a model as described in studies by Fryer and Brown (1986) and Zhao et al. (2020).

The transformation between the camera frame (C) and the world reference
frames (W), e.g., the local east-north-up (ENU) frame, is dependent on the posi-
tion and attitude of the camera as shown in Figure 1. For a camera at position
¢™) eR? and with attitude represented by R_,w) €SO(@3) in the world frame,
the projective geometry of a 3D point in the world frame is described by:

z (W)

u. X ~
~ _ — _ (W)
u; =d, { ll:l = K[R(W—>C) - R(W—)C)C(W):' { 11 } =PX; ®3)

where XEW) eP? is expressed in homogeneous coordinates in the world frame,
and K is the intrinsic matrix that can be estimated by camera calibration methods
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(Heikkila & Silven, 1997; Zhang, 2000). However, calibration is not perfect in prac-
tice. As a result, calibration bias remains in each measurement. The magnitude
of the calibration bias is dependent on the applied optical system. In most cases,
such calibration bias cannot be ignored and must be properly processed in integrity
monitoring. By reorganizing Equation (3) with variables in Euclidean space, we
denote the 2D coordinates of a point in the image by a function of the camera pose
and the 3D location of the point as:

u, =2(X{",x) (C)

where x eR® is the camera pose parameterized with a six degrees-of-freedom
(DoF) vector.

The camera pose x can be estimated given a set of associated 3D points {ng)}
and their corresponding 2D projections in the image {u,}. The coordinates of the
3D points can be obtained by using a georeferenced landmark or a map database,
or by estimating the depth of the consistently tracked points in visual odometry or
SLAM approaches. If the 3D coordinates are obtained from a georeferenced map
database, the pose of the camera can be estimated using measurements at each
time snapshot. For SLAM-type approaches, the camera tracks the points when
moving and estimates the 3D point depth by using techniques such as triangu-
lation. In such cases, the pose estimation is relative over time, and the absolute
positioning of the camera is available only if the camera position is known in the
world frame at some time instant (e.g., at the starting point).

For visual odometry or SLAM methods, the error propagation in the depth esti-
mation must be additionally considered, and the global scale must be estimated if
a monocular camera is applied, normally with the aid of other sensors like inertial
sensors (Lynen et al., 2020; Qin et al., 2018) or ranging measurements (Zhu et al.,
2017, 2018). In both cases, a Bayesian filter like an extended Kalman filter (EKF)
and smoothing method like incremental smoothing and mapping (iSAM; Kaess
et al.,, 2011) can be applied to retain the smoothness and continuity of the estima-
tion process.

There are generally three categories of relative pose estimation approaches:
direct methods, indirect methods, and end-to-end machine-learning-based
methods. The direct and indirect approaches are based on the aforementioned
projective geometry model, and the machine-learning approaches implic-
itly extract geometric information from the images using data-based train-
ing. Engel et al. (2018) reviewed different categories of physics-model-based
approaches. Direct methods utilize pixel intensity values directly to estimate
the camera motion (e.g., see the state-of-the-art work [Engel et al., 2014, 2018;
Gao et al., 2018]). It is assumed that the points corresponding to the visible pix-
els form continuous surfaces in the 3D space and their luminance is invariant
over short time.

Indirect methods such as ORB-SLAM (Mur-Artal & Tardos, 2017) and
SOFT-SLAM (Cvisi¢ et al., 2017) first apply feature detectors to locate features of
interest in the image (e.g., corners, edges, light blobs, or high-level features like
objects detected by pattern recognition methods) so that a set of geometric mea-
surements {g, =S(I)cQ|i=1,.,N p} can be extracted from the image intensities
and are matched with the 3D coordinates. It should be mentioned that though
data-driven deep learning techniques are also applied to detect features (e.g., the
SuperPoint feature proposed by DeTone et al. [2018]), these approaches are still
feature-based rather than end-to-end, considering their difference in the main pro-
cessing procedure.
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End-to-end machine-learning-based methods apply deep learning techniques
to estimate relative pose. The methods normally do not execute any explicit fea-
ture extraction or association. Instead, deep neural networks are trained using
a huge set of training data with known ground truth camera poses to learn the
relation between the measurement images and the camera poses. Important
end-to-end approaches include VLocNet++ (Radwan et al., 2018), EssNet (Zhou
et al., 2020), PoseNet (Kendall et al., 2015), and its variants (Kendall & Cipolla,
2016). A survey of this category of methods can be found in the review by Chen
et al. (2020).

Since, in practice, it is very difficult to validate the lighting-invariance assump-
tion of direct methods and the output integrity of the deep neural networks (the
problem is described in the following sections), we focus on the feature-based
visual navigation methods (i.e., indirect methods) for safety-critical applications.
In the feature extraction process, the photometric noise n; in I is propagated to
the geometric error n; for the i-th point. The noisy measurement equation can be
expressed as:

4 =u,+n,+b, =7,(x)+n, +b, (5)

where b; is the nominal bias in the point location caused by calibration error. The
N, 2D measurements need to be associated with the set of 3D points, i.e., for each
A, it would be associated with a 3D candidate XEIW) Erroneous matching may
occur in this process. If the association is correct, a; = i for this feature.

