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Abstract

Adjusting global data dynamically to available resources remains a frequent issue in
HPC applications. This task is particularly challenging with legacy MPI code. Develop-
ers require an in-depth understanding of the code base and must write application-
specific code to enable dynamic adaptation. To tackle this challenge, the authors of
LAIK, a library for fault-tolerant distribution of global data for parallel applications,
have worked on developing an efficient solution. LAIK streamlines the process by
offering a solitary function to adjust the number of participating processes. In this
work, we ported the High Performance Conjugate Gradient Benchmark to LAIK to
enable dynamic global data adaptation. Furthermore, we used the abstract concepts of
LAIK for interprocess communication. This was accomplished incrementally. There
were many factors to consider, but ultimately achievable. Our final version yielded
comparable results to the original application. To complete this work, we evaluated
computing performance, memory consumption and the effectiveness of dynamically
adapting resources.
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1 Motivation

Due to factors such as heat production and the physical limitation on processor speed,
computer systems are now designed with multiple processors. As a result, the idea
of parallel systems has emerged, where multiple processors can collaborate towards
a common aim with a given overhead in terms of communication. Furthermore, the
workload can be dispersed by utilising various computer systems such as distributed
systems, in addition to multiple processors. At best, this allows developers to enhance
application performance. However, it requires developers to consider the principles
of parallel programming. This is where the Message Passing Interface (MPI) becomes
essential. Carleton University explains: "The Message Passing Interface (MPI) is an
Application Program Interface that defines a model of parallel computing where each
parallel process has its own local memory, and data must be explicitly shared by
passing messages between processes. Using MPI allows programs to scale beyond the
processors and shared memory of a single compute server, to the distributed memory
and processors of multiple compute servers combined together" [17]. The interface
lessens the burden on developers by eradicating the requirement for low-level com-
munication code implementation. High Performance Computing (HPC) applications
often employ MPI, which is also used by the High Performance Conjugate Gradient
Benchmark (HPCG Benchmark) software. Essentially, the HPCG Benchmark introduces
a novel ranking metric for HPC systems. One recurring challenge encountered in HPC
applications pertains to the fluctuating adaptation of global data to available resources,
such as requiring an additional node for computation. The HPCG Benchmark presents
the same issue since it can only accommodate a predetermined quantity of compute
nodes. The matter to address is whether it is viable to sustain a feature that permits the
count of nodes to fluctuate based on resource accessibility, without requiring explicit
implementation. How about simplifying communication by using abstract concepts
to avoid explicit communication code, such as setting up send or receive buffers?
Bearing these questions in mind, Josef Weidendorfer and his team have introduced
A Library for Fault Tolerant Distribution of Global Data for Parallel Applications (LAIK),
which is, in summary, an abstraction of MPI with added features, including resource
adaptation and code abstraction for inter-process communication. The team behind
LAIK, comprising Josef Weidendorfer, Dai Yang, and Carsten Trinitis, outline their
approach: "HPC applications are typically not written to handle dynamic changes in
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1 Motivation

the execution environment, such as the removal or addition of new nodes or node com-
ponents. However, for greater flexibility in scheduling and fault-tolerance strategies, an
application-integrated response would be worthwhile. This is difficult to achieve with
legacy MPI code" [Jos17]. To achieve malleability in the HPCG Benchmark with ease,
the code should be migrated to the LAIK library. Malleability for the HPCG Benchmark
Using LAIK presents the process of migration and the corresponding challenges. Firstly,
an overview of LAIK and the HPCG Benchmark will be presented. Following this, we
will give a detailed explanation of how the HPCG Benchmark was adapted for LAIK.
Subsequently, we will assess the performance outcomes and draw comparisons with
the original HPCG Benchmark. Lastly, the dissertation will culminate in a summary
and potential avenues of future exploration.

1.1 Related work

The LAIK team has managed to port the LULESH program to their platform with
great success. Nevertheless, the duty at hand comprises more than only the HPCG
Benchmark’s migration to LAIK. Additionally, it demands exploring the LAIK library
and integrating a new custom layout as described in Chapter 3.3. By undertaking this,
we avoid having to make major code changes to the application being ported.
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2 Background

Before examining the port’s particulars, we will provide a summary of LAIK and the
HPCG Benchmark.

2.1 LAIK: A Library for Fault Tolerant Distribution of Global
Data for Parallel Applications

LAIK is a C-based library that serves as a wrapper for MPI, as well as supporting TCP2
and TCP backends. This allows for the simultaneous use of multiple communication
libraries in an application. For example, it is plausible to partially use LAIK in the
HPCG benchmark while still explicitly using MPI. Moreover, LAIK enables the transfer
of current applications unrestrictedly. LAIK facilitates the distinctive ability to resize
the world dynamically, as expounded in the motivation section (refer to Chapter 1). The
term world in this thesis and LAIK refers to a cluster of computing nodes that is known
as a communicator within the context of MPI. Each process is linked to a specific world. A
useful analogy is to envision a population residing in the same "world" (refer to Figure
2.1). Processes are capable of exchanging data with other processes within the same
world. This communication can occur in either a point-to-point or collective manner. In
MPI, the default communicator is referred to as MPI_COMM_WORLD. Separation of
this group of processes is possible at a later stage. Upon launching an application, each
process initially adheres to the default communicator. LAIK presents a similar concept
called Laik_Group. There are additional LAIK-specific features beyond the segmentation
of process groups, specifically the removal of existing processes or incorporation of
new processes into the system. The latter is particularly helpful in instances where
the application requires additional resources. LAIK demonstrates that this can be
achieved with just a single function call. As a result, LAIK can integrate computing
nodes from the world without requiring the application to be re-executed with the
updated set of computing nodes. Further information regarding this feature will be
discussed in Chapter 3.2. LAIK integrates the communication code that programmers
usually need to write explicitly in their applications. When communication functions
are invoked, LAIK performs a consistent sequence of MPI calls. It is worth noting that
communication is generated from the developer’s perspective, achieved by partitioning
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2 Background

Figure 2.1: An illustration of how processes can co-exist and communicate with each
other.

abstract index spaces, which requires the developer to think about the data in this
fashion. This means that the programmer possesses an abstract and straightforward
concept for designating communication, which we will examine in greater depth.

2.1.1 The Concept of Partitioning: A Comprehensive Analysis

As previously stated, interprocess communication will be specified at an abstract level
by developers. The LAIK technology incorporates the concept of partitioning global
index spaces, which enables HPC programmers to define communication requirements
by transitioning between access phases to data structures using partitioning. Currently,
LAIK exclusively offers support for 1/2/3D arrays acting as a data structure or container.
A diagram of a global index space can be viewed in Figure 2.2. The index space has a

Process 0 

Process 1 

Global Index Space

Figure 2.2: A global index space with an exemplary partitioning.
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total size of ten. We then determine a partitioning for assigning indexes to processes
in the abstract index space. In this instance, we assigned the initial five indexes to
process 0 and the last five indexes to process 1. Other extant processes may have no
assigned indexes. Therefore, this partitioning is the current access phase to the data
structure. Now, it is assumed that process 1 should access the initial five elements, and
process 0 should access the final five elements (refer to Figure 2.3). The second phase

Process 0 

Process 1 

Global Index Space Access phase 1

Access phase 2
Transition

Figure 2.3: Transitioning from access phase 1 to access phase 2

of the data access would be a different partitioning of the global index space from the
first phase. Transitioning to this phase triggers inter-process communication, which
is automatically detected by LAIK. In our particular case, LAIK recognises that the
first five elements pertain to process 0, but switching to the new partitioning assigns
the indices to process 1. For the final five elements, process 1 will transmit their
values to process 0 in relation to the new access phase (partitioning). LAIK retrieves
the information from the partitioning and readies all elements for communication.
At the same time, it’s possible to retain items locally, transmit an arbitrary group of
values to process i and other values to process j, or receive values from one or more
processes through a single function call. As previously mentioned, LAIK furnishes
the application with several backends to utilize. In the case that MPI is enabled, LAIK
automatically executes the sequence of MPI calls. This implies that the programmer
does not have to worry about send or receive buffers or low-level code. LAIK is not
restricted to exclusive access to indices in space. Multiple processes can access the same
global indices, leading to conflict resolution by LAIK through a Reduction Operation. In
summary, the programmer simply needs to specify which processes should have access
to certain global indexes to instruct LAIK how to communicate (refer to Figure 2.4).
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Process 2 
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Stay on 0
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Send from 2 to 1

Send from 0 to 3

Send from 0 to 1

Send from 3 to 2

Send from 2 to 0

Stay on 2

Send from 1 to 0

Send from 0 and 1 to 3

Figure 2.4: After switching to a new access phase, LAIK automatically calculates all
actions.

