
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Coupling Spectral Shallow-Water Equations
and a 3D Finite Volume Solver to Simulate

Complex Geometry

Armin Ettenhofer

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Coupling Spectral Shallow-Water Equations
and a 3D Finite Volume Solver to Simulate

Complex Geometry

Kopplung spektraler
Flachwassergleichungen mit einem 3D
Finite Volumen Solver zur Simulation

komplexer Hindernisse

Author: Armin Ettenhofer
Examiner: Prof. Dr. Hans-Joachim Bungartz
Supervisors: M.Sc. Keerthi Gaddameedi, M.Sc. (hons) Benjamin Rodenberg
Submission Date: 16.02.2025

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 16.02.2025 Armin Ettenhofer

Mobile User

Abstract

This thesis couples the spectral Shallow-Water Equations (SWE) solver SWEET with
the 3D finite volume solver OpenFOAM. An atmosphere-ocean and an ocean-ocean-
coupled solver are constructed using the preCICE coupling library. In this context, the
challenges of 2D-3D coupling two solvers using different simulation schemes and the
challenges arising from SWEET’s spectral discretization are examined. The atmosphere-
ocean solver is briefly analyzed in a proof-of-concept scenario, though limited to
one-way coupling. The main part of this work then focuses on the two-way ocean-ocean
coupling scenario. OpenFOAM is used to improve simulation accuracy in a part of
the SWEET domain, adding the ability to simulate obstacles and complex flows. This
includes flows that violate the assumption of hydrostatic vertical pressure gradients and
would not be possible with SWE alone. It is shown that with this coupling setup, the
capabilities of SWEET can be significantly extended to adapt to realistic use cases. The
results achieved by the coupled system are evaluated qualitatively and quantitatively,
using a monolithic benchmark where possible.

iii

Contents

Abstract iii

1. Introduction 1

2. Background 3
2.1. Computational Fluid Dynamics . 3

2.1.1. Navier-Stokes Equations . 3
2.1.2. Shallow Water Equations . 5
2.1.3. Discretization Methods . 6
2.1.4. SWEET . 8
2.1.5. OpenFOAM . 11

2.2. Coupling Methods and Software . 11
2.2.1. Domain Decomposition . 11
2.2.2. preCICE . 13
2.2.3. Coupling an SWE Solver to OpenFOAM 15

2.3. Summary . 16

3. Implementation 17
3.1. Atmosphere-Ocean Solver . 17

3.1.1. Overview . 17
3.1.2. preCICE Configuration . 20
3.1.3. OpenFOAM Participant . 20
3.1.4. SWEET Participant . 20
3.1.5. Evaluation . 21

3.2. Ocean-Ocean Solver . 21
3.2.1. Overview . 22
3.2.2. preCICE Configuration . 27
3.2.3. OpenFOAM Participant . 28
3.2.4. SWEET Participant . 35
3.2.5. Evaluation . 38

3.3. Summary . 42

iv

Contents

4. Results 43
4.1. Atmosphere-Ocean Solver . 43
4.2. Ocean-Ocean Solver . 44

4.2.1. Cart2D Domain . 45
4.2.2. Sphere2D Domain . 53
4.2.3. Complex Geometry . 60

4.3. Summary . 62

5. Discussion 63
5.1. Viability of Coupling SWEET to OpenFOAM 63
5.2. Coupling Between a Spherical and Flat Domain 65
5.3. Outlook: Parallel-in-Time . 65

6. Conclusion 67

Abbreviations 68

List of Figures 69

List of Tables 71

Bibliography 72

A. preCICE Configurations 76

v

1. Introduction

Modern numerical simulations greatly influence our daily lives. With advanced al-
gorithms and the ever-growing computational power of modern computers, they can
simulate and predict physical processes with unprecedented accuracy. Regarding
the field of Computational Fluid Dynamics (CFD), these processes can range from
small-scale experiments like simulating the flow of fluids in an engine [1] to large
domains like the entirety of the global climate [39]. However, the overall quality of
the simulation is limited by how well the model approximates physical relationships.
In the case of global climate models, using only an atmospheric solver will limit the
quality of the results. Many scenarios feature interactions between different systems
that can not be approximated by simple Boundary Condition (BC). Even if all of the
equations governing the atmosphere are correctly simulated, it is not a closed system.
For example, the global oceanic currents and the energy and warmth they transport
significantly impact the climate. Be that directly like the Gulf Stream, which makes the
coastal Western European climate more moderate [28], or indirectly, like warm oceans
that form hurricanes [30].

Domain decomposition offers an elegant approach to handle this without the need to
construct a new solver. The idea is to split the domain into subsystems, each of which
can be solved by its own numerical solver. Special numerical coupling schemes handle
the exchange of information between the domains. A benefit is that no new solvers
are required as it is enough to analyze the system’s relationship at the boundaries.
When using a good and flexible coupling library, little implementation work or expert
knowledge of either solver is needed, and the average user can do this. It also means
that all solvers could be exchanged with newer or more accurate versions without
changes to the rest of the system.

This thesis focuses on using coupling methods to enhance the capabilities of SWEET
[34]. SWEET is a research framework for the numerical approximation of SWE using
spectral methods. Its purpose is to aid in developing and evaluating numerical methods.
By integrating SWEET with another solver, we examine the possibilities of using
SWE solvers in coupled models. Additionally, this allows for evaluating methods
implemented in SWEET in conjunction with models implemented in other numerical
solvers.

As the second part of our coupled solver, we use the open source CFD solver

1

1. Introduction

OpenFOAM [27]. OpenFOAM allows for 3D free surface simulation around complex
geometries. We use the coupling library preCICE to handle the communication and
numerical aspects of coupling. The necessary functionality to support the exchange of
coupling data is implemented in SWEET. Additionally, the preexisting preCICE adapter
for OpenFOAM [6] is extended by logic to facilitate the conversion between conflicting
information representations and dimensions. The coupled solvers are evaluated for
their functionality qualitatively and quantitatively using a benchmark simulation and
multiple test configurations, including complex geometries in the OpenFOAM domain.

We construct solvers for two scenarios. The first is a layered atmosphere-ocean solver
using SWEET for atmospheric simulation and OpenFOAM for oceanic currents. Even
though this setup is found to be potentially valuable and works in a proof-of-concept
scenario, it is limited by the characteristics of SWEET. Secondly, we implement an ocean-
ocean coupled solver, where the simulation accuracy and capability in a part of the
SWEET domain are enhanced by delegating it to OpenFOAM. The proposed approach
also allows for using complex geometries by including them in the OpenFOAM domain.
This solver performs well and can simulate complex two-way interactions between
SWEET and OpenFOAM.

In the course of this work, we investigate a central research question: Are there
viable options for coupling SWEET, a SWE solver with spherical discretization, to a 3D
configuration of OpenFOAM, a finite volume solver? SWEET can utilize two different
domain types. A periodic Cartesian domain and a spherical domain. As a secondary
research question, we investigate if it is possible to create an accurate locally coupled
solver between a spherical and flat domain.

We start by introducing the necessary background information in Chapter 2, briefly
explaining the basics of CFD and numerical coupling. We proceed with Chapter 3,
where the methodology for our atmosphere-ocean and ocean-ocean solver is explained
in detail. Finally, Chapter 4 tests and evaluates various scenarios and configurations
for these solvers, and Chapter 5 interprets these results regarding the two research
questions we formulate and provides an outlook into possible further developments.

2

2. Background

In this work, we couple two solvers. To accurately describe the methods used, some
background information needs to be introduced. This section will first introduce the
necessary theory for CFD, the important governing equations and numerical simulation
methods, and the tools used to approximate these equations in Section 2.1. Next, it will
introduce coupling in Section 2.2, describing the theoretical foundation and methods as
well as introducing the coupling library we use in our implementation.

2.1. Computational Fluid Dynamics

CFD is a large field that deals with the numerical simulation of fluids. This section in-
troduces the physical equations governing those fluids and the numerical methods used
to approximate them. It starts with the Navier-Stokes Equations (NSE) in Section 2.1.1,
the foundation of fluid dynamics. Further, it introduces the SWE in Section 2.1.2, a
depth-averaged version of the NSE. After introducing the governing equations, we
briefly describe the discretization methods used in this work in Section 2.1.3. Finally,
we introduce SWEET (Section 2.1.4) and OpenFOAM (Section 2.1.5), the two solvers we
use to build our coupled solver.

2.1.1. Navier-Stokes Equations

From a mathematical perspective, the movement of fluids is governed by the NSE, a set
of Partial Differental Equations (PDE). They consist of the continuity equation, which
establishes the conservation of mass, and the momentum equation, which establishes
the conservation of momentum.

For incompressible flow, which is the kind of flow used for the simulations in this
thesis, the continuity equation can be written as

∇ · u = 0, (2.1)

with u as the velocity of the fluid. This is equivalent to setting the velocity divergence
to 0, which ensures that the volume is constant, a central implication of incompressible
flow. The momentum equation is

3

2. Background

∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + ν∇2u + g, (2.2)

where p is the pressure, ρ the density, and ν the kinematic viscosity of the fluid.
Its terms model the different factors in the momentum equilibrium. (u · ∇)u is the
convective term and describes how the momentum is transported by the motion of
the fluid. ν∇2u models the diffusion of momentum. The other two terms model
surface and volume forces, respectively, where volume forces refer to the gravitational
acceleration g that affects the fluid.

Solving these equations is the main focus of CFD. In order to be solved numerically,
they need to be discretized. Numerous methods exist for discretization in space and
time, e.g., Finite Differences, Finite Elements, Finite Volumes. More information about
these topics and on the NSE and their derivation can be found in [15].

Boundary Conditions

How solvers deal with edges of the simulation domain is one of the most important
issues of CFD and crucial for coupling. A BC provides a function to define these values.
There are two elemental types of BCs. Let uΩ be the velocity and pressure at the
boundary. Then

uΩ = c (2.3)

is a Dirichlet BC. Dirichlet BCs directly prescribe a field’s value at the boundary. A
common use-case for Dirichlet BCs is for the velocity field at a wall, which is set to 0.
An example of a non-zero value is an inlet, where a certain inflow into the domain is
defined. Instead of directly defining the value, defining the field’s gradient is possible
too. This is called a Neumann BC and is defined as

∂u
∂n

= c, (2.4)

where n is the direction of the normal of the boundary. It is often used for the
pressure field at walls, establishing a zero-gradient BC. A third often used BC is the
Robin BC. Instead of just a fixed value or gradient, it is a linear combination of the
Dirichlet and Neumann BCs. It can be defined as

αu + β
∂u
∂n

= c, (2.5)

where α and β are the weights for both parts. While these common BCs are sufficient
for many scenarios and domains, special cases might require different behavior. There

4

2. Background

are also more complex possibilities for defining BCs. For example, a periodic BC reflects
the values from the other side of the domain, which is needed for simulating domains
like the Earth’s oceans. More information about the detailed theory on BCs can be
found in [11], and more details on their use in CFD in [12].

Multiphase simulations

With the methods described above, simulating a fluid in a confined domain is possible.
However, for accurate simulation of oceans, it is necessary to simulate the ocean surface.
This can be done using free-surface methods or multiphase simulations, where the
interaction of two or more (incompressible) fluids is simulated in the same domain.
There exist several methods to achieve this. One of these methods is the Volume of
Fluid method [19], which is also employed by the solver used in this thesis. The key
idea of the method is to establish a field α ∈ [0, 1], which signals the fluid ratio in a cell.
The movement of the surface is tracked by solving a transport equation for α:

∂α

∂t
+∇ · (αu) = 0 (2.6)

The ocean boundary can then be reconstructed from the α field for usage in the NSE.

2.1.2. Shallow Water Equations

An issue with the simulation of the NSE is the computational complexity of achieving
a high-accuracy solution in a large domain. SWE are a method to solve this problem,
as they can be used under certain assumptions to simplify the NSE. The central
assumption is that the simulated flow only has a minimal depth compared to its width,
making it nearly two-dimensional. This allows the assumption that vertical velocity
gradients are close to zero and pressure is hydrostatic.

p = ρg (h − zb) (2.7)

In this equation, zb is the height of the ocean floor, h is the total height of the water
column, and hw = (h − zb) is the depth of the fluid layer. Since all SWE usages in this
thesis assume a flat bottom, we will assume hw = h in the following formulas.

Because of the assumption of no vertical velocity gradients, the NSE can be depth-
averaged. Combining this with Equation 2.7 yields the SWE. Using a simplified version
with no lateral stresses and bottom stress yields the continuity equation

∂h
∂t

+
∂ (hu)

∂x
+

∂ (hv)
∂y

= 0. (2.8)

5

2. Background

As well as the momentum equations for the two remaining dimensions:

∂ (hu)
∂t

+
∂

∂x

(
hu2 +

1
2

gh2
)
+

∂ (huv)
∂y

− f hv = 0 (2.9)

∂ (hv)
∂t

+
∂

∂y

(
hv2 +

1
2

gh2
)
+

∂ (huv)
∂x

+ f hu = 0 (2.10)

where f is the Coriolis force. A more detailed explanation of the SWE, their deriva-
tion, and approximations can be found in [37].

The key advantage of the SWE over the standard NSE is that they can be computed
much faster while obtaining accurate results. They are beneficial for simulating the
global atmospheric or oceanic flow, as this is an inherently flat domain relative to its
size. [8] However, the required assumptions limit the scenarios in which the SWE can
be used. As such, they can not be applied in domains where the width-to-depth ratio
is insufficient or where ground geometry or obstacles would cause significant vertical
velocity gradients.

2.1.3. Discretization Methods

The purpose of a solver is to calculate the solution y (t) to some kind of problem. In
order to compute solutions to the NSE or SWE, the equations need to be discretized.
This discretization is necessary both in time and space. This section introduces the
important time- and space-discretization methods used in this work.

Explicit Runge-Kutta

In order to approximate the equations numerically, they need to be time-discretized.
Usually, their use cases present as initial value problems, where an initial state is
given and its time evolution is of interest. There are multiple methods for this, but a
common one is the Explicit Runge-Kutta (ERK) method, particularly the fourth order
ERK. Given an initial value problem

dy
dt

= f (t, y) y(t0) = y0. (2.11)

It is defined as

yn+1 = yn +
h
6
(k1 + 2k2 + 2k3 + k4) , (2.12)

where h is the timestep size, and k1, k2, k3, k4 are defined as

6

2. Background

k1 = f (tn, yn) , (2.13)

k2 = f (tn + h/2, yn + hk1/2) , (2.14)

k3 = f (tn + h/2, yn + hk2/2) , (2.15)

k4 = f (tn + h, yn + hk3) . (2.16)

There are also many other variations, as the number of terms and the coefficients
used inside can be varied along certain restrictions to form the family of Runge-Kutta
methods. [3] A notable other method of the family is the Euler method, which is its
simplest version containing only one term.

Spectral Deferred Corrections

The higher the order of a timestepping algorithm, the smaller the error is expected to
be. This allows larger timesteps while maintaining the same accuracy. A high order is
beneficial for stiff problems that are challenging to approximate otherwise. Instead of
increasing the order of approximation by choosing a method with an intrinsically higher
order like fourth-order ERK, Spectral Deferred Corrections (SDC) allows one to reach a
higher order by iteratively improving a solution using low-order approximations.

In SDC, each timestep [tn, tn+1] is divided into multiple substeps s0, s1, ..., sm where
s0 = tn and sm = tn+1. A first rough approximation of the solution y0(t) is obtained
using a low-order scheme like the explicit Euler method. The initial value problem
from Equation 2.11 can be rewritten as a Picard integral. Inserting the initial solution
obtains the residual ϵ(t):

ϵ(t) = y0 +
∫ t

a
f
(
s, y0 (s)

)
ds − y0 (t) (2.17)

The integral in Equation 2.17 can be approximated using spectral quadrature. The
substeps sm are chosen as the required nodes. Typical examples are Gauss-Lobatto
or Gauss-Legendre quadrature. The approximated function can be iteratively refined
using this residual. One such refinement is called a sweep in the context of SDC. [9]
Mathematically, the higher the number of sweeps and nodes, the lower the expected
error and effective order of the method.

The structure of the SDC algorithm also lends itself to more improvements like the
parallel-in-time method PFASST that allows calculating multiple timesteps in parallel.
[10] For this, the method defines coarse and fine grids, the result of which can be
exchanged between timesteps after each sweep. This permits efficient parallelization
even for problems that might prohibit spatial parallelization.