By stacking all the N, successfully associated feature points as illustrated in
Figure 1 into a vector, the position and orientation of the camera can be estimated
by solving the following nonlinear optimization problem iteratively:

% =argmin || g—z(x)|2 , (6)
X
with:
ﬂl 7[1 (X) nl
u= s H(X) = ,N= (7)
B, 7N, (%) Dy

X, is the covariance matrix of noise vector n. This equation is solved by
linearization.

Equation (6) is the fundamental optimization problem for visual pose estima-
tion. It can be observed from its definition in Equations (3) and (4) that the mea-
surement function 7 (x) is highly nonlinear. Therefore, a good initial estimate of
x is essential to ensure that the linearization in the iterative process does not lead
to local optima. In noise-free cases, x can be solved directly by using N, > 3 mea-
surements {u, |[i=1,..,N » }, which is called the Perspective-n-Point (PnP) prob-
lem. A review of PnP problem solutions is found in the study by Lu (2018). The
state-of-the-art methods are EPnP (Lepetit et al., 2009) and the recently proposed
EOPnP (Zhou & Kaess, 2019).

Figure 2 summarizes how the geometric information flows in the correspond-
ing error space propagation in the fundamental processing chain of feature-based
visual navigation methods. At the beginning of processing, the geometric informa-
tion is hidden in the raw measurement image which contains a huge amount of
information provided by the intensity values of all pixels and their spatial relations.
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FIGURE 2 Fundamental procedure and error space propagation of visual positioning

(a) Overexposed image (b) Original image

FIGURE 3 An example of overexposure effect

The corresponding error is photometric noise in the intensity domain. Then, fea-
ture points are detected from the raw image in order to extract the most important
geometric information for positioning. The error can be expressed as a 2D geomet-
ric error in the feature locations. On top of the 2D error, binary association faults
may occur when matching the 2D feature locations to the 3D point coordinates.
With matched pairs of 2D features and 3D points, the 6-DoF camera pose can be
estimated. The error in the pose estimate is propagated from the earlier stages and
additional error sources can be introduced during the estimation process.

For a specific visual navigation task or algorithm, the exact processing chain
varies and there can be additional important modules (sequential estimation,
point triangulation for SLAM, image retrieval for map-based positioning, etc.).
Nevertheless, the aforementioned procedure is fundamental for most feature-based
visual navigation methods, and properly addressing the integrity for such a funda-
mental procedure is essential, but already a challenging task. Consequently, this
short summary has focused on the common procedure without addressing certain
aspects. The integrity concept discussion in the following portion of this work also
has the same focus.

There are error sources in every domain in the fundamental process of visual
positioning. Here we provide a few illustrative examples of some common fault
sources. In the raw image (i.e., pixel intensity domain), photometric noise n; can
be modeled as a random variable caused by effects like sensor thermal noise and
lens blur. On top of that, there are other erroneous effects in the intensity domain
that affect the visual positioning performance, such as the overexposure shown in
Figure 3 and motion blur shown in Figure 4.

Figure 5 illustrates an example of incorrect association in feature matching in
visual navigation. The thin blue lines are successful matchings, and the thick red
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(a) Blurry image

(b) Sharp image

FIGURE 4 An example of motion blur effect; images from public data set (Seibold et al.,
2017)

FIGURE 5 An example of wrong association and outlier features; images from public data
set (Geiger et al., 2012)
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line is a significantly wrong association. If a pair of features with large biases in a
2D location or with an undetected wrong association are exploited in the pose esti-
mation, the positioning result may also contain significant biases.

It should be mentioned that the faults caused by error sources may occur inde-
pendently in different domains besides the error propagation in the processing
phases. For example, the position estimation using measurements without any
large bias or wrong association can still have significant error due to convergence
failure in the nonlinear optimization. Therefore, error sources in the different
phases of the algorithm must be taken into consideration in order to ensure the
integrity of the pose estimation result. This topic will be discussed in more detail
in following sections.

3 | INTRODUCTION OF INTEGRITY

3.1 | Definitions of Integrity

In this section, we briefly review the basic definitions of integrity in the context
of visual navigation. The integrity concept was first introduced by the civil avia-
tion industry in order to quantify positioning and localization safety requirements.
Integrity is a measure of trust that can be placed in the navigation system outputs,
which is reflected by the probability defined as integrity risk (IR). Generally speak-
ing, integrity risk is the probability that the position (or pose) estimation error is
larger than the tolerable limit, while the navigation system, however, is not aware
of the hazardous situation:

IR =p(|x—x| > AL, m(%X) < AL) (8)

where [|-|| denotes a metric of the positioning error, and AL denotes the alert limit
(AL), which is defined as the maximum allowable error in the metric space. The AL
is usually determined according to the operation requirements of the specific appli-
cation. For instance, suppose an error metric is set as the absolute horizontal and
vertical position error for civil aviation landing, and the AL is in the order of ten
meters. For automobile applications such as autonomous driving, the AL should
be significantly more stringent. m(X) is a monitoring function which reflects the
navigation system’s belief in the estimation error. A functional navigation system
for safety-critical applications must guarantee that IR<IR, ., where IR, rep-
resents the maximum integrity risk requirements (as shown in Table 1) for various
applications. The risky integrity events occur in practice, since normally the system
and error models are not perfectly known, and the navigation algorithms are usu-
ally optimized for particular types of error, such as those based on the Gaussian
noise assumption. A delicate design of the monitoring function is important for a
navigation system to mitigate integrity risk.

