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Abstract—Augmented reality applications use object tracking to estimate the pose of a camera and to superimpose virtual content

onto the observed object. Today, a number of tracking systems are available, ready to be used in industrial applications. However, such

systems are hard to handle for a service maintenance engineer, due to obscure configuration procedures. In this article, we investigate

options towards replacing the manual configuration process with a machine learning approach based on automatically synthesized

data. We present an automated process of creating object tracker facilities exclusively from synthetic data. The data is highly enhanced

to train a convolutional neural network, while still being able to receive reliable and robust results during real world applications only

from simple RGB cameras. Comparison against related work using the LINEMOD dataset showed that we are able to outperform

similar approaches. For our intended industrial applications with high accuracy demands, its performance is still lower than common

object tracking methods with manual configuration. Yet, it can greatly support those as an add-on during initialization, due to its higher

reliability.

Index Terms—Object tracking, deep learning, industry 4.0, neural network, synthetic data, augmented reality, computer vision
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1 INTRODUCTION

AUGMENTED Reality (AR) is a growing market. While, in
2015, the market value was $640.2M, it is estimated to

be about $120B in 2020 [1] – an increase of more than 187
percent in 5 years.

One reason is the high potential within the field of indus-
trial manufacturing, such as the automotive industry. For
example, AR can be used throughout the entire life cycle of
a car or other products [2], [3], [4]: as concept visualization
support during the design segment [5], as training applica-
tion providing instructions [6] or as actual / target compari-
son [7], [8] and joining process tool within the production
segment [9], as maintenance and repair tool [10], [11], and
as tool to feature show cases in the after sales segment [12].
Beyond production itself, AR also finds applications in
plant planning and maintenance [13], [14], [15] as well as
for logistics operations within the plants [16].

In each of these fields we find use cases which benefit
strongly from congruent visualizations of virtual content,

superimposed on real objects, allowing for natural interac-
tion, intuitive information transfer and immersion [17].

1.1 Pose Estimation for Industrial AR Applications

To create superimposed augmented reality experiences, the
system needs to know the observer pose, relative to a point
of interest on an observed real object. This observer pose is
often associated with a virtual camera on a mobile device
such as a tablet or a head-mounted display. It is given by at
least six degrees of freedom (6-dof): the position ðx; y; zÞ and
the orientation ðf; u;cÞ.

Even though many physical sensing modalities can be
employed [18], optical pose estimation is predominant,
employing object tracking or object detection methods.
Depending on the purpose, this may also be called object or
camera localization.

1.1.1 Pitfalls of Optical Pose Estimation

Based on experience within several fields of automotive
manufacturing [19], we found it very difficult to create accu-
rate, fast and robust tracking or detection solutions in settings,
e.g., in a car factory or a service station. Such scenarios often
exhibit bright, uncontrolled illumination environments, and
the objects that need to be tracked may have surfaces with
dark coatings (car paints) or metallic components. They often
exhibit strong specular reflections, and tend to be only mini-
mally textured.

These conditions violate common feature detection and
tracking assumptions. Such algorithms tend to expect an
abundance of reproducible, stationary object points with
clearly distinguishable photometric and geometric proper-
ties (textures and edges), seen under idealized illumination

� Kevin Kennard Thiel is with the Volkswagen Group, 38440 Wolfsburg,
Germany, and also with the Technical University of Munich, 80333
Munich, Germany. E-mail: kevin.thiel@volkswagen.de.

� Florian Naumann and Eduard Jundt are with the Volkswagen Group,
38440 Wolfsburg, Germany. E-mail: {florian.naumann, eduard.jundt}
@volkswagen.de.

� Stephan G€unnemann and Gudrun Klinker are with the Technical Univer-
sity of Munich, 80333 Munich, Germany. E-mail: {guennemann, klinker}
@in.tum.de.

Manuscript received 11 Feb. 2021; revised 18 May 2021; accepted 31 May 2021.
Date of publication 14 June 2021; date of current version 27 Oct. 2022.
(Corresponding author: Kevin Kennard Thiel.)
Recommended for acceptance by K. Kiyokawa.
Digital Object Identifier no. 10.1109/TVCG.2021.3089096

4434 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 12, DECEMBER 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2940-8061
https://orcid.org/0000-0003-2940-8061
https://orcid.org/0000-0003-2940-8061
https://orcid.org/0000-0003-2940-8061
https://orcid.org/0000-0003-2940-8061
https://orcid.org/0000-0001-6236-5628
https://orcid.org/0000-0001-6236-5628
https://orcid.org/0000-0001-6236-5628
https://orcid.org/0000-0001-6236-5628
https://orcid.org/0000-0001-6236-5628
https://orcid.org/0000-0001-7772-5059
https://orcid.org/0000-0001-7772-5059
https://orcid.org/0000-0001-7772-5059
https://orcid.org/0000-0001-7772-5059
https://orcid.org/0000-0001-7772-5059
https://orcid.org/0000-0003-0971-5726
https://orcid.org/0000-0003-0971-5726
https://orcid.org/0000-0003-0971-5726
https://orcid.org/0000-0003-0971-5726
https://orcid.org/0000-0003-0971-5726
mailto:kevin.thiel@volkswagen.de
mailto:florian.naumann@volkswagen.de
mailto:eduard.jundt@volkswagen.de
mailto:guennemann@in.tum.de
mailto:klinker@in.tum.de


conditions. In real environments, it is often the case that
only few features can be tracked reliably.

This creates highly demanding scenarios compared to lab-
oratory setups. Products such as the Microsoft HoloLens, the
Magic Leap One or tools like Apple’s ARKit or Google’s
ARCore cannot fulfill the accuracy demands in such dynamic
manufacturing environments. They often do not work on
reflective or dark surfaces and they are not able to track indi-
vidual objects precisely.

1.1.2 Opportunities for Simplifications

Despite the high demands, industrial settings also offer some
room for simplifications. Often setups can be arranged to spe-
cifically provide suitable empty work spaces, e.g., in applica-
tions using inspection and presentation areas, workshops,
assembly lines and others. The object is typically placed on a
rack or stands freely (like a car). Those existing scenarios are
designed very strictly for isolated tasks, making occlusions
unlikely. If occlusion does occur after all, object detection
approaches recover as soon as enough features of the tracked
object reappear.

1.1.3 Object Tracking Versus Object Detection

Even though object tracking and detection approaches for
viewpoint localization operate on very different algorithmic
principles, they are often referred to interchangeably as black-
box trackers in AR applications. For example, GPS-based, cell-
based and optical outside-in tracking systems1 and even the
AR Toolkit [20] are employing localization methods based on
one-shot object detection approaches. On the other hand, iner-
tial trackers and optical SLAM-based approaches [21], [22]
use dynamic object tracking.

As the terms tracking and detection are used interchange-
ably and since tracking and detection methods based on opti-
cal features are both lacking sufficient image features with
constant appearance in industrial AR applications (see Sec-
tion 1.1.1) we adopt the generic use of the term tracker in this
paper.

1.2 Tuning Trackers for Specific Automotive
Scenarios

Several object trackers exist that have been designed specifi-
cally for the automotive industry [19], [23], [24]. They are
based on geometrical features extracted from edges in a
camera image. They have proven to create better results in
industrial contexts than texture-based approaches thus far.

However, these trackers are quite difficult to deploy [25].
To achieve high-quality augmentations, they provide a large
number of parameters such that they can be configured (i.e.,
tuned) specifically for every use case, depending on the
observed object, the environmental illumination conditions
and the hardware and sensors. Service engineers need to
perform such parameter tuning manually. And they need to
do it on a vast parameter space for algorithms that appear
to them as blackboxes. Some parameter changes have been
seen to exhibit strong, unexpected effects on the tracking
result [25], [26].

To yield acceptable results, service engineers have to create
test cases for every new object of interest, requiring costly
data acquisition in terms of time and space. They have to do
this on real objects or on not yet existing objects still under
design, disregarding the variety of possible versions. In conse-
quence, only rather general configurations are generated for
several objects together. Thismay result in poor alignments or
even in total loss of tracking in some of the targeted use cases.

To support this tedious task, we present a framework to
automate and objectify the parameter tuning process. It
uses an iterative analysis cycle based only on synthetic data
and produces an optimized configuration [25].

1.3 Automatic Generation of Trackers for
Application Scenarios

In this paper, we propose to completely move away from
tuning parameters of a generic tracker. Rather, our new
approach generates specific, one-of-a-kind trackers for
every targeted model (like a car) based on its respective
CAD (computer-aided design) data. Since it is specifically
created based on data of a specific scenario, it will be ideal
for the given tracking task. In theory, we hereby shift the
focus from tuning the parameters of a hand-crafted algo-
rithm to the elaboration of a generic parametric model.

We use a convolutional neural network (CNN) to output
the camera pose in six dimensions when given RGB camera
images of the real world object as an input. For that purpose
the network is trained only on automatically generated syn-
thetic data of the desired object. We named this approach
C.DOT (Convolutional Deep Object Tracker). Fig. 1 shows
estimation results using C.DOT on real image sequences.