7

2. Background

Spherical Harmonics

Spherical harmonics are a set of functions Ym
l (θ, ϕ) that build an orthonormal basis

for representing any square-integrable function defined on a sphere. θ and ϕ are a
point’s polar and azimuthal angle on the sphere. Using the appropriate coefficients f m

l ,
a function f (θ, ϕ) on the sphere can be represented as

f (θ, ϕ) =
∞

∑
l=0

l

∑
m=−l

f m
l Ym

l (θ, ϕ) . (2.18)

In practice, l is restricted to lmax to select the spectral resolution and accuracy. A grid
of points in physical space is needed to discretize a spherical domain. The integrals
to calculate the coefficients am

l can then be approximated using quadrature. A typical
grid is a latitude-longitude grid. An efficient implementation of this method for use in
numerical simulation is done by [32] and is used for the spatial discretization of the
SWE on the sphere in this thesis.

2.1.4. SWEET

SWEET (Shallow Water Equation Environment for Tests) [34] is a CFD solver using
SWE for numerical simulation. It is not built to be a production solver used to simulate
real-world scenarios. Rather, it is intended as a test bench to develop and evaluate
numerical methods for solving the SWEs and PDEs in general. In line with its research
purpose, SWEET has many configuration options, utilities, and timestepping schemes.
Among them are ERK, SDC [9], and PFASST [10]. A key characteristic of the solver is
that the SWE are solved in the spectral domain. However, a grid representation of the
domain and utilities to convert between physical and spectral space still exists.

Spectral solving is also the cause of some of SWEET’s limitations. All of its available
domains are periodic and do not have the possibility of defining obstacles or holes in the
domain. There are also no other possibilities for boundary conditions. Consequently,
any SWEET scenarios are solely defined by providing suitable initial values to its field,
severely limiting the number of applications. SWEET also uses the simplified version of
the SWE described in Section 2.1.2, which assumes a flat bottom. However, SWEET is
intended to simulate atmospheric flows, where all these limitations are not meaningful.
In this context, SWEET also allows outside forces by including gravity and Coriolis
forces in its formulas.

In line with SWEET’s intended purpose as a research framework, it is structured in
an extensible way. Most key SWEET features, such as data structures, mathematical
methods, and timestepping schemes, are implemented in a library structure. Addi-
tionally, there are several Programs using the library to implement solvers in different

8

2. Background

domains and extensions. Each Program specifies a list of scenarios, which can be
selected at runtime to initialize the solver’s fields with the necessary values. The main
programs are PDE_SWECart2D and PDE_SWESphere2D. They implement the main solvers
for the Cart2D and Sphere2D domains described in the following. Programs for more
specific cases also exist, such as a program implementing the PFASST algorithm for
timestepping.

Cart2D

The first domain implemented in SWEET is the Cart2D domain. It is a simple Cartesian
grid with equal spacing and periodic boundaries at the sides, resulting in a two-
dimensional torus. A visualization of the domain both in 3D can be seen in Figure 2.1a.
However, the 3D portrayal is not entirely accurate as not all cells have equal area, which
is the case for this domain. In addition to initial values, the horizontal and vertical size
of the domain can be configured. The number of cells and frequency components can be
controlled by setting either parameter, with the other one automatically being adjusted
accordingly. The multidimensional Fourier Transform is used to convert the grid to
spectral space. Cart2D uses the velocity version of the SWE described in Equation 2.9.
Because of its simplicity, we choose this domain as the starting point for our work.

(a) Cart2D Domain (b) Sphere2D Domain

Figure 2.1.: 3D visualizations of both SWEET domains. While the Sphere2D figure
matches the model, the Cart2D figure is only a visualization, as in the
model, all cells have the same size.

9

2. Background

Sphere2D

The second domain offered by SWEET is a sphere. In physical space, it is defined as a
latitude-longitude grid. A visualization of the domain can be seen in Figure 2.1b. When
comparing the gridlines to the latitude-longitude grid in Figure 2.2, this also shows a
complication with this domain. Due to the use of equirectangular projection for the grid,
the points at very high or low latitudes are considerably closer to each other than at the
equator. This has to be considered when implementing any scenarios and initial values
in this domain. It also means that any output in physical space has a higher resolution
at the poles. The domain size can again be configured using either the number of
latitudinal and longitudinal cells or the spectral resolution. The size of the sphere can
be controlled by setting the radius. For conversion into spectral space, this Program
uses the spherical harmonics method described in Section 2.1.3. Instead of using the
velocity-based SWE introduced in Section 2.1.2, it uses a version of the SWE defined in
terms of vorticity ξ = ∂v

∂x − ∂u
∂y and divergence δ = ∂u

∂x + ∂v
∂y . Additionally, instead of the

perturbation of water height h′, the geopotential height Φ = gh′ is used. We use this
Program in addition to the Cart2D program to test a more realistic application scenario
on a sphere and because there exist implementations of more advanced timestepping
schemes like parallel SDC [4] and PFASST due to previous work. We also use this
domain to answer our secondary research question.

Figure 2.2.: Example of a latitude-longitude grid used to represent the Sphere2D do-
main. The dimensions of cells on the grid do not match their dimensions
on the sphere.

10

2. Background

2.1.5. OpenFOAM

OpenFOAM [27] is a large and popular open source CFD framework with many differ-
ent solvers and methods. It uses the finite volume method and an unstructured grid for
its simulations. For this work, we use two of the solvers provided with OpenFOAM. The
first solver we use is the icoFoam solver, which is a solver for the incompressible NSE.
The second solver we use is interFoam, a solver for incompressible multiphase flow.
An OpenFOAM scenario is defined by a so-called Case directory containing the neces-
sary configuration files. Here, all parameters concerning the algorithm, timestepping,
boundary conditions, and other related aspects can be configured.

2.2. Coupling Methods and Software

This thesis works with coupled models. There are two essential ways to simulate a
coupled system. The first way is to create a new solver to simulate both subdomains
and their coupling. This is called the monolithic approach. The second way is to
couple two existing solvers using either a coupling library or other methods. Both
solvers operate independently in this approach, so they can rely on the preexisting
implementations. This is the approach used in our work.

The following Section 2.2.1 provides an introduction to the theory and methods
used to split a system into parts and to couple simulations of the individual parts to
obtain a coupled solver. Section 2.2.2 introduces the coupling library we rely on for the
implementation of our coupled solvers.

2.2.1. Domain Decomposition

Many applications of numerical simulation involve more than one system. While
these systems may have different governing equations, their interactions can still be of
interest. Examples of this can be the interaction between fluid dynamics and structural
deformation in the cardiovascular system [18] or the interaction between the ocean
and the atmosphere [24, 17]. This process of splitting up the domain is called domain
decomposition [25]. The two subsystems do not necessarily need to have different
governing equations for domain decomposition to be desirable. Different methods of
approximating the same governing equations can have varying trade-offs, making it
beneficial to simulate parts of the domain differently. In the aforementioned example,
both the ocean and atmosphere are subdomains of a larger climate model. The following
contains the most important information about techniques for coupling the subdomains
to create a coupled simulation, but domain decomposition is an extensive topic, and
more information on the topic can be found in [25].

11

2. Background

Figure 2.3.: Visualization of domain decomposition of a domain formed by overlapping
circular and rectangular domains. Representation of the problem originally
considered by H. A. Schwarz.1

Coupling Schemes

A coupled solver iteratively calculates timesteps. There are two different coupling
schemes: loose (explicit) and tight (implicit) coupling. [21] For loose coupling, each
system of equations is solved independently for each timestep. In tight coupling, both
systems are solved simultaneously. The literature is not consistent with the terminology
used. This work will use explicit and implicit coupling as defined in preCICE [5], the
coupling library we use, to avoid confusion regarding the implementation.

With explicit coupling, both solvers calculate the solution to a timestep and exchange
information. For the boundary, the values exchanged in the previous timestep are used.
After exchanging values, both solvers immediately resume with the next timestep. This
way, each solver calculates each timestep exactly once.

In contrast, in implicit coupling, each timestep is calculated multiple times. For the
boundary conditions, the solvers combine the exchanged values at the beginning of
the timestep and the last set of exchanged values at the end. This way, both solvers
iteratively calculate the timestep and exchange information until a convergence metric
is satisfied on the exchanged values. Usually, this means the exchanged values do not
change anymore.

Because each timestep is only calculated once, explicit coupling is less computa-
tionally expensive than implicit coupling. However, it is less accurate and will cause
instability in many scenarios. Implicit coupling is more accurate and can achieve
convergence and high accuracy even for stiff scenarios.

1Pichon22, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Com-
mons

12

https://creativecommons.org/licenses/by-sa/3.0

2. Background

Interface and Volume Coupling

The type of coupling used can be characterized by how and where values are exchanged
between the solvers. There are two options for the exchange location. The first option is
interface coupling, where values are exchanged only at the boundaries of each domain.
This can be the same boundary if both domains are adjacent without overlap, but it
could also be in different locations if there is an overlap between the subdomains (e.g.,
Figure 2.3). Atmosphere-ocean models are an example of interface coupling, with
the exchange of quantities at the sea surface (e.g., [2]). The second option is volume
coupling. In this case, values are exchanged over a larger part of the domain. This
type of coupling necessarily requires overlap. An example where this can be used is
modeling deformation and fluid flow in porous media [38].

Coupling can further be categorized by the combination of used boundary conditions.
Possible combinations are Dirichlet-Neumann coupling, Robin-Robin coupling, and
Dirichlet-Dirichlet coupling. However, for Dirichlet-Dirichlet coupling, an overlap
between the domains is required. Otherwise, the values would only be switched back
and forth. An example of Dirichlet-Dirichlet coupling is the multiplicative Schwarz
method. [25]

2.2.2. preCICE

preCICE [5] is a versatile coupling library designed for domain decomposition. Its goal
is to simplify the coupling of numerical solvers by providing an interface that manages
all communication and calculations required for this coupling. This functionality is
made accessible through an easy-to-use API. It implements the coupling flow itself,
i.e., it handles the synchronization of coupling windows and, in the case of implicit
coupling, also tells the coupled solvers when they have to store or recover a checkpoint.
Furthermore, there is no need for direct communication between solvers, as preCICE
handles all aspects of data exchange and mesh interpolation. The API is accessible, with
bindings implemented in commonly used programming languages like C++, Python,
and Fortran. An overview of the preCICE ecosystem can be seen in Figure 2.4.

The vision preCICE follows is to be as modular and noninvasive as possible. It
should be possible to exchange one of the solvers without changing anything with
the other solvers. Thus, the programs are started as usual, standalone versions. Cou-
pling is achieved using calls to the preCICE library, which implements peer-to-peer
communication between the program processes. All solvers use the same preCICE
configuration file to establish communication and other coupling parameters. The
configuration assigns the coupling scheme, exchanged data names, solver names, and
which meshes must be defined by which solver. In addition to options for implicit

13

2. Background

Figure 2.4.: Overview of the functionality provided by preCICE.2

and explicit coupling, there is also a choice of serial or parallel coupling. In serial
coupling, solvers take turns solving timesteps and wait for the other’s results. In
parallel coupling, both solve timesteps and exchange values concurrently.

Solver meshes are defined using vertices with positions. Optionally, connectivity
information can be added to the mesh, which is necessary for some interpolation modes.
The simplest interpolation setting is nearest-neighbor interpolation. However, this can
result in problems should there be larger holes in the domain. A more advanced mode
is the nearest-projection method, a second-order method that uses surface projection
and linear interpolation to achieve a higher accuracy mapping but requires connectivity
information. Alternatively, there are also the RBF kernel methods, which are more
computationally expensive but do not require information about mesh connectivity.

A key feature of preCICE is its modularity. It relies solely on the interface defined
by the shared configuration file. The Solvers do not need to exchange implementation
details, such as discretization methods or meshes. This approach facilitates the exchange
of coupled participants without the need to make adjustments to the implementation.

2preCICE.org, CC BY 4.0 https://creativecommons.org/licenses/by/4.0/

14

preCICE.org
https://creativecommons.org/licenses/by/4.0/

2. Background

Connecting a Participant to preCICE

The term preCICE uses for a solver that is part of a coupled model is "Participant".
There are two options to connect a participant to preCICE: The first option is to use a
preexisting adapter for the solver. An adapter handles all the calls to the preCICE API
and integrates directly into the solver. It reads the preCICE configuration file, sets up
the meshes, and handles the reading and writing of data. Depending on the solver, the
adapter integrates directly into the solver, and the solver’s code does not need to be
changed. There exist "official" adapters for several popular numerical solvers. Some of
them are OpenFOAM, FEniCS, and CalculiX.

In this work, as we use OpenFOAM, we make use of the OpenFOAM adapter [6]. It
supports the exchange of most quantities in an interface coupling context. In addition,
it supports volume coupling for temperature, pressure, and velocity. The adapter is
structurally organized into three modules: fluid-fluid (FF), fluid-structure interaction
(FSI), and conjugate heat transfer (CHT). In our work, we use the FF module. The
adapter integrates into OpenFOAM as a function object called in every iteration and
can be configured using the same files as OpenFOAM.

Should no adapter exist, or the existing adapter not support the necessary function-
ality, the calls to the preCICE API need to be manually added to the simulation loop.
To use the API, only basic access to the timestep and data fields of the simulation is
needed. Usually, no significant changes to the code are necessary. This is what we do
for SWEET, as it is an in-house solver.

2.2.3. Coupling an SWE Solver to OpenFOAM

Using domain decomposition to simulate a flat water domain with a combination of an
SWE solver and a 3D-NSE solver is not an inherently new idea. There are two notable
works that use setups similar to this thesis.

The first one is [26]. They achieve good results in coupling an SWE domain and a
3D-RANS model. Similar to this work, they place their SWE domain inside of the 3D
domain. However, contrary to this work, they do not couple two preexisting solvers
but follow the monolithic approach, creating a new solver incorporating both models.
Consequently, they also place stricter requirements on their meshes, requiring the cells
of both the 2D and 3D solvers to align at the interfaces.

The other related work to this thesis is [29]. They also couple SWE to OpenFOAM,
achieving good results. This work also utilizes two preexisting solvers and utilizes
preCICE to couple them. Contrary to this work, [29] did not use obstacles and only
coupled on one boundary. Furthermore, the setup of boundary conditions differs from
this work.

15

2. Background

Neither of them used SWEET or a similar SWE solver. A further distinction from the
previous research is that this work deals in detail with SWEET’s periodic domain with
spectral discretization and applies the SWE-3D coupling to the sphere.

2.3. Summary

In this chapter, we introduced the theoretical foundation of the methods and tools used
in this work. We presented the NSE and the SWE, a depth-averaged 2D version of
them. We also went over the two individual solvers used in this work, OpenFOAM
and SWEET. Lastly, we provided the necessary background information about domain
decomposition and coupling as well as preCICE, the coupling library used for our
coupled solver.

16

3. Implementation

In this chapter, we describe the implementation details for the two coupling setups we
investigate. The actual code created and used in this thesis can be found on GitHub1.
The chapter starts by introducing the one-way atmosphere-ocean solver in Section 3.1.
As this solver only allows for one-way coupling, it is implemented solely in a proof-of-
concept setup. In Section 3.2, we continue by describing the ocean-ocean solver that
is the main focus of this work. For each solver, we start by providing an overview
of the coupled model. Then, we explain the implementation details by presenting
the preCICE configuration as well as the configurations of both the OpenFOAM and
SWEET participants. Lastly, we introduce the scenarios used to test our solvers.

3.1. Atmosphere-Ocean Solver

This section describes the first solver developed in this work. The atmosphere-ocean
solver is a layered solver supporting one-way coupling. The atmosphere is simulated by
SWEET using SWE, and the ocean is simulated by OpenFOAM using the finite volume
method. The solver supports one-way coupling from SWEET to OpenFOAM. We
start by providing an overview of the motivation and model of this coupling setup in
Section 3.1.1. Then, we discuss the preCICE configuration used to implement this model
in Section 3.1.2. We continue with showing how we connect OpenFOAM (Section 3.1.3)
and SWEET (Section 3.1.4) to preCICE. Finally, we explain the test scenario we use to
validate our proof-of-concept in Section 3.1.5.

3.1.1. Overview

As a first step, we examine the possibilities of coupling SWEET in its intended role
as a solver for atmospheric simulation. One of the usual coupling setups using an
atmospheric solver is a coupled atmosphere-ocean model. [2, 13] Therein, the atmo-
spheric and ocean solvers simulate different climate layers in a local or global context.
Usually, this involves two-way communication along the boundary between these two
layers, where information about velocity, temperature, and possibly other values is

1https://github.com/arminettenhofer/thesis_sweet_coupling

17

https://github.com/arminettenhofer/thesis_sweet_coupling

3. Implementation

exchanged. The temperature is coupled bi-directional, with the ocean solver providing
the Sea Surface Temperature (SST) to the atmosphere solver, while the atmosphere
solver can give the heat flux. Additionally, the velocity is coupled unidirectional, with
the atmosphere exerting a shear force on the ocean surface, which is described by the
wind stress τwind.