Utilizing LAIK for Collective Communication: An Exploration through Sample Code

Let us now explore how to apply the concepts mentioned previously. As a reminder,
programmers should approach interprocess communication from an abstract standpoint.
In this scenario, our goal is to perform an All-to-All reduction where every process sends
its values to all others and undergoes a reduction operation using the LAIK_RO_Sum
reduction operation. Thus, each process will gather the received values, including
its own, and store the value after applying the reduction operation, as demonstrated
in Figure 2.6. As we mentioned, LAIK exclusively offers support for 1/2/3D arrays
acting as a data structure or container. In C, it is introduced as Laik_Data. Therefore,
we assume that the data consists of values belonging to any type. LAIK facilitates
several types of values that are stored in the data container. It is also feasible for the
user to craft their custom types. To maintain simplicity, we shall employ laik_Int32. A
sample code is provided to demonstrate the implementation of LAIK for the All-to-All
reduction process.
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2 Background

1 #include <laik.h>
2

3 int main(int argc, char* argv[])
4 {
5 // Initialization functions
6 Laik_Instance * instance = laik_init(&argc, &argv);
7 Laik_Group * world = laik_world(instance);
8

9 // Define abstract index space of global size 1
10 Laik_Space * space = laik_new_space_1d(instance, 1);
11 // Create partitioning to specify, which processes should have access to global index 0
12 // laik_All is the partitioner algorithm, which creates a partitioning, where every process has access

to every index
13 Laik_Partitioning * allParitioning = laik_new_partitioning(laik_All, world, space, NULL);
14 // Create data structure/container containing elements of type int and associated with <space>
15 Laik_Data * sum = laik_new_data(space, laik_Int32);
16 // Switch to the access phase/partitioning <allParitioning>
17 laik_switchto_partitioning(sum, allParitioning, LAIK_DF_None, LAIK_RO_None);
18

19 // assign arbitrary value [...]
20

21 // Switch again to <allParitioning> to do an All−to−All reduction
22 laik_switchto_partitioning(sum, allParitioning, LAIK_DF_Preserve, LAIK_RO_Sum);
23

24 // ...
25 }

Figure 2.5: An example code snippet demonstrating how to perform an Allreduce
operation using LAIK.
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0
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41
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Figure 2.6: All-to-All reduction visualisation.

2.1.2 The Resizing Capability of LAIK

As outlined in the motivation, a common issue in HPC applications is the need to
dynamically adjust resources according to availability. This could have various reasons:
If the HPC system has no further need for certain processes or requires additional
nodes to carry out the computation. But it could also be that a process will fail. For
this scenario, an application could determine the possibility of a process failing and
resize the world with LAIK to prevent the application from crashing and having to run
the application again. This may prevent data loss. In the context of LAIK, the resize
function refers to the dynamic alteration of the world size. Resizing in LAIK involves
a single function call from a programmer’s perspective, making it a straightforward
process:

1 Laik_Group* laik_allow_world_resize(Laik_Instance* instance, int phase);

The Laik_Instance specifies the instance of the world in which processes are operating,
while the Laik_Group represents that world itself. LAIK also defines a parameter named
phase which we will explain later. Let us first analyse how LAIK offers this functionality.
This begins with the use of a dedicated launcher, named tcp2run. Let us assume that
we intend to initiate computation with 50 processes and subsequently incorporate 21
more processes:

1 tcp2run −n 50 −s 21 <path/to/executable>

The launcher exports an environment variable known as LAIK_SIZE and sets its value
to the number specified in the -n option. Please note that this currently only works with
a TCP2 backend. Following this, the launcher commences 71 processes. Subsequently,
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a Laik_Instance must be initialized by a process to utilise LAIK, which can be achieved
via the function laik_init(&argc, &argv). Currently, 71 processes invoke the initialization
function. However, LAIK is aware via the environment variable LAIK_SIZE that
only 50 processes should proceed and join the world. Thus, LAIK permits solely
50 processes to exit the initialization function. Upon running laik_size(world), the
output would be 50 rather than 71. Consequently, only 50 processes participate
in exchanging data within this group/world. If the application requires additional
processes to accelerate computation, the already running processes should execute the
function laik_allow_world_resize(). Subsequently, the function laik_init() will release the
remaining 21 processes. If a process invokes laik_size() at this point, the result will be
71. Consequently, all 71 processes can now share the resources available. Let us return
to the parameter phase. During the computation, processes need to set the phase value
to a number greater than zero. This permits new joining processes to obtain the phase,
and developers can distinguish between the current process’s type - new joining or
old - using a simple if-statement. The redistribution of information represents the final
essential step, which must be carried out manually by the application developer, as it is
dependent on the particular application. We will see how we did that concerning the
HPCG Benchmark.

2.1.3 Understanding the Concept of Layouts

Another vital aspect of LAIK is how it manages data storage in memory. The devel-
opers have introduced the concept of layouts for this purpose. A layout defines how
process-local partitions of a data container are stored in memory, which is crucial since
LAIK offers automatic data management. Understanding this concept is necessary for
mapping global indexes to their corresponding memory offsets. It is crucial because
if values are to be exchanged or copied, LAIK needs to know the correct offset in the
buffer. The pre-existing layout offered by LAIK is named the Lex Layout and will be in-
troduced in greater detail at a later point. LAIK’s generic layout version is implemented
through a provided interface that layouts are required to adhere to, granting developers
the ability to implement their custom layouts. Later on, we will explore how to create
our custom layout. Generally, a layout facilitates operations such as copying values
between two buffers through the copy function, indicating to LAIK whether it can reuse
a memory/buffer for optimisation purposes with the reuse function, or direct LAIK
where to copy incoming or outgoing values with the (un-)pack function. In summary,
the implementation of a layout is crucial to automate the process of (de)allocating
buffers, communication, etc. Developers can design their layout to meet the specific
requirements of each application, such as access patterns or optimization purposes.

9
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2.1.4 Benefits of using LAIK

There are many benefits os using LAIK:

• Different communication libraries can be used simultaneously.

• Dynamic adaptation of resources (see in Chapter 3.2)

• Increase of maintainability

• Easy-to-understand concept of specifying communication between processes

• Customised application-specific layouts are supported

• Open source library

• Support by the developers

Now that background information on LAIK has been presented, we shall continue with
the HCPG Benchmark.

2.2 High Performance Conjugate Gradient Benchmark (HPCG)

The HPCG Benchmark, as mentioned in the motivation, is software for ranking HPC
systems. The authors Jack Dongarra, Michael Heroux and Piotr Luszczek explain
that the HPCG Benchmark "performs a fixed number of multigrid preconditioned
(using a symmetric Gauss-Seidel smoother) conjugate gradient (PCG) iterations using
double precision (64-bit) floating point values" [DL19]. Jonathan Richard Shewchuk
outlines, that "CG is the most popular iterative method for solving large systems of
linear equations. CG is effective for systems of the form Ax = b where x is an unknown
vector, b is a known vector, and A is a known, square, symmetric, positive-definite (or
positive-indefinite) matrix" [She94].
The HPCG Benchmark assesses the effectiveness of HPC systems by measuring the
performance of preconditioned CG iterations. Jack Dongarra, Michael Heroux and
Piotr Luszczek further state, that the "HPCG rating is a weighted GFLOP/s (billion
floating operations per second) value that is composed of the operations performed
in the PCG iteration phase over the time taken. [...]". After a successful execution, the
HPCG Benchmark produces a report containing results and performance measures.
The report can subsequently be uploaded to the HPCG Benchmark website where a
ranking can be obtained. We will provide more detailed information in Chapter 4.

10
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2.2.1 Work distribution

If the computation involves multiple nodes, the HPCG Benchmark will break down
the intricate task into smaller pieces. The workload is then shared among active
processes by randomly distributing the rows of the sparse matrix to the processes. As
the Conjugate Gradient (CG) method is implemented iteratively, updates to the result
vector happen after each iteration. Hence, processes need to retrieve the updated value
from the relevant process. This is because if a process owns a global row <i>, it will
update the global vector at index <i>. Assuming a sparse matrix-vector multiplication
is intended, another process may require the global vector value at index <i>. However,
each process can only access its local portion of the global vector. As a result, the HPCG
Benchmark identifies the specific values that each process requires from other processes.
These values are then transmitted using MPI. This results in a unique access pattern for
the HPCG Benchmark. If external values from other processes are needed, the HPCG
Benchmark will store them at the end of the local values in the local vector. We will
observe that our bespoke design was intended specifically for this function. Another
reason for a unique access pattern is the use of a sparse matrix where only non-zero
values, their corresponding indices and the number of non-zero values per row are
stored (refer to Figure 2.7). This is the technique utilised by the HPCG Benchmark to
perform mathematical operations, including sparse matrix-vector multiplication.
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Global
Sparse
matrix 26 (0,0) -1 (0,3) -1 (0,4)

-1 (1,0) 26 (1,1) -1 (1,3)

-1 (2,1) 26 (2,2) -1 (2,4)

-1 (3,1) 26 (3,3) -1 (3,4)

-1 (4,2) -1 (4,3) 26 (4,4)

0

1

2

3

4

Global
Vector

Process 0 

Process 1 

Figure 2.7: An example of a pseudo-random distribution of rows between two pro-
cesses.
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Our objective is to utilize LAIK to allow for resource malleability and employ LAIK as a
means of communication during mathematical operations within the HPCG Benchmark.
Additionally, our objective is to create a novel custom layout that caters to the access
pattern of HPCG in mathematical operations. Given our understanding of the library,
application, and problem statement, we aim to detail the complete process of utilising
the LAIK features.

3.1 Integration of LAIK into the HPCG Benchmark

We will begin by outlining the integration process of LAIK into the HPCG Benchmark.

3.1.1 Replacing MPI with LAIK during Broadcast and Reduction Operations

Firstly, LAIK was required for operations such as Broadcast or Allreduce. So we
replaced all the MPI functions that were used to exchange certain values. To avoid
redundancy, we developed an auxiliary function for the laik_broadcast and laik_allreduce
operations. The function signatures are easily understandable.