Using aCNNyields several benefits, as a tracker can be cre-
ated specifically for the object of interest and the use case,
while still being able to consider variations, such as different
object colors, holes, gaps or not yet assembled parts. Follow-
ing a holistic approach - by processing not just individual fea-
ture points but the entire image and object - creates the
possibility for higher robustness with respect to changes in
the environmental conditions. As the training can be per-
formed without considering the targeted mobile hardware
(i.e., tablet or data glasses), the final network can become
almost independent of it – except for a careful consideration
of the focal length and distortion of the camera employed.

By using only synthetic data for training, cumbersome
data acquisition from real objects becomes unnecessary and
the process can be fully automated. This creates the possibil-
ity to have a system automatically ready even before a real
object is produced. It is very suitable to applications involv-
ing the manufacturing of prototypes or general paralleliza-
tion. The data for training the CNN can be derived from a
digital model (CAD) and is already present within the digi-
talized manufacture. A specific CNN can be trained for
every individual object – and with industry 4.0 and the
internet-of-things in mind, this unique CNN can be stored
within a database or even deployed within the object itself.
This makes it possible for service engineers to acquire the
necessary data for a tracker on demand without the neces-
sity of openly sharing the geometrical data – often a consid-
eration of confidentiality. Unfortunately, this approach is
far from being trivial and brings challenges of its own.1. https://ar-tracking.com & https://optitrack.com
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1.4 Problems Using Synthetic Data: The Reality Gap

The quality of the training data is essential when we want to
teach a tracker the intended behavior by training a CNN.
The training data needs to be representative of the use case.
Otherwise the trained model will not perfectly match when
applied during runtime to real data, due to missing infor-
mation. Using real data of the use case is the easiest solution
to yield best performance. Yet, for reasons discussed above,
this is highly impractical.

Using synthetic data is problematic since the synthetic
data is built only upon a model of the reality and thus is not
a perfect imitation of reality. A lack of information cannot
be avoided. This inherent difference is also known as the
reality gap [27]. The term can be used to describe how well
the simulation model fits the requirements of the reality.
The better this model fits, the less loss of information is
present while also keeping as much flexibility for environ-
mental variations or sensory artifacts.

Bridging this reality gap is the process of finding a model
which fits best. If this process is considered well, merely
synthetic data may be sufficient to train a network, which
generalizes well during real world usage, without ever hav-
ing to consider real world data. That is why we focus on
explaining in great detail our rendering aspects for the

creation of realistic images which are induced with variance
for generalization during training using a Domain Randomi-
zation [28] inspired data enhancement approach.

This paper presents our way of creating the C.DOT sys-
tem, based on purely synthetic data. We present the results
we achieved thus far and critically discuss both the system
and the results.

2 STATE OF THE ART

Optical tracking is a well established topic in Augmented
Reality. Good overviews can be found in [29], [30], [31].
These articles show the broad use across different fields
such as computer vision, photogrammetry and odometry.

2.1 Traditional Approaches to Optical Tracking

Traditional tracking approaches have been based on the
Perspective-n-Point (PnP) approach [32], [33], [34] to esti-
mate the rotation R and translation t of an object in relation
to the camera from three or more points, with extensions to
include robust estimation (RANSAC) [35] and to match 3D
point clouds to an object reference (ICP) [36]. Robust feature
detection is commonly performed based on SIFT (Scale-
Invariant Feature Transform) [37] or SURF (Speeded Up

Fig. 1. Example images for estimation results on real image sequences for all four objects shown with the associated augmentation (a green trans-
parent overlay). From top to bottom: VW Passat GTE, VWe-up!, Stanford Bunny, Stanford Dragon.
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Robust Feature) [38], as well as LINEMOD [39], which uses
gradients and normals within the image to locate textureless
objects in chaotic scenes.

With SLAM [21] and PTAM [22], it has become possible
to track in an unknown environment, constructing a 3D
model as part of the task. This is often used in the field of
robotics for odometry [40]. Yet, for industrial applications,
object data is often already present. Hence, no industrial
tracking applications are known to rely solely on SLAM,
PTAM or their derivatives. These are mostly integrated just
to boost robustness of the main approach.

2.2 Hybrid Approaches to Optical Tracking

Recently, neural networks and deep learning [41] have
started gaining importance. Hybrid approaches such as
SegICP [42] and BB8 [43] are bridging the gap between tra-
ditional approaches and pure neural network driven
approaches. A benefit of SegICP is that no pose for initiali-
zation is needed. BB8 [43] focuses on a pure neural network
approach. It is supported by traditional approaches to esti-
mate 6-dof even for occluded objects. It was validated on
the LINEMOD dataset [44].

2.3 Approaches Based on Neural Networks

Tracking solutions that rely only on artificial neural net-
works are generally based on CNNs, due to the necessity of
image processing. Many try to estimate the position and
scale of objects in 2D images [45], [46], [47], [48], [49], [50].
They can only be utilized for simpler detection tasks.

Recently, a number of systems have emerged that are
capable of full 6-dof tracking, based on combinations of syn-
thetic and real data. PoseCNN [51] was trained on an own
dataset with poses of 21 objects in 91 videos and on the
LINEMOD dataset [44]. As for BB8, objects are localized
and segmented in 2D RGB images.

The PoseNet system [52] estimates camera poses on
224� 224 RGB images of rooms or outdoor environments
with up to 50000 km2 coverage. It operates in 5 ms with an
accuracy of 0.5 m and 10� for indoor and 2 m and 6� for out-
door environments.

Wohlhart et al. [53] focus on highly distinct descriptors
between different objects. For training they use real and
synthetic images, with the synthetic data being created from
1241 positions derived by subdividing an icosahedron and
by enhancing the data further with different noise patterns
to simulate changing backgrounds. They tested depth, RGB
and RGB-D images, with RGB-D yielding the better results.

Su et al. [54] estimate a 3-dof object-observer-relation. They
use mostly synthetic data with structure-preserving object
deformations resulting in 30000 object variations for 12 dis-
tinct classes. Further enhancements by random background
images and different illumination setups create a dataset with
more than 2 million images. These are then combined with
12000 real images of the VOC12 dataset [55]. Su et al. stated
that using random images and a high number of training
images for every object increases accuracy significantly.

Papon et al. [56] simulate 96� 96 pixel RGB-D images
enhanced with a small number of real images to recognize
and estimate the pose of furniture.

Garon et al. [57] use image sequences to estimate full 6-
dof poses with the focus on being robust against object
occlusion. For training they use 250000 synthetic images, all
(100 percent) of which are enhanced with background
images of the SUN3D dataset [58], 95 percent with noise
and 40 percent with motion blur. For training 180 real
RGB-D images are added. The estimation is performed on
an actual frame with 150� 150 pixels and a rendered image
from the perspective of the last estimated pose. This results
in a necessary initialization of the algorithm during runtime
from a predefined pose. The approach was able to estimate
every 8 ms with a general accuracy of 4 mm and 2� for the
tested objects.

Wang et al. [59] train a 6-dof pose and size estimator on
mixed-reality datasets (real RGB-D images augmented with
aligned virtual objects) which can even handle symmetric
objects. Yet, following the observations by Manhardt et al.
[26], the virtual objects are likely to stand out. Flat textures,
different sensory artifacts and lightning can create strong
obstructive descriptors for virtual objects, compared to real
ones.

2.4 Approaches Using Only Synthetic Data

While the approaches presented in Section 2.3 may use syn-
thetic data as a common practice, they also use real world
data during training to some extent, creating mixed data-
sets. However, obtaining even small amounts of real data is
hard and cost-intensive especially for industrial applica-
tions with many changing objects and parts. Hence, training
only on synthetic data is necessary while maintaining our
demand on high accuracy of less than 1 mm.

Approaches just using synthetical training data, like Tan
et al. [60] or Garon et al. [61], show remarkable accuracies in
their field. However, they rely on RGB-D images providing
depth information, or use model data during runtime.

In this paper, we focus on RGB images only, due to tech-
nical limitations of RGB-D cameras in outdoor scenes and

on specular objects (such as reflective car coatings or metal).

Furthermore, these cameras are cheaper and more common.

We also limit ourselves on pure synthetical images for train-

ing. Those can be derived from CAD by existing industrial

processes allowing for full automation. Model data is

treated highly confidential by the industry. Hence, we do

not want to rely on any such data during runtime. Thus the

only network input shall be images. This removes the need

for any geometrical data during inference. All this limits

our scope to initialization-free approaches using only syn-

thetical RGB images.
To the best of our knowledge, only two methods satisfy

these requirements. Those are by Kehl et al. [62] and by
Rambach et al. [63], with the latter being an improvement of
the former. Su et al. [64] present an application of the tracker
of Rambach et al. to detect and regress the pose of an object
in multiple states. Yet their evaluation lacks results for 6-dof
pose estimation on real data due to missing ground truth.
Thus, we will focus on Rambach et al. They use random
poses around a unit sphere to generate 20000 to 30000 RGB
images of 448� 488 resolution, with a random indoor back-
ground being added to the images. To bridge the reality
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gap, they utilize feature transformation as a domain adapta-
tion strategy.