τwind = CdρairU2
h (3.1)

Cd = 0.0015 is the drag coefficient for wind over the sea, and Uh is the wind velocity
at some height over the sea surface, usually h = 10 m. [8]

Figure 3.1.: preCICE configuration for atmosphere-ocean solver with the exchange of
momentum and heat.

A preCICE configuration implementing this scheme can be seen in Figure 3.1. How-
ever, because SWEET simulates the atmospheric movements using SWE, there is no
inherent energy transport, which would enable the coupling of SST and temperature
flux, and the implementation suggested in Figure 3.1 is not feasible with SWEET.2

Therefore, the coupling can only be implemented in a reduced form, which does not use
the heat coupling and only uses the velocity coupling in the form of wind stress. This
results in one-way coupling as seen in the revised preCICE configuration in Figure 3.2.

Figure 3.2.: preCICE configuration used for atmosphere-ocean solver with only the
exchange of momentum. The full configuration file can be seen in the
appendix in Listing A.1.

The focus of the thesis is to research the coupling scenarios available to SWEET and
their viability. One-way coupling only allows very restricted interactions and scenarios.

2Adding energy transport to the SWE in SWEET is generally possible but would require major modifica-
tions that are out of scope for this work

18

3. Implementation

These scenarios only have limited use cases, especially as SWEET can only be controlled
with the initial conditions. Therefore, this solver is implemented as a proof-of-concept
version to show general viability should heat transport or BCs be added to SWE at
some point in the future. Instead, the work will focus mainly on developing a more
promising ocean-ocean solver, which is detailed in Section 3.2. Nonetheless, a small
prototype implementing this reduced atmosphere-ocean coupling is set up as an initial
test using OpenFOAM as the ocean solver and simplifying the implementation of wind
stress.

In the solver, the domains are placed on top of each other, with the intention of
OpenFOAM simulating the ocean and SWEET simulating atmospheric currents. They
are chosen to be the same size. The size of the SWEET domain is left at its default
size, which is calculated using the Earth’s radius r = 6.37122 × 106 m. This results in
a domain size of approximately 40000 km × 40000 km matching the circumference of
the Earth. We use the Cart2D program for SWEET, resulting in a square domain with
periodic boundaries representing a 2D torus. The OpenFOAM domain is set to match
the SWEET domain with an added third dimension, which is also set to 40000 km,
creating a cubic domain. From a physical perspective, this domain may not seem
logical. However, this test case is only used as a proof of concept.

Boundary Conditions

Velocity Pressure
Top v = vc ∂p/∂n = 0

Bottom v = 0 ∂p/∂n = 0
Sides v = 0 ∂p/∂n = 0

Table 3.1.: OpenFOAM BCs in the atmosphere-ocean solver.

To complete the definition of the domain, the BCs and the equation governing the
exchange of information need to be defined. For SWEET, no BCs are required. SWEET
receives no data in the coupling, so no BC needs to be set at the boundary with
OpenFOAM. Additionally, the boundaries on the sides of the domain are periodic.

The BCs of the OpenFOAM domain can be seen in Table 3.1. For the velocity, Dirichlet
BCs are used for all domain edges. The value used is 0 for the bottom and sides and
equal to the coupled velocity vc received from SWEET for the top of the domain. A
zero-gradient Neumann BC is used on all sides for the pressure.

This configuration effectively means that OpenFOAM has walls at the sides of
its domain, while SWEET uses periodic BCs. We used this BC because of its more
straightforward configuration. However, if the coupling were to be used in a correct

19

3. Implementation

physical context, the boundary behavior of SWEET and OpenFOAM should match
on the sides of the domain. Furthermore, instead of calculating the wind stress
described in Equation 3.1, it directly transfers the velocity from SWEET to OpenFOAM
without applying any calculations. This is because implementing the effect of wind
stress is not straightforward, as it depends on the relative velocity. Both the coupled
velocity from SWEET and the current velocity of OpenFOAM are needed for calculation.
Implementing this calculation would require a modification of the preCICE adapter for
OpenFOAM. This solver is only used as a proof of concept, so we simplify the BC to
only copy the SWEET value.

3.1.2. preCICE Configuration

Figure 3.2 shows a visualization of the preCICE configuration used to couple this
solver. The original configuration file can be seen in the appendix in Listing A.1. There
is only one value that is exchanged by preCICE. This is the two-dimensional wind
velocity. However, as the OpenFOAM mesh is three-dimensional, the wind needs to
be represented by a three-dimensional vector. The mapping between the meshes of
the atmosphere and ocean solver is handled on the ocean side, as the resolution of the
OpenFOAM domain is higher. This theoretically reduces the amount of values that
need to be transferred between the processes by transferring the smaller mesh.

3.1.3. OpenFOAM Participant

We use a standard configuration of OpenFOAM without any significant changes since
this thesis focuses only on the coupling itself. We use the icoFOAM solver, which
simulates incompressible single-phase flow. The BCs are configured as detailed in
Section 3.1.1. OpenFOAM is configured to use the preCICE adapter, which is configured
to read the velocity from preCICE and write it to the top part of the domain. In the
configuration, the top boundary’s velocity BC is set to fixedValue with the value
overwritten by the adapter.

3.1.4. SWEET Participant

There is no preexisting preCICE adapter for SWEET, which makes changes necessary
to add the calls to the preCICE API. Only one-way communication is required, so these
changes are relatively simple. All changes are based on the SWE_Cart2D program of
SWEET. As these changes are also included in the two-way coupling scenario that is
examined later, a detailed description can be found in Section 3.2.4 and Listing 3.6. As
an overview, SWEET creates a mesh with the coordinates of all the grid values to be
exchanged and writes the velocity at these locations to preCICE in every timestep.

20

3. Implementation

3.1.5. Evaluation

We use one of the already existing scenarios for this SWEET program as a test scenario.
The stable initial state can be seen in Figure 3.3. It models two jet streams in the
northern and southern hemispheres. It was initially intended to be used with the
addition of a Gaussian bump in the stream to break symmetry and test numerical
solvers using developing instabilities. [20] We use it as a simple scenario with a constant
influence on the ocean to test if the coupling has the desired effect. The atmosphere
depth in this scenario is 10000 m.

In conjunction with the BCs for the OpenFOAM domain, which model walls at the
sides and bottom and essentially a moving wall with varying speeds at the top, the
scenario is similar to a lid-driven cavity. The difference is that the lid does not have a
consistent speed but consists of moving and non-moving strips.

Figure 3.3.: Two jet streams in the SWEET domain for the atmosphere-ocean scenario.

3.2. Ocean-Ocean Solver

This section discusses the ocean-ocean solver, which is the main focus of this work.
In contrast to the atmosphere-ocean solver, this solver allows for two-way coupling.
Section 3.2.1 starts by giving an overview of the solver. It introduces the domain
decomposition and the motivations behind it. It also introduces the BCs and the
necessary data conversion necessary because of the different data representations in
the two solvers. Section 3.2.2 shows and discusses the preCICE configuration used
for this solver. We continue by describing the implementations necessary to connect

21

3. Implementation

OpenFOAM (Section 3.2.3) and SWEET (Section 3.2.4) to preCICE. Finally, Section 3.2.5
introduces the scenarios used to evaluate this solver.

3.2.1. Overview

The atmosphere-ocean solver only allowed for one-way coupling. Therefore, other
viable options were examined. One of them is to couple SWEET with a different solver
horizontally instead of vertically. A similar setup was previously used by [29] to couple
a SWE ocean solver and OpenFOAM. However, there are two issues with applying
the same coupling scheme to SWEET. It was created for atmospheric simulation, and
because of its periodic domain, there are no obvious horizontal boundaries at which
a coupling would be possible. As described in Section 2.1.4, it does not contain any
functionality for boundaries at all. The governing equations do not change for ocean
simulation, so the first issue can be fixed by changing the viscosity from zero to that of
water. The other problem is addressed by placing the OpenFOAM domain inside the
SWEET domain instead of next to it.

Besides enabling two-way coupling, this scenario is also helpful in showing a possible
use case of coupling SWE solvers like SWEET to 3D-fluid solvers. The low computa-
tional effort SWE can be used for large parts of the Earth’s ocean system or a large body
of fluid in any other periodic domain. Meanwhile, the high-precision 3D NSE can be
used in high-interest regions, regions with obstacles, or regions where the assumptions
necessary for the SWE do not hold.

SWEET uses spectral discretization methods. Consequently, its domain needs to
be periodic and cannot have any holes. When the OpenFOAM domain is placed
in the SWEET domain, SWEET still simulates the entire region of the OpenFOAM
domain. For this reason, we also perform volume coupling for SWEET in that region,
writing values from OpenFOAM to SWEET for the entirety of the overlap. In the
other direction, we perform interface coupling along the sides of the overlap from
SWEET to OpenFOAM. Therefore, while this results in two-way coupling, the coupling
uses different meshes and a different number of data points for each direction. While
this is straightforward for an empty OpenFOAM domain, some complications arise
when handling the coupling of obstacles in the OpenFOAM domain. Furthermore,
OpenFOAM and SWEET handle water height differently, with SWEET defining it as a
scalar height value and OpenFOAM with a scalar value per cell assigning fluid content.
These issues are discussed in detail in Section 3.2.1.

The domain decomposition is complicated because of the differences between the
solvers. The SWE domain is a periodic plane with 100 km × 100 km dimensions for
the Cart2D domain, and a sphere with 100 km circumference for the Sphere2D domain.
The fluid solver has a domain of 10 km × 10 km × 2 km dimensions. water height is

22

3. Implementation

Figure 3.4.: Domain decomposition of the Cart2D domain in the ocean-ocean solver.
The outer green line indicates the border of the OpenFOAM domain. The
inner black line indicates the border of the SWEET domain.

represented as a scalar value in the SWE, so they can theoretically represent waves
of any height. The vertical domain size of the OpenFOAM domain is thus chosen
in such a way that it is larger than the maximum water height reached in any of the
scenarios. In the SWEET to OpenFOAM direction, there is boundary coupling along
the boundaries of the OpenFOAM domain. With the possibility of feedback loops
and the necessity of overlap for Dirichlet-Dirichlet coupling [35], an offset is needed
between the coupling regions. Therefore, the coupling from OpenFOAM to SWEET
occurs as volume coupling not over the entire OpenFOAM domain but with offset from
the edges of the OpenFOAM domain. This distance between the boundaries is set to
dΩ = 2 cells = 1 km. The domain boundaries for the Cart2D domain are shown in
Figure 3.4, and for the Sphere2D domain in Figure 3.5. Values are transferred from
SWEET to OpenFOAM along the outer green line, while the transfer of values from
OpenFOAM to SWEET takes place within the area of the black square.

23

3. Implementation

Figure 3.5.: Domain decomposition of the Sphere2D domain for the ocean-ocean solver.
The outer green line indicates the border of the OpenFOAM domain. The
inner black line indicates the border of the SWEET domain.

Boundary Conditions

Velocity Pressure Alpha
Top pressureInOut = 0 totalPressure = 0 In: α = 0; Out: ∂α/∂n = 0

Bottom noSlip f ixedFluxPressure = 0 ∂α/∂n = 0
Obstacle noSlip ∂p/∂n = 0 ∂α/∂n = 0

Sides v = vSWEET
3 ∂p/∂n = 0 α = f2Dto3D (hSWEET)

3

Table 3.2.: OpenFOAM BCs in the ocean-ocean solver.

The BCs used for OpenFOAM can be seen in Table 3.2. For the bottom, which is the
seafloor, and obstacles, they are modeled as walls. For alpha, a zero gradient BC is
used, and for the velocity, a no-slip BC disabling movement in the obstacle adjacent
fluid layer. The pressure uses a zero gradient BC on obstacles. However, for the seafloor,
it uses the fixedFluxPressure BC, which sets the pressure in such a way that the flux
is the specified value, in this case 0. This is useful to achieve an accurate solution and
is taken from the OpenFOAM tutorial for multiphase flow.

The top is the atmosphere, meaning an unrestricted in and outflow of air should
be possible. Therefore, for alpha, we use an inlet-outlet BC that changes depending

3For a detailed explanation of how and where these BCs are applied, see Section 3.2.3

24

3. Implementation

on the velocity flux. For inflow, alpha is set to 0, corresponding to pure air, and for
outflow, it is a zero gradient Neumann BC. For pressure, a totalPressure BC is used.
The total pressure p0 is a sum of the static and dynamic pressure, which depends on
the velocity. Using the totalPressure BC allows the static pressure to vary depending
on the convective flux: p = p0 − 0.5|u|2.

For the sides, the coupled values received by preCICE need to be used. The pressure
is not coupled since it does not exist in the SWE. Instead, it is set to use a zero gradient
Neumann BC. For the velocity, the velocity received from preCICE is used to set
the water cells of the boundary. However, no OpenFOAM BC exists to achieve this.
Therefore, this is manually implemented in the preCICE adapter. The same problem is
encountered for the water height as the value cannot be directly used in OpenFOAM,
which only uses alpha values for tracking the cell phase. Consequently, this conversion
is also handled manually. Information on how this is done can be found in Section 3.2.1.

Velocity Height Perturbation
Coupling Region v = vFOAM hp = hFOAM − h0

Edges periodic periodic

Table 3.3.: SWEET BCs in the ocean-ocean solver.

The BCs used by SWEET can be seen in Table 3.3. SWEET has a periodic domain
as explained in Section 2.1.4. As such, it uses periodic BCs for the velocity and water
height perturbation at the sides of the domain. The velocity received from OpenFOAM
is directly taken as the velocity value for the coupling region. The same is true for the
height perturbation, although the initial water height h0 needs to be subtracted because
SWEET uses the height perturbation for its calculations.

Data Conversion

SWEET and OpenFOAM use equations with different dimensions. Therefore, for a
successful coupling, a dimensionality conversion is necessary. The dimensionality
conversion is implicit for the direction from SWEET to OpenFOAM. It is automatically
performed by the nearest-neighbor interpolation done by preCICE. This extends the 2D
values to cover each vertical column of the OpenFOAM boundary with the same value.
For the direction from OpenFOAM to SWEET, the dimensionality reduction must be
defined manually, as no functionality exists to handle this automatically. Additionally,
different abstractions are used for the same physical circumstances. This is the case for
the water height, which is modeled as a per-cell alpha value tracking the water-to-air
ratio in OpenFOAM. For SWEET, this is handled merely as a scalar value giving the
perturbation of water height to the normal water level h0.

25

3. Implementation

Velocity When applying the coupled velocity from SWEET to OpenFOAM, we only
want to write the velocity to the water cells as SWEET does not model the air velocity at
all, and setting it to be the same velocity as the water would significantly overestimate
air velocity. Nonetheless, air velocity is likely not 0, so only setting water velocity and
assuming air velocity to be 0 is a slight inaccuracy that is necessary because of the
unavailable information. Let b be a cell on the OpenFOAM boundary and vSWEET the
velocities received from SWEET. Then

vb = αb · vSWEET
b (3.2)

In the other direction, an explicit dimensionality reduction is needed. For the reduced
velocity, only the water is considered. Therefore, for every column, the cross-product
between alpha and the velocity is computed and then divided by the sum of alpha to
obtain the average water velocity in that column. Let C be a set of one column of cells
of the OpenFOAM domain, n the number of vertical cells, and vFOAM the velocities
OpenFOAM writes to preCICE. Then

vFOAM
b =

1

∑Cn
c=C1

αc
·

Cn

∑
c=C1

αc · vc (3.3)

Water Height For the direction from SWEET to OpenFOAM, the water height has to
be converted to the matching alpha value for each cell in order to use it. In order to do
this, the top and bottom of the cell must be checked. If the bottom is lower than the
water height, alpha is set to the corresponding value. Let b be a cell on the OpenFOAM
side boundary, hbottom and htop the height of the bottom and top of the cell, and h the
water height for this column. Then

αb =

0 if h < hbottom

min
(

1, h−hbottom
htop−hbottom

)
if h ≥ hbottom

(3.4)

For the other coupling direction, one column of alpha values must be reduced to
a single scalar height value. It would be possible to take the height of the first cell
containing a value α > 0. However, a reasonable threshold would need to be chosen as
alpha is rarely exactly 0. Furthermore, OpenFOAM also allows wave barrels. Therefore,
it is not necessarily true that all cells below have α = 0. Therefore, the water height is
calculated by the sum of all alpha values multiplied by the cell height δh. Let C be a set
of one column of cells of the OpenFOAM domain, n the number of vertical cells, and
hFOAM the water height OpenFOAM writes to the interface. Then

26

3. Implementation

hFOAM
b = δh ·

Cn

∑
c=C1

αc (3.5)

3.2.2. preCICE Configuration

Figure 3.6.: preCICE configuration for the two-way-coupled ocean-ocean solver. The
full configuration file can be seen in the appendix in Listing A.2.