1 // These functions use LAIK for communication
2 void laik_broadcast(const void * sendBuf, void * recvBuf, uint64_t n, Laik_Type * data_type);
3 void laik_allreduce(const void * sendBuf, void * recvBuf, uint64_t n, Laik_Type * data_type,

Laik_ReductionOperation ro_type);

As it is evident, the signature omits the Laik_Data structure. However, for communica-
tion purposes, it remains feasible to implement our solution using LAIK. Our approach
involves preparing LAIK-specific data by creating LAIK-specific objects, extracting
values from the sendBuf to the Laik_Data object, performing communication, and trans-
ferring the values back to the recvBuf. The problem we faced pertained to a rigid limit
stipulated by LAIK on the number of Laik_Data objects that can be created. Conse-
quently, we resolved the issue by reutilising existing data containers and employing a
map-based approach.

1 // LAIK has a hard lmit of Laik_Data objects. Reuse Laik_Data objects with the same size and
Laik_Type

2 std::map<std::pair<int, Laik_Type *>, Laik_Data *> data_objects;

13



3 Porting HPCG to LAIK

3

4 Laik_Data *data;
5 Laik_Space *space;
6 if (data_objects.find({n, data_type}) != data_objects.end())
7 data = data_objects[{n, data_type}]; // Get data container
8 else
9 {

10 space = laik_new_space_1d(hpcg_instance, n); // Define abstract index space of size n
11 data = laik_new_data(space, data_type); // Allocate new data container with type <data_type>
12 data_objects.insert({{n, data_type} , data}); // To reuse that containe later
13 }

In this phase, MPI calls have solely been substituted for operations such as Broad-
cast/Allreduce. In the following stage, the preliminary plan to enable communication
through LAIK was implemented whilst executing operations such as sparse matrix-
Vector-Multiplication.

3.1.2 Calculation of Partitionings for Vectors

If you refer back to the code example presented in Figure 2.5, we have used the parti-
tioner algorithm named laik_All for simplicity. With that, we achieved a partitioning in
which each process has access to every global index within the abstract space. Thus,
to determine the data structure’s required partitioning, the programmer must furnish
LAIK with a partitioner algorithm, which each process will then execute offline, leading
to LAIK’s partitioning of the abstract index space and the outputting of the resulting
partitioning. We will demonstrate our partitioner algorithm at a later stage to clarify its
purpose.
During the second phase of the porting process, a major mistake was made by devel-
oping the partitioner algorithm with a focus on local partitioning. To ensure optimal
outcomes, developers must understand the global perspective and adjust the partition-
ing process accordingly. Therefore, we had to revise our partitioner algorithm. Initially,
we conducted a thorough search for all the necessary information to partition the data
container. As we were adapting an existing application, the necessary partitioning
information had already been calculated within the code. We aimed to employ it within
the context of LAIK. In contrast, the HPCG Benchmark developers created (network)
buffers or implemented communication directly. To transmit the information to LAIK,
we introduced a struct called partition_data. As a consequence, the following code was
achieved:

1 void partitioner_alg_for_x_vector(Laik_RangeReceiver *r, Laik_PartitionerParams *p)
2 {
3 // Get information needed for our partitioner algorithm
4 partition_d * data = (partition_d *) laik_partitioner_data(p−>partitioner);

14



3 Porting HPCG to LAIK

5 // Current abstract index space we are working on: for the vectors used in HPCG
6 Laik_Space * x_space = p−>space;
7 // Some error handling
8 assert(data−>size == laik_space_size(x_space));
9

10 Laik_Range range;
11 for (long long i = 0; i < data−>size; i++)
12 {
13 // assign every process its global index in the x vector
14 int proc = ComputeRankOfMatrixRow(*data−>geom, i); // HPCG implements this function to

calculate the rank/id owning the global row <i> of the sparse matrix
15

16 laik_range_init_1d(&range, x_space, i, i + 1);
17 laik_append_range(r, proc, &range, 1, 0);
18 }
19 if(data−>halo)
20 {
21 // Code snippet for Partitioning 2 (accesing external values as well)
22 [...]
23 }
24 }

LAIK presents a partitioner algorithm signature that stores the data we provide along-
side additional information, thereby constituting an indispensable phase in partitioning
a LAIK data container. For our situation, we need two partitionings to allow switching
between them and exchanging values. The initial partitioning, referred to as the local
partitioning henceforth, exclusively permits the process-owned index (row). In contrast,
the second partitioning, termed the external partitioning throughout this work, grants
access to external values as needed. Refer to Figure 3.1. Our partitioning algorithm ad-
dresses this scenario in the if-statement on line 19. The HPCG Benchmark demonstrates
deterministic behaviour when randomly distributing rows. To illustrate, consider a
size 7 vector x and the arbitrary allocation of rows to two processes. We assume that
process 1 requires access to external values at global indices 0 and 3, while process 0
only necessitates the value at global index 5. As previously mentioned, when the local
partitioning is in operation and the application transitions to the external partitioning,
processes will exchange values. Each process assigns new values solely to indexes
that align with its rows in the global problem matrix. Hence, resolving overlapping
indices is unnecessary upon returning to the local partitioning as LAIK is directed not
to communicate values during the transition. Despite implementing the partitioner
algorithms, they remained untested. The upcoming step will analyse the persisted
problem.
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Index space
of Vector x

Process 0 

Process 1 

Partitioning 1

Partitioning 2

0 1 2 3 4 5 6

Figure 3.1: The HPCG Benchmark employs two partitionings for communication via
LAIK. In this example, partitioning 1 refers to local partitioning, while
partitioning 2 refers to external partitioning.

3.1.3 Calculation of the mapping resulting from the Lex Layout

The next step was to implement a mapping. The usage of the Lex Layout is the reason
for this, as LAIK currently only supports this layout. As detailed earlier in Chapter 2, a
layout dictates the storage of local partitions of a data container in memory per process.
LAIK considers this a crucial aspect since it offers the developer of applications abstract
structs (Laik_Data) whilst automatically allocating the stored data.
The clearest way to elucidate how the Lex Layout allocates a buffer through partitioning
information is by providing a visual representation. Let us assume that the current
active partitioning on the data structure is the local partitioning, as presented in Figure
3.1. Upon further examination of Figure 3.2, the allocation buffer, referred to as the one
allocated by LAIK, of process 0 differs from that of process 1. This distinction is due to
Lex Layout determining the lower and upper limits of process-local partitioning. In this
specific instance, the lower limit of process 0 is 0, and the upper limit is 6. For process
1, the lower bound is established at 1 and the upper bound at 5. It should be noted that
the allocation buffer of process 0 contains memory for indexes 1, 4, and 5, even though
they are not assigned to process 0. Similarly, the allocation buffer of process 1 contains
memory for indexes 2 and 3. This configuration implies that accessing, assigning, or
reading values from the data structure may lead to inaccurate index access. Assuming
the partitioning depicted in Figure 3.1 and the allocation buffer of process 0, we shall
proceed to iterate through the data structure and access its elements in the manner
outlined in the code snippet below.
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Process 0 

Process 1 

Allocation Buffer 
of process 0

Allocation Buffer 
of process 1

0 1 2 3 4 5 6
Global Index 
Space

Figure 3.2: Buffers automatically allocated by LAIK using the Lex Layout.

1 int localSize = 4; // we have four global indexes assigned to process 0
2 for(int i = 0; i < localSize; i++)
3 base_pointer[i] = 71;

If we examine the allocation buffer of process 0 (refer to Figure 3.3), it becomes clear
that the initial four elements in the data structure have been assigned a value of 71.
This could cause unexpected behaviour in the operation results. The risk of receiving

71 71 71 71
Allocation Buffer 
of process 0

Figure 3.3: Accessing buffer without mapping.

an uninitialized value when process 0 transfers the value indexed at 6 after switching
to another partitioning exists. To avoid this, a mapping from local indices to global
indices was necessary. We found that the HPCG Benchmark had already completed
this task. Using this new understanding, we were able to advance and modify our code,
as illustrated next.

1 int localSize = 4; // we have four global indexes assigned to process 0
2 for(int i = 0; i < localSize; i++)
3 base_pointer[map_local_to_global_index(i)] = 71;
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And now, values have been assigned to the correct offsets in the allocation buffer (see
Figure 3.4). However, this was a challenge that we still had to tackle. After analyzing

71 71 71 71
Allocation Buffer 
of process 0

Figure 3.4: Accessing buffer with mapping.

process 1’s allocation buffer, we discovered that global indexes commence at 1. This
causes an issue as local index 0 being mapped to global index 1 would lead to accessing
the second element of the allocation buffer instead of the intended first element. To
provide a more precise demonstration of this problem, please consider the following
code snippet:

1 int localSize = 3; // we have three global indexes assigned to process 1
2 for(int i = 0; i < localSize; i++)
3 base_pointer[map_local_to_global_index(i)] = 71;

Process 1 maps local indices 1 and 2 to global indices 4 and 5, respectively. Subsequently,
the corresponding indexes are assigned according to Figure 3.5. The reasoning is

71 71 71
Allocation Buffer 
of process 1

Out of bounds

Figure 3.5: Accessing the buffer without an additional mapping step.

simple: indexing buffers start at 0 (e.g. base[0]). However, accessing the first element
(global index 1) at base[1] while utilizing the mapping of local to global indices
presents a challenge. The value assigned to global index 1 is at offset 0. Consequently,
an additional stage is necessary to compute an accurate mapping based on the Lex
Layout: establish a mapping from local to global index, then from global to allocation
index. In our context, the allocation index pertains to the offset or index within the
allocation buffer that LAIK generated. A simple method to determine this index
involves deducting the smallest global index owned by process i from the global index.
In our example, process 0 would subtract 0, while process 1 would subtract 1. We
computed the mapping and used it to access the data structures. See the following
code snippet for an example:

1 int localSize = 3; // we have three global indexes assigned to process 1
2 for(int i = 0; i < localSize; i++)
3 base_pointer[map_local_to_allocation_index(i)] = 71; // map local to allocation index
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The final results can be seen in Figure 3.6. In summary, we carried out this step in a
timely manner. However, it would have been more desirable if there were no gaps, as
we observed. Chapter 3.3 will detail how we removed these gaps by implementing a
customised layout.