The training data is split into six groups. The following
influences are added individually per group: Gaussian noise,
random contrast, brightness adjustments, motion blur, speckle
noise and a mixture of all of the previous. Afterwards, they
apply a pencil filter to each image, transforming it to a single
channel edge domain. This creates a representation that is
invariant to illumination but loses the ability to handlepossible
color descriptors. For training, Rambach et al. use a PoseNet
architecture and anADDerror [44].

The approach presented in this paper also works with
purely synthetic data. It goes beyond Rambach et al.’s work
in the following aspects: a) We use a deeper architecture, b)
we define our problem space for indoor and outdoor indus-
trial contexts, c) we consider rotations during training, and
d) we use over two magnitudes more of training data. Fur-
thermore, we utilize Domain Randomization instead of adap-
tation to bridge the reality gap (see Section 3.2). To this end,
we focus on different aspects such as the illumination setup
and reflections while retaining information for possible
descriptors like color.

Our work presents an approach for industrial applications
using only synthetic training data. By greatly enhancing the
training data, robust full 6-dof estimations on real RGB cam-
era images are achieved, exceeding the relatedwork.

3 CONCEPT

Our concept has to fulfill requirements for industrial appli-
cations which we will specify first. Thereafter we discuss
how to bridge the reality gap related to our use of purely
synthetic data.

3.1 Tracking Requirements of Industrial AR
Applications

As stated in the introduction, it is our goal to automatically
create trackers for automotive AR applications based on
CNNs. The following requirements must be met when pro-
viding augmentation services in real industrial applications:

� Robustness against erratic camera motion - We consider
an all-encompassing, wide range of different camera
perspectives including perspectives where the object
is cropped by the edges of the camera image plane.

� Applicability to outdoor scenes and to scenes with specu-
lar objects - We refrain from using RGB-D cameras.
We only consider a single image data stream from
an RGB camera. It is cheap and most common for
mobile devices. However, this makes depth estima-
tion more difficult than using RGB-D cameras.

� Minimization of tracking loss induced by large inter-
frame changes or by partially cropped object views - We
determine camera poses by object detection. This is
highly beneficial for large objects such as cars or
trucks.

� Augmentation accuracy - For actual/target compari-
sons and joining processes, we aim at a pose estima-
tion accuracy of less than 1 percent of the objects
diameter. For instruction or training use cases, we

consider 10 percent of the objects diameter to be
already sufficient.

� Unit standard - Standard unit metric in our automo-
tive field is millimeter (mm). All our real and virtual
objects and our training follow this standard. Yet we
present most of our accuracy results in a normalized
unitless metric for easier comparison (see Eqs. (2) and
(3) on ADD

?
).

� Use on mobile devices - The latency must be less than
50 ms for real time usage, while data glasses demand
latencies of � 16 ms.

� Speed of off-line learning - The training of the network
is not time critical, as we can rely on parallelized
development workflows. Its speed is not considered
as a goal.

With this work we present a robust Tracking-by-Detection
solution which is automatically created specifically for an
arbitrary object based only on its digital geometry and mate-
rial working on every standard RGB camera. Hence, using
synthetical data only, bridging the reality gap becomes an
open issue.

3.2 Bridging the Reality Gap

When creating synthetic data several properties of the reality,
like sensory artifacts, specific object materials or lighting prop-
erties, are often only simulated weakly for efficiency reasons.
This creates a domain shift or the reality gap, due to different data
distribution among both domains, whereas the tasks between
both stays the same. This particular transfer problem is
addressed by the field ofDomainAdaptation (DA) [65].

When utilizing synthetical RGB data for learning track-
ing methods, common DA solutions are mixed datasets,
photorealistic renderings or feature transformation. Mixed
and photorealistic data are not economical for industrial
applications, for the high cost in real data retrieval (e.g.,
ground truth acquisition or measurement of real materials).
In comparison feature transformation is more economical. It
just uses a projection of the synthetic and real data into a
lower dimensional, latent feature space such that the dis-
crepancy between both distributions is decreased [65]. It
can be interpreted as an intermediate domain in which both
domains equal each other. The projection can be learned or
directly applied to the data as a transformation (i.e., edge
detection or Hough transformation). As the feature vector is
reduced, information gets lost (i.e., color in the frequency
domain). It is therefore difficult to find an intermediate
domain, while still keeping crucial information (like color)
for the descriptor. This approach was adapted by Rambach
et al. [63], which we compare ourselves to in Section 5.4.

For our industrial setup we can assume to find the same
geometrical features in each domain. All objects of interest
are produced highly accurate on the basis of CAD data,
which we also use for creation of the synthetical data. Thus,
there exists at least a set of latent, homogeneous features
among the synthetic and real domain. In contrast other fea-
tures, like noise or environmental details, may vary or are
not present between domains.

Domain Randomization (DR) [28] is a rather exceptional
approach that uses a strong data enhancement strategy to cre-
ate a broadly distributed source domain. The core idea is to

4438 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 28, NO. 12, DECEMBER 2022



exploit the generalization ability of a network.When random-
izing different aspects of the synthetic data, the network
learns the recurring latent features of the data, while ignoring
facets that exhibit variance. This can be done for all kinds of
features that are different between the real and synthetic
domain. It is strongly based on imperfection characteristics of
a utilized sensor and unknown environmental conditions.
Similar to feature transformation, DR limits the ability of the
network to use such information as descriptors. Thus, model-
ing an intermediate domain by design is not required. The
network is able to find a generalized feature domain by itself,
specifically for the observed object, based on the training data
whichwemodelwith possible variations of reality.

There do exist several approaches which already utilize
DR. Montserrat et al. [66] use DR on synthetic images, which
they combine with photorealistic renderings, to train a two-
level 6-dof estimator. They rely on model data during infer-
ence, from which we refrain from for the reasons stated in
Section 2.4. The works of Ren [67], Khirodkar [68] and
Tremblay [69] focus on detection and 3-dof estimation. Yet
they offer a great contribution showing the potential of DR
in overcoming the reality gap, increasing overall accuracy.
Tremblay et al. [69] even found out that DR can perform bet-
ter than photorealistic renderings and showed that DR in
conjunction with fine-tuning on mixed datasets creates a
boost in performance. We have adopted the Domain Ran-
domization approach for the C.DOT system.

4 IMPLEMENTATION

This section introduces the architecture and structure of our
network. We describe the label creation and the rendering
of the training images and how we enhance them to bridge
the reality gap. We then define the loss metric used to train
for superimposition. The section ends with a short descrip-
tion of a demonstrator.

4.1 Convolutional Neural Network Architecture

The CNN is the essential part of our solution. It is to be
trained on synthetic image data of an object without any
further consideration of the underlying architecture, param-
eters or hyperparameters.

Our implementation is based on Inception-ResNet-v2
[70]. It combines properties of an Inception net, such as
sequential and parallel convolutional layers, with properties
of Resnet such as residual connections. This way, the gradi-
ent can easily traverse the network, allowing for deep but
trainable networks. Inception-ResNet-v2 was developed for
classification purposes on 1000 different classes, resulting in
even higher accuracy than the Inception-v4 network.

Adapting it for our regression problem, we only use the
feature extractor of its architecture on top of our fully con-
nected multilayer perceptron block (MLP) (see Fig. 2). For
initialization we keep the weights which were present after
training for object classification on the ImageNet dataset.
This reduces our training duration noticeably, as not all fil-
ters have to be trained anew, while others can be changed
completely to fully adapt to our problem. Yet one could try
to freeze the feature extractor as recommended by Hinter-
stoisser et al. [71].

The feature extractor is followed by a dropout layer. During
training this layer has a regular dropout rate of 0.25 (every 4th
neuron will be deactivated per layer). The dropout layer is fol-
lowed by five fully connected layers. These reduce the number
of neurons from1000 to 6 for 6-dof pose estimation (Section 4.2).
The layers are batch normalized.We use a Parametric Rectified
Linear Unit (PReLU) [72] as activation function. The weights
were set by He-Normal, as proposed by He et al. [72]. Overall,
this yields better and faster convergence during training com-
pared to ReLU.2

The properties of the final network are listed in Table 1. The
network is less complex than AlexNet (60 million parameters)
and VGG16 (138 million parameters). Stored as HDF5 (Hierar-
chical Data Format), it occupies 654MBdisc space.

The training data (Section 4.3) is split into 70 percent
training, 20 percent validation and 10 percent test data. A
subset of the 10 percent test data are used for our evaluation
on synthetic data (Section 5.2). For evaluations on real
images complete new sets of data are used (Section 5.3).