In order to avoid integrity failures, the GNSS research community and the avia-
tion industry developed integrity monitoring methods over the past decades. The
integrity monitoring technique calculates, in real time, a conservative monitoring
function as protection level (i.e., m(x)=PL). The PL is dependent on the measure-
ment equation at the estimate point and on the continuity as well as availability
requirements. It describes the worst-case error propagated to the position domain,
given that the continuity and availability requirements are fulfilled. Ideally, PL
should be an upperbound of the monitored error | —x|| by modeling the error
from various significant fault modes.
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When PL < AL, the system operates nominally, provided the conservativeness
in calculating PL. If PL > AL, the system triggers an alert within a required time
(defined as time-to-alert), so that the vehicle can take operation (e.g., marking the
navigation system as unavailable or changing the operational mode) before a haz-
ardous situation occurs. Due to the long tail of real-life error distributions, there
is a higher probability that the PL is smaller than the actual error. This case is
defined as misleading information, i.e., p,,; = p(PL < [%-x H). In the worst case,
if the misleading information is provided by the monitor, and the actual error has
exceeded the alert limit, it leads to a so-called hazardous misleading information
(HMI) event. When designing a safety-critical navigation method, from the integ-
rity aspect, a safe solution must fulfill that:

Py =PI % —x [ > AL,PL<AL)<IR, 9)

As shown in Figure 6, a tool named the Stanford-ESA Integrity Diagram has
been designed to demonstrate the relations among positioning error, PL, and AL,
and to illustrate the integrity of test data with convenience (Tossaint et al., 2007).

Besides the error monitoring, fault detection and elimination (FDE) methods are
also of great importance for safe navigation solutions. The integrity risk after using
K different FDE methods will become:

IRy =p(l%—x[ > AL,m(X) < AL|FDE,,...,FDE ) (10)

It should be mentioned that the integrity risk does not always decrease by add-
ing more FDE methods. An improper FDE approach may introduce additional
error sources and a corresponding integrity risk. As an example, if a set of data
contains 60 percent unwanted outlier measurements with a constant large bias,

System
Unavailable

Sstain AL < PE < PL

Unavailable
PE < AL <PL

Alert Limit (AL)

Nominal -
Operations af
PE<PL<AL

*

Protection Level (PL)
‘\

&+
L
-
-
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,*° Misleading
P Operations
o PL < PE < AL

Position Error (PE)

FIGURE 6 Concept of the Stanford-ESA Integrity Diagram (European Space Agency, 2011)
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a simple FDE method that rejects the minority cluster of measurements would
lead to worse results. Consequently, it is essential to quantify the error propagation
in FDE processing and overbound the residual integrity risk with the aid of appro-
priate error models, so that it can be ensured that the integrity risk after FDE is
still within the risk budget. This is a fundamental difference between integrity and
other similar concepts.

The basics of visual navigation techniques have been under development for
decades in computer vision and robotics research communities. In recent years,
one of the most important aspects in the development of visual navigation and
SLAM techniques has become robustness. Cadena et al. (2016) provide a good
review of the development status of SLAM techniques and the future trend in
robustness improvement. As a concept that is essential in robotics and other fields,
robustness represents the capability of a system to recover from specific error and
stay functional. The robustness concept has both similarities and differences with
the integrity concept.

The function of detecting and recovering from failures (i.e., fault detection
and elimination) is of great importance for both robustness and integrity. From
a methodological point of view, both robust approaches and integrity monitoring
approaches apply tools like statistical testing and outlier rejection in order to detect
faults and improve system performance. Robustness targets the availability and
continuity aspects of the system (i.e., the system should be able to recover when
faults occur and deliver [ideally correct] solutions continuously, even under dif-
ficult conditions). Sometimes, methods to improve robustness may increase the
integrity risk. Meanwhile, integrity focuses on the correctness of the solution with
quantified criteria. In safety-critical applications, it is crucial to recognize a situa-
tion in which the estimates are unreliable instead of providing a best-effort output
at high risk.

ORB-SLAM (Mur-Artal & Tardos, 2017) is, for example, widely used due to its
robust performance and open-source availability. It includes different methods to
optimize the robustness of the system. For instance, the algorithm initializes with
two different geometrical models and exploits a statistical test to reject one of the
hypotheses according to the residuals of the measurements. Similar techniques
are also applied in integrity monitoring. However, the ORB-SLAM algorithm sim-
ply computes a score for both models and selects the higher score, without consid-
ering the probability that such a selection may be wrong (especially in the context
of noisy measurements). The quantification of risk is the crucial part of the
integrity assessment. A recently released version of the algorithm, ORB-SLAM3
(Campos et al., 2021), provides a new feature to re-localize the camera when
motion tracking is interrupted with respect to the earlier established map. This
feature is a typical example to demonstrate the efforts to maintain continuity. The
risk of wrong re-localization is not quantified in the algorithm, and may lead to
significant error.

3.2 | Particular Challenges for Vision Positioning Integrity

Adapting state-of-the-art integrity monitoring methods to visual navigation
faces several challenges and requires new approaches to address them. GNSS
receivers know the exact structure of each transmitted signal, while cameras are
passive optical sensors that have little knowledge on what is captured during the
exposure time. The detection of structures (features, objects, designed patterns,
etc.) is challenging. A complex detection and association step is usually required.
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In this process, outliers can occur due to various sources of error (e.g., repeti-
tive patterns, occlusions, and moving objects) which all result in the impact that
the applied feature is not the expected one or is not at the expected stationary
position.