A simplified visualization of the preCICE configuration we use for the ocean-ocean
solver can be seen in Figure 3.6. The original configuration is also available in the
appendix in Listing A.2. The configuration is considerably more complicated because
more data needs to be exchanged compared to the one-way coupling case. As explained
above, the respective data exchanges between SWEET and OpenFOAM do not occur
on the same mesh in both directions. Instead, each solver has two meshes. One for the
sides of the domain and one for the area over which the coupling occurs. They form
a loop, with each solver writing and reading to and from the other solver. This also
allows for more complex coupling schemes.

The configuration defines four data types, although they are only two pairs of the
same data types for both mesh types. The water height is exchanged as a scalar value
containing the entire water height from the surface to the ground in m. The velocities
are transmitted as a 3D vector of x, y, z-direction velocities in m/s. Theoretically, it
would be sufficient to only use a 2D vector for the velocities as SWEET is 2D, and the
z-value will always be 0 or unused, thus saving bandwidth. However, because of the
dimension of the mesh in preCICE and the necessity for 3D locations for the mesh cells,
the vector automatically defaults to a 3D vector.

As mentioned above, SWEET is a 2D solver, and OpenFOAM is a 3D solver. Therefore,
at some point, interpolation has to be done from 2D to 3D. In the other direction, a

27

3. Implementation

reduction from 3D to 2D is needed. As the communication between the processes can
be one of the significant bottlenecks of coupling, it is in the best interest of performance
to minimize the number of transmitted values. Therefore, the mapping between the
meshes on the sides is done on the OpenFOAM side because the SWEET mesh for the
sides consists of four 1D lines while OpenFOAM has four 2D rectangles. The mapping
from 3D to 2D is done in the OpenFOAM preCICE adapter as explained in Section 3.2.3,
which results in OpenFOAM already providing a 2D mesh to preCICE there. For
mapping this mesh, while the mesh shape is the same as in SWEET, OpenFOAM still
uses a finer grid, resulting in a larger number of values in the mesh. Therefore, the
mapping on the top is also performed on the OpenFOAM side.

In contrast to the atmosphere-ocean solver, which only supports one-way coupling,
this solver could also utilize implicit coupling. It can be turned on in case the scenario
is not stable for explicit coupling, but we choose to use serial explicit coupling to
prioritize runtime.

3.2.3. OpenFOAM Participant

We use the interFOAM solver for OpenFOAM, which simulates multiphase incom-
pressible flow. We configure the two phases, water and air. The kinematic viscosity
is set to νw = 1 × 10−6 m2/s and νa = 1.48 × 10−5 m2/s respecitvely. The density is
set to ρw = 1000 kg/m3 and ρa = 1 kg/m3. Gravity is set to use the same value as
SWEET. The simulation type is set to laminar flow, as turbulence is not the focus of our
simulated scenarios. For the solvers, we do not use any special settings but standard
settings from one of the OpenFOAM tutorials.

One of the advantages of preCICE is its API, which allows adapters to exist for many
common solvers. This is also the case for OpenFOAM, which already has an existing
adapter [6]. We use this adapter as the basis for connecting OpenFOAM to preCICE.
However, the 2D-3D conversion needs to be implemented on the OpenFOAM side,
as described in Section 3.2.2, and the adapter does not support this data processing.
Therefore, it is necessary to make some additions to the adapter to work with this
coupling configuration.

The conversion from a 3D mesh to a 2D mesh and vice-versa would not necessarily
need to have been made in the OpenFOAM adapter itself. Another possibility would
be to do it in preCICE before exchanging values to the other process. There was
already some work on geometric multiscale coupling [7], and preCICE has a feature
for geometric multiscale mapping4. However, it only supports 1D-3D coupling on a
circular interface. For our manual implementation of the dimensionality mapping, we

4https://precice.org/configuration-mapping#geometric-multiscale-mapping
Accessed: 2025-01-12

28

https://precice.org/configuration-mapping#geometric-multiscale-mapping

3. Implementation

choose the adapter instead of preCICE because it has direct access to the OpenFOAM
API, which provides valuable functions.

As explained in Section 2.2.2, the preCICE adapter uses a class for every data type
that can be exchanged. Therefore, we only have to modify the corresponding classes
Velocity and Alpha to add our changes.

preCICE to OpenFOAM

In Listing 3.1, the code for converting water height to alpha can be seen. It iterates
over all patches which the adapter is configured to deal with. In our case, this is just
the single Sides patch containing the four sides of the OpenFOAM domain. Then, it
iterates over every cell in the patch, calculating the alpha value. The nearest-neighbor
mapping in preCICE automatically handles the 2D to 3D mapping. However, to check
which alpha value should be chosen for the water height received from preCICE, the
location of the cell is needed. For this, the cell.box() function from the OpenFOAM
API is used to get a bounding box of the cell in the form of a point-tuple. With these
two points, the minimum and maximum height of the cell are determined and used to
implement Equation 3.4. The snappyHexMesh algorithm used for mesh generation does
not solely produce cuboids, so equating the ratio of water height to the ratio of volume
is not always correct. However, because the splitting and snapping of cells only occurs
near obstacles, we can safely assume that all cells at the boundary are cuboids or very
close to cuboids.

void preciceAdapter::FF::Alpha::read(double *buffer) {
int bufferIndex = 0;

// For every boundary patch of the interface
for (uint j = 0; j < patchIDs_.size(); j++) {

int patchID = patchIDs_.at(j);
auto &mesh = Alpha_->mesh();
auto &patch_cells = mesh.boundary()[patchID].faceCells();
auto &cells = mesh.cells();

// For every
for (auto &c_label: patch_cells) {

auto water_height = buffer[bufferIndex++];
auto c = cells[c_label];

// Calculate cell height with bounding box

29

3. Implementation

auto b_box = c.box(mesh);
double top = max(b_box.first().z(), b_box.second().z());
double bottom = min(b_box.first().z(), b_box.second().z());

if (top < height) {
Alpha[c_label] = 1;

} else if (bottom >= height) {
Alpha[c_label] = 0;

} else {
Alpha[c_label] = (water_height - bottom) / (top - bottom);

}
}

}
}

Listing 3.1: Reading of alpha values from preCICE to OpenFOAM

The writing of the velocity values from preCICE to the OpenFOAM mesh can be seen
in Listing 3.2. Overall, the implementation is very similar to that of the alpha values.
The difference is that since only the velocity for water cells is supposed to be set, the
alpha value of each cell is also needed. Therefore, the Velocity class is extended with
a reference to the alpha field. For this reason, it is also necessary that the alpha field is
written before the velocity field in each timestep. Otherwise, outdated values would be
used for the calculation.

void preciceAdapter::FF::Velocity::read(double* buffer) {
int bufferIndex = 0;

// For every boundary patch of the interface
for (int j = 0; j < patchIDs_.size(); j++) {

int patchID = patchIDs_.at(j);
auto &patch_cells = U_->mesh().boundary()[patchID].faceCells();

// For every cell of the patch
for (int i = 0; i < patch_cells.size(); i++) {

auto cell = patch_cells[i];
auto alpha = Alpha[cell];

30

3. Implementation

U[cell].x() = buffer[bufferIndex++] * alpha;
U[cell].y() = buffer[bufferIndex++] * alpha;
U[cell].z() = buffer[bufferIndex++] * alpha;

}
}

}

Listing 3.2: Reading of velocity values from preCICE to OpenFOAM

Figure 3.7.: Artifacts appearing in the coupling region when values are written to the
boundary instead of the cell in OpenFOAM.

A detail that can be observed in the two code snippets above is that the values
of alpha and velocity are not written to the boundaries, i.e., the value field of the
fixedValue BCs, but to the value of the cells directly adjacent to these boundaries. This
is because when values were written to the boundaries and fixedValue boundaries were
used in early versions, anomalies appeared at the boundaries that prevented accurate
simulations. An example of these artifacts can be seen in Figure 3.7. When using the
current method of writing the values to the cells, these artifacts stopped appearing.
We are not entirely sure of the cause of these artifacts, but we suspect they are related
to the time at which the BCs were applied. Consequently to this implementation, the

31

3. Implementation

OpenFOAM configuration does not use fixedValue BC as described in Section 3.2.1,
but zeroGradient Neumann BCs, since the cell value is already set manually.

OpenFOAM to preCICE

The changes to the adapter for the other coupling direction are more extensive as the
2D-3D mapping is not handled automatically by preCICE. The same calculation has to
be performed for alpha and the velocity, and it would be inefficient to iterate over the
entire OpenFOAM domain twice. However, because of the preCICE adapter’s structure,
it is impossible to unify these methods in one of the classes without significant changes.
For this reason, we introduce a secondary class that calculates the mapping of the alpha
and velocity fields, which can be queried using the respective methods get_v() and
get_alpha(). We call this class DimensionReduction, and both Velocity and Alpha
receive a reference to it. It does not need to be called separately but automatically
calculates the mapping again after both data types have been read. How the adapter
writes these velocity values from OpenFOAM to preCICE using this reduction can be
seen in Listing 3.3. The Alpha class works analogously. All values are already prepared
and simply passed to the buffer.

std::size_t preciceAdapter::FF::Velocity::write(double* buffer) {
int bufferIndex = 0;

for (auto v : reduction.getV()) {
buffer[bufferIndex++] = v;

}
return bufferIndex;

}

Listing 3.3: Writing of velocity values from OpenFOAM to preCICE

The purpose of the DimensionReduction class is to implement Equation 3.3 and
Equation 3.5. It would ideally iterate over all cells in a vertical column, starting at
each of the faces forming the Top boundary. The issue with this is that OpenFOAM
uses an unstructured grid. The grid is not defined by three-dimensional indexes but
rather by an unordered list of cells, each with a list of faces and lists of owners and
neighbors, which gives information about which cells border a given face. One option
to implement this would be to iterate over all faces of the boundary cell, select the face
at the bottom, find out which cell is on the other side, and repeat this process until
reaching the ground. However, while this provides a good solution for a structured

32

3. Implementation

mesh that is saved as an unstructured mesh, it still assumes a particular structure and
that there are no tetrahedrons or similar. However, when introducing obstacles and
snappyHexMesh, these assumptions do not hold.

To facilitate an accurate implementation of the mapping, we make an approximation.
Instead of checking all cells in a vertical column, we use the sampling utility of the
OpenFOAM API to create a uniformly sampled line from each boundary face to the
ground. We assume that given that the sample size is large enough, this yields a close
enough result to the truth, no matter the actual shape of the mesh. How this uniformSet
class in OpenFOAM is used in the DimensionReduction is shown in Listing 3.4.

preciceAdapter::FF::DimensionReduction::DimensionReduction(...) : ... {
meshSearch searchEngine(mesh);
int counter = 0;

// For every boundary patch of the interface
for (int patchID : patchIDs) {

auto &temp_mesh = Alpha->mesh();
auto &face_centers = temp_mesh.boundary()[patchID].Cf();

// For every water column construct a vertical sample set
for (const auto ¢er: face_centers) {

sample_size = center.z() / n_samples;
double offset = sample_size / 2;
point start(center.x(), center.y(), center.z() - offset);
point end(center.x(), center.y(), offset);

sampleSets.emplace_back(temp_mesh, searchEngine, "z", start,
end, n_samples);

}
}

}

Listing 3.4: Initialization of DimensionReduction class

In the constructor of the DimensionReduction, for each boundary patch and each cell
on this patch, a uniformSet is created starting at the point and going to the bottom. The
uniformSet works by selecting n_samples points on the line between the two points,
with the first sample being the start and the last sample being the endpoint. It is then

33

3. Implementation

possible to access the corresponding cells each point lies in using the cells() function.
To make this approximation as accurate as possible, we set n_samples to be equal to
the number of vertical cells in the blockMesh that snappyHexMesh bases its mesh upon.
Additionally, we offset both the start and end by the height of half a cell. This results
in the samples corresponding to the cell centers in the blockMesh. Far away from the
obstacles, at the edges of the domain, this corresponds exactly to the mesh, and we
obtain the same result there using this method as the formula describes. Therefore, the
only approximations happen in the inner parts of the OpenFOAM domain, which is
not as important since it does not affect the SWEET domain for the most part and is
mainly used to fill the hole in the SWEET domain.

How these sets are used can be seen in the calculation method in Listing 3.5, which
is executed once every timestep. With the work of collecting the necessary cells already
done, it simply needs to iterate over the list of uniformSets and apply Equation 3.3
and Equation 3.5 to the cell lists they contain. The creation of the sample sets is only
done once in the constructor, and the sampling process is never repeated. Therefore,
calculating all necessary cells only incurs a runtime cost during setup, and there is no
sampling cost at runtime.

void preciceAdapter::FF::DimensionReduction::calculateFields() {
velocities.clear();
heights.clear();

for (uniformSet &set : sampleSets) {
double alpha_sum, u_sum, v_sum;

for (auto &cell : set.cells()) {
alpha_sum += Alpha[cell];
u_sum += V[cell].x() * Alpha[cell];
v_sum += V[cell].y() * Alpha[cell];

}

// If there are obstacles in this column
if (set.cells().size() < n_samples) {

heights.push_back(DEFAULT_HEIGHT); // Prevents Extreme values
} heights.push_back(alpha_sum * sample_size);

velocities.push_back(u_sum ? u_sum / alpha_sum : 0)
velocities.push_back(v_sum ? v_sum / alpha_sum : 0)

34

3. Implementation

velocities.push_back(0); // preCICE expects 3D vector
}

calculated = true;
read_H = false;
read_V = false;

}

Listing 3.5: Calculation of 2D values in DimensionReduction class

A special edge case needs to be handled with a check if there are obstacles in a water
column. If there are obstacles, the sample set will be smaller than expected. In the
case of an obstacle that goes from the bottom to the surface but has air above, this set
would only contain only air cells. The calculated water height would thus be 0, causing
spectral artifacts in the SWEET domain. Implementing a perfect calculation of water
height for this case would require more complicated interactions with the OpenFOAM
mesh. Therefore, as obstacles do not appear on boundaries and the values in the center
are only needed to keep the SWEET domain consistent and prevent artifacts, the water
height at these locations is set to h0.

3.2.4. SWEET Participant

Contrary to OpenFOAM, there is no preCICE adapter yet for SWEET. Therefore, the
necessary preCICE API calls must be manually added to the program. However,
because of the simple API preCICE uses, this only results in limited changes. As
outlined in Section 2.1.4, SWEET uses program classes to implement different scenarios
using the SWEET framework’s functionality. Our implementation is constructed based
on the PDE_SWECart2D and PDE_SWESphere2D programs.

A simplified version of the main program can be seen in Listing 3.6. It is split into
two parts: the initialization and the simulation loop. First, SWEET is initialized, and
preCICE is set up with the configuration in Figure 3.6. Before beginning the simulation,
both meshes need to be defined. No connectivity is needed, so this is simply an
iteration over the coordinates of all relevant SWEET cells. For the Cart2D domain, the
coordinates can be taken directly from the cells of SWEET’s Cartesian domain. For the
Sphere2D domain, this is not possible as it uses a latitude-longitude grid. No projection
exists that preserves distance, area, and angles. For simplicity, we choose to implement
equirectangular projection, where latitude and longitude are directly converted to the
x- and y-component of a point after being appropriately scaled to the circumference of
the sphere. Also, as preCICE assumes the initial coupling values to be 0, the correct

35

3. Implementation

water height for t = 0 s must be written to preCICE. Afterward, preCICE is initialized,
and simulation can begin.

