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Deep Active Cross-Modal Visuo-Tactile Transfer
Learning for Robotic Object Recognition

Prajval Kumar Murali , Graduate Student Member, IEEE, Cong Wang , Dongheui Lee ,
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Abstract—We propose for the first time, a novel deep active visuo-
tactile cross-modal full-fledged framework for object recognition
by autonomous robotic systems. Our proposed network xAVTNet
is actively trained with labelled point clouds from a vision sensor
with one robot and tested with an active tactile perception strategy
to recognise objects never touched before using another robot.
We propose a novel visuo-tactile loss (VTLoss) to minimise the
discrepancy between the visual and tactile domains for unsuper-
vised domain adaptation. Our framework leverages the strengths of
deep neural networks for cross-modal recognition along with active
perception and active learning strategies for increased efficiency by
minimising redundant data collection. Our method is extensively
evaluated on a real robotic system and compared against baselines
and other state-of-art approaches. We demonstrate clear outper-
formance in recognition accuracy compared to the state-of-art
visuo-tactile cross-modal recognition method.

Index Terms—Active visuo-tactile object recognition, perception
for grasping and manipulation, transfer learning, visuo-tactile
cross-modal learning.

I. INTRODUCTION

HUMANS from infants to adults can seamlessly transfer
the knowledge gained from visual modality to the tactile

modality in order to perceive and interact with objects in the
environment especially during lack of visual feedback [1], [2].
For instance, we can identify and distinguish previously seen
objects blindly only through touch. The human sensing and
perception systems are also active such that the sensory systems
are purposefully controlled to increase the information gained
for the task at hand [3]. In [4]–[6], the researchers enabled
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Fig. 1. Experimental setup: A Franka Emika Panda robot with a RGB-D vision
sensor on the end-effector for active visual learning. A UR5 robot with 3-axis
tactile sensor array on the gripper for deep cross-modal visuo-tactile transfer
learning and active tactile object recognition.

robotics systems with the sense of touch to recognize object
during in hand object or whole body manipulation. In this work,
we aim to provide similar abilities to autonomous robots for
cross-modal object recognition by actively training using visual
modality and transferring to tactile modality without explicit
training with the tactile modality as shown in Fig. 1. This
can provide increased autonomy and resilience for robots in
unstructured environments. If visual sensing is unavailable due
to various reasons such as occlusions, limited field of view,
change in light intensity, dust blocking the sensor and so on,
the robot is capable of completing the object recognition task
using the tactile modality by leveraging only the previously
gained knowledge from vision [7]–[9]. Furthermore, training
an object recognition model with tactile sensing is time con-
suming due to sparsity of tactile data, human annotation and
need for interaction with objects whereas through cross-modal
learning, the robot can exploit the a priori gained knowledge
using visual sensing to recognise objects during testing stage
through only tactile sensing. Moreover, through active tactile
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perception and learning, the robot can autonomously reduce the
number of actions to perceive objects physical properties and
to learn efficiently about objects and discriminate them among
each other. [10]–[13].

Visuo-tactile cross-modal perception and learning is a chal-
lenging problem due to the weak-pairing between visual and
tactile data: a) variation in density of information from each
modality, b) scale gap as vision sensors can capture the global
scene while tactile sensors capture local object geometry, c)
temporal misalignment as vision sensors capture data in one-shot
while tactile sensors capture data sequentially, and d) tactile
data are inherently action conditioned as data depends on the
type of action that is performed [14], [15]. Few works in litera-
ture address the problem of visuo-tactile cross-modal learning.
Falco et al. [16] tackled the problem for vision-to-tactile object
recognition through shape. In [16], visual and tactile features
from point clouds are extracted using a hand-crafted feature
descripter termed termed CLUE (Cross modal point cLoUd
dEscriptor) and Geodesic flow kernel (GFK) [17] was used
for domain adaptation. For other applications, Zapata-Impata
et al. [18] tackled the problem of grasp stability estimation
and proposed a vision-to-tactile cross modal learning approach
to generate tactile data from input visual data for predicting
stability of grasping prior to contact with the object. Simi-
larly, Yunzhu et al. [19] addressed the problem of synthesiz-
ing plausible tactile signals from visual inputs and predicted
visual images given tactile input using a condition genera-
tive adversarial network in the 2D image domain using RGB
images sequences from GelSight tactile sensor and camera.
Kaboli et al. [11], [20] proposed for the first time an active
tactile transfer learning approach which leveraged prior tactile
knowledge to effectively discriminate novel objects using tactile
sensing.