Abundant advanced detection methods have been and are still being developed
for different problems. Quantifying errors remain an open issue, in particular in
the case of deep-neural-network-based machine learning methods, which cur-
rently show the best performance in many detection problems. A neural network
is capable of providing a distribution as its confidence on detection results, but the
integrity of such output and the consequent impacts on the positioning error are
difficult to monitor for data-driven models.

The research community has noticed such disadvantages and analyses have been
undertaken accordingly to explain why the neural-network-based approaches usu-
ally have significant integrity issues, such as in the work from Sattler et al. (2019). In
addition, many potential solutions are being investigated to solve the general output
interpretability problem for deep learning. Current progress is reviewed in the survey
papers by Bulusu et al. (2020) and Kumar et al. (2020). However, these approaches
are still focusing on advanced training methods to improve the robustness of the
model, and integrity concepts are not yet taken into consideration. A work worth
noticing is from Sinha et al. (2018) that tries to quantify the robustness of the model,
which can be a significant step toward more mature integrity analysis for deep learn-
ing in the future. In addition, the uncertainty modeling method proposed in the work
by Kendall and Cipolla (2016) is also an inspiring approach to potentially provide a
data-driven confidence in the output of a deep neural network, though its theoretical
foundation is based on an assumed model in which the weights in the neural net-
work are Gaussian random variables. Consequently, to the best of our knowledge, it
still lacks tools to guarantee the integrity of the localization result for visual naviga-
tion methods based on data-driven machine learning. This is also the reason that the
integrity description framework for end-to-end deep-learning-based approaches is
not in the scope of detailed discussion in this work.

In addition, systematic biases are ubiquitous in feature extraction. For
feature-based visual navigation methods, the exploited geometric measurements
(i.e., feature locations) are obtained by feature detection from the measurement
images. The computer vision algorithms need to distinguish the points of interest
from the huge amount of other information in the image. The source of error in
such detection processes is more like a kind of interference, rather than noise. As
a result, errors are transformed from relatively easy-to-model photometric noise
to complex geometric error, which may contain deterministic biases in addition to
stochastic noise.

The introduction of biases from feature extraction occurs quite frequently. Large
portions (sometimes even more than half) of the measurements are often biased.
This depends on the applied algorithm. Figure 7 shows an illustrative example
of such effects. In the image, the 20 strongest features are extracted using the
Shi-Tomasi corner detector (Shi & Tomasi, 1994). The features are marked red with
different levels of darkness to represent the strength measure. A feature marked
with a lighter color is less significant for the feature detector. If detecting the
high-contrast checkerboard corners is the goal, it can be seen that a few features
from other parts of the image are more significant than some undetected checker-
board corners. The feature location error can be observed with ease for about half
of the checkerboard corners. The systematic bias is more dominant than stochas-
tic noise in the error, since the change of error is insignificant if the detection is
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FIGURE 7 Different lighting conditions for local corners

repeated multiple times using the same detector. Consequently, innovative meth-
ods are required for bias detection and elimination.

Additionally, feature extraction algorithms are highly diverse. The choice of
detection algorithm normally depends on specific tasks. The quantitative error
model for a particular type of feature detector may not apply for other detectors. As
a result, the error models become algorithm-specific and one cannot have a unified
solution for all missions. Utilizing a proper error model for the specific task is one
of the greatest challenges for visual navigation integrity monitoring.

Another significant challenge for vision integrity is that the performance
strongly depends on lighting conditions. Figure 7 also provides an intuitive exam-
ple to illustrate that. The error in feature detection is dependent on the local
intensity distributions, which is influenced by lighting conditions. The geometric
error distribution is different for the chessboard corner in the dark shadow and
for the corners in the light. At the same time, the corner closest to the light source
has a locally overexposed neighbor area, resulting in a different error distribution
of the extraction result from the other corners with better contrast. Consequently,
each measurement may have a unique error distribution dependent on local illu-
minance conditions. As a consequence, it is inappropriate to use a unified dis-
tribution to characterize the error everywhere in the image. This also makes a
nominal error model (as the basis for statistical tests to detect faults) challenging.
Some recent research such as the error model in the work by Zhu et al. (2019a)
tries to solve this problem by extracting local intensity parameters and modeling
the feature location error as a function of the parameters, achieving good perfor-
mance for chessboard-like corners.

Additionally, the change of lighting conditions has a further impact on visual
navigation performance. Since the view point or the light source may change, the
intensity values in the images might vary over time. This could cause severe integ-
rity issues for direct methods, which are based on the basic assumption that the
illuminance of the scene stays constant over a short period of time. Consequently,
if the lighting condition in the environment significantly changes with the view
point or changes over short time periods, the direct methods are not a good choice.
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The lighting changes also affect the performance of landmark association in
map-based approaches.

The nonlinearity in the observation equation is another severe problem for visual
positioning compared to GNSS. Due to the strong nonlinearity of the equations,
visual positioning requires a good initial guess on the state estimates to prevent the
optimization converging to a local minimum. Being trapped in a local minimum
is often not easy to detect, since the residuals can be nearly as small as that of the
global minimum. Other than the aforementioned points, the visual navigation pro-
cessing complexity is high due to the millions of pixels in the measurement images,
which also brings up challenges for real-time integrity monitoring.