The simulation loop has two criteria for continuing execution. On the one hand, it
lets preCICE decide if the simulation should continue. On the other hand, it checks
if any events on the SWEET side indicate that execution should stop, e.g., a failed
instability check. As a first action in each iteration, SWEET simulates the timestep.
As subcycling is disabled, preCICE dictates the timestep size. After each timestep is
calculated, the velocity and water height are converted from the spectral domain, where
the simulation runs, to the physical domain. The current values are then written to
preCICE, and the new values are read from preCICE and written to the data grids.
These can now be loaded into the simulation by returning them to the spectral domain.
For the Sphere2D domain, an additional step not shown in Listing 3.6 is necessary to
convert phi, vorticity, and divergence to the water height and velocities.

int main(int i_argc, char *i_argv[]) {
PDE_SWECart2D::Program simulation(i_argc, i_argv);
precice::Participant precice{"SWEET", "precice-config.xml", 0, 1};

<...> // Populate coordinates and IDs for sides
precice.setMeshVertices("SWE_Sides", coordinates, vertexIDs_write);
<...> // Populate coordinates and IDs for top
precice.setMeshVertices("SWE_Top", coordinates, vertexIDs_read);

if (precice.requiresInitialData()) precice.writeData("SWE_Sides","
Alpha_SWE_FOAM", ...);

precice.initialize();

while (!simulation.should_quit() && precice.isCouplingOngoing()) {
simulation.precice_max_dt = precice.getMaxTimeStepSize();
simulation.runTimestep();

auto h = simulation.dataConfigOps.prog.h_pert.toGrid();
auto u = simulation.dataConfigOps.prog.u.toGrid();
auto v = simulation.dataConfigOps.prog.v.toGrid();
<...> // Write data to buffer

precice.writeData("SWE_Sides", "Velocity_SWE_FOAM", ...);

36

3. Implementation

precice.writeData("SWE_Sides", "Alpha_SWE_FOAM", ...);
precice.readData("SWE_Top", "Velocity_FOAM_SWE", ...);
precice.readData("SWE_Top", "Alpha_FOAM_SWE", ...);
<...> // Write data to grid

simulation.dataConfigOps.prog.u.loadCart2DDataGrid(u);
simulation.dataConfigOps.prog.v.loadCart2DDataGrid(v);
simulation.dataConfigOps.prog.h_pert.loadCart2DDataGrid(h);

precice.advance(simulation.shackTimestepControl->
currentTimestepSize);

}
precice.finalize();

}

Listing 3.6: Simplified structure of the SWEET program including calls to preCICE API

Configuration

The tests use the default build configuration of the PDE_SWECart2D and PDE_SWESphere2D
programs in SWEET. As a timestepping method, we select fourth order ERK as de-
scribed in section Section 2.1.3 for all parts of the right-hand side of the SWE equations.
It is not a very complex time integration scheme, but it is widely used and appropriate
since the actual performance of the solver is not the focus of this thesis. Furthermore,
SWEET also requires setting either the number of modes in spectral space or the number
of cells in physical space. The appropriate value for the respective other parameter is
automatically determined. To make the configuration of the coupling and placement of
coupling boundaries in the scenarios easier, we select a physical grid size of 200 × 200
cells for the Cart2D domain. For the Sphere2D domain, we use 200 spectral modes, as
SWEET did not allow us to determine the domain size using the physical grid. Some
natural constants concerning the fluids also need to be set.

• g = 9.80161 m2/s2 Constant for gravitational acceleration

• f0 = 0 rad/s Coriolis parameter at equator

• ν = 1 × 10−6 m2/s Kinematic viscosity

Both g and ν are selected to match the scenario we need to simulate. Being equal to
the Earth’s gravity and water’s kinematic viscosity. However, ν needs to be changed in

37

3. Implementation

the source code, as SWEET was not initially meant to simulate oceanic flows. It might
be interesting to include Coriolis forces in the context of an oceanic flow. However,
because OpenFOAM does not support them, they would be unevenly applied between
the domains and complicate the coupling. Therefore, f0 is set to be equal to no rotation.

3.2.5. Evaluation

To test the functionality and accuracy of the implemented coupling, we run multiple
test scenarios with our coupled solver. All scenarios take place in the same decomposed
domain described in Section 3.2.1. The general idea of the scenarios is to simulate
bi-directional interactions between OpenFOAM and SWEET.

SWEET

In line with a possible use-case for this sort of coupling, tsunami simulation, we want
to simulate some excitement in the SWEET domain that travels to and interacts with the
OpenFOAM domain. Although for some early tests, different setups were evaluated,
we used the same setup for SWEET in all final tests. At the initial state, at the center
of the SWEET domain, we place a circular column of water. Because of the spectral
SWEET domain, we do not implement this column using a step function but rather use
the cosine function. If we used a discontinuous step function, the Fourier Transform
would cause oscillations near the step because of the Gibbs phenomenon. [36] For any
point in a circle with radius dmax, the water height at a distance d from the center is
calculated using this equation:

h(d) = 0.5 ∗
(

cos
(

d
dmax

∗ π

)
+ 1
)
∗ hcenter + h0, ∀d < dmax (3.6)

In order for the initial condition to be accurately represented and not include distor-
tions, we do not use equirectangular projection to calculate the distance from the center
in the Sphere2D domain. Otherwise, it would be hard to tell if any distortions in the
circular wave are caused by the initial projection or problems with the coupling. To
accurately calculate the distance from the central point, we calculate the great circle
distance using the haversine function. [14] Let (ϕ1, λ1) and (ϕ2, λ2) be two points de-
fined by latitude and longitude, and r be the radius of the sphere. Then, the great-circle
distance is given by

d = 2r · arcsin

(√
1 − cos (∆ϕ) + cos (ϕ1) · cos (ϕ2) · (1 − cos (∆λ))

2

)
(3.7)

38

3. Implementation

This column scenario is similar to the popular dam break scenario, which would
not be able to work because SWEET does not support walls. The water height at the
center is increased by hcenter = 200 m, and the outer boundary dmax is at 7.5 km from
the origin. The ground of the domain is left entirely flat. This generates a water "hill"
that collapses and forms a singular wave.

(a) t = 0 s (b) t = 60 s

(c) t = 300 s (d) t = 1000 s

Figure 3.8.: Water height at different timesteps in an uncoupled simulation of the test
Cart2D test scenario by SWEET.

This scenario only consists of an initial excitement, and no continued force is applied.
It is a time-dependent scenario expected to converge to a flat, undisturbed ocean. An
uncoupled simulation of this scenario by SWEET can be seen in Figure 3.8. While
a stable state scenario would be interesting, it is challenging to find such a scenario.
SWEET’s periodic domain cannot contain holes, inlets, and outlets, so they would

39

3. Implementation

only be possible in the OpenFOAM domain. However, this does not resemble any use
case, and if both inlet and outlet lie adjacent in the OpenFOAM domain, the scenario
might converge to a stable state where the SWEET domain is not disturbed much at
all. An interesting stable state scenario might be two different coupled instances of
OpenFOAM lying in different parts of the SWEET domain, one containing an inlet and
the other containing the outlet. However, this is an advanced coupling setup and is not
helpful for testing the basic coupling functionality.

OpenFOAM

The simplest scenario we use for OpenFOAM is a water domain without obstacles at
rest that is initialized to the same water height as the SWEET domain. This scenario is
beneficial visually and empirically since its results can be easily verified by simulating
the SWEET scenario without any coupling. However, the motivation of coupling
SWEET to OpenFOAM or a solver like it is to add simulation capabilities in these
areas that are not available to SWEET or any SWE solver by itself. Therefore, while
this empty scenario is helpful for testing, it does not show the correct functionality of
the primary use case for this thesis. To examine this, we implement four scenarios,
each placing a different obstacle in the center of the OpenFOAM domain. These four
obstacles can be seen in Figure 3.9.

(a) Cylinder (b) Bridge (c) TUM Logo (d) Reflector

Figure 3.9.: The four obstacles placed in the OpenFOAM domain during the tests.

The cylinder implements a simple obstacle, which cannot usually exist in SWEET
scenarios. The TUM logo represents a complex obstacle to check if this has an influence
on accuracy. The bridge obstacle goes a step further. It is not the product of a single
extrusion of a horizontal face, i.e., it can not be reduced to the 2D plane. Therefore, it
represents an obstacle that, by definition, cannot be simulated by an SWE solver since
they implement 2D equations. Lastly, we construct a reflector obstacle that models a
circle segment. Theoretically, this should reflect the wave and create a focal point at the

40

3. Implementation

wave origin. We use this obstacle to check objectively if wave direction and behavior
are consistent across the boundary.

(a) Overview (b) Detailed view

Figure 3.10.: Top-down view of the mesh constructed around the cylinder obstacle.

To achieve good simulation accuracy and prevent the appearance of confusing arti-
facts, a good mesh is essential, though it can depend on the scenario what "good" means.
[22] To create the meshes for the OpenFOAM scenarios, we use two tools. First, to create
the general geometry, we use SALOME, an easy-to-use open-source CAD program
from which we export the geometry as .stl files. This automatically triangulates the
analytically defined objects. As a second step, we use the snappyHexMesh5 tool, which
is included in OpenFOAM. The basic concept is to improve a simple input mesh using
stepwise refinements with different methods. We provide the initial mesh using the
blockMesh utility, also used to create the mesh for the simulations without obstacles.
The snappyHexMesh algorithm first subdivides the mesh near obstacle edges. Then, all
cells lying inside the obstacle with more than 50% of their volume are removed. In a
snapping step, the vertices on the mesh boundary are then displaced to the obstacle
edges. The resulting mesh is then iteratively refined using relaxation to satisfy mesh
quality parameters. A top-down view of the mesh for the cylinder cylinder scenario
can be seen in Figure 3.10.

5https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.
4-mesh-generation-with-the-snappyHexMesh-utility | Accessed: 11.02.2025

41

https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.4-mesh-generation-with-the-snappyHexMesh-utility
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.4-mesh-generation-with-the-snappyHexMesh-utility

3. Implementation

3.3. Summary

In this chapter, we implemented two solvers. The first one is an atmosphere-ocean
solver, which, because of limitations by SWEET, is only able to be coupled unidirectional
and is thus only used in a proof-of-concept scenario. The second one is a two-way-
coupled ocean-ocean solver that we implement both for a Cartesian and spherical
SWEET domain. The solver can be used to simulate parts of the SWEET domain using
OpenFOAM in order to improve accuracy and simulate complex geometry. This second
solver is tested for its viability using a benchmark scenario and multiple obstacles.

42

4. Results

We run comprehensive tests to evaluate the performance of the solvers implemented in
Chapter 3. We primarily investigate the viability of using SWEET in a coupled solver.
This chapter presents the results of these tests and is structured in two parts. The first
part Section 4.1 briefly goes over the proof-of-concept tests on the atmosphere-ocean
solver. As this solver only allows for one-way coupling due to the reasons outlined in
Section 3.1, the remainder of the chapter focuses on the ocean-ocean solver. Section 4.2
provides a detailed evaluation of the ocean-ocean solver. First, it evaluates coupling
with both available SWEET domain types, then tests the functionality of obstacles in
the OpenFOAM domain.

4.1. Atmosphere-Ocean Solver

The first solver we analyze is the atmosphere-ocean solver, with SWEET simulating the
atmosphere part of the domain and OpenFOAM simulating a three-dimensional ocean
domain. As described in Section 3.1, the atmosphere-ocean solver has some limitations
that arise from the limitations imposed by using the SWEET solver for the atmosphere.
Because of these limitations, the tests in this section do not evaluate any metrics or try
to simulate a specific scenario but rather a proof-of-concept scenario to test the viability
of the coupling should the aforementioned limitations be alleviated in the future.

Our test scenario is described in Section 3.1.5. It starts with two jet streams in the
SWEET domain and an ocean at rest in the OpenFOAM domain. The initial state
of the SWEET domain can be seen in Figure 3.3. As this is a stable state and the
atmosphere-ocean solver only supports one-way coupling from SWEET to OpenFOAM,
this continues to be the state of SWEET throughout the simulation.

The simulation results in the OpenFOAM domain can be seen in Figure 4.1. The
figure shows a cross-section of the domain. At the top, the two jet streams from
Figure 3.3 can be seen. Through their influence on the top layer of the domain, they
cause similar streams in the OpenFOAM domain. Additionally, as shown in Figure 4.1b,
a rotational current forms along each jet stream, and a high-pressure area forms between
the streams.

These results show that despite the restrictions of the atmosphere-ocean solver
explained in Section 3.1.1, the coupling works in principle. The coupled values from

43

4. Results

(a) Pressure

(b) Vertical Velocity

Figure 4.1.: Side-view of the results from the atmosphere-ocean solver. The image is
taken in positive-X direction.

SWEET are successfully transmitted and influence the OpenFOAM domain.

4.2. Ocean-Ocean Solver

As a second and more viable possibility of coupling SWEET to a three-dimensional
solver, we constructed the ocean-ocean solver described in Section 3.2. This section
presents the results obtained when testing this solver.

The section is divided into three parts. First, it deals with simulations in the Cart2D
domain, the simpler of the two SWEET domains. It performs both a qualitative and
quantitative analysis of the results and examines the influence of parameters such as cell
size of the OpenFOAM domain. Next, the other SWEET domain, Sphere2D, is analyzed
in the same way as the Cart2D domain. Here, we pay attention to the inaccuracies
caused by the projection between spherical and Cartesian domains. Lastly, the solver’s
behavior in one of its use cases is analyzed by placing obstacles inside the OpenFOAM
domain. Tests are conducted using several obstacles. Though the inability of SWEET to
simulate obstacles on its own prevents quantitative comparisons, correct functionality

44

4. Results

is analyzed using a specifically designed reflector obstacle.

4.2.1. Cart2D Domain

The Cart2D domain is the focus of the first tests we conduct. We start with the simplest
scenario introduced in Section 3.2.5, where the OpenFOAM domain is simply an empty
domain at rest. The SWEET domain starts with a smooth column of water at its
center. Upon collapsing, this results in a large wave traveling across the domain. In
this scenario, OpenFOAM employs no capabilities that are not available to SWEET.
Therefore, we can simulate a benchmark where SWEET simulates the entire scenario
without domain decomposition. The results of this can be seen in Figure 3.8. The
scenario is simulated for a duration of 1000 s with a timestep of 0.5 s. This time frame is
approximately equal to the time it takes the gravity wave caused by the water column
to travel once around the entire domain. This means that a wave crosses the coupled
region twice, once from the left and once from the right.

A comparison of the SWEET simulation without domain decomposition and the
simulation with ocean-ocean coupling can be seen in Figure 4.2 and Figure 4.3. The
data shown in the graphs is the data representation of the SWEET domain. For the
OpenFOAM domain, this means that the values shown in the graphs result from the
preCICE interpolation at the locations of the SWEET cells. Since, for our simulations,
OpenFOAM uses a higher grid resolution, this representation is downsampled, and a
higher resolution of the OpenFOAM domain is available by inspecting the OpenFOAM
output files. However, this representation is sufficient for a global analysis as it provides
an overview of the entire domain.

The simulation state is shown for four different points in time. The simulation state
at t = 300 s and t = 1000 s is also shown in the benchmark in Figure 3.8. Overall, each
of the renderings shows an important moment regarding the coupling. Figure 4.2a
shows the moment the wave first travels between the SWEET and OpenFOAM do-
mains. Figure 4.2c is the moment the eastbound wave crosses the OpenFOAM domain.
Figure 4.3a is the moment the westbound wave passes the SWEET boundary and
crosses the OpenFOAM domain from the east. Figure 4.3c shows the final state of
the simulation and when all waves meet again in the middle. Notably, the north- and
southbound waves also meet inside the OpenFOAM domain at this time.

There are some things to note about the results of the simulation. The overall quality
looks very good: The wave travels as expected through the OpenFOAM domain,
keeping the overall development of the scenario close to the benchmark. The wave also
does not lose or gain speed when crossing between the domains, keeping a circular
shape over both domains.

However, the edge of the wave is slightly smoothed when entering the OpenFOAM

45

4. Results

(a) Wave first enters SWEET domain. (b) Benchmark t = 100 s

(c) Eastbound wave crosses SWEET domain. (d) Benchmark t = 300 s

Figure 4.2.: Comparison of water height at an early stage in the coupled Cart2D solver
(left) and the benchmark (right).

domain. There are two likely causes for this. The smoothing could be caused by the
higher cell resolution in the OpenFOAM domain, which leads to fewer sharp edges
in the wave. The other cause could be the intrinsic difference between the SWE and
3D-NSE. OpenFOAM can simulate vertical velocity gradients. Assuming that these
velocity gradients are not zero in the OpenFOAM domain when being transformed back
to the SWEET domain, the velocity is averaged again, which could cause smoothing.
Also, OpenFOAM could model more accurate diffusive effects than SWEET, which was
originally intended for atmosphere simulation.

46

4. Results

(a) Westbound wave crosses SWEET domain. (b) Benchmark t = 750 s

(c) Wave meets again at the center. (d) Benchmark t = 1000 s

Figure 4.3.: Comparison of water height at a late stage in the coupled Cart2D solver
(left) and the benchmark (right).

Numerical Evaluation

While a visual comparison of results between the constructed ocean-ocean solver and
our benchmark can be helpful, a quantitative measure of simulation accuracy can
provide valuable insights. This is especially true when comparing different results.

One such metric we use for our evaluation is to check the time evolution of the
water height at a specific point against the benchmark. This can either be plotted in a
two-dimensional graph or summarized as a single scalar using the L2 norm.

We use three different points to validate our model. The location of these points can

47

4. Results

Figure 4.4.: Location of evaluation points in the decomposed Cart2D domain. The outer
green line indicates the border of the OpenFOAM domain. The inner black
line indicates the border of the SWEET domain.

be seen in Figure 4.4. Two of the points are in the SWEET domain. One of the points is
inside the OpenFOAM domain for the coupled solver while still lying in the SWEET
domain in the benchmark. They are strategically placed before, while, and after the
coupling takes place to evaluate all regions of the coupling. The data of the points is
captured at all timesteps, resulting in an interval of 0.5 s and 2001 values for each point.