71 71 71
Allocation Buffer 
of process 1

Figure 3.6: Accessing the buffer with an additional mapping step.

3.1.4 Using LAIK Vectors throughout the Benchmark

The fourth stage of our HPCG Benchmark involved the use of LAIK vectors. But it
was essential to test everything we had done before proceeding to the next step. To
achieve this, we initiated a local Laik_Data object in the ComputeSPMV() function. Our
strategy was to transfer the entries from the original vector into the data container. We
then exchanged values via LAIK, performed the sparse matrix-vector multiplication,
and restored the resulting values to the original vector. During execution, the HPCG
Benchmark generates a file and adds the results of the operations to it. We were
then able to compare our results with those of the original application and found no
discrepancies between the two files. This indicated the success of the partitioner and
the exchange via LAIK.
After conducting tests on our partitioner algorithm, we needed to establish the optimal
way to use LAIK vectors across the application. Initially, we tried to include parameters
in existing functions where exchange took place. This occurred because we had
exclusively transferred the vectors to LAIK, which HPCG employed to exchange values.
We intended to retain the original vector parameter for compatibility with earlier
versions. However, this method led to several obstacles, resulting in intricate code.
Multiple if-statements were utilized to determine the usage of LAIK vectors. Moreover,
mapping presented difficulties as it was imperative to use it with LAIK vectors, resulting
in more if-statements during operation to distinguish between the LAIK vector and the
original HPCG vector. Looking at this code snippet without delving into detail, it is
immediately apparent that it does not adhere to good coding practices.

1 ComputeWAXPBY(nrow, 1.0, x, alpha, p, x, A.isWaxpbyOptimized, NULL, p_laik_vector, NULL);
2 ComputeWAXPBY(nrow, 1.0, r, −alpha, Ap, r, A.isWaxpbyOptimized, NULL, NULL, NULL);
3 ComputeDotProduct(nrow, r, r, normr, t4, A.isDotProductOptimized, NULL, NULL);

Our second attempt consisted of creating prototypes of the operations/functions,
whereby we replaced all initial vectors with LAIK vectors. For simplicity, we decided to
transfer vectors that do not exchange values to LAIK. This approach allowed for cleaner
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code whilst maintaining backwards compatibility. This step proved advantageous, as
later explained in Chapter 3.2. Additionally, the use of directives simplified handling
cases where the application runs with LAIK:

1 #ifndef HPCG_NO_LAIK
2 ierr = ComputeSPMV_laik_ref(A, x_overlap, b_computed); // b_computed = A*x_overlap
3 #else
4 ierr = ComputeSPMV_ref(A, x_overlap, b_computed); // b_computed = A*x_overlap
5 #endif

Small Optimization

The fourth stage also involved optimizing the code to resolve a bus error that occurred
after the initial call of ComputeSPMV(). Our method involved initializing and storing
all the required data for the partitioning algorithm, without creating any partitionings.
For every LAIK vector, we subsequently produced uniform partitionings during the
initialisation process. This technique necessitated allocating a new buffer and replicating
data for the partitioner algorithm each time, resulting in poor performance. This
resulted in the duplication of bytes and delays in repeatedly creating and storing data
for the partitioning algorithm. This approach is impractical for larger problem sizes
and even for smaller ones, it may result in bus errors.
Thus, the solution proved uncomplicated. We promptly produced and saved the
partitionings once when arranging information for the partitioning algorithm. For each
LAIK vector, we initiated the data container and switched to the relevant partitioning.
This eliminated the requirement for persistent generation of partitioning or allotment
of new buffers, therefore preventing redundant replicas.

3.1.5 HPCG LAIK v1.0

When we tried to compile the application after the previous step, there was a small
linking error with a big impact. It took us a couple of hours to fix it:

1 // Function declaration was
2 int ComputeMG_laik_ref(const SparseMatrix &A, Laik_Vector * r, Laik_Vector * x);
3 // instead of
4 int ComputeMG_laik_ref(const SparseMatrix &A, const Laik_Vector * r, Laik_Vector * x);
5 // => "const" was missing. It resolved the building issues.

After resolving the identified problem, we were able to successfully compile our ap-
plication. Subsequently, we proceeded to the fifth stage: testing to verify whether the
output of the result file mirrored that of the original application. Regrettably, the first
attempt resulted in segmentation faults. Upon closer examination, we discovered the
dilemma outlined in Figure 3.5, wherein we had unintentionally omitted utilising the
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mapping from local to allocation indices for each LAIK vector. Despite attempts to cor-
rect the discrepancies, inconsistencies remained in the results. In response to the query
regarding the source of these inconsistencies, an iterative approach was implemented.
The subsequent operation, ComputeMG_ref(), was also analysed to resolve the issue. We
analysed the output vector of both the original software and the LAIK variant following
each operation, including ComputeSPMV_ref, which yielded no inconsistencies. After
executing this function, we detected discrepancies. We analysed the function and
executed its first operation, ComputeSYMGS_ref. By comparing the resulting vectors,
we identified the root of the problem to be the aforementioned operation. Further
evaluation of the code, comparing the initial version with the modified version, did
not reveal any instances of copy-paste mistakes. During each iteration, it was found
that a variable called sum was assigned an entry from a vector. However, the problem
highlighted in Figure 3.5 reoccurred due to a mismatch between the local and allocation
indices resulting in significant disparities in the output file. Therefore, the last step
involved resolving this issue, leading us to the conclusion of the initial HPCG LAIK
v1.0 port version.
We now reach an intriguing topic: facilitating the expansion and contraction func-
tionalities. The subsequent Chapter will explore how LAIK can adapt to resizing the
world (i.e. adjustments to the number of participating processes) and the encountered
challenges during the inclusion of this feature in HPCG LAIK.

3.2 Malleability of ressources in the HPCG Benchmark

After successfully releasing HPCG-LAIK v1.0, our objective was to provide Malleability
for the HPCG Benchmark Using LAIK. The following paragraphs outline the essential
stages required to implement the resize function in the HPCG Benchmark. Initially, we
familiarised ourselves with the resizing feature by reviewing sample codes in the LAIK
repository. It became evident that the resizing code always had a consistent structure:

1. Calling laik_allow_world_resize()

2. Running partitioner algorithms for the new group

3. Redistributing data

4. Releasing old world and old partitionings

Hence, it became apparent that we could integrate it into the HPCG Benchmark with
the help of the corresponding boilerplate code that enables world repartitioning. Our
main goal was to achieve accurate reduction outcomes.
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3.2.1 Enabling shrinking feature

The following phase involved designing partitioner algorithms for the sparse matrix,
following the successful demonstration of the LAIK vectors. Our first attempt utilised
an abbreviation to reduce size by re-running the setup functions alone. Nevertheless,
this approach proved inadequate since only adjusting the new world size configuration
parameter failed to address the resulting increase in the global problem size. It is
necessary to maintain the same overall number of rows in the sparse matrix after
repartitioning, given the previous problem size. Consequently, we examined the
initialization logic and endeavoured to comprehend how the problem size is determined
in the HPCG Benchmark. The HCPG Benchmark calculates the number of processors
in the x/y/z-direction (npx/npy/npz) based on the world size:

1 ComputeOptimalShapeXYZ( size, npx, npy, npz );

The number of local grid points in the x, y, and z directions (np/ny/nz) can be specified
by the user. The default value is 16x16x16. To determine the global grid points, the
HPCG Benchmark multiplies the local grid points by the corresponding number of
processors:

1 gnx = nx * npx;
2 gny = ny * npy;
3 gnz = nz * npz;

Thus, the HPCG Benchmark can calculate the local and global problem size:

1 totalNumberOfRows = gnx * gny * gnz;
2 localNumberOfRows = nx * ny * nz;

Therefore, if a new world size is introduced and the setup functions are run again, the
function ComputeOptimalShapeXYZ() may generate new calculations for npx/npy/npz.
A careful examination of the global grid point calculations will reveal that gnx/gny/gnz
values will differ from their previous numbers. Thus, the solution to this issue is
calculating new quantities of local grid points (nx/ny/nz) in the x/y/z-direction:

1 ComputeOptimalShapeXYZ( new_size, npx, npy, npz );
2 new_nx = old_gnx / npx;
3 new_ny = old_gny / npy;
4 new_nz = old_gnz / npz;

One limitation of the program is that the values for npx/npy/npz must be a multiple
of old_gnx/old_gny/old_gnz. To address this, we have implemented a solution that
involves terminating the program with user-friendly output. After adjusting the local
size for each process dynamically, we formulated a technique to attain the identical
problem size post-repartitioning. Nevertheless, we encountered assertion errors and
segmentation faults due to insufficient attention to detail. In particular, we did not
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consider the alteration in the size of the local problem subsequent to repartitioning,
which necessitated a change in the local length of all LAIK vectors. After resolving this
and a few other issues, we proceeded to compare the resulting file. Our initial attempt
at repartitioning failed due to a discrepancy in the results. Our test case involved
reducing the number of processes in the system from two to one. The non-deterministic
behaviour displayed in the result file was intriguing. Despite our failure to identify the
problem, we were able to understand the initialisation logic. Therefore, we decided to
forego the abbreviation and utilise partitioning algorithms for the sparse matrix.