As we focus on vision-to-tactile cross-modal object recogni-
tion through shape, we aim to train our network models with
dense point clouds that are generally accessible from visual
sensors and employ directly on sparse point clouds measured
with tactile sensors during testing. Recently point clouds-based
approaches using deep learning have received research interest
as various types of 3D acquisition devices such as LiDARs,
RGB-D sensors and 3D scanners are becoming increasingly
available. Deep learning methods on point clouds are challeng-
ing due to the unstructured nature of point clouds, high dimen-
sionality and relatively small-scale datasets [21]. The seminal
works PointNet [22] and PointNet++ [23] were proposed to
work directly on raw 3D point clouds for tasks such as object
classification and semantic segmentation. However, the perfor-
mance of such networks drops significantly in the case of sparse
point clouds with point numbers ranging from 10-100 [24]. Such
sparse point clouds are typical from LiDAR data and tactile
sensing [25]–[27]. Retraining deep neural networks on sparse
tactile data is prohibitively expensive due to temporal costs of
tactile data collection and annotation. Fortunately with unsu-
pervised domain adaptation (UDA), the richly labelled visual
(source) data can be leveraged to minimise the domain shift with
the unlabelled tactile (target) dataset. While there are various
ways for UDA available in literature [28], [29], we focus on
discrepancy based techniques such as maximum mean discrep-
ancy (MMD) [30] and correlation alignment (CORAL) [31]
which aim to reduce the distance between the source and tar-
get domains using statistic criteria. Furthermore, contrasting to
visual perception, tactile-based recognition requires interaction

with the objects as data is collected upon contact with the
objects [8]. To reduce redundant data collection, temporal costs
and human intervention, several approaches have been proposed
for performing active data acquisition through information-gain
based action selection [10]–[12], [32]–[34]. Leveraging active
perception and learning techniques can aid in reducing data
collection costs and improve time efficiency for vision-to-tactile
cross-modal domain adaptation.

Our contributions are as follows:
1) We propose a novel framework for deep active visuo-

tactile cross-modal robotic object recognition. Our deep
neural network (termed xAVTNet) is trained solely with
dense visual point cloud data and tested on sparse point
clouds acquired from tactile sensors.

2) We propose a novel unsupervised domain adaptation loss
function termed VTLoss for minimising the domain gap
between the visual and tactile domain.

3) We propose an active deep learning framework for visual
object learning for reducing redundant data collection and
annotation. Furthermore, we propose an active tactile-
based object recognition approach to reduce the number
of tactile actions.

4) We perform extensive robotic experiments to show the
validity of our approach and compare with state-of-art
method.

II. METHODS

A. Problem Description

We propose a novel framework shown in Fig. 2 for the task
of deep active visuo-tactile cross-modal object recognition. Our
proposed network termed xAVTNet (cross active visuo-tactile
network) is trained with labelled source domain dataset Ds =
{(xs

i , y
s
i )}ns

i=1 with ns samples from vision domain constructed
using an active learning strategy by querying uncertain samples
from a larger unlabelled dataset Du consisting of nu samples
with nu � ns (Fig. 2(a)). Given the labelled source domain
Ds = {(xs

i , y
s
i )}ns

i=1 from vision domain and unlabelled target
domainDt = {xt

j}nt
j=1 withnt samples from tactile domain, the

model is adapted by reducing the domain discrepancy through
our proposed VTLoss (Fig. 2(b)). The adapted model is used
for active tactile-based object recognition wherein the robot is
tasked to reason upon possible tactile touch actions to perform
and chooses the next best touch which maximises the expected
information gain (Fig. 2(c)).