Figure 4.5 shows the first of the evaluation points placed at the domain’s center. This
point is also the center of the water column at the beginning, leading to a prominent
spike in the first 60 seconds as the column collapses and forms the wave central to the
scenario. Afterward, there are no significant developments until t = 950 s, when the
waves meet again after traversing the entire domain once.

Mostly, the values provided by the coupled solver match the benchmark closely. The
waves take the same time to traverse the domain and reach close to the same height
after 950 s. However, the wavefront at t = 950 s is less steep than the benchmark, with
an earlier start in elevation. This is consistent with the smoothing effect, which is also

48

4. Results

Figure 4.5.: Graph of the water level at Point A in the Cart2D domain.

observed visually.
Figure 4.6 shows the water height at Point B, which lies at the center of the Open-

FOAM domain. When analyzing the Benchmark curve, there are three prominent
structures to relate to Figure 4.2 and Figure 4.3. The first one is the wave peak and
valley at 180 s ≤ t ≤ 360 s. They correspond to the eastward wave traversing the Open-
FOAM domain. Similarly, the peak at 700 ≤ t ≤ 840 corresponds to the westward wave
traversing the OpenFOAM domain. Lastly, the peak forming at t = 960 s corresponds to
the north- and southbound waves meeting inside the OpenFOAM domain, combining
their peaks.

The coupled solver mostly reflects this, as all three features are present. They also
appear at the same points in time. The same disparity as with Point A can be observed,
where the wavefronts are less steep, and the waves begin building earlier. Similarly, the
peaks are slightly later. Also, it can be observed that the wave peaks are up to ≈ 6 m
higher for the single waves and even higher for the combined last wave. However, as
both Point A and Point C show that the waves still have the same or slightly less height
than in the benchmark, this might be attributed to a difference in wave shape between
SWE and 3D-NSE, not an error in the energy conservation at the coupling. There is also
a series of smaller waves between the main features in the coupled solver that do not
appear in the benchmark. It is unclear whether this is a result of coupling inaccuracies
or can be attributed to the different solver types.

The graph for Point C can be seen in Figure 4.7. It contains only one main feature. In

49

4. Results

Figure 4.6.: Graph of the water level at Point B in the Cart2D domain.

Figure 4.7.: Graph of the water level at Point C in the Cart2D domain.

the benchmark between t = 360 s and t = 720 s, both the east- and westbound waves
pass the point, partially overlaying one another. This results in multiple peaks and
valleys. There are two prominent peaks at t = 420 s and t = 500 s and a valley at
t = 620 s. These three features also appear in the coupled solver. The peaks and valleys

50

4. Results

are slightly less intense than the benchmark, which could result from the slightly more
smoothed wave shape, causing the wave to be stretched out and reach less height. This
is visible at t = 330 s, where the wave starts building a whole minute earlier. More
minor discrepancies also appear in small waves following the passing of the large
waves.

With the results from the numerical analysis, our next step is to find out what
influences the accuracy of the coupled solver. One such attribute we examine is
the resolution of the OpenFOAM domain. For the use case of simulating a high-
interest region in a global domain, the three-dimensional domain is typically much
smaller relative to the entire domain. For our tests above, we use a relatively large
OpenFOAM domain for better visualization of results and to amplify any adverse
effects of the coupling in both domains. However, for tests increasing the granularity of
the OpenFOAM domain, we choose to reduce the overall size as the cell count would
otherwise increase the runtime of our experiments significantly. The smaller domain we
use for the following test and the points used for evaluation can be seen in Figure 4.8.
The location of the points does not change from the earlier analysis.

Figure 4.8.: Excerpt of the simulation with an OpenFOAM domain containing 150 ×
150 × 20 cells in a smaller area. The outer green line indicates the border of
the OpenFOAM domain. The inner black line indicates the border of the
SWEET domain.

With this reduced-size domain, we run tests with three different numbers of cells
in the OpenFOAM domain. We start with the configuration of 150 × 150 × 10 cells we
used up until now. For our second configuration, we decrease the number of horizontal
cells for a domain of 75 × 75 × 10. For our last test, we increase the number of vertical
cells to reach 150 × 150 × 20 cells.

51

4. Results

Figure 4.9.: Time evolution of the water depth at Point B with different configurations
for the OpenFOAM domain.

The time evolution of the water height at Point B can be seen in Figure 4.9. Overall,
there is only a tiny difference between the configurations. The main differences to the
benchmark remain essentially unchanged, and it is difficult to determine the best of
the three purely visually. For this reason, we use the L2 norm to quantify the difference
between each simulation and the benchmark. The L2 norm is not ideal as it does not
consider time shifting, i.e., a slightly shifted peak might incur a large norm despite
the shape being the same. Nonetheless, it is a helpful indicator for comparing the
configurations.

OpenFOAM Mesh Point A Point B Point C Avg.

75 × 75 × 10 42.17 58.62 36.45 45.75

150 × 150 × 10 42.18 57.44 33.96 44.53

150 × 150 × 20 54.87 68.17 41.15 54.73

Table 4.1.: L2 norm of the difference between coupled simulation and benchmark for
three different configurations of the OpenFOAM mesh. These experiments
use the smaller domain configuration shown in Figure 4.8.

The quantitative evaluation results are in Table 4.1. Overall, the configuration with
a 150 × 150 × 10 cell count has the most accurate results. However, the difference to

52

4. Results

the configuration with 75 × 75 × 10 cells is only very small and likely not significant.
This indicates that horizontal cell count in the OpenFOAM domain has no significant
influence on the accuracy of the coupling, which is a desirable outcome. The difference
between these two configurations and the one with a larger vertical cell count is more
significant. With the larger vertical cell count, the accuracy decreases. A possible
explanation for this is that at least part of the discrepancy from the benchmark is
related to the difference in the governing equations. As the number of vertical cells
increases, the NSE might provide results less like the depth-averaged SWE.

Artifacts in the Discontinuous Step Scenario

As discussed in Section 3.2.5, because of the spectral discretization used in SWEET and
the Gibbs phenomenon, using discontinuous initial conditions may lead to issues. For
this reason, we use a smooth column for our tests. However, during earlier tests, we
used a 100 m water column with a radius of 5 km as initial condition. The results of
this experiment are presented in Figure 4.10.

As expected, in Figure 4.10c, there are visible oscillations throughout the simulation
that are likely initially caused by the Gibbs phenomenon. They can be best seen at
t = 40 s. The oscillations also appear at Point B and Point C and are of the magnitude
of about 1 m. Also visible in Figure 4.10c is an additional peak and valley that is not
present in the other simulations in Figure 4.5. The peak and valley can be seen at
t = 180 s and t = 280 s, respectively.

The source of this discrepancy can be seen when visually analyzing the results: A
small portion of the wave is reflected instead of transferred whenever the wave enters
the SWEET domain. This is especially obvious in Figure 4.2c, where the reflected valley
of the wave is currently at x = 50 km. These reflected waves are only small, but at the
later timesteps, they cause persistent noise to the overall simulation. Notably, such
reflections either do not appear or are too small to notice in Figure 4.2c.

A possible explanation for these small oscillations could lie in the criteria for the
SWE. Their accuracy is directly related to if the wavelength is large compared to the
depth. [37] With their small oscillations, they could break this criterion and not be
simulated correctly, leading to a simulation difference between the two solvers that
results in these waves. As the other experiment only contains waves of much higher
wavelength, this effect does not appear there.

4.2.2. Sphere2D Domain

In addition to the Cart2D domain, we also evaluate the Sphere2D domain. Because
of the different domains, the solver has some implementation differences, which are

53

4. Results

(a) Coupled Model (b) Benchmark

(c) Point A

Figure 4.10.: Results of simulations using a discontinuous step as initial water column.
Black arrows mark small reflective waves originating from the coupling
boundary.

discussed in Section 3.2.4. However, regarding the evaluation, we use the same setup.
For the OpenFOAM domain, we use the empty domain at rest, and for the SWEET
domain, we use the Sphere2D version of the column scenario.

A key difference in the simulation is the size of the OpenFOAM domain, whose
side length is halved compared to that in the Cart2D evaluation. This is because
the equirectangular projection causes problems at higher latitudes. These effects are
detailed in Section 4.2.2.

54

4. Results

(a) Wave first enters SWEET domain. (b) Benchmark t = 200 s

(c) Eastbound wave crosses SWEET domain. (d) Benchmark t = 300 s

(e) Westbound wave crosses SWEET domain. (f) Benchmark t = 750 s

(g) Wave meets again at the center. (h) Benchmark t = 1000 s

Figure 4.11.: Comparison of water height in the coupled Sphere2D solver (left) and the
benchmark (right).

55

4. Results

The coupled solver’s results for the Sphere2D domain can be seen in Figure 4.11. As
for the Cart2D domain, four key timesteps are shown. When the wave first enters the
OpenFOAM domain, the wave crosses the domain in each direction, and the final state
at t = 1000 s. From a purely visual inspection, the results are similar to those with the
Cart2D domain. The coupling works well, allowing the wave to cross into and out of
the coupling area without issues. The same kind of smoothing previously observed
in the other domain can also be seen here. There seems to be no obvious reflection of
waves at the domain’s boundary. In the last timestep in Figure 4.11g, it can be seen that
the simulation achieves close to the same state as in the benchmark. There are only
very minimal perturbations in the domain, which suggests a well-working coupling.

An additional difference between the benchmark and the coupled solver is a bend in
the wave when it should be straight. This is visible in Figure 4.11a and Figure 4.11c.
The bent wave is likely due to the distortions introduced by equirectangular projection.
We investigate this further in Section 4.2.2.

Numerical Evaluation

To better understand the accuracy of our solver compared to a benchmark run only
using SWEET without domain decomposition, we analyze the time evolution of the
water height. For this, we use the same method as for the Cart2D domain, selecting
specific points and comparing their water height, obtaining scalar measures of accuracy
using the L2 norm.

In contrast to the Cart2D domain, this domain is spherical and represented by a
latitude-longitude grid. Nonetheless, we use the same locations for the evaluation
points. Their locations in the Sphere2D domain can be seen in Figure 4.12. We place
them along the equator. One point each is at the center, inside the coupled region, and
after it.

The time evolution of the water depth at these three points can be seen in Figure 4.13.
The results are mostly the same as for the Cart2D domain. A high overall accuracy is
achieved. The peaks and valleys stay the same and happen roughly simultaneously. In
Figure 4.13b, some peaks and valleys are significantly lower than in the benchmark.
This is likely attributed to the 3D-NSE simulating a different wave shape, with less
sharp edges and some small trailing waves. When crossing back into the SWEET
domain, the wave mostly readopts the original shape, as evidenced by the matching
shape and peak heights in Figure 4.13c. The absence of reflections at the boundary
observed visually is also present in the graphs. Overall, the solver achieved very good
accuracy.

A benefit of the Sphere2D domain is that it contains implementations for more
advanced timestepping methods, namely SDC. We also conducted tests using this

56

4. Results

Figure 4.12.: Location of evaluation points in the Sphere2D domain. The outer green
line indicates the border of the OpenFOAM domain. The inner black line
indicates the border of the SWEET domain.

timestepping method. The results were the same as the ones obtained from the other
simulations with the ERK method. This shows the possibility of using methods similar
to SDC in the future to improve efficiency and/or accuracy. An example would be
parallel-in-time simulation.

Projection

The Sphere2D domain is a sphere represented by a latitude-longitude grid. Coupling
this domain with a rectangular domain requires some projection. Due to the funda-
mental problem of mapping a curved surface onto a flat plane, no mapping perfectly
preserves both distance and area. The equirectangular projection we chose for our
model is easy to implement but has the significant drawback of large distortions at
higher latitudes. The further a cell is from the equator, the larger its area in the grid is
compared to its actual area.

To examine how this affects the results, we conducted a test where the OpenFOAM
domain is moved further away from the equator. We use two configurations, moving
the OpenFOAM domain south by half its width for each one.

The results of these tests are visualized in Figure 4.14. As can be seen, both cases
show significant distortions that decrease the accuracy of the simulation. In the case of
Figure 4.14a, a significant disconnect between the OpenFOAM wave and the SWEET

57

4. Results

(a) Point A

(b) Point B

(c) Point C

Figure 4.13.: Evolution of the water level at three different points in the Sphere2D
domain.

58

4. Results

(a) Latitude −27°

(b) Latitude −54°

Figure 4.14.: Simulation inaccuracies caused by equirectangular projection for non-
equator domains.

wave can be seen at the lower edge of the domain. This distortion is already dominant
even though the domain is only moved 7.5 km south. As shown in Figure 4.14b, the
distortion quickly increases as the domain is moved even further. The same distortion
effect can also be seen when leaving the OpenFOAM domain at the equator but
increasing its size. This is why a smaller domain was chosen for earlier tests in the
Sphere2D domain. This would also influence the usability of any model using this kind
of coupling.

59

4. Results

4.2.3. Complex Geometry

(a) Cylinder (b) Bridge

(c) TUM Logo

Figure 4.15.: Snapshots showing the results of simulations using several types of obsta-
cles.

Simulating an empty domain is not the purpose of our coupled solver. The main
reason for using coupling is that it can expand the capabilities of SWEET to simulate
scenarios with complex geometry. This is impossible in SWEET and is limited in SWE
as they only allow for two-dimensional obstacles. To test whether our implementations
work and simulations with obstacles are possible and accurate, we conduct several tests
with the obstacles introduced in Section 3.2.5. For the following tests, we use the Cart2D
variant of SWEET, so there is no additional noise introduced into the results because of

60

4. Results

the projection effects discussed in Section 4.2.2. As the obstacles are simulated on the
OpenFOAM side, they can just as well be used with the Sphere2D domain.

Some excerpts from the results for three of the obstacles can be seen in Figure 4.15.
All obstacle simulations run without problems, converging as expected and with no
difference from those with an empty OpenFOAM domain. As seen in the simulation for
the cylindrical obstacle in Figure 4.15a, the interaction with the obstacle works correctly.
The wave is parted by the cylinder and reconnects after it. These influences are then
transferred back into the SWEET domain. As can be seen in the bridge scenario in
Figure 4.15b, the simulation can also deal with obstacles that have vertical variations in
their structure.

While the results look good intuitively, a better method is needed to evaluate their
accuracy objectively. For the empty OpenFOAM domain, we conducted benchmark
runs using an uncoupled version of SWEET. As SWEET cannot simulate obstacles,
this is impossible for these scenarios. For this reason, we designed an obstacle with a
predictable collision behavior to check if the coupled solver behaves as expected. The
shape of the obstacle is that of a circle segment with the wave origin at its center. The
wave-facing wall is entirely vertical. This way, any part of the waves collides with the
obstacle at a right angle, causing it to be reflected directly back. Theoretically, this
results in a focal point at the center of the domain.

(a) t = 300 s (b) t = 470 s

Figure 4.16.: Two different timesteps in the simulation of the wave hitting a reflector
obstacle in the form of a circle segment. Point A is the center of the domain
and the focal point of the obstacle.

The results from the simulation with this reflector obstacle can be seen in Figure 4.16.
Figure 4.16a shows the moment the wave impacts the obstacle is reflected, and Fig-

61

4. Results

ure 4.16b shows the moment the reflected wave reaches the focal point. As the figure
shows, the obstacle works as expected, and the wave is focused with a high peak at
the focal point. There is some spread of the wave beside the peak, but this is likely the
cause of dissipation and not any coupling-related side effect.

4.3. Summary

We conducted tests with both our coupled solvers for several setups. The atmosphere-
ocean solver shows promising results, though there are few use cases with the current
limitations. For our ocean-ocean solver, we tested both the Cart2D and Sphere2D
domains to validate the implementation. The simulations yielded excellent results, both
considering visual examination and numerical evaluation. However, we identify an
issue in the Sphere2D domain considering the usage of equirectangular projection in
the domain decomposition. We show that this leads to inaccuracies for OpenFOAM
domains at higher latitudes. Placing obstacles in the OpenFOAM domain, we show
that our implementation can effectively expand the capabilities of SWEET. We further
validate this claim by designing a reflector obstacle to focus a wave on a focal point in
the SWEET domain.

62

5. Discussion

The results from Chapter 4 show that our coupled solvers perform well in several test
cases. This section discusses the implications of these results and their interpretation in
terms of our research questions posed in Chapter 1. Section 5.1 starts by answering
our primary research question, going over the general meaning of the results regarding
the viability of coupling between SWEET and OpenFOAM. Section 5.2 continues with
the secondary research question, analyzing the functionality of a coupling between
a spherical and flat domain, considering the projection inaccuracies, and introducing
possible remedies. Lastly, Section 5.3 goes over possible extensions to our ocean-ocean
solver to improve accuracy and make it valuable in realistic use cases.

