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Abstract
Language models, such as long-short-term-based (LSTM-based) neural language models and

large language models (LLMs), are essential components driving a wide range of downstream

tasks, spanning from natural language processing to computer vision. Their adaptability across

domains makes them integral to applications like content generation, personalized recommen-

dations, and automation. However, training these models requires large-scale datasets that

often contain confidential, private, or legally protected data, raising serious privacy and intel-

lectual property risks. As these models become increasingly embedded in real-world systems,

it is crucial to identify and address potential data leakage and misuse to safeguard sensitive

information and prevent unauthorized exposure.

To address these challenges, we first identify privacy vulnerabilities in neural language

models by uncovering and analyzing memorization patterns within the model’s internal ac-

tivation representation, utilizing sequential abstraction models. The analysis reveals that neu-

ral network-based language models can inadvertently disclose specific information embedded

in their training datasets. Based on these findings, we propose mutation-based techniques to

mitigate harmful over-memorization, effectively reducing the risk of unintended data leakage.

Furthermore, we extend our research to LLMs, which are a specific neural network-based

language models built on the transformer architecture and characterized by billions of parame-

ters. To maximize the potential of LLMs in practice, it is necessary to align them with specific

domain data. Therefore, it is crucial to examine the privacy implications of domain-specific

adaptation in LLMs, a critical process for aligning pre-trained models with specialized tasks.

Through an in-depth assessment of widely used adaptation techniques, such as fine-tuning and

in-context learning, we evaluate privacy risks by employing membership inference attacks.

This approach enables a broader investigation into privacy concerns and supports the creation

of comprehensive privacy benchmarks. The results and tools derived from this research pro-

vide practitioners with essential resources for securely and responsibly adapting LLMs to real-

world applications.

In parallel, collaborative frameworks such as federated learning (FL), which enable multiple

parties to train a model jointly while keeping data in their own domain, have gained widespread

popularity as a powerful privacy-preserving machine learning paradigm. However, while FL

enhances data privacy by design, it introduces an additional layer of vulnerability, leaving

systems susceptible to malicious attacks that can compromise both model integrity and data

privacy.

Vertical federated learning (VFL) represents a crucial FL framework where each partici-

pant holds unique features for a common set of users, with each entity retaining its own model

parameters and data while exchanging only intermediate representations secured by crypto-
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Abstract

graphic methods during training and inference. Despite these safeguards, our research reveals

potential attack surfaces in VFL, demonstrating that data distribution shifts can be strategically

exploited to reconstruct sensitive training data, posing risks to data confidentiality even under

cryptographic protections. To address these vulnerabilities, we propose obfuscation techniques

that reduce VFL systems’ susceptibility to such attacks, minimizing the risk of data reconstruc-

tion during training.

Beyond research on data privacy in AI, ensuring output integrity in LLMs is also essential, as

hallucinations (where the model fabricates facts and produces non-factual statements) pose sig-

nificant risks by misleading users, spreading misinformation, and eroding trust in AI systems.

To mitigate these issues, we analyze the dynamic patterns within LLMs’ internal transformer

layers during hallucinations and apply tractable statistical models, such as Markov-based mod-

els, to detect and flag inaccuracies in content generation.

This dissertation advances the understanding of trustworthymachine learning systems by ad-

dressing vulnerabilities in data protection and output reliability across classic neural language

models (e.g., LSTM-based models), large language models, and federated learning, thereby

contributing to the practical development of trustworthy AI systems.
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Zusammenfassung

Sprachmodelle, wie beispielsweise Long-short-term (LSTM-basierte) neuronale Sprachmodel-

le und große Sprachmodelle (LLMs), sind essenzielle Komponenten, die eine Vielzahl nach-

gelagerter Aufgaben antreiben – von der natürlichen Sprachverarbeitung bis hin zur Computer

Vision. Ihre domänenübergreifende Anpassungsfähigkeit macht sie zu integralen Bestandtei-

len von Anwendungen Erstellung von personalisierten Empfehlungen und Automatisierung.

Allerdings erfordert das Training dieser Modelle groß angelegte Datensätze, die häufig ver-

trauliche, private oder rechtlich geschützte Daten enthalten, wodurch erhebliche Risiken in

Bezug auf Datenschutz und geistiges Eigentum entstehen. Da diese Modelle zunehmend in

reale Systeme integriert werden, ist es entscheidend, potenzielle Datenlecks und Missbrauch

zu identifizieren und zu adressieren, um sensible Informationen zu schützen und eine unbefug-

te Offenlegung zu verhindern.