The usage of the training data is organized by a generator.
The generator loads random images and their associated labels
defined by a batch size of 32 images per epoch. The image order
for training is not defined. Yet, due to randomness, we can
assume that it will be normally distributed for the duration of
the training. Additionally, the generator performs normaliza-
tion and data enhancement on all batch images (Section 4.4.2).

We use Tensorflow3 in combination with KERAS4 for
development, implementation and training of the CNN. We
use CUDA5 for implementation on the GPU. All CNNs
were trained and tested on the system listed in Table 2.

4.2 Pose Definition and Label Creation

Since large datasets require high creation times and mem-
ory consumption in general but in return prevent overfitting
more effectively, a suitable size trade-off has to be found.
We thus define our problem space as a hollow sphere S
around the object M (see Fig. 3). The minimal distance for a
camera position c ¼ ðx; y; zÞ is the radius rmin of a bounding
sphere, to get as closely as possible to the object without
intersecting it. Accordingly, the center of S - the origin O of

Fig. 2. Architecture of the entire network. The pre-trained convolutional
layers for feature extraction represent the adapted inception-resnet-v2
architecture.

2. fðxÞ ¼ xþ ¼ maxð0; xÞ
3. https://www.tensorflow.org/
4. https://keras.io/
5. https://developer.nvidia.com/cuda-zone
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our problem space - is not necessarily equal to the geometric
center of the object. The maximum distance is defined to be
rmax ¼ 3rmin, as this is a typical range for observation in our
industrial applications.

All camera positions c need to be evenly distributed around
the centerO. Therefore, themeanpose is zero, creating an equal
probability for every dimension. A regular, convex polyhedron
(i.e., icosahedron) is able to solve this problem. Hence, similar
to [60], we use a polyhedron decomposition until we have ver-
tices equal to the desired number of camera positions. Projec-
ting those positions to our spheres S outer bounds fulfills our
requirement for evenly distributed camera positions. To cover
the entire volume of S, the distance of each point to the center
O is randomly setwithin the range ½rmin; rmax�.

The orientation of the camera could be represented as
roll, pitch and yaw angles ðfO; uO;cOÞ with regard to the
reference frame of our problem space O. We call this absolute
representation. As the rotation value around an angle 0� �
a � 360� jumps at the transition from 360� to 0�, small
changes in the orientation can result in large changes for
estimation, afflicting the training. We therefore use a relative
representation ðfC; uC;cCÞ for the orientation.

Given the camera position c, we initially orient the cam-
era to look at the sphere center O. We furthermore align the
right vector of the camera to point in the direction of the
cross product of the up-vector of the object and the viewing
direction of the camera. This introduces a local reference
frame C and an associated rotation matrix RC for the initial
camera orientation. We use this local reference frame C and
our relative roll, pitch and yaw angles ðfC; uC;cCÞ to define
the final orientation of the camera. Thus the final rotation
matrix is R ¼ RC �RðfC;uC;cC Þ. We limit the roll angle fC to a
range of �45�, as we assume camera images of mostly
upright angles in user-centric AR applications. To consider
cropping of the camera field of view (FOV), we limit pitch
uC and yaw angle cC to be within � half of the FOV. For a

FOV of 60� this will result in uC , cC being in the range
½	30�;þ30��. This way, estimation will only consider situa-
tions when more than half of the object is visible in the
image. The relative orientation ðfC; uC;cCÞ can later be
used together with Rc to calculate an absolute orientation.

Such relative representation has the downside effect of
depending on the camera position. A correct estimation of the
relative orientation will lead to a wrong absolute orientation
for a bad estimation of the camera position.However, the bene-
fit is that in our case only a smaller value range needs to be esti-
mated by the network (e.g., uC;cC ¼ ½	30�;þ30�� and
fC ¼ ½	45�;þ45��). Every movement in this range yields con-
tinuous values for the object still beingwithin the FOV.

We use the here specified data space to create poses to be
used as labels for training, as well as camera poses for ren-
dering of the synthetic training images. Hence, we fuse cam-
era position c and relative orientation together to a pose
p ¼ ðx; y; z;fC; uC;cCÞ inheriting all 6-dof. Such poses are
limited to perspectives where the object is at least partially
visible. All resulting poses P are stored as labels in a file.

4.3 Image Rendering and Creation of Training Data

We synthetically generate RGB images to be used as input data
to train the network. An exemplary image is shown in column
A of Fig. 4. We had to find a trade-off between image size and
inherent information. Larger images yield a lot of information
for estimation. But next to higher memory consumption and
workload, they also contain details such as dust, dirt, scratches,
production residues andmorewhich are difficult to simulate in
synthetic data andmay limit the generalization of the network.

For image creation, we kept a common resolution of
299� 299. With such resolution and a FOV of ’ ¼ ’h ¼ ’v ¼
60�, it is mathematically possible to visualize a lateral dis-
placement of 0,386 cm per pixel for 100 cm distance

2 � dðO; cÞ � tanð’=2Þ
w

¼ 2 � 100cm � tanð30�Þ
299px

¼ 0:386
cm

px
(1)

TABLE 2
System Specification

Component Specification

CPU 2x Intel Xeon E5-2667 v4 3.2 GHz
RAM 64 GB
GPU Nvidia Quadro P6000
OS Windows 7, 64 Bit

Fig. 3. Definition of the data space for the problem space.

TABLE 1
Network Properties

Property Amount

input dimension [299, 299, 3]
output dimension [6]

layers (total) 781
layers (convolutional) 244
layers (fully connected) 5

filters 76032

parameters (total) 56 986 462
parameters (trainable) 56 921 698
parameters (non-trainable) 64 764
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The images are rendered with Unity3D.6 We read the data file
with all labels P and set the camera iteratively to every defined
pose p. The virtual camera’s field of view is set to match the
focal length of our real camera used to capture real images (see
Section 5.3.1). This is done to strongly improve depth estima-
tion on real images by the final networks. For the rendering we
consider steady data enhancements (Section 4.4.1). The light is
placed normally distributed. Specular reflections are taken into
account. The background of each image is kept transparent to
be filled during training as a temporary data enhancement step
(see Section 4.4.2). Every image is rendered in 16-fold target res-
olution (four times per image dimension [width� height]) and
shrunk with the Lanczos-Filter. This is done for anti-aliasing
purposes without tampering with the image content (known
as Ordered Grid Supersampling Anti Aliasing [73]). In the end
an image for every label is rendered and stored on hard disk.

To handle the increased data demand for the steady data
enhancements (Section 4.4.1), the icosaeder decomposition
is performed with 400 divisions per edge. Hence, the final
dataset consists of n 
 1:6 � 106 images. We use PNG as a
loss-free compression format, resulting in an overall mem-
ory consumption of 40-80 GB, depending on the scenario.

4.4 Data Enhancement

We use Domain Randomization as our data enhancement strat-
egy to increase the dataset for better representation of the prob-
lem space, for reduction of overfitting and to compensate for
the reality gap. Based on our experience in computer visionwe
focus on sensory artifacts such as noise, blur andwhite balance,
as well as environmental conditions like changing back-
grounds, illumination geometry, luminosity, reflectance and
illumination color for simulation. The rendering and image
processing strategies for these enhancements are presented in
detail subsequently. They can be seen in Fig. 4.

4.4.1 Steady Enhancements

Both illumination and reflection are hard baked into the
object image prior to training. They are thus considered as a
steady data enhancement (Fig. 4 column A).

� Illumination - The luminosity and the direction of
light alter the appearance of an object, according to
self-shadowing and reflecting properties of surfaces.

To generalize this, both luminosity and light
direction are randomly varied for different

renderings of the object. In our industrial context, we
can assume that light is always shining from a top-
view perspective onto the object. Therefore, we
apply a normally distributed random vector for the
light source, with the mean pose being at the top cen-
tral view downwards onto the object.

� Reflection - To simulate different reflections, the
intensity value of the reflection probes in Unity3D
are randomly set. The material properties (metallic
& smoothness) are fixed as defined by our digita-
lized material database. Additionally, a cubic envi-
ronment map is created by randomly orienting a
randomly picked real image from the COCO dataset
[74] which will be projected on the reflection probes.
Using environment mapping [75], this creates an
artificial reflection without any relation to a back-
ground (a different arbitrary background is induced
later during training).

4.4.2 Temporary Enhancements

All of the following enhancements are added only tempo-
rarily during training by the generator (Section 4.1, Figs. 4B,
4C, 4D, and 4E).

� Object color- Imitating real material colors is difficult
and even impossible, if objects are not yet produced.
Color of the environmental illumination, as well as
the white-balance of the camera make it even harder
to render exactly what a real camera might sense.
We therefore refrain from an accurate color model
for synthesizing. Instead, for each image, we individ-
ually modify the color channels I� of the entire
image by I 0� ¼ minðI� � s� � i; 255Þ. Here � 2 fr; g; bg
are the primary RGB color channels. s� 2 ½0:75; 1:25�
is a randomly ranged saturation modification per
color channel. i 2 ½0:5; 1:5� is a randomly ranged
intensity modification over all channels. s� and i are
uniformly distributed. These ranges are freely cho-
sen and not yet investigated further. As we will
know the color of the automotive paint or our mock-
ups, we can assume camera white-balance and color
temperature of light sources as the main factors
influencing the perceived object color. Thus, we take
care not to modify the color substantially, thereby
still keeping the option for an object color descriptor.
The enhancement result for object color can be seen
in Fig. 4 B.