Due to the above particularities of visual positioning techniques, one cannot
simply transplant the GNSS integrity monitoring methods for camera-based posi-
tioning. Rather, we need a new framework to tackle specific problems.

4 | RECENT DEVELOPMENTS IN VISUAL
POSITIONING INTEGRITY

As a new field that has not yet drawn much attention, the existing work on the
integrity aspects of visual navigation is rather limited in number. We review some
of the important publications on this topic in the following sections.

Mario and Rife (2010) proposed a simple integrity monitoring for camera-based
lane detection. The method estimates the lane location with two independent
vision algorithms and cross-validates the results to monitor the integrity of the
lane detection output. An alert is triggered if the monitored parameter exceeds
a pre-set threshold. Al Hage et al. (2019) proposed an approach in a similar con-
text. The authors used GNSS measurements and visual measurements to track lane
markers, while monitoring the residuals of the estimated position to remove faulty
measurements. A protection level (PL) was calculated by exploiting the posterior
covariance and a student’s t-distribution overbound model.

Fu et al. (2015) adapted visual measurements to aid GNSS integrity monitoring
for aircraft landing. The method first computed relative position between the cam-
era and a landmark on the ground, and then transformed the result into additional
synthetic range measurements, so that they could be combined with the GNSS
measurements to exploit the state-of-the-art GNSS-based integrity monitoring
approaches. Shytermeja et al. (2014) proposed an integrity monitoring architec-
ture using GNSS, inertial measurement units (IMUs), and a fisheye camera for
urban navigation. In the work, the camera is only used to check the GNSS signal
line-of-sight in urban canyons.

The aforementioned approaches exploit cameras to solve particular navigation
problems with integrity aspects. However, these methods have some limitations.
The method in the work by Mario and Rife (2010) depended on ad-hoc parame-
ters. For the other three reviewed publications, either the outputs from the camera
were taken as nominal results for granted (Shytermeja et al., 2014), or the vision
error was only monitored in a specific transformed domain (distance to lane in the
approach by Al Hage et al. [2019] and virtual ranging in the method used by Fu
et al. [2015]). As a result, misleading information may be provided to the naviga-
tion system in particular cases.

For example, it can be observed that, at some time instants, the sensor fusion
error is even larger than the GNSS-only solution (e.g., in test results in the work
by Al Hage et al. [2019]). This is probably due to the error model of the visual
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positioning mismatching with reality and the integrity of the camera-only outputs
not being properly monitored. In order to provide a navigation solution with suffi-
cient integrity, the integrity of the visual navigation, itself, must be taken into con-
sideration appropriately. As the importance of the topic has drawn more attention
from the research community, a few pioneered and innovative methods addressing
various aspects of the visual positioning integrity monitoring have been developed
more recently.

Calhoun and Raquet (2016) and Calhoun et al. (2015) proposed a relative posi-
tioning method by matching rendered images with measurement images. An
important innovative point of the work is that the image correspondence error
was quantified and a protection level could be calculated for the relative position.
Zhu and Taylor (2017) studied the integrity problem caused by correlated measure-
ments in visual navigation. The authors propose exploiting inflated covariance esti-
mation and the covariance intersection technique to obtain appropriate estimates.

Yang et al. (2018) investigated in detail the common causes of the ubiquitous
feature-matching outliers in visual navigation and proposed a statistical error
model for them. The authors provided an in-depth analysis of the scenarios that
might result in feature association error in practice, and the performance limitation
of some common outlier rejection methods was discussed. Based on the analysis,
they applied a probabilistic data association filter exploiting the proposed outlier
model to improve the integrity of vision-aided inertial navigation. Nevertheless,
the work utilized some ad-hoc parameters (e.g. outlier percentage) for the specific
test data sets, which required further improvement or explanation to generalize the
model for universal scenarios.

Zhu et al. (2019b) proposed decoupling the geometric impact and the visual
measurement error by using a six degrees-of-freedom dilution of precision, and
proposed a feature error model for integrity monitoring purposes in their work
(Zhu et al., 2019a). The approach modeled feature location error according to
the local intensity distributions of the feature points for chessboard-like features
(X-junctions). It provided a conservative scheme to reduce integrity risks when pre-
dicting measurement noise. Zhu et al. (2020) proposed a method to quantify the
feature association error for integrity monitoring of visual navigation. This work
quantified the probability of incorrect association when matching the measure-
ments with known landmarks and exploited the probability to calculate the integ-
rity risk caused by the fault mode.

Bhamidipati and Gao (2019, 2020) proposed a tightly coupled sensor fusion
method with integrity-monitoring capability to integrate GNSS measurements
and camera measurements. The direct visual SLAM technique was applied and
sensor fusion was carried out with graph optimization. Outlier rejections were
executed for the visual measurements and a PL for the position solution was
calculated by considering error in measurements from both sensors. Wang et al.
(2020) exploited similar outlier rejection methods for visual navigation error.
In addition, the authors propose applying the widely used multiple hypoth-
esis solution separation method (Blanch et al., 2007) from GNSS integrity
monitoring to the feature point measurements for detecting multiple faults
simultaneously.