5.1. Viability of Coupling SWEET to OpenFOAM

First, we answer the main research question: Are there viable options for using SWEET,
a SWE solver with spherical discretization, to a 3D configuration of OpenFOAM, a
finite volume solver?

Atmosphere-Ocean Solver

Our work presents two solvers, the first being a one-way coupled atmosphere-ocean
solver. This solver is severely limited by the absence of heat transport and many
other quantities relevant to climate models, such as humidity. Therefore, only a proof-
of-concept was provided. Nonetheless, the tests conducted with this solver showed
that wind transmission from SWEET to OpenFOAM works well. Theoretically, this
implementation could be extended to accurately represent wind stress. Some minor
logic similar to that used for the ocean-ocean solver would need to be added to the
preCICE adapter for OpenFOAM to handle the correct calculation and conversion from
absolute to relative velocity and stress. Time-dependant influences to PDE that don’t
depend on other variables are called forcing functions. [16] As the SWEET solver only
depends on the initial state and has no other input variables, it acts as a forcing function
for the OpenFOAM domain in the atmosphere-ocean solver.

However, since this model only allows for one-way coupling, it might have few
use cases. The accurate simulation of wind stress in complex wind patterns could

63

5. Discussion

improve OpenFOAM results for oceanic simulation. However, considering the absence
of two-way interaction, similar results might be achieved by a simpler calculation of
wind stress instead of a full-scale solver. Regardless, this proof-of-concept shows the
general viability of such a setup, particularly if SWEET should, at any point in the
future, be extended with the capabilities for heat transport.

Ocean-Ocean Solver

The ocean-ocean solver shows excellent results. All tested scenarios work as expected,
showing only minor discrepancies from the benchmark. There are two main types of
differences. The first one is the small reflections of waves at the OpenFOAM-SWEET
boundary observed in the discontinuous column scenario. It is possible that the Gibbs
phenomenon causes this, as explained in Section 4.2.1. However, if the coupling causes
it, a possible cause for this could be the implementation of pressure BCs in OpenFOAM.
As SWEET does not contain information about pressure, this is implemented as a zero
gradient Neumann BC. A possible solution could be manually recovering the pressure
from the SWEET velocity and water height. This should be straightforward because
of the hydrostatic pressure assumption from Section 2.1.2. The other discrepancy is
the slightly different wave shape in the OpenFOAM domain compared to the SWEET
domain. Theoretically, assuming hydrostatic pressure and a large width-to-height ratio,
the simulation should yield equivalent results. However, there is no explicit limit to the
ratio needed for the SWE. [37] A maximum of 0.05 for the ratio of depth to wavelength
is given by [23], but this is smaller than the ratio in our scenario. For good visualization,
we choose a domain with a relatively low ratio (100:1), which could be close to violating
the hydrostatic pressure assumption and cause slight inaccuracies. This would not be
an issue in most actual use cases, as the width would be orders of magnitude larger
while the height would be similar.

Tests with obstacles in the OpenFOAM domain show that the solver is well-suited
for use in realistic scenarios. The most obvious scenario is the simulation of large
bodies of water or the entire ocean system of the Earth by SWEET. OpenFOAM could
then simulate islands and continents. This setup is useful for simulating events like
tsunamis or similar large waves and their effects on coastlines. Although not used in
the tests, nothing theoretically prevents the disjoint OpenFOAM regions. Without many
changes, these could be simulated by the same solver or, with some more changes, even
be simulated by different solvers, leveraging multiprocessing. Regarding efficiency,
there is also a significant possibility for optimization. Much of the runtime is spent
computing the 3D to 2D reduction, which essentially iterates all cells. However, in
theory, only the values at the sides of the OpenFOAM domain are necessary for the
coupling. The runtime could be significantly decreased by calculating the reduction for

64

5. Discussion

only a few of the center cells. As this still provides sensible values for the center cells,
this does not lead to sharp transitions and the subsequent spectral artifacts.

5.2. Coupling Between a Spherical and Flat Domain

Our secondary research question is whether creating an accurate locally coupled
solver between a spherical and flat domain is possible. This research question is
particularly interesting because many actual use cases involve spherical domains. We
encounter projection-related distortions when conducting tests of our ocean-ocean
solver on the sphere. These distortions result from the equirectangular projection used
in our coupling, a relatively inaccurate albeit simple projection method. Distortions
are practically inevitable as it is a well-known problem that a flat plane cannot be
perfectly wrapped around a sphere. Nonetheless, there are ways to mitigate these
problems. The first option is the one also chosen in most of the tests: Distortions are
minimized by simply keeping the domain small and at the equator. In an actual use
case, the OpenFOAM domain is expected to be much smaller in relation to the overall
domain size, so this is a viable option. However, moving the domain might not be an
option, and with many domains, keeping all of them at the equator can be impossible.
Another option is to use different projection methods that do not depend on the location
of the domain. Many projection types of varying complexity exist, e.g., Gnomonic
Projection, Stereographic Projection, or Lambert Azimuthal Equal-Area Projection. [33]
Nonetheless, as there is no perfect projection, they all come with different trade-offs for
preserving distances, area, and angles. With momentum and energy correlated to the
area and the physical behavior of waves being related to distances and angles, these
trade-offs carry over to simulation accuracy. Which projection method is best suited
for this solver would need to be the focus of further research and could depend on the
specific scenario.

5.3. Outlook: Parallel-in-Time

One of the incentives for using the ocean-ocean solver is that a considerable domain
can be simulated using the low-complexity SWE. At the same time, only specific
high-interest areas need to be calculated using the computationally expensive 3D-
NSE. Nonetheless, if the domain gets large enough, the SWE solver can still be
the bottleneck. Because of SWEET’s structure, it is possible to use many different
timestepping schemes and thus improve runtime. An implementation for SDC and
even parallel-in-time method PFASST is already implemented. With the implementation
of our solver, using such a method is as simple as changing a configuration parameter.

65

5. Discussion

However, a key point of parallel-in-time schemes such as PFASST is to split large
timesteps into small parts and calculate them concurrently. [10] Therefore, there will
be no benefit in runtime unless the timestep size can be increased compared to the
previous timestepping method. As OpenFOAM largely dictates the timestep because of
its fine grid, the solver must thus start using different timesteps for both solvers. This
so-called subcycling is possible in explicit coupling by reusing a constant boundary
value until the next data exchange. However, this can quickly lead to inaccuracies. [12]
Therefore, implicit coupling needs to be enabled to retain good accuracy. To further
improve the results, this can be combined with waveform iteration [31], where instead
of a static boundary value over the entire coupling timestep, the boundary value is
interpolated using the values from the other solver’s subcycling timesteps. Because
all these features are handled by preCICE, this improvement could be added with
minimal implementations, potentially improving efficiency substantially in use cases
where SWEET is a runtime bottleneck.

66

6. Conclusion

This work explores the question of whether there are viable options for coupling SWEET
to a 3D configuration of the finite volume solver OpenFOAM.

Using the coupling library preCICE, two distinct coupling approaches are developed:
A layered atmosphere-ocean solver (Section 3.1) and a two-way coupled ocean-ocean
solver (Section 3.2). We show that while the atmosphere-ocean approach can be
successful in principle, it is held back by the limitations of the SWE, particularly the
absence of heat transport. Nonetheless, a proof-of-concept setup is presented that shows
promising results for inflicting wind stress on the OpenFOAM domain (Section 4.1). On
the other hand, we implement a well-functioning ocean-ocean solver leveraging two-
way coupling. The solver achieves excellent results in a benchmark scenario, showing
only minimal inaccuracies at the coupling boundaries, with no significant consequences
to the rest of the simulation (Section 4.2). Additionally, it can simulate any obstacle
reaching from a simple cylindrical column to complex geometries (Section 4.2.3).

In a secondary research question, we investigate the possibility of coupling a spherical
SWE domain to a flat 3D-NSE domain. The results show that our ocean-ocean solver
performs well even under the challenges imposed by inaccurate projection methods
(Section 4.2.2).

As an outlook, these results lay the foundation for further improvements to the
computational efficiency of our solver. We show how the solver could easily be
extended to incorporate advanced timestepping schemes and improvements to the
coupling setup to achieve a significant speed-up suitable for more realistic use cases
(Section 5.3).

Overall, we provide a viable option for efficiently and accurately simulating global
flows with local complex geometry and high-interest areas in SWEET.

67

Abbreviations

SDC Spectral Deferred Corrections

SWE Shallow-Water Equations

NSE Navier-Stokes Equations

SST Sea Surface Temperature

CFD Computational Fluid Dynamics

PDE Partial Differental Equations

ERK Explicit Runge-Kutta

BC Boundary Condition

68

List of Figures

2.1. 3D visualizations of both SWEET domains. 9
2.2. Example of a latitude-longitude grid used to represent the Sphere2D

domain. 10
2.3. Visualization of domain decomposition of a domain formed by overlap-

ping circular and rectangular domains. Representation of the problem
originally considered by H. A. Schwarz. 12

2.4. Overview of the functionality provided by preCICE. 14

3.1. preCICE configuration for atmosphere-ocean solver with the exchange
of momentum and heat. 18

3.2. preCICE configuration used for atmosphere-ocean solver with only the
exchange of momentum. 18

3.3. Two jet streams in the SWEET domain for the atmosphere-ocean scenario. 21
3.4. Domain decomposition of the Cart2D domain in the ocean-ocean solver. 23
3.5. Domain decomposition of the Sphere2D domain for the ocean-ocean solver. 24
3.6. preCICE configuration for the two-way-coupled ocean-ocean solver. . . 27
3.7. Artifacts appearing in the coupling region when values are written to

the boundary instead of the cell in OpenFOAM. 31
3.8. Water height at different timesteps in an uncoupled simulation of the

test Cart2D test scenario by SWEET. 39
3.9. The four obstacles placed in the OpenFOAM domain during the tests. . 40
3.10. Top-down view of the mesh constructed around the cylinder obstacle. . 41

4.1. Side-view of the results from the atmosphere-ocean solver. 44
4.2. Comparison of water height at an early stage in the coupled Cart2D

solver (left) and the benchmark (right). 46
4.3. Comparison of water height at a late stage in the coupled Cart2D solver

(left) and the benchmark (right). 47
4.4. Location of evaluation points in the decomposed Cart2D domain. 48
4.5. Graph of the water level at Point A in the Cart2D domain. 49
4.6. Graph of the water level at Point B in the Cart2D domain. 50
4.7. Graph of the water level at Point C in the Cart2D domain. 50

69

List of Figures

4.8. Excerpt of the simulation with an OpenFOAM domain containing 150 ×
150 × 20 cells in a smaller area. 51

4.9. Time evolution of the water depth at Point B with different configurations
for the OpenFOAM domain. 52

4.10. Results of simulations using a discontinuous step as initial water column. 54
4.11. Comparison of water height in the coupled Sphere2D solver (left) and

the benchmark (right). 55
4.12. Location of evaluation points in the Sphere2D domain. 57
4.13. Evolution of the water level at three different points in the Sphere2D

domain. 58
4.14. Simulation inaccuracies caused by equirectangular projection for non-

equator domains. 59
4.15. Snapshots showing the results of simulations using several types of

obstacles. 60
4.16. Two different timesteps in the simulation of the wave hitting a reflector

obstacle in the form of a circle segment. 61

70

List of Tables

3.1. OpenFOAM BCs in the atmosphere-ocean solver. 19
3.2. OpenFOAM BCs in the ocean-ocean solver. 24
3.3. SWEET BCs in the ocean-ocean solver. 25

4.1. L2 norm of the difference between coupled simulation and benchmark
for three different configurations of the OpenFOAM mesh. 52

71

Bibliography

[1] H. J. Aguerre, P. H. Pedreira, P. J. Orbaiz, and N. M. Nigro. “Validation and
Enhancement of a Supermesh Strategy for the CFD Simulation of Four-Stroke
Internal Combustion Engines.” In: Fluids 7.3 (2022). issn: 2311-5521. doi: 10.
3390/fluids7030104. url: https://www.mdpi.com/2311-5521/7/3/104.

[2] V. Artale, S. Calmanti, A. Carillo, A. Dell’Aquila, M. Herrmann, G. Pisacane, P. M.
Ruti, G. Sannino, M. V. Struglia, F. Giorgi, X. Bi, J. S. Pal, and S. Rauscher. “An
atmosphere-ocean regional climate model for the Mediterranean area: assessment
of a present climate simulation.” In: Climate Dynamics 35.5 (Oct. 2010), pp. 721–740.
doi: 10.1007/s00382-009-0691-8.

[3] J. C. Butcher. “Runge–Kutta Methods.” In: Numerical Methods for Ordinary Dif-
ferential Equations. John Wiley & Sons, Ltd, 2016. Chap. 3, pp. 143–331. isbn:
9781119121534. doi: https://doi.org/10.1002/9781119121534.ch3.

[4] G. Čaklović, T. Lunet, S. Götschel, and D. Ruprecht. Improving Efficiency of Parallel
Across the Method Spectral Deferred Corrections. 2024. arXiv: 2403.18641 [math.NA].
url: https://arxiv.org/abs/2403.18641.

[5] G. Chourdakis, K. Davis, B. Rodenberg, et al. preCICE v2: A Sustainable and
User-Friendly Coupling Library. Sept. 2021.

[6] G. Chourdakis, D. Schneider, and B. Uekermann. “OpenFOAM-preCICE: Cou-
pling OpenFOAM with External Solvers for Multi-Physics Simulations.” In:
OpenFOAM® Journal 3 (Feb. 2023), pp. 1–25. doi: 10.51560/ofj.v3.88. url:
https://journal.openfoam.com/index.php/ofj/article/view/88.

[7] G. Chourdakis and B. Uekermann. “Towards geometric multi-scale coupling in
preCICE.” In: ECCOMAS Young Investigators Congress 2021. Accessed: 2025-01-12.
2021. url: https://mediatum.ub.tum.de/doc/1616787/1616787.pdf.

[8] B. Cushman-Roisin and J.-M. Beckers. “Introduction to Geophysical Fluid Dy-
namics.” In: ed. by B. Cushman-Roisin and J.-M. Beckers. Vol. 101. International
Geophysics. Academic Press, 2011. doi: https://doi.org/10.1016/B978-0-12-
088759-0.00001-8.

72

https://doi.org/10.3390/fluids7030104
https://doi.org/10.3390/fluids7030104
https://www.mdpi.com/2311-5521/7/3/104
https://doi.org/10.1007/s00382-009-0691-8
https://doi.org/https://doi.org/10.1002/9781119121534.ch3
https://arxiv.org/abs/2403.18641
https://arxiv.org/abs/2403.18641
https://doi.org/10.51560/ofj.v3.88
https://journal.openfoam.com/index.php/ofj/article/view/88
https://mediatum.ub.tum.de/doc/1616787/1616787.pdf
https://doi.org/https://doi.org/10.1016/B978-0-12-088759-0.00001-8
https://doi.org/https://doi.org/10.1016/B978-0-12-088759-0.00001-8

Bibliography

[9] A. Dutt, L. Greengard, and V. Rokhlin. “Spectral Deferred Correction Methods
for Ordinary Differential Equations.” In: BIT 40 (June 2000), pp. 241–266. doi:
https://doi.org/10.1023/A:1022338906936.

[10] M. Emmett and M. Minion. “Toward an efficient parallel in time method for
partial differential equations.” In: Communications in Applied Mathematics and
Computational Science 7.1 (2012), pp. 105–132. doi: 10.2140/camcos.2012.7.105.
url: https://doi.org/10.2140/camcos.2012.7.105.

[11] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differential
Equations. June 1997.

[12] J. H. Ferziger, M. Perić, and R. L. Street. Computational Methods for Fluid Dynamics.
2020.

[13] X. Fu and B. Wang. “Differences of Boreal Summer Intraseasonal Oscillations
Simulated in an Atmosphere–Ocean Coupled Model and an Atmosphere-Only
Model.” In: Journal of Climate 17.6 (2004), pp. 1263–1271. doi: 10.1175/1520-
0442(2004)017<1263:DOBSIO>2.0.CO;2. url: https://journals.ametsoc.org/
view/journals/clim/17/6/1520-0442_2004_017_1263_dobsio_2.0.co_2.xml.

[14] K. Gade. “A Non-singular Horizontal Position Representation.” In: Journal of
Navigation 63.3 (2010), pp. 395–417. doi: 10.1017/S0373463309990415.

[15] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation in Fluid Dy-
namics. Society for Industrial and Applied Mathematics, 1998. doi: 10.1137/
1 . 9780898719703. eprint: https : / / epubs . siam . org / doi / pdf / 10 . 1137 /
1 . 9780898719703. url: https : / / epubs . siam . org / doi / abs / 10 . 1137 / 1 .
9780898719703.