Fig. 4. Random example for complete enhancement procedure on one pose for VW Passat GTE. F.l.t.r.: image after rendering (A), color and bright-
ness shifts (B), background (C), noise (D) and blur added (E). The final image is used for training.

6. https://unity3d.com/
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� Background - Adding an artificial background helps
to be independent of prior knowledge of the envi-
ronment. With constant color, color variations or
noise as a background creating strong descriptors for
segmentation, those must be avoided. As a common
practice, we use photos as they have realistic tex-
tures, edges, noise and color. In principle, they can-
not be considered synthetic. Yet, as they are largely
available in different datasets in the internet, they
are as easily to obtain as synthetic data. We use the
COCO dataset [74] and increase the number of
images. We shift color and brightness of the back-
ground images and randomly choose from different
90� orientations, mirroring on the principal axis and
sub-sections of the input-image size. A result of add-
ing background can be seen in Fig. 4 C.

� Noise - To increase robustness of the CNN, we simu-
late camera noise with additive white Gaussian noise
(AWGN): I 0� ¼ maxðminðI� þ z; 255Þ; 0Þ. Here I� is
the intensity of a pixel for a primary RGB color chan-
nel � 2 fr; g; bgwith 0 � I� � 255. z is set per pixel as
a random number, normally distributed by the
parameterized probability density function. Quanti-
zation noise is already present due to the nature of
the rendered images. Other noise types are not con-
sidered as AWGN already covers the most relevant
noise type for digital cameras. The result of adding
noise can be seen in Fig. 4 D.

� Blur - During runtime we blur the real camera
images, to compensate for real noise. To mimic this,
all training images are blurred to compensate for the
induced noise on the training data. Furthermore, we
noticed sharp edges between rendered object and
the added background. A similar observation was
made by Manhardt et al. [26]. Such edges create a
strong obstructive descriptor if not compensated.
They are reduced by the blur as well. We apply a
Gaussian blur of radius r ¼ 1 using python package
Pillow.7 This blur can be seen in Fig. 4 E. It marks the
final step before an image is used for training.

During training, all described data enhancements come
together. The final image is normalized within a value range
between [	1; 1] and transferred to the CNN for training.
Results of the full enhancement process with all its steps are
shown in Fig. 4 for one random example on one pose.

4.5 Loss Metric

For Augmented Reality the superimposition of virtual and
real objects is crucial. A strong error on camera position can
result in a marginal error within this superimposition when
observed on the image plane. As we encounter a regression
problem, a mean square error is preferable over the usage of
cross entropy. However, in such cases, position t and orienta-
tion R have to be weighted. R is a 3� 3 rotation matrix and t
the 3� 1 translation vector. An error metric which represents
the error on the object itself (like an augmentation) is able to
weigh position t and orientationR equally as a pose.

The ADD error by Hinterstoisser et al. [44] is such an
error model. It describes the error as an offset between the
pose of the real object and the estimated pose of the virtual
augmented counterpart. Here all vertices v, from a set of
vertices V defining the digital 3D modelM, are transformed
from the object coordinate system in O to the specific cam-
era coordinate system C. This is done once using the pose of
the ground truth camera Tgt ¼ ðRgtjtgtÞ defined by our labels
and once by the camera pose Te ¼ ðRejteÞ estimated by our
CNN. This creates two sets of vertices per pose sharing the
same coordinate frame in which both can be compared. The
offset between these sets is calculated by the mean euclid-
ean difference representing the difference between the esti-
mated and the real object pose. The ADD error is therefore
defined as:

ADD ¼ 1

jVj
X

v2V
jjðRgtvþ tgtÞ 	 ðRevþ teÞjj (2)

While the ADD error is used during training, for presenta-
tion and comparisonwe normalize it by the objects diameter d

ADD
? ¼ ADD

d
(3)

Digital 3D models for industrial usage are often very
detailed and therefore composed of huge vertex sets. The
computation time of the ADD error increases with higher
vertex counts. Using a subset of vertices could conserve
time. But as parts of an industrial model have very high ver-
tex density this creates imbalanced vertex distributions. For
now we avoided the issue of subset creation, increasing the
network’s training time noticeably.

4.6 Demonstrator

We have developed a demonstrator for live execution of our
approach on webcam images (see Fig. 1). For each scenario
(represented by the respective CAD model), our CNN is
automatically trained individually to become a unique
tracker per object model, ready to determine camera poses
for webcam images. The estimated poses are used to over-
lay virtual object models on the webcam images.

We used Unity3D as our rendering engine. Using Python,
we implemented a local server to run the final CNN. Theweb-
cam images are sent to the server and the trained network esti-
mates the pose. The resulting 6-dof pose is sent back and
received by Unity3D and rendered accordingly, creating a
live superimposed augmentation on the real object footage.
This is handled in real time with 0.05s per image (20 FPS). A
different setup could further improve this performance.

5 EVALUATION

To identify how well our solution works, we pose three
questions:

� How accurate is the estimated camera pose, consider-
ing different influencing factors and theirmagnitudes?7. https://pillow.readthedocs.io
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� How accurate is the estimated camera pose, consid-
ering the application on real world data – and are we
able to overcome the reality gap?

� How well performs C.DOT compared to the works
of Kehl et al. [62] and Rambach et al. [63].

5.1 Method

Here we highlight overall details of our evaluation method.
We introduce the objects used for evaluation. Further do we
state how we trained and selected each network.

5.1.1 Test Objects

We tested our approach on four objects: 1) one of our manu-
factured vehicles (VW Passat GTE), 2) a real mock-up used
in our design process (VW e-up!), 3) a popular 3D print of a
computer graphics model (Stanford Bunny) and 4) another
3D print of a computer graphics model (Stanford Dragon)
(see Fig. 1). The first two objects are provided from real use
cases (quality control and design). While the VW e-up! is
based on a milling model data, the VW Passat GTE is manu-
factured based on its highly confidential construction data.
For simple presentation a generalized, less complex model
is used. All are available to us due to a digitalized develop-
ment process. The last two objects are publicly available by
the Stanford Computer Graphics Laboratory8 and are cho-
sen because of their universality. In Section 5.4 we compare
our approach against the related work of Kehl et al. [62] and
Rambach et al. [63] using further test objects and validation
data of the LINEMOD dataset [44].

5.1.2 Training and Network Selections

We trained each network on the ADD error (Eq. (2)). Each
training session took 4 days, resulting in � 1000 epochs
with � 100 steps per epoch and 32 batches for each step.
This end condition is based on experience rather than theo-
retical analysis. Due to our focus on synthetical data, we
lack real world data for validation: During training, such
real world data thus could not be considered, preventing an
objective validation to identify when the CNN will perform
best on real images. Shorter sessions led to bad results and
longer ones to overfitting, regarding the usage on real world
data. However, overfitting never occurred when applied on
synthetic data, even for longer training sessions (� 7 days).
As an end condition a network which performed best dur-
ing the 4 days of training was selected as the final C.DOT
network. Best performance was measured by the lowest val-
idation loss (ValLoss) when tested on the 20 percent syn-
thetic validation data.

5.2 Accuracy on Synthetic Images

The evaluation data is a random disjoint set of 1002 syn-
thetic images out of the 10 percent test data. The data
enhancement is performed as described in Section 4.4
equivalent to the training and validation data. All images
were not considered during training nor during validation
(MTraining \MTest ¼ ;). The same is true for the 442

background images injected. Each network per object is
trained on the ADD error (Eq. (2)).

All accuracy results are given as ADD
?
, by estimating

the ADD error for each image individually using the
trained networks, normalized by the objects diameter
(Eq. (3)). We have calculated the mean, median and stan-
dard deviation (StdDev) across all images. Rows 4 and 5
present the metric of Hinterstoisser et al. [44]: The percent-
age of correctly estimated poses is counted across all
images. A pose is correct if

ADD � tr � d; (4)

where tr 2 f0:1; 0:3g is a 10 or 30 percent range threshold for
the diameter d ¼ 2 � rmin of the object M [44]. This metric
was also used by Rambach et al. [63] in their work. The
results are listed in Table 3. A value of 0.01 represents our
desired goal of a pose estimation accuracy of 1 percent of
the objects diameter.

The tests have produced considerably good results on
all four objects. The VW e-up!’s network performs worst.
The reason might be less contours and color differences.
Despite its highly reflective surface and low color satura-
tion, the VW Passat GTE’s accuracy is as good as that of
the Stanford Bunny and VW e-up!. The Stanford Dragon
is slightly less accurate than the Stanford Bunny. The dif-
ference between it’s mean and median indicate outliers,
which are also represented by a higher standard devia-
tion compared to the Stanford Bunny. An in depth anal-
ysis of the networks performances can be found in the
upcoming sections.