A table (Table 2) is provided to summarize and compare the reviewed approaches
with focus on visual positioning integrity aspects. It should be mentioned that cur-
rent approaches are not yet an integrated mature solution to the visual navigation
integrity monitoring problem, since most of them just consider a particular type of
error source (e.g., large measurement biases).
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5 | AN INTEGRITY DESCRIPTION FRAMEWORK FOR
VISUAL POSITIONING

As reviewed in the last section, many current research works (e.g., Al Hage
[2019], Bhamidipati and Gao [2019, 2020], Fu et al. [2015], and Wang et al. [2020]),
adapt state-of-the-art tools such as residual-based bias detection and multiple
hypothesis solution separation developed for advanced receiver autonomous
intergrity monitoring (ARAIM; Blanch et al., 2015) in GNSS to visual positioning
and camera-involved multi-sensor navigation. Given sufficient degrees of redun-
dancy in the measurements, these methods can effectively detect the fault modes
caused by large measurement biases by applying well-designed test statistics. In the
state-of-the-art framework, for N measurement equations (defined in Equation [5]
for visual positioning), the faults can be modeled as an N-dimensional bias vector
added to the measurements:

u=n(x)+b+n (11)

and the probability that HMI can be decomposed using the 2N hypotheses (for each
measurement, biased or not) as:

2N -1

p(HMD) = > p(HMI|H,)p(H,)<IR . (12)
i=1

where H; denotes the hypothesis corresponding to the i-th fault mode and p(H,)
is its a priori probability. The model is sufficient for describing the main faults
in GNSS-based positioning (in which context it is developed). However, there are
more aspects to be taken into consideration in visual positioning, due to its passive
sensing nature and high-nonlinearity in the measurement equation.

When associating features with 3D landmarks, incorrect associations can also
result in integrity failures. Such faults are crucial when there are repetitive patterns
in the scene, which are difficult to detect according to visual appearance alone. The
positioning may have a large error if incorrect association occurs, even if all the
feature locations were measured with good quality. For N, points, there are max-
imum factorial of N, association possibilities, which forms a permutation group.
The association faults can be modeled as a permutation matrix multiplied to the
measurement equations instead of a bias vector, as shown in the research by Zhu
et al. (2020). In the work, the authors proposed a method to quantify landmark
association error and calculate the corresponding integrity risk, which is a feasible
integrity monitor for feature association error.

Furthermore, due to the strong nonlinearity in the visual positioning measure-
ment equation (Equations [3] and [4]), pose estimation is sensitive to the ini-
tialization of the nonlinear optimization. With exactly the same feature location
measurements and associations, the estimation results may differ for distinct ini-
tial guesses of the camera pose. Figure 8 illustrates a simple example of the impact
of initialization on the pose estimation result. In the simulation, five feature points
were visible from a camera located at the origin of the reference frame. The 2D
measurements of the features are noise-free in the simulation. If the initial guess
of the nonlinear optimization is close enough to the true position, the algorithm
can generate the correct estimation results. However, if the initialization is not suf-
ficiently accurate (e.g., at the position and orientation marked initial in the plot),
the estimated camera pose is biased from the true value (as marked by estimate in
the plot), even if all the measurements are noise-free and all the associations are
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FIGURE 8 An example of initial guess impact on pose estimation; the blue circles illustrate
the position of the five feature points used in the simulation.

correct. The error is caused by the convergence issue of nonlinear optimization.
If the optimization solver is trapped in a local optimum, it may result in integrity
failure, since, in some cases, it is challenging to distinguish local optima from the
global optimum using the residuals. The impact of this important practical issue on
positioning integrity has not been sufficiently discussed in literature.

In addition, it is important to identify the critical fault modes in visual posi-
tioning, since monitoring all possible fault modes may become computationally
infeasible when the number of biased measurements is large. By monitoring the
intensity domain, some crucial fault modes in visual navigation can be detected.
For instance, Figure 9 illustrates an example of how the overexposure effect may
influence feature extraction. The original image has a slightly overexposed area,
and the top of the tree can be extracted as corner feature points (marked with red
circles) for visual positioning. The lower image has artificially added brightness to
simulate a stronger overexposure effect. It can be seen that there are also corners
(marked with blue dots) at the top of the tree. However, the location of the corners
has changed from the original image (red circles), since the edges of the corner
are determined by the boundaries of the overexposure area. If the corners are con-
secutively used in tracking with exposure variations, the biases due to overexpo-
sure will affect the pose estimation of the camera. The corners look locally similar
in both images and the biases are correlated for both corners, which makes the
bias more challenging to detect in the feature domain. Nevertheless, the change in
exposure can be easily detected by setting up a test to monitor the global intensity
properties.