Partitionings for the Sparse Matrix

Our initial consideration was to determine which data in the sparse matrix required
distribution. As a result, we decided to transfer the subsequent elements to LAIK
(using Laik_Data) following the same approach used for LAIK vectors.

• nonzerosInRow (1d)

• matrixDiagonal (1d)

• f2cOperator (1d)

• matrixValues (2d)

• mtxIndG (2d)

We will later see that transferring the f2cOperator member was superfluous. The
partitioning algorithm was mostly identical to that used for the LAIK vectors:

1 void partitioner_1d_members_of_A(Laik_RangeReceiver *r, Laik_PartitionerParams *p)
2 {
3 SparseMatrix * A = (SparseMatrix *)laik_partitioner_data(p−>partitioner);
4 Laik_Space * A_space = p−>space;
5

6 assert(A−>totalNumberOfRows == laik_space_size(A_space));
7

8 Laik_Range range;
9 for (long long i = 0; i < A−>totalNumberOfRows; i++)

10 {
11 // assign every process its global part
12 int proc = ComputeRankOfMatrixRow(*(A−>geom), i);
13

14 laik_range_init_1d(&range, A_space, i, i + 1);
15 laik_append_range(r, proc, &range, 1, 0);
16 }
17 return;
18 }
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Each process was assigned its global rows, as we did in the algorithm for LAIK vectors.
But we had to consider the implementation of the partitioner algorithm for the 2D
members of the sparse matrix, such as matrixValues. One potential approach was to
adopt LAIK’s 2D space and data structure. However, this would have required major
modifications to the code’s access pattern. Consequently, we decided to flatten the 2D
members. The HPCG Benchmark sets a fixed limit on the maximum size of non-zero
elements per row. Therefore, the 2D arrays in the original code are constructed using
arrays within the main array that have a size of 27. To account for this, a slightly
adapted partitioning algorithm has been created for the initial 2D components of the
sparse matrix:

1 void partitioner_2d_members_of_A(Laik_RangeReceiver *r, Laik_PartitionerParams *p)
2 {
3 SparseMatrix *A = (SparseMatrix *)laik_partitioner_data(p−>partitioner);
4 Laik_Space * space2d = p−>space;
5

6 Laik_Range range;
7 for (long long i = 0; i < A−>totalNumberOfRows; i++)
8 {
9 // assign every process its global part

10 int proc = ComputeRankOfMatrixRow(*(A−>geom), i);
11 int from = i * numberOfNonzerosPerRow; // including
12 int to = i * numberOfNonzerosPerRow + numberOfNonzerosPerRow; // excluding
13

14 laik_range_init_1d(&range, space2d, from, to); // we are flattening the 2D array
15 laik_append_range(r, proc, &range, 1, 0);
16 }
17 return;
18 }

Again, each process is assigned its corresponding global rows. However, as the 2D
array is flattened, the entire row (which comprises 27 indexes) must be assigned to the
process.
After incorporating the partitioning algorithms, we had to modify the code to allow
repartitioning, setup functions, and all operations on the sparse matrix data. It was
crucial to implement mapping, just like we did for LAIK vectors, because of the Lex
Layout. Testing all of the new code resulted in discrepancies in the outcome. We will
now explore the reasons behind this occurrence and how we resolved it.

Disceprancies in the result

The task at hand was to locate the source of the bug. After much deliberation, we
opted to print out each value used during the calculation. We repeated this process
with the original application, comparing the output and discovering a discrepancy in
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the values accessed by matrixValues, matrixDiagonal and mtxIndG. It transpired that
there was an initialization error, whereby the off-by-one mistake occurred. However,
despite rectifying the off-by-one error, discrepancies remained. We employed the
aforementioned method to determine the source of the errors, which were discovered
after invoking the function known as TestCG(). Upon comparing the output, it became
apparent that the values stored in matrixValues were not the same. This was attributable
to the implementation of the TestCG() function. The HPCG Benchmark replaces the
matrixDiagonal component of the sparse matrix with alternative values. However, the
HPCG Benchmark presents an issue as it stores pointers within matrixDiagonal which
reference the corresponding entry in matrixValues. This method avoids storing a value
twice yet in LAIK, we did not utilise pointers. When altering data in the matrixDiagonal,
it is essential to modify the relevant matrixValues elements as well. To rectify the
issue, correct values were assigned in the matrixValues. As a result, there were no
further discrepancies observed when using LAIK containers in the sparse matrix during
computation. The tests were conducted without modifying the world’s dimensions.
Then we tested the same with shrinking. Our test case was to start the computation
with two processes and shrink it to one. But as we will see, there were still some bugs.

Disceprancies in the result with shrinking

The initial issue encountered after carrying out repartitioning was a segmentation error
that occurred when attempting to access the f2cOperator. Rectifying the problem was
achieved by altering the data type to laik_Int32. Upon investigation of the indices
used to access the f2cOperator, we observed peculiar numbers such as −2302392 and
139231093193. Subsequently, we determined that the segmentation error was caused by
incorrect usage of the laik_UInt64 data type. If you recall the list of members requiring
porting to LAIK (see 3.2.1), we indicated that the f2cOperator member did not require
porting. The rationale was straightforward. The f2cOperator constitutes solely of local
data needed by each process and redistributing it would be nonsensical, given its lack
of global data. Thus, we reverted to the original state after repartitioning. We needed
to reinitialize the f2cOperator array according to the new settings. Finally, we produced
an output file identical to running the original application. Our subsequent task was
to develop code for the new joining processes. We emphasized the importance of
these processes being aware that they have joined the computation to synchronize with
already-running processes.
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3.2.2 Enabling expansion feature

Processes involved in computation can be specified from the outset, as well as those
added after invoking laik_allow_world_resize(). This topic is comprehensively covered in
Chapter 2.1.2. This enables new processes to return from the laik_init() function and
continue execution. However, it should be noted that additional processes would also
need to call setup functions, just as the initial processes did. LAIK tackles this problem
by introducing a variable known as phase. In the course of computation, processes
are allowed to adjust the phase counter to any desired value. To distinguish between
previous and current processes, an if-statement verifies if the phase is equal to zero.
Therefore, we have adapted the phase to ensure that new processes avoid the need to
perform the entire setup repeatedly. Instead, they retrieve information from the original
processes during data redistribution. One challenge we faced was coordinating the
exchange of values between the original and new processes in the correct order. This
was due to the presence of multiple LAIK containers. To prevent extended wait times
or blockages during data redistribution, we designated the order of the containers
involved. The issue was swiftly resolved. For example, imagine expanding from two to
three processes and experiencing repartitioning during the 10th iteration of CG. The
phase differentiates between the initial and new processes, as highlighted. Once the
initialization and repartitioning were complete, the new processes could proceed to
the section of the code where the initial processes were executing. It was required for
the new processes to ascertain the current computation iteration, with the aim being
to set the phase to the subsequent iteration, thus achieving synchronization amongst
all processes. However, there were still discrepancies despite the synchronization. Our
debugging method entailed printing the outcome vectors. Upon executing a particular
function, we discovered entries with inf. Once investigated, we established that a
variable named rtz was valued at zero. Division of any double by zero led to inf.
This difficulty exclusively arose with just-added processes since they did not calculate
starting functions that set essential variables for the CG. Therefore, it was necessary
to implement the latest processes to take values for certain variables from the initial
processes. It was discovered that the variables of the recently added processes had not
been updated, leading to the discrepancy. As this issue was resolved, we were pleased
to announce the release of the second version of the port: HPCG LAIK v1.1.

3.3 Custom Layout: Sparse Vector

As discussed in section 3.1.3, we have removed the task of calculating maps from local to
allocation indices. In the following section, we will provide detailed information on our
approach. To summarize, a layout outlines the organization of process-local segments of
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a data container stored in memory through LAIK’s automated data management. The
abstract index spaces are employed by software developers. If a programmer is seeking
to acquire the pointer to the allocation buffer, they may evoke the associated function
within LAIK, which will then return the pointer. About the default layout, known as the
Lex Layout, it is imperative to acknowledge that this configuration designates memory
for all global indexes within a given process’s low and high bounds, which may result
in the allocation of memory for global indexes that do not correspond to that particular
process. Therefore, this arrangement requires extra effort, such as mapping calculations
and slight code modifications. Once the HPCG Benchmark was ported successfully and
the global data was made adaptable, we progressed towards implementing our bespoke
layout according to our needs. Our bespoke layout encompasses the Sparse Vector layout.
As the name implies, we aimed to establish a customised format that would allocate
memory similarly to the HPCG Benchmark. This format consists of an array with
local indices and memory for external values as mentioned in Chapter 2.2.1. A concise
summary: The HPCG Benchmark allocates a buffer to accommodate all local values,
and if the vector values are exchanged, the HPCG benchmark allocates additional
memory for them and stores them after the local values. Consequently, the objective
of LAIK was to create an allocation buffer that comprises global indices unique to the
process and has the same access pattern as that of the HPCG Benchmark. Concerning
the Lex Layout, we intended to eradicate the gaps within the allocation buffer (refer to
Figure 3.7). The first step was to understand the LAIK interface objectively. Through a
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Allocation Buffer 
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Figure 3.7: Buffers automatically allocated by LAIK using the Sparse Vector Layout.

comprehensive review of the documentation and consulting with developers, a clear
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understanding was achieved. Furthermore, the generic and Lex Layout implementations
were analysed, indicating a strong structural similarity. In light of this, a new file was
produced to address the issue. We created our initial version by adjusting the names
after copying and pasting the content of the Lex Layout implementation. Specific code
was removed during this process. However, there was still a significant amount of work
to be accomplished.