B. Deep Active Visual Object Learning

Network Architecture: Our network takes as input the un-
ordered point cloud representing one object consisting of m
points where each point is a vector of (x, y, z) coordinates. It
outputs k probabilistic classification scores for all k candidate
classes. We use PointNet [22] as the backbone for feature ex-
traction. PointNet applies input and feature transformations and
aggregates the point features by max pooling to a global feature
vector of size 1024 [22]. The global feature vector is followed by
three fully-connected (fc) layers of size 512, 256, k. We denote
the mapping from input point clouds to output classes as Gv and
associated parameters by θ. The xAVTNet is trained with dense
point clouds from vision sensor of the real world objects with
k = 12 classes. The visual point clouds are subsampled to 1024
points before passing to xAVTNet. We use the cross-entropy loss
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Fig. 2. Proposed framework for deep active visuo-tactile cross modal object recognition. Figure (a) describes the proposed active learning method for training
our deep network xAVTNet with visual point cloud data, (b) describes the proposed unsupervised domain adaptation of xAVTNet with unlabelled tactile data and
(c) describes the active tactile object recognition using the cross-modal adapted model.

for training. The visual point cloud dataset Ds representing the
source domain is collected using an active learning technique as
detailed below.

Visual Viewpoint Sampling and Visual Data Collection: In
order to collect visual training data of the objects, we use a
vision sensor attached to a robot capable of choosing arbitrary
viewpoints in 3D space limited by the workspace and kine-
matic constraints of the robot. Choosing different viewpoints
of the same objects helps to improve the predictive robustness
of the network as the same object can appear differently based on
the view. While commanding the robot to arbitrary viewpoints,
it is crucial to maintain the viewing angle of the camera such
that the object of interest lies within its field of view (FoV). A
viewpoint aview ∈ Aview is defined as the 3D position pview ∈
R3 and orientation Rview ∈ SO(3) of the camera frame. We
perform Markov Monte-Carlo sampling of N viewpoints on the
hemisphere space located above the centroid ocentroid of the
bounding box of the object of interest which is known a priori.
The 3D position pview is randomly sampled as a point on the
hemisphere and the orientation of the view as axis of rotation �e
and angle θ is computed with [34]:

�h =
pview − ocentroid

||pview − ocentroid|| , (1)

θ = cos−1 (�h · �Z), �e =
�h× �Z

||�h× �Z||
, (2)

where �Z = {0, 0, 1} is the Z-axis of the world frame. Using
the resulting angle-axis formulation (�e, θ) from (2), we can
derive the equivalent rotation matrix Rview using the Rodrigues
formula. Rview ensures that the camera is always oriented
towards the object of interest. The robot is commanded to N
viewpoints sequentially and the point clouds are extracted from
each viewpoint. The process is repeated for different object
in the scene and the objects in the scene are also rearranged
periodically by the human in order to ensure that all faces
of the object is captured by the robot. The raw point clouds
corresponding to each object are processed in order to remove
outlier noisy points as well as the base plane and added to the
unlabelled dataset xu ∈ Du.

Uncertainty Estimation and Query Strategy: The goal of
active learning is to select the samples from the unlabelled

dataset Du, which upon labelling and training improves the
model accuracy significantly with fewer training samples. In
order to select such samples from the unlabelled dataset, we
use the predictive probability of the network p(y|xu) to deter-
mine uncertainty. The softmax function provides the predictive
probability of an input sample. However as noted by prior
works [35], [36], the softmax function may provide inconsistent
predictions as it gives higher probability to unseen data. Hence,
we adopt the Monte Carlo dropout (MC-dropout) method instead
to extract the uncertainty [37]. The MC-dropout technique [37]
casts dropout training in deep neural networks as approximate
Bayesian inference in deep Gaussian processes. It works by
performing multiple stochastic feed-forward passes through the
network with dropout active at test time and averaging the
results. In particular, it is defined as

p(y|xu) =
1

T

T∑
t=1

p(y|xu,Wt), (3)

where Wt refers to the weights of the network at the tth

inference and T refers to the total number of stochastic forward-
passes. Given the predictive probability, we can quantify the
uncertainty of the samples by measuring the Shannon Entropy
as:

H(y|xu) = −
k∑

c=1

p(y = c|xu) log p(y = c|xu), (4)

here c = 1, 2, . . . k refers to number of distinct objects used in
our experiments. We order the unlabelled dataset based on the
Shannon entropy values and query the top κ samples into dataset
Dl as the most informative samples for labelling. The samples in
Dl are labelled by the oracle (human annotator) and added to the
training dataset for further training. The procedure is repeated
until a stopping condition is satisfied such as the performance
of the network does not improve over successive iterations or a
desired accuracy is reached.