Um diesen Herausforderungen zu begegnen, identifizieren wir zunächst Datenschutzlücken

in neuronalen Sprachmodellen, indem wir Memorization Patterns innerhalb der internen Ak-

tivierungsrepräsentation des Modells aufdecken und analysieren, wobei wir sequentielle Abs-

traktionsmodelle nutzen. Die Analyse zeigt, dass auf neuronalen Netzen basierende Sprach-

modelle unbeabsichtigt spezifische Informationen aus ihren Trainingsdatensätzen offenlegen

können. Basierend auf diesen Erkenntnissen schlagen wir mutationsbasierte Techniken vor,

um schädliche over-memorization zu mindern und so das Risiko unbeabsichtigter Datenlecks

zu reduzieren.

Darüber hinaus erweitern wir unsere Forschung auf LLMs, eine spezifische Klasse neurona-

ler Sprachmodelle, die auf der Transformator-Architektur basieren und durch Milliarden von

Parametern charakterisiert sind. Um das Potenzial von LLMs in der Praxis voll auszuschöp-

fen, müssen sie an spezifische Domänendaten angepasst werden. Daher ist es entscheidend,

die Datenschutzimplikationen der domänenspezifischen Anpassung in LLMs zu untersuchen

– ein zentraler Prozess zur Ausrichtung vortrainierter Modelle auf spezialisierte Aufgaben.

Durch eine eingehende Analyse weit verbreiteter Anpassungstechniken wie Feinabstimmung

(Fine-Tuning) und kontextbezogenes Lernen (In-Context Learning) bewerten wir Datenschutz-

risiken mithilfe von Mitgliedschaftsinferenzangriffen. Dieser Ansatz ermöglicht eine umfas-

sendere Untersuchung von Datenschutzbedenken und unterstützt die Schaffung umfassender

Datenschutz-Benchmarks. Die aus dieser Forschung gewonnenen Ergebnisse und Werkzeuge

stellen Praktikern essenzielle Ressourcen zur Verfügung, umLLMs sicher und verantwortungs-

bewusst in realen Anwendungen einzusetzen.

Parallel dazu haben sich kollaborative Frameworks wie das föderierte Lernen (FL), das es

mehreren Parteien ermöglicht, ein Modell gemeinsam zu trainieren, ohne Daten offenzulegen,

als leistungsfähiges Paradigma des datenschutzbewahrenden maschinellen Lernens etabliert.
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Zusammenfassung

Während FL den Datenschutz durch sein Design stärkt, führt es jedoch eine zusätzliche An-

griffsebene ein, die Systeme für böswillige Angriffe anfällig macht, welche sowohl die Inte-

grität des Modells als auch die Privatsphäre der Daten gefährden können.

Das vertikale föderierte Lernen (VFL) stellt ein essenzielles FL-Framework dar, bei dem je-

der Teilnehmer über einzigartige Merkmale eines gemeinsamen Benutzerpools verfügt, wobei

jede Entität ihre eigenen Modellparameter und Daten behält und während des Trainings und

der Inferenz nur durch kryptographische Methoden gesicherte Zwischenrepräsentationen aus-

tauscht. Trotz dieser Schutzmechanismen zeigt unsere Forschung potenzielle Angriffsflächen

in VFL auf, indem wir demonstrieren, dass sich Datenverteilungsschwankungen strategisch

ausnutzen lassen, um sensible Trainingsdaten zu rekonstruieren – selbst unter kryptographi-

schen Schutzmechanismen - was ein Risiko für die Vertraulichkeit der Daten darstellt. Zur

Bewältigung dieser Schwachstellen schlagen wir Verschleierungstechniken vor, die die Anfäl-

ligkeit von VFL-Systemen für solche Angriffe verringern und das Risiko einer Datenrekon-

struktion während des Trainings minimieren.