Even though the network was tested on synthetic data,
yet no result was sufficient to satisfy our high accuracy
goals thus far. We emphasize that training intentionally for
the application on synthetic data only would likely result in
higher accuracies. But as our goal is the application on real
world data, the possible performance on synthetic data is
limited compared to a training designed specifically for
such case.

5.2.1 Spatial Dependencies of the Error

In addition to the results shown in Table 3, we visualized
the distribution of the ADD

?
error within a two dimensional

heat map (see Fig. 5). The magnitude of the error for each
tested image is mapped on a color scale and placed locally
at the true image pose in relation to the object. The resulting
point clouds are projected onto 2D, while points which
would be projected onto the same pixel are shown as a

TABLE 3
Accuracy on Synthetic Data

Object VW Passat
GTE

VW
e-up!

Stanford
Bunny

Stanford
Dragon

ADD
?

mean 0.047 0.138 0.049 0.053
median 0.043 0.056 0.036 0.034
StdDev 0.025 1.156 0.121 0.129

10% [%] 97.30 85.93 96.91 95.71
30% [%] 99.99 95.21 99.30 98.40

d [mm] 5422.55 971.16 205.99 173.49

8. http://graphics.stanford.edu/data/3Dscanrep/
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mean value. This allows for investigation of spatial depen-
dencies of the error.

For all objects, Fig. 5 shows an error between 0 and 0.1
homogeneously distributed over the whole space. High
errors are more likely on poses very close or distant to an
object. Close images include the object only partially, con-
taining less information for an accurate estimation. Distant
poses can result in stronger rotational errors and consoli-
date features in fewer pixels. The distribution for the VW
Passat GTE shows almost no relevant outliers, giving reason
to its very good performance in Table 3. In contrast, the VW
e-up! indicates larger estimation errors compared to the
others. Longer training sessions might reduce this effect.
Yet strong outliers originate mostly from poses of its under-
body, which possesses less features and is almost point-
symmetric. This indicates topological influences, explaining
its lower accuracy in Table 3. Of unknown cause are the
strong outliers for the Stanford Dragon, representing close
poses to its right side. We assume also topological influen-
ces to be the reason, as seen for the VW e-up!.

5.2.2 Investigating Influencing Factors

To evaluate the accuracy of the tracker under variations of
influencing factors, we have run several robustness experi-
ments. We use the networks and synthetic test data, as
explained in the beginning of this section, with the same
enhancement procedure. Yet, to produce the different influ-
ences, we manipulate the test data on various magnitudes
as part of the respective enhancement step. The resulting
error is presented as the mean over all test images. Those
experiments create valuable insights, fostering explainabil-
ity on the otherwise hidden functioning of each individual
network.

Blur and noise - Blur, as a low-pass filter, can be consid-
ered as a direct countermeasure to noise. We therefore eval-
uated different magnitudes of blur and noise together (see
Section 4.4 for details). The results are shown in Fig. 6. The
figure indicates that the trained blur of filter radius r ¼ 1
performs best. Lower values allow for unrealistically sharp
edges and details. For higher values, too much of the rele-
vant information is filtered out until the performance is lim-
ited at r � 3. Noise only has a strong negative impact for
low blur values (r < 1).

Hue and brightness - As both factors target the same problem
space of object color, we evaluate both together (see Fig. 7). We
transform the color space from RGB to HSV in order to be able
to manipulate hue and brightness (value) individually before
presenting it as an RGB color image to the network for estima-
tion purpose. All objects show individual behavior on the
equally induced influences. This points out that each network
adapts itself specifically to the training data. The network
for the VW e-up! shows a prominent singular noisy behavior.
In the supplementary material, which can be found on
the Computer Society Digital Library,9 we show that a strong
correlation exists to the randomly injected background, which
becomes apparent when excluding this injection step. This
indicates a deficiency of the networks capability to segment
the object from its background. The network’s accuracy
becomes highly sensitive to the random background, resulting
in such noisy behavior. For the other objects a strong reduction
of accuracy is given at low brightness, as features are less
prominent. An increased brightness shows a much weaker
impact instead. Those objects also show that a hue modifica-
tion has at least a slight impact, which is especially strong for
the very saturated Stanford Bunny. As intended the network

Fig. 5. Projected 3D distributions (x-y and z-y colormaps) of the accuracy of estimated camera poses for all four test objects.

9. http://doi.ieeecomputersociety.org/10.1109/TVCG.2021.3089096
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uses color as a descriptor for the Stanford Bunny, but does not
have to rely on it as seen for the others. If desired the depen-
dence on color could be further reduced by allowing full range
color variations during data enhancement. Yet we varied the
RGB color onlywithin a limited range during training (see Sec-
tion 4.4.2). In consequence a good performance is still given for
the considered range, as noticeable for the Stanford Dragon
andVWPassat GTE.

Occlusion - Even though occlusion is not highly relevant for
our use cases, it may still occur. We thus evaluate how robust
the network is against it. A partial occlusion should not just be
a lateral slide-in, as for some of our images the object would
not even be visible at all. As a result we create a systematic,

but abstract test, where an arbitrary number of object features
is occluded. We use a uniform grid of quads with variable
size and resolution where each quad is textured by an image
fromour backgrounddataset (see concept in Fig. 9).We evalu-
ate the error regarding occlusion size and resolution of this
grid. As expected, the accuracy is reduced with stronger
occlusions in general. However, the accuracy does not cut off
immediately (like for other estimators) but rather reduces
gradually (see Fig. 8). The network is able to estimate continu-
ously even for fragmented images.

5.3 Accuracy on Real Camera Image Sequences

To evaluate our approach on real data, we captured ground
truth and applied it to our four networks per object trained
on the ADD error (Eq. (2)) as described in Section 5.1.2.

5.3.1 Image Capture and Ground Truth Acquisition

We captured image sequences for each of the four trained
objects using a Logitech webcam. The VW Passat GTE was
captured outdoors, the other three objects were captured
indoors. For the smaller 3D printed objects, we used a turn-
table with constant speed and a tripod for the camera. The

Fig. 6. Blur and noise influence for all four objects (by icons).

Fig. 7. Hue and brightness influence for all four objects (by icons).

Fig. 8. Occlusion influence for all objects (by icons). Resolution is the
potential size of an occlusion area in pixels. Occlusion is a percentage of
the defined occlusion area which will be filled by a background image.
See also Fig. 9.

Fig. 9. Concept for the grid variations in two dimensions, resolution and
occlusion size, which we use to evaluate occlusions. Eventually the
white spaces are filled by a background similar to Fig. 4C.
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other two were filmed by hand. For practical reasons, we
did not aim for obtaining uniformly distributed images from
all around an object but rather a single movement sequence.
Therefore, the results are not comprehensive when compared
to tests on uniformly distributed synthetic images (as done in
Section 5.2). The automatic white balance and auto focus were
always active, dynamically changing color and focus. For the
indoor scenes, the light flickers due to frequency mashups of
the room light and the camera framerate.

Each captured image was processed to compensate for
distortion. The camera was calibrated once to retrieve dis-
tortion coefficients and to approximate the focal length for
acquisition of ground truth data. The focal length also
defines the FOV of the virtual camera during rendering of
the training images to specifically imitate the utilized real
camera (see also Section 4.3).

For all four image sequences we created ground truth
measurements using the VisionLib10 object tracking system.
This tracker is one of the hand-crafted blackbox systems we
use for AR purposes (Section 1.2). It was carefully tuned
before being used here as a ground truth reference. As its
accuracy turned out to be more than a magnitude higher
than that of our estimator, it is validly applicable. Our
ground truth dataset is made publicly available as part of
this publication [79].

5.3.2 Comparison Against the Ground Truth

For each image sequence, we let our corresponding net-
works estimate the pose of the camera with respect to the
object and compared the estimations to the ground truth.
The results are shown in Table 4. Rows 1–3 show statistics
(mean, median and standard deviation) based on the
ADD

?
error (Eq. (3)). Rows 4 and 5 show the percentage

of correctly estimated poses across all images (Eq. (4)).
We visualized all results using our demonstrator fed with
all image sequences as an offline input source. The esti-
mated poses are rendered as superimposed augmenta-
tions. A selection of those images are shown in Fig. 1. The
full sets are published as supplementary material,9 avail-
able online.

For all objects the hit rate for the 30 percent and even for
the 10 percent range is always very close to 100 percent.
Only exception is the Stanford Dragon which performs
worst in both cases, also indicated by a higher standard
deviation. Considering the fact that the listed accuracies
are all achieved using only synthetical RGB images for
training to automatically create an individual tracker, this
is a remarkably good and outstanding result. The results of
all objects are often similar or even better than the results
from tests on synthetical data (see Section 5.2). This can be
argued by the Domain Randomization lowering the in gen-
eral achievable performance on synthetical data. The rea-
son for the Stanford Dragon performing worse than the
others may be due to an almost indifferent appearance to
the background. Another reason may be strong focus shifts
in the image sequence. Such shifts alter the depth of field or
allow for focus breathing which can have a slight impact on
focal length. These effects can lower the ground truth
acquisition and the network estimation capability likewise.
To compensate for that further research may consider
focus variations or variations in the depth of field or focal
length as further data enhancement strategies during
training.