Another example is shown in Figure 10 to show the benefits of monitoring faults
in the intensity domain. Due to motion blur, there are two sets of corners that
are potentially extracted due to local intensity gradients. Assume that the blue set
(marked with circles) are the correct locations at the time, and the red set (marked
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(a) Original image

(b) Image with strong overexposure

FIGURE 9 Potential overexposure impacts; the red circles and blue dots denote the feature
point location in the image with lower and higher overexposure respectively. Image from public
data set (Delmerico et al., 2019).

with stars) is extracted due to the artificial intensity change due to motion blur.
Since each point in the red set is biased by a similar translation from a correspond-
ing blue set point, the association of features becomes ambiguous. As a result, the
estimated position using the wrong set would be biased, and the error might not be
reflected by the measurement residuals due to the strong correlation in the error. In
the research by Zhu and Taylor (2017), the authors proposed a method to mitigate
the risk caused by correlated error in measurements. A motion blur detector in the
intensity domain is also a possible solution to avoid such integrity risks.
Considering the aforementioned specific effects for visual positioning, simply
adapting the existing methods developed for GNSS is not the best solution for
visual positioning integrity. Instead, it may be necessary to design the integrity
framework smartly to include all the essential fault modes across different domains
(not only the 2N additive bias hypotheses in Equation [12]). Therefore, we propose
an integrity description framework illustrated in Figure 11 that monitors faults in
multiple domains in the processing procedure, in order to inspire future develop-
ment to cope with the specific challenges. Due to direct methods’ strong reliance
on uncontrollable lighting conditions, we focus on the feature-based methods in
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FIGURE 10 Potential motion blur impacts; the blue circles denote the original corner
location, while the red stars denote the corners extracted due to motion blur. Image from public
data set (Delmerico et al., 2019).
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FIGURE 11 Integrity framework for visual positioning
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the context of safety-critical applications. The framework is based on the general
core procedure of visual positioning shown in Figure 2.

In the diagram, the two rows in the middle (orange and red) demonstrate,
respectively, the states’ propagation and the error space propagation in the core
procedure (more details are available in Figure 2). The potential faults are catego-
rized according to the space in which the error lies at the corresponding phase of
the processing. The integrity monitoring of the performance is separated into two
parts: nominal error monitoring and fault detection and elimination. It should be
mentioned that the separation is only for clarity. The two parts are tightly com-
bined and function together in practice.

A major characteristic of the proposed framework is simultaneously monitoring
the error in different domains during the procedure of the pose estimation. The
nominal stochastic noise propagates from the intensity domain error {n;} to fea-
ture location domain error {i=1,...,N » |nl.} and then to the position domain error
X —x. The nominal error propagation should be monitored in a conservative way
(e.g., by using overbounded error model) so that the obtained error distribution
of the estimates is not overoptimistic. The studies by Calhoun and Raquet (2016),
Calhoun et al. (2015), and Zhu et al. (2019a, 2019b) are the result of development
for nominal error integrity, which are capable of calculating PL in nominal oper-
ation for particular problems. Nevertheless, one challenge remaining in nominal
error monitoring is that conservative measurement noise models are needed for
different types of features. An error model is proposed in the work by Zhu et al.
(2019a) for chessboard-like features (X-junctions), but there is still a lack of proper
models for other types of features. For extracted features, a conservative geomet-
ric error model is required for monitoring nominal performance. An overbounded
error distribution can be calculated to monitor the performance in nominal oper-
ation cases. By combining the model with the pose estimation results, a statistic
test can be set up to validate the positioning result given the specific integrity and
availability requirements, as demonstrated in the nominal error monitoring block
in Figure 11. Meanwhile, the error model is also a basis for large bias detection in
the geometric measurement domain.

The improvement of integrity in non-nominal cases relies on fault detection and
elimination, as illustrated in the FDE block in Figure 11. For visual positioning, the
faults can occur independently in various domains and may have different impacts
on the positioning result. In the image intensity domain, there can be faults like
overexposure or motion blur that can affect the following procedure. Such faults
may cause failures in the following feature extraction step, which can be avail-
ability issues (e.g., not enough features are detected due to low contrast). At the
same time, overexposure can also cause outliers or biases in the geometric mea-
surements as in the example in Figure 9. Additionally, incorrect associations result
in outliers and positioning error, as analyzed in detail by Yang et al. (2018) and Zhu
et al. (2020). In pose estimation, errors such as linearization biases and imperfect
calibration should also be monitored. The error introduced due to these model mis-
matches can result in overoptimistic error prediction. The FDE methods should
monitor the errors in different domains and take the correlation and propagation
of the error sources into consideration.

In order to detect faults, redundant measurements and quantified models
(including the error model, environment model, and motion model) are nec-
essary. It should be mentioned that although the deep-neural-network-based
machine-learning methods lack integrity protection when used directly for posi-
tioning, they may play a significant role in the environment modeling that supports
FDE. In a multi-sensor context, visual navigation can benefit from the information
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from other sensors to obtain environmental and motion models. For example, iner-
tial sensors can provide the vision system with a kinematic model, and radars and
lidars can provide information of the surrounding environment. These models can
be applied to monitor the integrity of visual positioning processing, as long as the
integrity information of the model is taken into consideration. Meanwhile, the
measurements and processing results from the vision system, as well as the corre-
sponding integrity information, also contribute to the model, so that the integrity
of the multi-sensor solution can be ensured. For this reason, the arrows are bidirec-
tional in the diagram in Figure 11. It should be mentioned that when multiple sen-
sors are used, imperfect time synchronization between the sensors would result in
an additional error source in pose estimation. The bias caused by synchronization
imperfection must also be considered by the protection level calculation.

According to the survey of existing development in vision integrity, it can be seen
that currently implementations are available for a few elements in the framework.
However, a mature solution is still missing for many blocks in the vision integrity
framework. Most of the past developments focus on nominal error monitoring as
well as bias and outlier detection from the feature location measurements. By pro-
posing the multi-domain visual positioning integrity description framework, we
want to raise attention to the development of innovative cross-domain integrity
monitoring methods and consolidate the framework on a larger scale. More com-
plete and advanced solutions still require an effort from the whole research com-
munity, so that the different elements in the framework can be combined and an
integrated solution can be drawn.