C. Deep Visuo-Tactile Cross-Modal Object Learning

The challenge of domain adaptation arises from the fact
that the target domain (tactile modality) has no labelled data,
hence fine-tuning our trained network on the source domain
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to the target domain directly is impossible. Another challenges
stems from the density and sparsity of visual and tactile data
respectively. We use the dense visual data of the order of 1024
points while the sparse tactile data usually contains 30-80 points.
We exploit the available labelled source data and the unlabelled
target data to minimise the discrepancy of the distributions of the
two domains in the hidden representations of the fully connected
layers as shown in Fig. 2(b). We utilise discrepancy-based meth-
ods to extract domain-invariant representations for the unsuper-
vised domain adaptation. Popular techniques in literature among
discrepancy-based methods include Maximum Mean Discrep-
ancy (MMD) [38] and Correlation Alignment (CORAL) [31].
Given labelled source domain Ds = {(xs

i , y
s
i )}ns

i=1 with ns

samples and unlabelled target domain Dt = {xt
j}nt

j=1 with nt

samples which are represented by probability distributions ps

and pt respectively, MMD between ps and pt is defined as:

MMD2(ps, pt) = sup
||φ||H≤1

||Exs∼ps [φ (xs)]

− Ext∼pt

[
φ
(
xt
)] ||2H, (5)

where H is the reproducing kernel Hilbert space (RKHS),
φ(·) is the feature mapping associated with the kernel map
k(xs, xt) =< φ(xs), φ(xt) >, sup(·) is the supremum of the in-
put aggregate and ||φ||H ≤ 1 defines a set of functions in the unit
ball of H. We utilise the multi-kernel MMD (MK-MMD) [39]
which assumes that the optimal kernel is obtained by the linear
combination of many kernels. Herein the kernel k(xs, xt) is
defined as the convex combination of b positive semi-definite
kernels {ku} [39]:

K �
{
k =

b∑
u=1

βuku :
b∑

u=1

βu = 1, βu ≥ 0, ∀u
}

(6)

where k is weighted by different kernel and the coefficients
βu is the weight to ensure that the generated multi-kernel k
is characteristic. In contrast to MK-MMD which compares all
order of statistics, CORAL [31] is another discrepancy measure
which attempts to align the second-order statistics of the source
and target distributions. Deep-CORAL [40] extends CORAL for
deep neural networks and is defined as follows:

CORAL
(
xs, xt

)
=

1

4d2
||Cs − Ct||2F , (7)

where ||.||2F is the squared matrix Frobenius norm, Cs and Ct

are the covariance matrices of the source and target domain data.
We propose to combine MK-MMD, CORAL and the supervised
classification loss as a weighted linear combination to devise
the loss function. As reported by Sun et al. [40], MMD applies
symmetric transformations whereas CORAL applies asymmet-
ric transformations to the source and target domain. Intuitively,
symmetric transformations attempt to extract a subspace that
neglects the dissimilarities between the two domains whereas
asymmetric transformations attempt to “bridge” the different
domains [40]. By combining MK-MMD, CORAL and the clas-
sification loss, it can provide a good trade-off in minimising
the discrepancies between the domains and help in improving
the UDA performance as shown empirically in Section III. We
freeze the PointNet layers that provide the 1024 feature vector
during domain adaptation training and only train the fc layers.
The PointNet layers are capable of learning domain independent
features that can be transferred to the target domain whereas

the fc are tailored to the original task on the source domain
and require domain adaptation training for the target domain.
We denote the neural network layer mapping consisting of
fc1, fc2 and fc3 layers as Gvt(θt). We perform multi-layer
domain adaptation with fully-connected layers fc1 and fc2 as
we empirically found to achieve higher target domain accuracy
in comparison to single layer adaptation with fc1 or fc2. It has
been shown in prior works [41], that adapting a single layer
does not sufficiently undo the dataset bias between the source
and target domains due to the other non-transferable fc layers.
Hence, our proposed LV TLoss is defined as:

LV TLoss = αLcrossEnt + β
{L2

MK−MMD

}
fc1

+ β
{L2

MK−MMD

}
fc2

+ λ{LCORAL}fc1
+ λ{LCORAL}fc2 , (8)

where α, β, λ are hyperparameters. The domain adaptation net-
work architecture of xAVTNet is shown in Fig. 2(b). The dis-
crepancy between the source and target domain is reduced by
minimising the LV TLoss as min

Gvt(θt)
LV TLoss.

D. Deep Active Tactile Object Recognition

Given the trained network xAVTNet using source domain
visual data and unsupervised domain adaptation with unlabelled
tactile data, the objective during test stage is to classify the object
with only tactile data that is collected actively by maximising
the expected information gain. We define a tactile action a as a
ray represented by a tuple a = (s,

−→
d ), with s as the start point

and
−→
d the direction of the ray. We assume the 3D bounding box

pose of the object is given. The actions are performed as guarded
motions so that the robot does not accidentally push or topple the
object. We discretize the 3D bounding box into a 3D occupancy
grid OG with resolution gres. Each cell ci in the occupancy
grid is represented by a Bernoulli random variable and has an
occupancy probability p(ci). There are two possible states for
each cell with ci = 1 indicating the cell is occupied and ci = 0
for an empty cell. A common independence assumption of each
cell with other cells enables the calculation of the overall entropy
of the occupancy grid as the summation of the entropy of each
cell. The Shannon Entropy of the entire grid can be computed
as [42]:

H(OG)=−
∑

ci∈OG
p(ci)log(p(ci))+(1− p(ci))log(1− p(ci))

(9)

To compute the next best touch (NBT), we compute the
expected entropy-based information gain. As it is intractable
to calculate the exact entropy from a predicted touch, we per-
form a common simplifying approximation by predicting the
expected measurements ẑt from an action at at time t using
ray-traversal algorithms. A virtual sensor model is defined rep-
resenting the tactile sensor with ntax taxels casting a set of rays
R = {r1, r2, . . . rntax

} for a given distance dray in the z-axis of
the sensor model coordinate frame, with one ray per taxel. We
perform Monte-Carlo sampling of Nnbt possible touch points
from possible actions Anbt on each face of the bounding box
except the bottom face as the object rests on a flat surface.
The grid cells which are traversed by the rays are computed
to be occupied or free and the respective log-odds is updated
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accordingly [43]:

l(ẑview) =

{
log ph

1−ph
if ẑview=̂hit

log pm

1−pm
if ẑview=̂miss

(10)

where ph and pm are the probabilities of hit and miss which are
user-defined values set to 0.7 and 0.4 respectively as in [43].
Given the expected observations from all the possible touch
points and the updated probabilities of each grid cell, we can
evaluate the expected entropy of the overall grid by (9). The
expected information gain by taking a touch action at and cor-
responding expected measurement ẑt is given by the Kullback–
Leibler (KL) divergence between the posterior entropy after in-
tegrating the expected measurements and the prior entropy [44]:

E [I (p (ci|at, ẑt))] = H (p (ci))− H (p (ci|at, ẑt)) (11)

Hence, the selected action anbt∗t is given by:

anbt∗t = arg max
a∈A

(E [I (p (ci|at, ẑt))]) (12)

As shown in the Fig. 2(c), the object classification procedure
is started with an initial set of tactile points pinit that is acquired
by performing random tactile touch actions. The random tactile
touch actions are sampled randomly on the bounding box of
the object and performed using guarded motions as explained
above. After each action, the acquired points are collated into
the tactile point cloud Tpc. A minimum number of points in
the tactile point cloud (NT

min) are required to perform model
inference. If the current number of points in the tactile point
cloud n(Tpc) is less than NT

min and/or if the output confidence
from the model inference is less than a threshold ζ, then active
touch actions are performed in order to acquire additional touch
points tp.