The network for the VW Passat GTE achieved the second
best result of all. Being our most relevant, but also most
complex object (due to strong reflections and specular
lights), the results are also very good. However, considering
that the objects diameter is much larger than the others, the
absolute error is also much larger. A different strategy for
reflections, another loss metric or a better end condition for
training may improve these results.

That said, we do not yet achieve our initial set goal of �
0:01 accuracy for any of the objects. Thus, our proposed sys-
tem is not yet ready for most industrial AR use cases. Yet, it
will already be sufficient for use cases demanding � 0:1
accuracy or for supporting our existing solutions (see also
Section 6.3).

5.3.3 Importance of Data Enhancement for Real

Applications

To determine whether the Domain Randomization has a posi-
tive effect on bridging the reality gap, we trained two net-
works for the VW Passat GTE, one with and one without data

TABLE 4
Accuracy on Real Camera Image Sequences for All of

Our Four Objects Given as ADD
?
(Eq. (3))

Object VW Passat
GTE

VW
e-up!

Stanford
Bunny

Stanford
Dragon

ADD
?

mean 0.048 0.068 0.048 0.093
median 0.045 0.065 0.045 0.063
StdDev 0.027 0.040 0.022 0.089

10% [%] 96.33 94.56 97.37 68.00
30% [%] 100.00 99.78 100.00 94.50

diameter d [mm] 5422.55 971.16 205.99 173.49
ValLoss [mm] 250 95.79 9.65 11.40

epochs 740 685 405 850

Rows 10% and 30% represent the percentage of correct poses (Eq. (4)) for
diameter d. ValLoss describes the validation loss of the final network, trained
on the ADD error (Eq. (2)).

TABLE 5
Comparison Between Two Networks for the VW Passat GTE
Trained (A)With and (B)Without Data Enhancement Steps,

When Applied to the Same Ground Truth

Data Enhancement (A) with (B) without

ADD
?

mean 0.090 0.141
median 0.080 0.086
StdDev 0.051 0.128

10% [%] 79.18 55.30
30% [%] 98.14 87.55

ValLoss [mm] 350 280
epochs 470 460

For (B) a network with the smallest validation loss (ValLoss) was chosen to be
compared with a network (A) with a similar number of epochs and closest
ValLoss.

10. https://visionlib.com/
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enhancement and compared them to each other. We trained
one network (B) just using our realistic looking model (see
Fig. 4 A), without adding any of the data enhancement steps of
Section 4.4. We compare it to our network (A) trained with all
data enhancement steps, but chosen by a similar number of
epochs and validation loss. The results are shown in Table 5.
When applied to our real ground truth the network (A) per-
formsmuch better than network (B).WithoutDomainRandomi-
zation the network (B) is not able to manage variations in the
input data, resulting in much higher standard deviation than
(A). The lower validation loss of (B) also indicates possible
overfitting to the synthetic data, which is more likely if data
enhancement is not utilized. This positive effect ofDomainRan-
domization is further substantiated when comparing network
(B) with the network of the VW Passat GTE of Table 4. Even
though both have a similar low validation loss,
the one using data enhancements is much better suited for real
input resulting in higher accuracy and lower standard
deviation.

In conclusion, we are able to bridge the reality gap on
real data merely using strongly enhanced synthetic data. This
results in accuracies high enough for simple superimposi-
tions – yet, insufficient for the high demands on accuracy as
posed by many industrial use cases.

5.4 Comparison Against Related Work

We compared C.DOT against the work by Rambach et al.
[63] (two variants) and the work by Kehl et al. [62], based on
the LINEMOD dataset of Hinterstoisser et al. [44]. We
trained 13 different networks based on 13 digital objects of

the dataset: Ape, Benchvise, Cam, Can, Cat, Driller, Duck,
Eggbox, Glue, Holepuncher, Iron, Lamp and Phone. We
slightly adjusted our data space (see Section 4.2) to work
with the dataset. Each network is trained on the ADD error
(Eq. (2)). For every epoch, the trained network is saved and
tested on our 20 percent synthetical validation data. We
selected a network which had the smallest validation loss
(ValLoss).

All results are provided in Table 6 and are given as a hit
rate in percentage for the 10 and 30 percent range of the diam-
eter for each object (Eq. (4)). Additionally we present the esti-
mation mean, median and standard deviation for each image
sequence per object given byADD

?
(Eq. (3)), aswell as the val-

idation loss for the finally selected network. In general our
approach shows remarkably good results, when compared to
the best related work of each column: D ¼ C.DOT	 best. For
the 30 percent range we outperform the related work in 8 of
13 cases: DðCamÞ : þ5:22% up to DðEggboxÞ : þ49:86% more
accuracy. For 4 cases (Driller Duck, Iron, Lamp) C.DOT per-
forms on a similar level (between DðLampÞ : þ0:55% and
DðDuckÞ : 	4:65%), whereas DðCatÞ : 	11:26% performs the
worst. The 10 percent range performance is more diverse.
Here we outperform the related work in 4 of 13 cases, but in
those cases noticeably strong: DðEggboxÞ : þ14:53% up to
DðCanÞ : þ18:39%. For 6 cases C.DOT performs on a similar
level:DðCamÞ : 	0:85% up toDðGlueÞ : 	4:19% less accuracy.
Driller, Iron and Lamp are exceptions, where the relatedwork
of Rambach et al. [63] performs much stronger (DðDrillerÞ :
	12:46% up to DðLampÞ : 	24:01%). This makes C.DOT at
average DðfÞ : þ18:34% better for the 30 percent range, but
onlyDðfÞ : þ0:61% better in the 10 percent range.

TABLE 6
Comparison of Our C.DOT Approach to Related Work of Kehl et al. [62] and the Variants by Rambach et al. [63] of

Using Gray-Scaled Pencil Filter Images (Pen) or RGB Color Images (RGB)

Object Ape Benchv. Cam Can Cat Driller Duck Eggbox Glue Holepu. Iron Lamp Phone f

10% [62] 0 0.18 0.41 1.35 0.51 2.58 0 8.9 0 0.3 8.86 8.20 0.18 2.42
[%] [63] (pen) 4.37 21.74 1.25 2.09 2.54 12.46 4.78 1.43 7.38 3.88 39.18 27.35 5.39 10.29

[63] (RGB) 0 5.76 0.16 0 0 12.97 1.83 0 0.49 2.26 39.18 0.32 0 4.84
C.DOT 0.56 38.84 0.40 20.48 1.35 0.51 2.71 15.96 3.19 1.85 29.69 3.34 22.84 10.90

ABC 1.05 40.75 1.58 32.94 1.10 2.19 6.46 15.96 8.36 2.91 46.26 7.49 22.84 14.61

30% [62] 5.62 2.07 34.52 61.43 36.87 56.01 5.56 24.61 14.18 18.23 59.26 57.64 35.55 31.65
[%] [63] (pen) 27.93 61.36 7.58 27.78 24.53 49.87 29.05 13.57 41.92 24.19 87.66 71.66 30.67 38.29

[63] (RGB) 0.08 36.73 1.5 0.33 1.87 54.33 17.63 0 7.05 24.19 89.48 5.95 3.94 18.69
C.DOT 40.48 89.95 39.80 73.49 25.61 53.20 24.40 74.47 62.04 29.99 87.76 72.21 62.83 56.63

ABC 46.76 93.99 60.12 86.03 33.84 70.12 54.63 74.47 73.03 38.39 97.04 74.98 62.83 66.63

C.DOT mean 0.52 0.17 0.46 0.25 0.53 0.33 0.82 0.23 0.30 0.58 0.18 0.27 0.36 0.38
median 0.35 0.12 0.34 0.19 0.42 0.29 0.80 0.19 0.26 0.46 0.13 0.24 0.21 0.31
StdDev 0.48 0.17 0.35 0.20 0.41 0.17 0.57 0.16 0.22 0.44 0.17 0.15 0.36 0.30

ValLoss [mm] 35.97 26.11 22.13 30.87 44.73 32.02 28.10 34.90 31.13 41.84 30.81 34.18 24.74 32.12

ABC mean 0.35 0.14 0.37 0.18 0.39 0.27 0.46 0.23 0.24 0.54 0.12 0.24 0.36 0.30
median 0.31 0.12 0.26 0.13 0.37 0.26 0.27 0.19 0.22 0.38 0.11 0.21 0.21 0.23
StdDev 0.23 0.10 0.30 0.15 0.20 0.11 0.40 0.16 0.14 0.67 0.08 0.17 0.36 0.24