3.3.1 Implementing the Sparse Vector Layout

After gaining a clear understanding of layout concepts, we delved deeper into the library.
One issue that was immediately apparent was that the existing code for generating
Laik_Layout objects was only modified for creating a Lex Layout. This presented the
challenge of discerning the current layout in use. The developer’s implementation
of a generic function signature facilitated the creation of a new specific layout object.
However, there remained a need for a static helper function in relation to the existing
layout. We could have opted to implement a generic signature, but we chose to
introduce a new flag to signify the layout currently in use. Thus, we implemented our
bespoke helper function within the same file as it was done for the Lex Layout. And
there was no longer a requirement for the generic layout factory of LAIK, as shown in
the following code snippet.

1 if (layout == LAIK_Lex_Layout)
2 {
3 Laik_Range *ranges = coveringRanges_lex_l(n, list, myid); // helper function in regard to the lex

layout
4 Laik_Layout *layout = laik_new_layout_lex(n, ranges, 0);
5 }
6 else if (layout == LAIK_Vector_Layout)
7 {
8 Laik_Range *ranges = coveringRanges_vector_l(list, myid, &map_size); // helper function in regard

to the sparse vector layout
9 Laik_Layout *layout = laik_new_layout_vector(n, ranges, layout_data);

10 }

The helper functions known as coveringRanges() determine the required memory amount.
The parameter "list" includes all global indexes pertaining to the process. The fun-
damental problem of gaps in the Lex Layout is located within the auxiliary function.
The memory gaps occur because the helper function traverses locally owned ranges
(interval of global indexes) and expands the initial range by the other ranges. Please
comply with the following pseudocode.

1 result_range = list[0] // get first range
2 for range in list // iterate over the other ranges
3 laik_range_expand(result_range, range);
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We aim to illustrate expansion in this context with an example. We have two ranges:
The first range is [10; 20[ and the second range is [8; 17[. If we expand the first range
by the second in both directions, the resulting range is [8; 20[. If we now expand it by
a third range, say [70; 71[, the resulting range will be [8; 71[. Expanding in this way
encompasses all global indices that are owned both locally and non-locally, provided
they fall within locally owned ranges, as evidenced. To rectify this issue, a custom
helper function was implemented. Initially, we considered avoiding further expansion
of the function and instead adding the size of the ranges to the upper bound. Please
refer to the pseudocode for more details.

1 result_range = list[0] // get first range
2 for range in list // iterate over the other ranges
3 laik_range_add(result_range, range);
4

5 laik_range_add(result_range, range):
6 result_range.to += range.to − range.from

In relation to the previously mentioned example, the allocated memory corresponds to
the number of global indexes assigned to the process, resulting in a range of [10; 30[.
This achievement eliminates any gaps and fulfils our first goal. Another feature of
our layout is that we only permit the allocation of one memory at any given time.
Therefore, we have excluded the parameter "n" in the function coveringRanges_vector_l().
Conversely, the Lex Layout allows for the allocation and utilization of multiple buffers
simultaneously.
Regarding our custom layout, additional information was necessary. However, for the
Lex Layout, the application programmer need not provide any further details. Therefore,
we made changes to the generic signature for creating layouts. Through brainstorming,
we determined that the simplest solution was to include a pointer to the layout data
in the Laik_Data object. This enabled the application programmer to set relevant
information for the layout. We require two essential pieces of information: the length
of the vector locally and the amount of external values the process will receive. After
acquiring all pertinent details necessary for constructing the Sparse Vector Layout, our
subsequent objective was to devise an effective technique for calculating the conversion
of possessed global to local indices by LAIK. This method eliminates the user’s need to
complete this task manually, as was required when using the Lex Layout. Within the
context of our newly proposed layout, the necessity for this mapping becomes even
more apparent. If we refer to the example presented in Figure 3.7, we can observe that
process 1 owns global indexes 1, 4, and 5. Without any mapping, this would result in
accessing the allocated buffer at the incorrect offset. In this example, thus, we would
need to map the global indexes as following: 1 → 0, 4 → 1 and 5 → 2. Our approach
to achieve this mapping is as follows: As previously mentioned, the parameter list
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contains all ranges of global indexes belonging to the given process. Local partitioning
is assumed during the calculation of the mapping. So, the concept is to have a primary
object that stores all the intervals or ranges owned by a process. This is done by iterating
through the list of locally owned ranges. For example, if the process has ownership
of the four ranges: [6; 9[, [9; 10[, [15; 71[ and [75; 80[, then the process will store the
following intervals to calculate mapping: [6; 10[, [15; 71[, and [75; 80[. Following this,
we combined neighbouring ranges to reduce the total size of information necessary for
calculation. We also benefit from improved performance, as we require fewer iterations
in the worst case than if we stored each range separately without merging them. Once
we had calculated the mapping of all intervals, we proceeded to implement a critical
function for calculating the offset within the allocated buffer for a given global index.
This approach allowed us to quickly determine the correct offset. Please refer to the
following code for more information:

1 int localOffset = 0;
2 for (uint64_t i = 0; i < map−>size; i++)
3 {
4 // if <globalIndex> was in interval <i>, we add the size of <globalIndex> subtracted by the lower

bound of interval <i> to <localOffset>
5 if (globalIndex >= intervals[i].from && idx_val < intervals[i].to)
6 {
7 localOffset += globalIndex − intervals[i].from;
8 break;
9 }

10 // if <globalIndex> was not in interval <i>, we add the size of the interval to <localOffset>
11 localOffset += intervals[i].to − intervals[i].from;
12 }
13

14 assert(localOffset >= 0 && localOffset < layout−>localLength);
15 return localOffset;

The objective of this approach was to accumulate interval sizes until identifying the
interval that contains the global index. Thus, we calculate the precise quantity of
elements stored in memory. If we identify the appropriate interval, we simply add the
offset of the global index minus the lower bound of the interval to the local offset. To
elaborate, we refer to the example in Figure 3.7. Our objective was to create a mapping
with the parameters 1 → 0, 4 → 1 and 5 → 2. For process 1, the intervals saved are
[1; 2[ and [4; 6[. Let us consider mapping the global index 5. During the first step of
the offset calculator, it is evident that 5 is not within [1; 2[. Therefore, we increase
localO f f set by 2 − 1 = 1. In the second step, we check if 5 is within [4; 6[, which is
clearly verified. Thus, we update localO f f set += 5 − 4 = 1 + 1. Therefore, the final
value of the local offset is 2. Afterwards, we exit the loop and verify if the resulting
offset fits within the allocated memory. Therefore, we have successfully mapped 5 to 2
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in this given example. However, there is still more work to be done as we have yet to
address global indexes, which are not internal to this process. Specifically, in relation
to the HPGCG Benchmark, there are global rows that are not owned by this process.
As previously discussed, if a process requires an element of a vector at the <i> index,
but does not own the global row at <i>, then another process will be continuously
updating the vector’s value at <i>. Thus, a process must receive external values from
the process that owns the global row <i>. The HPCG Benchmark stores these values at
the end of the local entries of the vector. Consequently, we had to take this arrangement
into account in our layout. To determine the order in which the HPCG Benchmark
copies external values to the end of local entries, we printed out the values and the
respective process from which they came. Upon careful observation, we have identified
a prevalent pattern in which received values are arranged in ascending order of rank
IDs and global indexes. Let us consider an example with three processes and process 0
requiring values located at global index 2 and 5 from process 1, and global indexes 1, 4,
and 5 from process 2. The storage including the external values by process 0 is visually
shown in Figure 3.8. With that, Process 0 can carry on performing its operations for the

Local valuesVector

Process 2 

2 5 1 4 5

Process 1

Values received by

Figure 3.8: An illustration of how external values are stored at the end of the buffer.

current iteration after acquiring the external values at the proper offsets. To return to
our implementation, we needed to consider global indexes of external values as well.
After analysing the behaviour, we quickly achieved this. We adjusted the code above as
follows:

1 int localOffset = 0;
2 bool wasInLocalRange = false;
3 for (uint64_t i = 0; i < map−>size; i++) {
4 if (globalIndex >= intervals[i].from && idx_val < intervals[i].to) {
5 localOffset += globalIndex − intervals[i].from;
6 wasInLocalRange = true;
7 break;
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8 } else if (globalIndex < intervals[i].from) {
9 // we caught an idx which is not locally owned by this proc

10 // break so we do not iterate over all intervals
11 break;
12 }
13 localOffset += intervals[i].to − intervals[i].from;
14 }
15 // we calculated the offset for locally owned global index
16 if(wasInLocalRange) {
17 assert(localOffset >= 0 && localOffset < layout−>localLength);
18 return localOffset;
19 }
20 // we have following layout: | Local values | external values |
21 localOffset = layout−>localLength; // offset starts there
22 // reset counter, if all values have been received
23 if(layout−>currentExternalValue == layout−>numberOfExternalValues)
24 layout−>currentExternalValue = 0;
25 // return local offset for the given global index of an external value
26 return localOffset + layout−>currentExternalValue++;

As intervals of the mapping are calculated solely when local partitioning is active, it
is possible to immediately determine whether the current global index being handled
is external. This verification is executed in the "else-if-statement". It is necessary to
check whether the global index is smaller than the lower bound of the current interval.
This condition indicates that the global index is not present in the current and other
intervals being iterated over nor in the previous interval. The aforementioned condition
is implicitly true because if it were not the case, the prior iteration would already have
exited the loop and returned the local offset of the global index. Subsequently, upon
exiting the for-statement, the localOffset is then set to the local length of the layout object.
Notably, calculating the offset for external values posed no complications. This is due
to the fact that LAIK facilitates the exchange of values in the same manner as the HPCG
Benchmark. We utilised a member of the layout object called "currentExternalValue" to
indicate the current offset, incrementing it after a successful mapping of the external
value global index. We also stored the total number of external values to exchange,
thus enabling us to verify that the communication of values was complete, resetting the
counter to 0. Namely, we implemented the Sparse Vector Layout following a logical and
concise approach. This facilitated the successful implementation of the first version of
the Sparse Vector Layout.
Subsequently, we had to modify the code for the HPCG Benchmark to incorporate the
Sparse Vector Layout. Upon testing the updated version, we encountered a "Segmentation
Fault" error. We reviewed the code in increments to identify the root cause and
determined that certain portions still employed the mapping from the Lex Layout. We
eliminated those segments and subsequently reran the program, resulting in output
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files that were identical to those from the original application. So our subsequent
objective was to ensure that it is feasible to partition the world using our customized
layout.