[16] R. Haberman. Applied Partial Differential Equations with Fourier Series and Boundary
Value Problems. 4th ed. Pearson, 2005.

[17] K. Hartung, G. Svensson, H. Struthers, A.-L. Deppenmeier, and W. Hazeleger.
“An EC-Earth coupled atmosphere–ocean single-column model (AOSCM.v1_EC-
Earth3) for studying coupled marine and polar processes.” In: Geoscientific Model
Development 11 (Oct. 2018), pp. 4117–4137. doi: 10.5194/gmd-11-4117-2018.

[18] M. Hirschhorn, V. Tchantchaleishvili, R. Stevens, J. Rossano, and A. Throckmorton.
“Fluid–structure interaction modeling in cardiovascular medicine – A systematic
review 2017–2019.” In: Medical Engineering I& Physics 78 (2020), pp. 1–13. issn:
1350-4533. doi: https://doi.org/10.1016/j.medengphy.2020.01.008. url:
https://www.sciencedirect.com/science/article/pii/S1350453320300199.

73

https://doi.org/https://doi.org/10.1023/A:1022338906936
https://doi.org/10.2140/camcos.2012.7.105
https://doi.org/10.2140/camcos.2012.7.105
https://doi.org/10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<1263:DOBSIO>2.0.CO;2
https://journals.ametsoc.org/view/journals/clim/17/6/1520-0442_2004_017_1263_dobsio_2.0.co_2.xml
https://journals.ametsoc.org/view/journals/clim/17/6/1520-0442_2004_017_1263_dobsio_2.0.co_2.xml
https://doi.org/10.1017/S0373463309990415
https://doi.org/10.1137/1.9780898719703
https://doi.org/10.1137/1.9780898719703
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719703
https://epubs.siam.org/doi/pdf/10.1137/1.9780898719703
https://epubs.siam.org/doi/abs/10.1137/1.9780898719703
https://epubs.siam.org/doi/abs/10.1137/1.9780898719703
https://doi.org/10.5194/gmd-11-4117-2018
https://doi.org/https://doi.org/10.1016/j.medengphy.2020.01.008
https://www.sciencedirect.com/science/article/pii/S1350453320300199

Bibliography

[19] C. Hirt and B. Nichols. “Volume of fluid (VOF) method for the dynamics of
free boundaries.” In: Journal of Computational Physics 39.1 (1981), pp. 201–225.
issn: 0021-9991. doi: https://doi.org/10.1016/0021-9991(81)90145-5. url:
https://www.sciencedirect.com/science/article/pii/0021999181901455.

[20] R. K. S. Joseph Galewsky and L. M. Polvani. “An initial-value problem for testing
numerical models of the global shallow-water equations.” In: Tellus A: Dynamic
Meteorology and Oceanography 56.5 (2004), pp. 429–440. doi: 10.3402/tellusa.
v56i5.14436. eprint: https://doi.org/10.3402/tellusa.v56i5.14436. url:
https://doi.org/10.3402/tellusa.v56i5.14436.

[21] D. E. Keyes, L. C. McInnes, C. Woodward, et al. “Multiphysics simulations:
Challenges and opportunities.” In: The International Journal of High Performance
Computing Applications 27.1 (2013), pp. 4–83. doi: 10.1177/1094342012468181.
eprint: https://doi.org/10.1177/1094342012468181.

[22] P. Knupp. Remarks on Mesh Quality. Tech. rep. Sandia National Lab.(SNL-NM),
Albuquerque, NM (United States), 2007.

[23] B. Le Méhauté. Linear Small Amplitude Wave Theories. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1976, pp. 212–238. isbn: 978-3-642-85567-2. doi: 10.1007/978-
3-642-85567-2_16. url: https://doi.org/10.1007/978-3-642-85567-2_16.

[24] O. Marti, S. Nguyen, P. Braconnot, S. Valcke, F. Lemarié, and E. Blayo. “A Schwarz
iterative method to evaluate ocean–atmosphere coupling schemes: implementa-
tion and diagnostics in IPSL-CM6-SW-VLR.” In: Geoscientific Model Development
14.5 (2021), pp. 2959–2975. doi: 10 . 5194 / gmd - 14 - 2959 - 2021. url: https :
//gmd.copernicus.org/articles/14/2959/2021/.

[25] T. Mathew. Domain Decomposition Methods for the Numerical Solution of Partial
Differential Equations. Vol. 61. Springer Berlin, Heidelberg, Jan. 2008. isbn: 978-3-
540-77205-7. doi: 10.1007/978-3-540-77209-5.

[26] F. Mintgen and M. Manhart. “A bi-directional coupling of 2D shallow water and
3D Reynolds-averaged Navier–Stokes models.” In: Journal of Hydraulic Research
56.6 (2018), pp. 771–785. doi: 10.1080/00221686.2017.1419989.

[27] OpenFOAM. url: https://www.openfoam.com/.

[28] J. B. Palter. “The Role of the Gulf Stream in European Climate.” In: Annual
Review of Marine Science 7.Volume 7, 2015 (2015), pp. 113–137. issn: 1941-0611.
doi: https://doi.org/10.1146/annurev-marine-010814-015656. url: https:
//www.annualreviews.org/content/journals/10.1146/annurev- marine-
010814-015656.

74

https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5
https://www.sciencedirect.com/science/article/pii/0021999181901455
https://doi.org/10.3402/tellusa.v56i5.14436
https://doi.org/10.3402/tellusa.v56i5.14436
https://doi.org/10.3402/tellusa.v56i5.14436
https://doi.org/10.3402/tellusa.v56i5.14436
https://doi.org/10.1177/1094342012468181
https://doi.org/10.1177/1094342012468181
https://doi.org/10.1007/978-3-642-85567-2_16
https://doi.org/10.1007/978-3-642-85567-2_16
https://doi.org/10.1007/978-3-642-85567-2_16
https://doi.org/10.5194/gmd-14-2959-2021
https://gmd.copernicus.org/articles/14/2959/2021/
https://gmd.copernicus.org/articles/14/2959/2021/
https://doi.org/10.1007/978-3-540-77209-5
https://doi.org/10.1080/00221686.2017.1419989
https://www.openfoam.com/
https://doi.org/https://doi.org/10.1146/annurev-marine-010814-015656
https://www.annualreviews.org/content/journals/10.1146/annurev-marine-010814-015656
https://www.annualreviews.org/content/journals/10.1146/annurev-marine-010814-015656
https://www.annualreviews.org/content/journals/10.1146/annurev-marine-010814-015656

Bibliography

[29] F. Pelaez. “A flexible approach to 2D-3D coupling of a Shallow-Water Equation
solver to OpenFOAM.” MA thesis. Technical University of Munich, 2020.

[30] R. A. Pielke Jr and R. A. Pielke Sr. Hurricanes: Their nature and impacts on society.
Wiley, 1997.

[31] B. Rüth, B. Uekermann, M. Mehl, P. Birken, A. Monge, and H.-J. Bungartz.
“Quasi-Newton waveform iteration for partitioned surface-coupled multiphysics
applications.” In: International Journal for Numerical Methods in Engineering 122.19
(2021), pp. 5236–5257. doi: https://doi.org/10.1002/nme.6443. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/nme.6443.

[32] N. Schaeffer. “Efficient spherical harmonic transforms aimed at pseudospec-
tral numerical simulations.” In: Geochemistry, Geophysics, Geosystems 14.3 (2013),
pp. 751–758. doi: https://doi.org/10.1002/ggge.20071. url: https://
agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ggge.20071.

[33] J. P. Snyder. “Map projections: A working manual.” In: (1987). doi: 10.3133/
pp1395.

[34] SWEET - Shallow Water Equation Environment for Tests. url: https://gitlab.
inria.fr/sweet/sweet.

[35] A. Toselli and O. Widlund. Domain Decomposition Methods - Algorithms and Theory.
Vol. 34. Springer, Jan. 2005. isbn: 978-3-540-20696-5. doi: 10.1007/b137868.

[36] A. Vretblad. “Fourier series.” In: Fourier Analysis and Its Applications. Ed. by
S. Axler, F. W. Gehring, and K. A. Ribet. New York, NY: Springer New York,
2003, pp. 73–103. isbn: 978-0-387-21723-9. doi: 10.1007/0-387-21723-1_4. url:
https://doi.org/10.1007/0-387-21723-1_4.

[37] C. Vreugdenhil. “Numerical Methods for Shallow-Water Flow.” In: vol. 13. Water
Science and Technology Library. 1994. doi: https://doi.org/10.1007/978-94-
015-8354-1.

[38] A.-T. Vuong, L. Yoshihara, and W. Wall. “A general approach for modeling
interacting flow through porous media under finite deformations.” In: Computer
Methods in Applied Mechanics and Engineering 283 (2015), pp. 1240–1259. issn:
0045-7825. doi: https://doi.org/10.1016/j.cma.2014.08.018. url: https:
//www.sciencedirect.com/science/article/pii/S0045782514002886.

[39] M. Zhao, J.-C. Golaz, I. M. Held, et al. “The GFDL Global Atmosphere and Land
Model AM4.0/LM4.0: 1. Simulation Characteristics With Prescribed SSTs.” In:
Journal of Advances in Modeling Earth Systems 10.3 (2018), pp. 691–734. doi: https:
//doi.org/10.1002/2017MS001208. url: https://agupubs.onlinelibrary.
wiley.com/doi/abs/10.1002/2017MS001208.

75

https://doi.org/https://doi.org/10.1002/nme.6443
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6443
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6443
https://doi.org/https://doi.org/10.1002/ggge.20071
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ggge.20071
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/ggge.20071
https://doi.org/10.3133/pp1395
https://doi.org/10.3133/pp1395
https://gitlab.inria.fr/sweet/sweet
https://gitlab.inria.fr/sweet/sweet
https://doi.org/10.1007/b137868
https://doi.org/10.1007/0-387-21723-1_4
https://doi.org/10.1007/0-387-21723-1_4
https://doi.org/https://doi.org/10.1007/978-94-015-8354-1
https://doi.org/https://doi.org/10.1007/978-94-015-8354-1
https://doi.org/https://doi.org/10.1016/j.cma.2014.08.018
https://www.sciencedirect.com/science/article/pii/S0045782514002886
https://www.sciencedirect.com/science/article/pii/S0045782514002886
https://doi.org/https://doi.org/10.1002/2017MS001208
https://doi.org/https://doi.org/10.1002/2017MS001208
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017MS001208
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017MS001208

A. preCICE Configurations

This section contains the detailed preCICE configuration files used for the atmo-
sphere_ocean solver (Listing A.1) and the ocean-ocean solver (Listing A.2).

<?xml version="1.0" encoding="UTF-8" ?>
<precice-configuration>

<data:vector name="Velocity"/>

<mesh name="SeaSurface" dimensions="2">
<use-data name="Velocity"/>

</mesh>

<mesh name="AtmosphereSurface" dimensions="2">
<use-data name="Velocity"/>

</mesh>

<participant name="SWEET">
<provide-mesh name="AtmosphereSurface"/>
<write-data name="Velocity" mesh="AtmosphereSurface"/>

</participant>

<participant name="Ocean">
<provide-mesh name="SeaSurface"/>
<read-data name="Velocity" mesh="SeaSurface"/>
<receive-mesh name="AtmosphereSurface" from="SWEET"/>
<mapping:nearest-neighbor direction="read" from="AtmosphereSurface

" to="SeaSurface" constraint="consistent"/>
</participant>

<m2n:sockets acceptor="Ocean" connector="SWEET"/>

<coupling-scheme:serial-explicit>
<participants first="SWEET" second="Ocean"/>

76

A. preCICE Configurations

<max-time value="100"/>
<time-window-size value="0.3"/>
<exchange data="Velocity" mesh="AtmosphereSurface" from="SWEET" to

="Ocean"/>
</coupling-scheme:serial-explicit>

</precice-configuration>

Listing A.1: preCICE configuration for the atmosphere-solver.

In the configuration file for the ocean-ocean solver in Listing A.2, the water height
values are named "Alpha". This is caused by a specific part in the OpenFOAM adapter
that expects certain names for the fields that interact with the OpenFOAM alpha field.
However, as the conversion between water height and alpha takes place in the adapter,
the value sent over preCICE under the name "Alpha" are actually the corresponding
water heights.

<?xml version="1.0" encoding="UTF-8" ?>
<precice-configuration>

<data:vector name="Velocity_SWE_FOAM"/>
<data:vector name="Velocity_FOAM_SWE"/>
<data:scalar name="Alpha_FOAM_SWE"/>
<data:scalar name="Alpha_SWE_FOAM"/>

<mesh name="SWE_Sides" dimensions="3">
<use-data name="Velocity_SWE_FOAM"/>
<use-data name="Alpha_SWE_FOAM"/>

</mesh>

<mesh name="FOAM_Sides" dimensions="3">
<use-data name="Velocity_SWE_FOAM"/>
<use-data name="Alpha_SWE_FOAM"/>

</mesh>

<mesh name="SWE_Top" dimensions="3">
<use-data name="Velocity_FOAM_SWE"/>
<use-data name="Alpha_FOAM_SWE"/>

</mesh>

77

A. preCICE Configurations

<mesh name="FOAM_Top" dimensions="3">
<use-data name="Velocity_FOAM_SWE"/>
<use-data name="Alpha_FOAM_SWE"/>

</mesh>

<participant name="SWEET">
<provide-mesh name="SWE_Sides"/>
<provide-mesh name="SWE_Top"/>

<read-data name="Velocity_FOAM_SWE" mesh="SWE_Top"/>
<read-data name="Alpha_FOAM_SWE" mesh="SWE_Top"/>
<write-data name="Velocity_SWE_FOAM" mesh="SWE_Sides"/>
<write-data name="Alpha_SWE_FOAM" mesh="SWE_Sides"/>

</participant>

<participant name="OpenFOAM">
<provide-mesh name="FOAM_Sides"/>
<receive-mesh name="SWE_Sides" from="SWEET"/>
<provide-mesh name="FOAM_Top"/>
<receive-mesh name="SWE_Top" from="SWEET"/>

<read-data name="Velocity_SWE_FOAM" mesh="FOAM_Sides"/>
<read-data name="Alpha_SWE_FOAM" mesh="FOAM_Sides"/>
<write-data name="Velocity_FOAM_SWE" mesh="FOAM_Top"/>
<write-data name="Alpha_FOAM_SWE" mesh="FOAM_Top"/>

<mapping:nearest-neighbor direction="read" from="SWE_Sides" to="
FOAM_Sides" constraint="consistent"/>

<mapping:nearest-neighbor direction="write" from="FOAM_Top" to="
SWE_Top" constraint="consistent"/>

</participant>

<m2n:sockets acceptor="OpenFOAM" connector="SWEET"
exchange-directory="/home/armin/Documents/

sweet_precice_coupling/benchmarks_plane/coupling"/>

<coupling-scheme:serial-explicit>
<participants first="SWEET" second="OpenFOAM"/>
<max-time value="1000"/>

78

A. preCICE Configurations

<time-window-size value="0.5"/>
<exchange data="Velocity_SWE_FOAM" mesh="SWE_Sides" from="SWEET"

to="OpenFOAM"/>
<exchange data="Alpha_SWE_FOAM" mesh="SWE_Sides" from="SWEET" to="

OpenFOAM" initialize="yes"/>
<exchange data="Velocity_FOAM_SWE" mesh="SWE_Top" from="OpenFOAM"

to="SWEET"/>
<exchange data="Alpha_FOAM_SWE" mesh="SWE_Top" from="OpenFOAM" to=

"SWEET" initialize="yes"/>
</coupling-scheme:serial-explicit>

</precice-configuration>

Listing A.2: preCICE configuration for the ocean-ocean solver.

79

	Abstract
	Contents
	Introduction
	Background
	Computational Fluid Dynamics
	Navier-Stokes Equations
	Shallow Water Equations
	Discretization Methods
	SWEET
	OpenFOAM

	Coupling Methods and Software
	Domain Decomposition
	preCICE
	Coupling an SWE Solver to OpenFOAM

	Summary

	Implementation
	Atmosphere-Ocean Solver
	Overview
	preCICE Configuration
	OpenFOAM Participant
	SWEET Participant
	Evaluation

	Ocean-Ocean Solver
	Overview
	preCICE Configuration
	OpenFOAM Participant
	SWEET Participant
	Evaluation

	Summary

	Results
	Atmosphere-Ocean Solver
	Ocean-Ocean Solver
	Cart2D Domain
	Sphere2D Domain
	Complex Geometry

	Summary

	Discussion
	Viability of Coupling SWEET to OpenFOAM
	Coupling Between a Spherical and Flat Domain
	Outlook: Parallel-in-Time

	Conclusion
	Abbreviations
	List of Figures
	List of Tables
	Bibliography
	preCICE Configurations