ValLoss [mm] 60.16 29.69 75.35 42.51 45.35 46.03 90.09 34.90 34.83 212.03 32.46 49.13 24.74 59.79

diameter d [mm] 142.1 330.9 316.6 284.2 185.0 318.8 155.7 197.4 193.1 196.1 317.2 316.6 254.3 246.8

The comparison is done for 13 objects of the LINEMOD dataset [44]. Rows 10% and 30% represent the percentage of correct poses (Eq. (4)) for the individual
diameter d of each object. All our networks are trained on the ADD error (Eq. (2)). Orange highlights the worst result of a column and blue the best. The f col-
umn shows the average of each row. Approximated Best Case (ABC) shows what C.DOT could achieve in an approximated case of selecting the best possible
network. It is marked with bold for cases where it exceeds the other results. To show the difference between C.DOT and its ABC-Analysis, we added the ADD

?

error’s mean, median, standard deviation (StdDev) and the validation loss (ValLoss) in millimeters.
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The reason for badperformances in the 10 percent range on
objects like Ape, Cam, Cat, Duck, Glue and Holepuncher for
all the listed approaches can only be assumed so far. They
might be due to strong discrepancies between the digitally
reconstructed objects in the dataset compared to their real
appearance in the images. Another reason, particularly limit-
ing the estimation capability of C.DOT might be the fact that
those objects span only a few pixels within our input images
for the defined resolution of 299� 299 pixels (see Eq. (1)). This
is primarily true for the larger viewing distances that are used
by the LINEMODdataset. This may also explain why tests on
our own ground truth (see Section 5.3) performed much bet-
ter: our objects are larger and the viewing distance was
defined for a much closer perspective, providing more infor-
mation for estimationwithin the input images. Another expla-
nation is that our own digital models are of much higher
visual fidelity (very close to the real objects) than the LINE-
MODmodels.

Approximated Best Case - Finding an end condition for
training when using only synthetical data is difficult. The
reason is that no real data is present in the training, valida-
tion and test sets. The validation loss gives no clear indica-
tion whether a network will be best suited for real data. For
further investigation we use an approximated best case
analysis to find a possible upper bound of performance. We
use this to show a clear representation of the problem and
for opening up the discussion. While validating a network
on 20 percent synthetical validation data every epoch, we
additionally validate every fifth on the LINEMOD data too.
This creates a pure theoretical and intentionally biased end
condition, which we use to select a second network as an
approximated best case (ABC). It is an experimental case
were the network is performing best possible on the test
data. Note that for ABC the validation and test data are pur-
posely not two disjoint sets. Yet training and validation data
are still disjoint, as one is synthetical and the other is real.
We want to emphasize that this process is for additional
insights only and is by no means an alternative to our regu-
lar C.DOT approach presented earlier.

The results for ABC are shown in Table 6 to be compared
with C.DOT. The C.DOT networks showwhat can actually be
achieved in a regular practical usage. The ABC networks indi-
cate a possible upper limit, an overall potential of what
C.DOT might be able to achieve at best, in case of finding a
well suited end condition or if real world validation data
would be available. Even though C.DOT is often close to
ABC’s performance, there is still potential for improvement. If
we would be able to push it to its limits, we would likely out-
perform the related work more often (indicated in bold). But
even then, this would not apply to all cases, like in the 10 per-
cent range. Comparing ABC’s performance to C.DOT gives
us a metric of how close C.DOT is to such approximated best
case. The discrepancy between end conditions becomes espe-
cially apparent when looking at the ValLoss in Table 6.
Against expectations the ValLoss is always much higher for
ABC than for C.DOT, whereas ABC is always much better
suited for usage on real data (e.g., as strongly noticeable in the
”Cam” or ”Duck” cases). All this indicates that C.DOT is over-
fitting to the synthetical data, and that aminimumValLoss is a
barely sufficient end condition for the training on synthetical
data.

6 CONCLUSION & FUTURE WORK

We have demonstrated that an object tracker for AR can be
realized using a CNN that is trained only on synthetic RGB
data, thereby creating a purely data driven approach without
the necessity of manually configuring obscure parameters.
Following a Tracking-by-Detection approach, our tracker esti-
mates on each image separately. Processing always the full
image creates a holistic approach.

Our C.DOT approach is based on a well defined network
architecture and data structure for training with strong data
enhancement strategies (Domain Randomization). For this rea-
sonwe focused ondifferent rendering aspects (i.e., reflections)
and their randomization. This allows bridging the reality gap
more easily since the network will handle real features as just
another variation of the synthetic domain. As a result, the esti-
mation is quite independent of sensor artifacts, making it fea-
sible to handle automatic corrections such as white balancing
or auto-focus during tracking. To encode our 6-dof labels and
to define our poses for rendering, we use a rather uncommon
relative description of the camera orientation. This facilitates
the training of the network and its estimation capabilities.

We performed several robustness tests to assess our
approach: We tested for spatial dependencies, behavior on
induced sensory artifacts and occlusion. We also evaluated
how well the tracker performs on real data and compared it
to related work. The results show, that despite using only
synthetic training data, we are able to outperform similar
approaches.

6.1 Critical Discussion

For the estimation method, we utilized the ADD error met-
ric (Eq. (2)), which performs remarkably great. However it
lacks comparability between objects of distinct size, creating
disadvantages for larger objects like cars. Besides, the metric
was found to be very computational demanding for indus-
trial models, opening the topic of finding reasonable subsets
of vertices.

Furthermore, potential dependencies between estimation
accuracy, network architecture, number of training images
and utilized strategies for bridging the reality gap are not
yet unraveled. We tested only the practical effect of our
Domain Randomization. One of the other dependencies could
have had an even stronger positive impact on the outcome
of our approach when compared to the related work. Thus,
further investigations are needed.

A strong constraint of using merely synthetic data is the
lack of an end condition during training. Such end condition
has a strong influence on the estimation accuracy, due to the
occurance of fluctuations in performance between epochs
and the danger of overfitting to the synthetic data. How-
ever, in many industrial applications real data is not avail-
able and the prospective performance on real data is thus
unknown during training. This leaves only experience as an
end condition or improved realistic rendering as a solution
against overfitting. But if ground truth is present, it will
likely boost performance considerably just by providing a
better end condition.

We have tested our approach on our own synthetic and
real data and compared it to the related work, showing
great performance and indicating that the reality gap could
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indeed be overcome by outperforming other approaches so
far. While a perfect superimposition satisfying industrial
requirements cannot be realized yet, the results are very
promising and can already be used for some simpler AR
use cases. An alternative to AR applications would be the
support of robotic use cases, like identification of the head-
ing of an object (as part of sensor fusion) or as assistance on
course grabbing tasks like vacuum gripping.

6.2 Future Work

We have proposed and implemented a CNN-based system,
showing that the proposed deeper architecture constitutes a
viable approach. Further research may focus on temporal
use of the tracking data by utilizing recurrent networks or
sequential inputs as done by Garon et al. [57]. A tracking
over time on consecutive images could easily be built on top
of our tracker. This would allow for pose filtering or smooth-
ing over time, reducing the jitter. One could improve the
accuracy of our tracker by using pose refinement methods
proposed by Manhardt et al. [26]. Moreover, it is possible to
improve the result by creating a specialized network archi-
tecture layout for pose estimation or by optimizing the
hyperparameters of the network.

Future work could focus on testing a unitless, distance
independent metric. Such metric could account better for
different superimposition requirements among different
use cases and allow for standardized comparison between
approaches.

We currently focus on tracking solutions for mobile devi-
ces. Not limiting our approach to such devices with limited
capabilities, general industrial setups become possible as
well (e.g., estimations on conveyor belts). In such cases,
fusion of multiple estimations from different cameras or
perspectives can create a further boost to object pose estima-
tion accuracy.

Bridging the reality gap to increase accuracy even more
still remains an open question requiring further research.
Other ways to overcome the gap may be the use of Style-
transfer concepts [76] as a domain adaptation strategy or
Generative Adversarial Networks [77] to generate more
realistic images.

More importantly, further research needs to investigate
data deployment strategies to enable good end conditions
when working with synthetic data. It could be a viable
option to rely on our proposed Domain Randomization dur-
ing training, whereas for validation a set of highly photore-
alistic renderings could be used.

6.3 Conclusion

At this stage of development, the strongest argument in
favor of our C.DOT approach is that it provides an
improved alternative for the initialization procedure for
classically engineered trackers that are currently used in
industrial applications (e.g., [23], [78]). This is especially
beneficial as our approach works as a Tracking-by-Detec-
tion system, estimating the camera pose separately on every
image of a sequence without considering previous frames.
Furthermore, our approach is robust against environmental
or sensory influences while still yielding continuous results
for such interferences. As a downside, a huge time

investment for rendering and training has to be considered,
always specializing the overall usage to each particular
object. This however, works well in predictable, planned
industrial use cases which we aim for. Most importantly,
the process can be completely automated, getting rid of
laborious calibration and tuning efforts.
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