III. EXPERIMENTS

A. Experimental Setup and Data Collection

The experimental setup shown in Fig. 1 consists of a Uni-
versal Robots UR5 robot with a Robotiq 2F140 Gripper and a
Franka Emika Panda robot with the standard Panda Gripper. The
Robotiq 2F140 fingertips are equipped with tactile sensor arrays
from XELA Robotics.1 The tactile sensing system consists of
140 taxels that provide 3-axis force measurements on each taxel
in the sensor coordinate frame. We normalise the raw values
received from the sensor. We use the outer finger (24 taxels) and
the finger tip (6 taxels) in order to acquire the tactile data. We use
straight line trajectories with guarded motions to collect the data.
When the force value measured on any of the taxels exceeds the
threshold fr > τf (set to 1.1), the motion is stopped and the 3D
locations of the excited taxels are recorded as the tactile point
cloud tS. The tactile point cloud is expressed in the common
world coordinate frame W using the robot’s kinematic model.
An Azure Kinect DK RGB-D camera is rigidly attached to the
Panda Gripper with a custom designed flange which provides
the vision point cloud vS and is expressed in the world-frame
using hand-eye calibration [45]. Both visual and tactile point
clouds are only composed of the x, y, z coordinates and other
properties such as normals, colour are not used. The camera
can also be used to extract the bounding box pose of the object
using point cloud segmentation and clustering methods from

1[Online]. Available: https://xelarobotics.com/en/home

the Point Cloud Library.2 We also used the OctoMap library3

for the next best touch implementations. We used a ROS-based
framework for controlling the robots, sensor acquisitions and
data collection.

Network Implementation: The PointNet [22] layers perform-
ing input and feature transformations to encode a 1024 global
feature vector is used. It is followed by three fully connected
layers fc1, fc2, fc3 of size 512, 256 and k respectively. The
hidden layers fc1, fc2 include ReLU and batch normalisation.
Furthermore, we set Dropout with probability 0.4 on the fc2
layer. We used ADAM optimiser and learning rate set to 10−3.
Two streams of fc layers are used for domain adaptation as
shown in Fig. 2(b). We use the hyper-parameters that are empir-
ically tuned for our method: α = 10, β = 10 and λ = 10. The
robot experiments were performed on a workstation running
Ubuntu 18.04 with 8 core Intel i7-8550 U CPU @ 1.80 GHz and
16 GB RAM. The training and domain adaptation of the network
was performed using PyTorch framework on a workstation with
NVidia Quadro RTX 4000 GPU with 8 GB RAM. We use a
set of 12 objects for the task of object recognition as shown
in Fig. 3(a). The objects are selected based on varying degree
of shape complexity and transparency that is challenging for
visual sensors. We also show the visual and tactile point clouds
of some objects in Fig. 3(b) highlighting the difference in the
number of points and point density between the two domains.
Although we use dynamic viewpoints for the visual point cloud
acquisition, some regions of the objects remain occluded due
to the kinematic limits of the fixed-base manipulator. A point
cloud from a viewpoint is considered as one training sample and
we do not merge point clouds from various views. The visual
sensor may also produce noisy measurements and warped point
clouds due to acute viewing angles which have been retained to
make our network robust to real-world sensors.

B. Robot Experiments

Deep Active Visual Object Learning: If the scene is cluttered,
we use our prior work in Murali et al. [34] to autonomously
declutter the workspace. After the scene is decluttered, the
robots initiate visual data collection. We collected a total of
9300 visual point clouds for the 12 objects by autonomously
commanding the Panda robot to different viewpoints. The total
dataset includes the data augmentation performed by random
rotations around the Z-axis to be rotation invariant. The scene
is also manually rearranged between data collection iterations
in order to capture all possible views of the object. However, it
should be noted that our model is not affected by the relative
pose of the objects. We used 6000 samples for training, 1500 for
validation and 1800 as test set. All the training samples are un-
labelled and represent the unlabelled dataset Du. We randomly
select 1500 samples from Du and label them using a human
annotator and train our network. The trained network is used
to compute the uncertainty of the remaining unlabelled samples
as explained in Section II-B. We compare our active learning
strategy with a baseline method that randomly queries samples
from Du. At each query step, κ = 500 samples are queried from
the unlabelled dataset. We present the mean (solid line) and
standard deviation (shaded region) results for deep active visual
object learning versus baseline comparison in Fig. 5(a). We also