6 | FUTURE TRENDS AND OPEN ISSUES

As mobility requirements grow, new applications such as autonomous driving
and urban air mobility (air-taxis) demand high safety navigation solutions in chal-
lenging environments. As a consequence, the trend in navigation solutions is the
usage of multiple sensor fusion with both high accuracy and high integrity, which
is still an open problem. Various research communities have already started to pay
great attention to developing reliable and safe algorithms in order to solve the prob-
lem. We believe that the integrity concept plays an important role in tackling the
challenge, since it provides a quantified measure of risk for the navigation solution
and the effectiveness has been verified in the years of usage in GNSS-based posi-
tioning for civil aviation.

Nevertheless, though cameras have significant advantages in applications, integ-
rity monitoring is a challenging task due to the complexity of the relation between
pixels in an image and pose estimation. Quantifying the error properly and detect-
ing the incorrect results in all the visual navigation processing phases remains an
open challenge. We hope that the decomposition proposed in this paper will con-
tribute to the advancement of the solution. In this section, aspects that we believe
would be important in further development are discussed.

6.1 | Investigation of Significant Fault Modes for Visual
Navigation Methods

Current developments in visual navigation integrity are still focusing on the con-
ventional fault modes of large measurement biases, for which the existing meth-
ods proposed for GNSS integrity monitoring can be adapted with ease. In order to
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solve the crucial problems raised by the specific characters of the camera sensor,
attention needs to be paid to the other vision-specific fault modes (e.g., the nonlin-
earity and convergence and error correlations). In addition, for measurement bias
detection, there are also new challenges from visual positioning such as cases with
a large number of biased measurements. Current approaches usually apply a ran-
dom sample consensus (RANSAC; Fischler & Bolles, 1981) to cope with the issue,
but the integrity risks in the random sampling process are not well investigated.
New approaches may be required to solve the problem.

As mentioned in an earlier section, the computational complexity is another
challenge that is more crucial for visual navigation integrity monitoring than for
conventional GNSS-based solutions. For this direction, innovative methods that
optimize the computational costs for real-time processing while ensuring the per-
formance and safety are desired.

6.2 | The Importance of Error Quantification

One of the most powerful aspects of the integrity concept is its capability to
ensure a quantified maximum risk probability. In order to achieve this goal, the
error in all steps of processing must be quantified and their propagation needs to be
understood. Nevertheless, properly quantifying the errors in 2D feature locations
is definitely essential, but arguably the greatest challenge for integrity monitoring
of feature-based visual navigation methods. Currently, most of the detection algo-
rithms are based on a best-effort concept without providing any information on the
error distribution of the results.

Furthermore, as shortly mentioned in Section 3.2, various feature detectors
(SIFT [Lowe, 2004], SURF [Bay et al., 2006], ORB [Rublee et al., 2011], etc.) have
been designed in the past years in order to fulfill the requirements for specific
tasks in computer vision. However, detection repeatability is the main design focus
of most detectors, and the processing procedures are usually complex and highly
diverse in most approaches. The intricacy in processing makes a rigorous error
characterization challenging, while the diversity in detection algorithms makes it
infeasible to find a unified error model for all popular detectors. If an innovative
feature detector can be designed, which provides an analytically quantifiable map-
ping between photometric information and the detected feature location while
preserving sufficient detection repeatability, it would be a significant step toward
mature integrity monitoring methods for visual navigation.

The feature error models that quantify error propagation in other processing
steps are also necessary. For example, outlier rejection methods such as RANSAC
and M-estimators (Meer et al., 1991) have been widely used in visual navigation
over decades. Such tools require prior parameters dependent on the metadata of the
measurements’ data set, which are determined in an ad-hoc way today. According
to given constraints on integrity risk, the appropriate determination of the param-
eters in the algorithms is definitely a non-trivial task.

6.3 | Re-Evaluation of Existing Algorithms from an
Integrity Point of View

As computer vision techniques have been rapidly developing over the last few
decades, there have been many powerful algorithms to cope with various prob-
lems and tasks. Nevertheless, the focus of algorithm development is normally on
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improving availability and accuracy. An algorithm outperformed in accuracy is
usually not valued as much as its more advanced competitors. However, higher
accuracy and availability does not necessarily lead to better integrity. The com-
plexity of a system usually makes fault detection and integrity monitoring more
difficult. Consequently, if a vision algorithm provides a clear structure for error
quantification and viable integrity checking options, small sacrifices in other
performance factors such as accuracy would be acceptable, as long as the basic
requirements on that aspect can be fulfilled. It would be of great value to revisit
the existing visual navigation related algorithms with an integrity-oriented point of
view and identify preferable solutions for safety-critical applications, which is not
necessarily the state-of-the-art algorithms.

7 | CONCLUSION

The integrity aspect of visual navigation is an important topic for exploiting the
technique in safety-critical applications. In this work, we provided a brief introduc-
tion to the basics of integrity concepts as well as the visual positioning core proce-
dures, and reviewed the noticeable research works in the field. The development
of vision integrity is still in its early stages. There are many particular challenges
while also many opportunities for innovative research works. The further evolu-
tion of this topic with great potential calls for the attention and joint efforts of
researchers in related fields.
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