3.3.2 Shrink feature with the Sparse Vector Layout

After running the HPCG Benchmark with our customised layout and enabling the
shrink function, we again encountered a "segmentation fault". Upon careful debugging,
we identified the same issue as before: failure to remove the prior mapping due to
the Lex Layout. Nevertheless, after addressing this problem, we observed that one of
the processes had ceased to run. Initially, we suspected a deadlock had arisen. Upon
discovering the source code, it became apparent that execution had halted, prompting
us to investigate a potential deadlock. However, we determined that this was not the
cause and instead identified an overlooked circumstance wherein a new layout object
was being generated. A process does not need to allocate a buffer if it has no global
indexes assigned to it. So we forgot to handle this case. This omission resulted in
peculiar or undefined behaviour. Once the issue was addressed, the program no longer
experienced an interruption at this stage. Subsequently, we encountered a similar
occurrence during the redistribution of data from LAIK vectors to accommodate the
new world size, resulting in a deadlock. To understand this problem, we will briefly
explain the little optimisation that takes place when a LAIK vector is created. Consider
the pseudo-code below.

1 // First, switch to the external partitioning, then switch to the local one
2 if(vector−>exchangesValues)
3 laik_switchto_partitioning(vector−>values, externalPartitioning, LAIK_DF_None, LAIK_RO_None);
4

5 // Start with partitioning containing only access to local elements
6 laik_switchto_partitioning(vector−>values, localPartitioning, LAIK_DF_None, LAIK_RO_None);

We begin by transitioning to external partitioning. This involves LAIK allocating
memory for external values. It is worth noting that we use the LAIK_DF_None setting,
indicating that processes should not exchange values. Once this is complete, we proceed
with local partitioning, avoiding value exchange once again. With that, we achieve
LAIK to check if an allocated buffer can be reused. If the memory is not reusable,
LAIK will need to copy all values from the old memory to the newly allocated memory.
It may seem costly, requiring LAIK to calculate the offset for each global index in
both the old and new layout, and then copy all values. However, if the memory is
reusable, LAIK will only verify whether each global index has the corresponding offset
in the allocated buffer. In case it does not, LAIK would need to copy the values to
the correct indexes within the reused memory. Therefore, our optimization entails
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the creation of a memory buffer by LAIK, which incorporates enough space for any
external values required. Upon transitioning to the local partitioning method, wherein
each process has sole access to its global indexes, LAIK can reuse this buffer. In contrast,
suppose we initiate with the local partitioning method and then switch to the external
partitioning. In that case, LAIK would have to allocate a new memory buffer and copy
all values to it. Having prevented one allocation and copy, it is imperative for a layout to
incorporate a function which can determine whether LAIK can reuse the memory of an
old layout. Therefore, we had to create our own customized reuse function. With this
in mind, we shall revisit the previous issue we encountered; namely, the deadlock that
occurred while redistributing the data of LAIK vectors to conform to the new world
size. The cause for the deadlock in this case was evident. We applied the previously
mentioned optimisation when resizing the world. We specified that any removed
processes would transition from the old local partitioning to the new local partitioning
due to the world resizing. We also stated that for processes still executing, they would
first switch to the new external partitioning and then to the new local partitioning.
This was ultimately the root issue. The processes involved in the access phase differ in
their initial partitioning, resulting in non-matching send and receive instructions. To
rectify the issue, we decided that the processes not being removed would remain in
their old local partitioning, even if this resulted in the omission of optimization. This
ensured that all processes had the same access phase to the data container, enabling the
calculation of matching send and receive operations. We believed that we had taken
all necessary measures, but upon executing the program, we encountered an error
stating "free() and malloc() unaligned tcache chunk detected". Hence, we conducted
an incremental search to pinpoint the source of the error. It became apparent that we
had overlooked the implementation of the aforementioned reuse function. Consider
the following code snippet:

1 // do not reuse a vector, if the memory of the new layout does not fit into the old
2 bool new_totalSize_fits = new_layout.allocatedRangeCount <= old_layout.allocatedRangeCount;
3 // do not reuse a vector, if localLength changed
4 bool vector_size_changed = new_layout.localLength != old_layout.localLength;
5 if (!new_totalSize_fits || vector_size_changed) {
6 if(!(vector_size_changed)) new_layout.mapping = old_layout.mapping;
7 return false; // no, cannot reuse
8 }

As previously indicated, reusing memory is not possible if the required memory for the
new layout exceeds that of the old layout. The second boolean value denotes whether
the local length of a vector has changed, for instance, due to repartitioning. If this
is true, a new buffer must be allocated owing to the diverse offsets and composition
of values within the memory. Please keep in mind that the reuse function has been
developed to align with the assertions and conditions in the current version of the
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LAIK library. If we are unable to reuse a layout, we will check if the local vector length
remains the same. If so, this indicates that repartitioning has been executed in our
context. As previously explained, in this situation, we cannot begin with external
partitioning due to optimization reasons. Therefore, we begin with local partitioning
and switch to external partitioning when necessary. A new buffer was generated and all
values were copied to it, an unavoidable procedure. However, the primary cause of the
error was the lack of mapping assignment to the external partitioning, which resulted
in the occurrence of unexpected behaviour. Upon assigning the necessary mapping
to the layout for the external partitioning, we carried out testing of the resultant files.
This marked the successful implementation of our bespoke layout while the world was
being shrunken. The subsequent step involved detecting bugs during the expansion of
the world while using our custom layout.

3.3.3 Expansion feature with the Sparse Vector Layout

We commenced this case with the mindset that we would need to invest some more
time in debugging. However, upon carrying out a test case of broadening the scope
from two to four processes, our HPCG-LAIK Benchmark yielded accurate outcomes.
Subsequently, we analysed other test cases and uncovered a latent bug in the calcula-
tion of mapping intervals. This error was pinpointed by means of an assertion within
the mapping calculation function. Our issue arose from the fact that the number of
initialised intervals did not match the map’s size. This was a particularly intriguing
problem because it did not occur in our previous test case. Faced with this dilemma,
we decided to print out the map, including all intervals. Through this exercise, we soon
realised that the last interval contained random values, as it had not been initialised.
This problem was due to a specific case and did not happen regularly. After resolving
this issue, we introduced HPCG LAIK v1.2.
To summarise, we initially ported the HPCG benchmark to take advantage of LAIK’s
communication concepts. Subsequently, we implemented the part that allows dynamic
adaptation of the world. Finally, we created a customised layout to match the com-
position and access pattern of the vectors in the HPCG benchmark. In the following
Chapter, we will assess the effectiveness of our migrated HPCG version to LAIK.
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Now, we will discuss the performance evaluation. This work will primarily analyze
three parts:

• Memory Consumption

• Computing Performance in GFlops/s

• The Effectiveness of Resizing the World

This review aims to compare the results of the original HPCG benchmark, our first
version, HPCG LAIK v1.0, and the third version of the port, HPCG LAIK v1.2. During
our benchmarks, we utilised an x86_64 architecture system with four sockets, each
containing 24 cores. Additionally, each core has two hardware threads. CPU models
are Intel(R) Xeon(R) Platinum 8360H CPU @ 3.00GHz. Furthermore, the system’s clock
frequency ranges from 1200MHz to a maximum of 3001.00MHz. The system has a
3 MiB L1d and L1i cache, a 96 MiB L2 cache, and a 132 MiB L3 cache. Our system
employs NUMA (non-uniform memory access) as the memory architecture. There are
four NUMA nodes in total, with certain processes sharing the main memory of their
respective NUMA node. We will begin analysing the memory consumption of all three
versions.