2[Online]. Available: https://pointclouds.org/
3[Online]. Available: https://octomap.github.io/

https://xelarobotics.com/en/home
https://pointclouds.org/
https://octomap.github.io/
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Fig. 3. (a) Experimental objects: Twelve daily objects with different characteristic properties such as shape and transparency selected for object recognition task
(b) Vision and tactile point clouds of select objects shown overlapped to demonstrate the difference in point densities.

Fig. 4. (a) Visual and tactile features before domain adaptation (b) after
performing domain adaptation.

Fig. 5. (a) Active strategy versus random strategy for deep visual learning
(solid line: mean, shaded: standard deviation). (b) Active strategy versus uniform
and random strategy for tactile object recognition (solid line: median, shaded:
median absolute deviation).

TABLE I
THE NUMBER OF LABELLED SAMPLES REQUIRED TO REACH A CERTAIN

RELATIVE ACCURACY MEASURED BY THE RELATIVE ERROR TO THE FULLY

TRAIN NETWORK

report the number of labelled samples necessary to achieve a
certain relative error of the fully trained network in Table I.

Visuo-Tactile Domain Adaptation: We collected 10 tactile
point clouds for each object using random tactile collection
strategy. Similar to the visual dataset, we augment our tactile
dataset by performing random rotations around the Z-axis in
order to be rotation invariant increasing the dataset to 100 point
clouds per object. All the tactile point clouds are unlabelled as
our objective is to perform unsupervised domain adaptation. We

TABLE II
ABLATION STUDY WITH THE DOMAIN ADAPTATION METHODS

TABLE III
CONFUSION MATRIX FOR TACTILE OBJECT RECOGNITION

TABLE IV
COMPARISON STUDY WITH STATE-OF-ART APPROACH

used 900 samples for domain adaptation and 300 samples as test
set. Table III shows the confusion matrix for the classification
accuracy in the test set after performing unsupervised domain
adaptation using our proposed VTLoss function. In order to show
the performance of domain adaptation method, we also compare
against the MMD loss and CORAL loss as ablation studies
shown in Table II. Since we also performed multi-layer domain
adaptation, we studied the variants wherein a single hidden layer
fc1 or fc2 is used for domain adaptation and the results are
reported in Table II.

To benchmark our proposed framework, we compare against
the visuo-tactile cross-modal domain adaptation work of Falco
et al. [16] which is closely related to our work. Due to un-
availability of official source code from their work, we have
re-implemented the letter as follows: we implemented the CLUE
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descriptor using PCL and the geodesic flow kernel (GFK) for
domain adaptation using MATLAB domain adaptation toolbox.4

We used k-nearest neighbours (kNN) classifier and support vec-
tor machines (SVM) for classification and the parameters have
been fine-tuned according to guidelines in [16]. We must note
that our re-implementation may not be identical to that of the
original implementation. We used 3D objects of complex shapes
compared to quasi-planar objects in their work. Furthermore, we
directly employ the dense visual and sparse tactile point clouds
without equalizing the point clouds from the two domains.
We report the test classification accuracy with tactile data in
Table IV.

Deep Active Tactile Object Recognition: Our proposed
method is independent of the method of tactile data collection.
The data can be recorded uniformly, randomly or even actively
exploiting information gain. In order to evaluate our active
tactile recognition method, we compare against the uniform and
random collection strategy. The uniform collection strategy is
defined as follows: the 3D bounding box around the object is
discretised into a grid of cell size 4 cm × 3 cm corresponding
to the size of the tactile sensor array. The cells are explored
sequentially starting from the edge closest to the robot base. The
random strategy follows similar to active strategy, with the next
touch chosen randomly among possible touch actions instead
of using information gain metric. In order to fairly compare the
strategies, we only select the first 10 touches. We set NT

min to 10
points in our experiments. We compare the acquisition strategies
from the third touch onwards and report the median (solid line)
and median absolute deviation (shaded region) in Fig. 5(b). We
set the confidence threshold ζ to stop active tactile exploration
for recognition at 0.8 or 80%. We report that on average, active
approach takes around 14 touches, random approach around
19 touches and uniform approach takes 27 touches to reach a
classification accuracy over the confidence threshold.

C. Discussion

As seen from Table III, our proposed network has an average
accuracy of 81.25%. Our network has an accuracy over 80% for
9 out of 12 objects. The objects with lower accuracy include
i) object 2 (coffee bottle) at 75%, ii) object 8 (shampoo) at
20% and iii) object 10 (sugar box) at 45%. The shampoo is
confused with object 1 (cleaner bottle) due to the similar shape
and curvature. In fact, if the tactile sensor does not acquire data
around the head of the two bottles, due to the sparsity of the
tactile data, the model is confused. The sugar box is confused
with the tap (object 11). Although the shapes are different, the
inaccuracy is due to the fact that the rigidity of the tactile sensor
array does not accurately capture high curvatures present in the
tape and the sugar box undergoes minor deformations while
performing tactile data acquisitions. We notice from Table IV
that our approach outperforms the state-of-the-art method [16]
by over 50%. The reduced accuracy of [16] is due to the fact
that we relax an important assumption in the letter by using
dense visual point clouds and sparse tactile point clouds directly
without equalising the number of points. In addition, the baseline
method [16] was proposed primarily for quasi-planar objects
while we use a dataset comprised of 3D objects of varying shape
complexity. Furthermore, by leveraging deep neural networks,
we are able to extract the discernible features from even sparse

4[Online]. Available: https://github.com/viggin/domain-adaptation-toolbox

point sets by transferring knowledge gained from dense point
clouds that hand-crafted features extractors such as CLUE [16]
fail to do so. Using our proposed cross-modal transfer learning
technique, we note an improvement of accuracy of nearly 30%
over the same network without domain adaptation showing the
efficacy of our method. Furthermore, our domain adaptation
method VTLoss combining MMD, CORAL and the classifica-
tion loss in a weighted linear combination outperforms both
MMD and CORAL by over 20%. Similarly, our multi-layer
adaptation provides an improved performance of over 10%
compared to single-layer adaptation. In fact, we note from
the t-distributed stochastic neighbor embedding (t-SNE) [46]
visualisations from Fig. 4 that the source (visual) features and
the target (tactile) features are well clustered after applying
domain adaptation. This shows that our model has learnt to
effectively discriminate the target features without explicitly
training with labelled target data. Our proposed framework is
also data efficient. From Table I we note that our active learning
approach demonstrates high accuracies within 5% relative error
or 2% relative error to that of a fully trained model using just
33% and 58% of the complete dataset respectively. Fig. 5(a)
shows that our active learning strategy outperforms the random
query strategy for visual object learning with fewer data. This
demonstrates the amount of labelling efforts saved by adopting
the active learning strategy. Similarly, our active tactile object
recognition method outperforms the uniform action strategy as
seen from Fig. 5(b). Using our active tactile approach, the robot
can recognise objects with >70% accuracy whereas a uniform
strategy only reaches 20% accuracy within the first 10 touch ac-
tions. The random strategy reaches around 60% accuracy while
having larger variability of the recognition as expected from a
randomised approach. This helps reducing the overall time for
the task execution as robotic tactile action execution is time
consuming.

IV. CONCLUSION

In this letter, we tackle the problem of robotic visuo-tactile
cross-modal object recognition leveraging deep neural networks
and active perception and learning. Our proposed network xAVT-
Net actively learns from labelled visual point cloud samples and
we perform unsupervised cross-modal transfer learning with un-
labelled tactile point clouds using our novel domain adaptation
VTLoss function. Our cross-modal transfer learning method out-
performs the state-of-the-art approaches in cross-modal object
recognition accuracy. We also demonstrate clear outperformance
over baseline strategies with our proposed active learning strate-
gies leading to a reduction in human labelling effort and faster
data collection time. Furthermore, our proposed framework uses
an active tactile object recognition strategy which leads to data
efficiency by reaching high accuracies with fewer data collection
steps.
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