4.1 Memory Consumption

Another important consideration is the memory usage of each version. It is crucial to
optimize memory consumption to reduce total memory usage and access to non-local
memory, especially for systems with NUMA memory architecture, as problem sizes
increase. This optimization can lead to better overall performance. In this evaluation,
we consider the necessary memory allocated for the vectors used in the CG. It is
important to note that the measurement was performed on a local size of 64, 000. As
previously mentioned in Chapter 3.2.1, the user can specify the local dimensions for a
process. Therefore, we set nx, ny, and nz (the number of local grid points) to 40. The
number of local rows is then calculated by multiplying all three values. This was a
crucial aspect, which we will discuss after describing the results. The CG uses a total of
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nine vectors. Memory usage is evaluated by adding the buffer size of each vector and
multiplying it by the size of a double (8 Bytes). The results are visible in Figure 4.1. The
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Figure 4.1: Memory consumption benchmark results.

y-axis shows the total amount of memory used in MB by the nine vectors per process.
The x-axis shows the number of processes involved in the computation. The blue
column represents the results of HPCG LAIK v1.0, while the orange column represents
the results of HPCG LAIK v1.2 and HPCG Benchmark. It is worth noting that the latter
two have the same results, which is intuitive. In HPCG LAIK v1.2, we implemented
a custom layout that corresponds to the memory composition and access pattern of
the vectors in the HPCG Benchmark. The initial observation is noteworthy: the HPCG
LAIK v1.2 and HPCG Benchmark maintain a constant memory usage per process. This
is because each process only allocates memory for its local part. Therefore, regardless
of the number of processes, the memory usage per process remains the same. However,
the memory usage of v1.0 is significantly higher than that of the other two versions.
This is due to the usage of the Lex Layout. This layout allocates memory for every global
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index within the lower and higher bounds, resulting in redundant memory allocation.
The amount of memory used by HPCG LAIK v1.0 depends on how the global rows
are distributed or how global indexes are assigned to processes. Further benchmarks
confirmed this. Running HPCG LAIK v1.0 with 30 processes yielded a memory
consumption of 22.40 MB per process. With 40 processes, we observed a memory usage
of 29.80 MB per process. We cannot claim that there is exponential growth in memory
usage. However, memory usage will likely increase with larger problem sizes and a
greater number of processes. For this benchmark, we utilised a relatively small local
problem size. Multiplying the memory usage per process by the number of processes
reveals that the memory consumption is acceptable. However, as the memory usage
per process increases, the overall memory consumption can become excessively high.
For example, when the local problem size is set to 1, 124, 864, the memory usage for
HPCG LAIK v1.2 and HPCG Benchmark is only 66.83 MB per process, whereas HPCG
LAIK v1.0 has a memory usage of 265.90 MB per process when the benchmark is run
with eight processes. We ran the benchmark with 20 processes and obtained a result of
662.71 MB per process. Multiplying this result by the number of processes, we obtain a
total memory consumption of 13, 254.2 MB or 13.2542 GB. This indicates poor memory
usage, as the other two versions would have consumed only 1.336 GB in total. Poor
memory usage can lead to poor computational performance. If the main memory is full,
the operating system will start swapping, which can significantly impact performance.
In NUMA architectures, distributing processes across different NUMA nodes can lead
to decreased computational performance when processes need to access non-local data.
In summary, we optimized memory consumption with HPCG LAIK v1.2.

4.2 Computing Performance

As stated in the motivation, the HPCG Benchmark introduces a new ranking metric for
HPC systems. It rates systems based on a weighted GFlops/s (billion floating operations
per second) value. The authors of the official website of the HPCG Benchmark explain,
that the "HPCG is designed to exercise computational and data access patterns that more
closely match a different and broad set of important applications, and to give incentive
to computer system designers to invest in capabilities that will have an impact on the
collective performance of these applications" [22]. Therefore, the HPCG Benchmark
measures the performance of fundamental operations such as Sparse Matrix Vector
Multiplication, Symmetric Gauss-Seidel smoother, Global Dot Product, Vector Update
and Multigrid preconditioner. The authors provide additional information on why they
selected those kernels for measurement. However, we will proceed with analysing our
benchmark results. In our benchmark, we decided to set the global problem size to
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512000. This implies that the sparse matrix has 512000 global rows, which will then be
distributed amongst processes. Furthermore, the user can specify the runtime. We set
the runtime to 3000 seconds or 50 minutes. The HPCG Benchmark calculates the time
for performing one complete CG, then it calculates, how many times it will call CG by
dividing the total runtime by the time for one call. With that, it is also very interesting to
see, how many calls each version can perform. But we will come to it later. The diagram
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Figure 4.2: Computational performance benchmark results.

in Figure 4.2 shows the relationship between the number of processes participating in
the computation and the corresponding GFlops/s value, with the y-axis representing
the latter. The points on the line represent the achieved GFlops/s values. The light
blue line shows the results of the HPCG Benchmark, the dark blue line displays the
results of HPCG LAIK v1.0 and the grey line depicts the results of HPCG LAIK v1.2.
It is immediately apparent that there is a significant difference in the results between
the original HPCG Benchmark and our ported versions. This outcome was expected
since we did not use the optimization called Reservation API by LAIK. The Reservation
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API is an efficient optimization as it pre-calculates all steps for communication and
data management. For example, the API allocates the memory buffer once based
on the layout, and the pointer to the buffer remains constant. However, the pointer
is returned by calling a specific function in the current state. This step is necessary
because the memory buffer may have been automatically reallocated or deallocated
by LAIK as we did not make use of the Reservation API. Additionally, the current
state calculates a new layout object after each transition, resulting in repeated metadata
calculations. This results in poor performance in both versions. There is a noticeable
difference between the two ported versions as well. The developers of LAIK stated
that the TCP2 Backend used in v1.2 is not optimized for data exchange, whereas the
MPI Backend used in v1.0 is optimized. The TCP2 Backend was used because the MPI
Backend requires a memory buffer that is allocated according to the Lex Layout. When
using the MPI Backend with our custom layout, we observed buffer overflows. As
the number of nodes involved increased, computational performance improved with
each version. However, HPCG LAIK v1.0 did not exhibit this behaviour. When we ran
the benchmarks with 125 processes, the computational performance was even worse
than when running with only eight processes. We were trying to find out why. One
explanation was due to inefficient memory usage, as described in the previous analysis.
Initially, we considered oversubscription as a potential cause, given that the system
only has 96 cores. However, the other versions did not exhibit similar behaviour, as
previously mentioned.
As stated above, the benchmarks consisted of timed runs of 3000 seconds or 50 minutes.
Figure 4.3 displays the number of CG sets performed for each version in the benchmark.
As expected, the number of CG sets in the HPCG Benchmark is way greater than the
number of the ported versions.
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Figure 4.3: Number of performed CG sets.

4.3 The Effectiveness of Adjusting the Number of Computing
Processes

The last evaluation aims to answer the question of when it is worthwhile to resize the
world by adding new compute nodes. To achieve this, we measured the duration of
all iterations before resizing the world and recorded the average time. We determined
when it is appropriate to resize the world by calculating the difference in iteration
duration before and after resizing. Considering the time required for repartitioning,
we can determine the number of iterations needed to compensate for the resizing.
If it takes too many iterations to compensate for the resizing, we should question
whether the resizing was truly beneficial in this case. It is evident that reducing the
number of computing nodes will generally lead to decreased performance. Therefore,
we only considered expanding the world. The HPCG LAIK version 1.2 was used in
this evaluation. The graph (refer to Figure 4.4) displays the benchmark results with
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Figure 4.4: A comparison of computational performance before and after resizing,
including the time taken for resizing.

the y-axis representing time in seconds and the x-axis representing the number of
processes. The green column shows the average time per iteration before resizing, while
the orange column shows the average time after resizing. The grey column represents
the total time taken to resize the world. Upon comparing the average times, it was
observed that the average time per iteration before resizing is smaller than after resizing.
In general, this outcome would have been expected if we were shrinking the world.
However, since we are expanding the world, we attempted to find out why this might
be the case. We increased the number of iterations to obtain more stable results, but
they remained unchanged. We were unable to determine the cause, and therefore, we
could not determine whether resizing is advantageous in a given scenario. Expanding
from 4 to 8 is relatively quick compared to expanding from 12 to 16 or 8 to 16. It could
be beneficial. The latter cases may require more iterations to compensate.
In summary, although some of the benchmark results did not meet our expectations,
we gained valuable insights into the performance of each version.
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5 Conclusion and Future Work

In conclusion, this work has been quite successful. The problem at hand was to deter-
mine the feasibility of maintaining a feature that allows the node count to vary based
on resource availability without requiring explicit implementation. Furthermore, we
aimed to simplify communication by using abstract concepts to avoid explicit low-level
communication code. We addressed these questions using LAIK. We comprehended
the interface and concepts of LAIK and began integrating LAIK-specific code into the
code base of the HPCG Benchmark. For instance, we abstracted communication code by
leveraging abstract global index spaces. Enabling resizing was also a critical task, which
initially seemed impossible. However, we gained insight into how to resize the HPCG
Benchmark through the written examples in the LAIK repository. Furthermore, when
we integrated our custom design, we needed to modify the LAIK library. We were
thus able to contribute a new custom layout to LAIK. However, as we have analyzed,
our ported versions of HPCG LAIK v1.0 and v1.2 showed significantly worse compu-
tational performance compared to the original HPCG Benchmark. This issue could
be addressed by utilizing the Reservation API provided by LAIK. This optimisation
would lead to similar results in performance measurements as the HPCG Benchmark.
Another potential improvement would be to implement a custom layout for the sparse
matrix. This would eliminate the need for the application programmer to implement
the sparse matrix. However, an important factor affecting computational performance
was the unoptimized version of the TCP2 Backend. This will require improvement in
the future. As the average iteration time after resizing is not better than before resizing,
it is necessary to investigate the effectiveness of resizing. In summary, although there
is still work to be done, the porting of the HPCG Benchmark to LAIK was successful.
LAIK’s concepts for communication were utilized, and the world was resized.

43



Abbreviations

HPC High Performance Computing

HPCG Benchmark High Performance Conjugate Gradient Benchmark

LAIK A Library for Fault Tolerant Distribution of Global Data for Parallel Applications

MPI Message Passing Interface
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