Über die Forschung zum Datenschutz in KI hinaus ist auch die Gewährleistung der Ausga-

beintegrität in LLMs von essenzieller Bedeutung, da Halluzinationen – bei denen das Modell

falsche Fakten erfindet und nicht faktenbasierte Aussagen generiert – erhebliche Risiken ber-

gen, indem sie Nutzer in die Irre führen, Fehlinformationen verbreiten und das Vertrauen in

KI-Systeme untergraben. Um diese Probleme zu mindern, analysieren wir die dynamischen

Muster innerhalb der internen Transformator-Schichten von LLMs während Halluzinationen

erzeugt werden und wenden handhabbare statistische Modelle, wie beispielsweise Markov-

basierte Modelle, an, um Ungenauigkeiten in der Inhaltsgenerierung zu erkennen und zu kenn-

zeichnen.

Diese Dissertation vertieft das Verständnis für vertrauenswürdige maschinelle Lernsyste-

me, indem sie Schwachstellen im Datenschutz und in der Ausgabezuverlässigkeit von klas-

sischen neuronalen Sprachmodellen (z. B. LSTM-basierte Modelle), großen Sprachmodellen

und föderiertem Lernen adressiert und damit zur praktischen Entwicklung vertrauenswürdiger

KI-Systeme beiträgt.
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1 Introduction

1.1 Motivations
As machine learning (ML) becomes deeply embedded in everyday life, influencing decisions

in healthcare, finance, autonomous systems, and beyond, ensuring that these systems are trust-

worthy is no longer optional as it is essential. Trustworthy ML systems must uphold high

standards across multiple dimensions, including data privacy, reliable outputs, and secure col-

laborative frameworks. Without these safeguards, the growing reliance on ML, particularly

in sensitive or high-stakes domains, could backfire, eroding public confidence and limiting its

safe adoption.

At the heart of trustworthy machine learning systems is the need to maintain data privacy.

Emerging foundation models, such as large language models (LLMs) and diffusion models, ex-

emplify this challenge. These models are highly expressive and widely adopted, underpinning

their ability to perform challenging tasks ranging from natural language understanding to high-

resolution media generation. However, their effectiveness hinges on large-scale training data,

which often contain personal, proprietary, or sensitive information. As these models continue

to scale in size and functionality and become more deeply integrated into real-world applica-

tions, it is imperative to rigorously assess their privacy risks and explore privacy-preserving

solutions to ensure their trustworthy deployment.

Trustworthiness also extends to the reliability of model outputs and collaborative frame-

works. While foundation models such as LLMs offer impressive capabilities, they are prone to

generating inaccurate or misleading content. This compromises the reliability of their outputs,

especially in critical applications such as medical diagnostics or legal advising, where users

rely on the system’s accuracy and consistency. In parallel, collaborative frameworks such as

federated learning (FL) enable multiple parties to train a model jointly while keeping data local-

ized, which introduces an additional layer of vulnerability. These frameworks are susceptible

to attacks on communication channels or aggregated model updates, where adversaries can

infer sensitive information, compromising participants’ privacy. Such vulnerabilities not only

threaten data privacy but also erode trust in the collaborative learning paradigm, limiting its

potential to facilitate secure and effective cross-institutional innovation.

This dissertation aims to solve the challenges of securing trustworthy machine learning in

practices with a focus on data privacy and the integrity of generated content of generative mod-

els. Specifically, in this dissertation, I investigate and contribute to answering the following

research questions.

• Question 1: How can we assess the privacy risks in foundation models?

• Question 2: Can collaborative learning paradigms effectively protect data privacy?

1



1 Introduction

• Question 3: How can we ensure the integrity of generative models?

1.2 Dissertation Overview
The increasing reliance on AI technologies has led to transformative advancements across

diverse fields such as natural language processing, computer vision, and data security. How-

ever, these advancements also introduce critical challenges, particularly concerning privacy,

security, and trustworthiness of AI systems. This dissertation addresses these challenges by

exploring tasks in four interconnected areas: memorization in neural language models, pri-

vacy vulnerabilities in LLM adaptations, data protection in vertical federated learning, and

hallucination detection in LLMs. Each task is characterized by distinct challenges, which are

addressed by the innovative methods proposed in this dissertation. These methods are summa-

rized in Chapter 2 and discussed in detail from Chapters 3 to 6.

Memorization in Neural Language Models (Chapter 3)
Neural language models often memorize sensitive information from training data, leading to

significant privacy risks when such data is unintentionally exposed. Existing studies focus on

understanding abstraction and robustness in neural networks but rarely investigate the internal

memorization mechanisms responsible for these privacy breaches. To bridge this gap, the first

study proposes a novel framework, DeepMemory, for analyzing and mitigating memorization

in language models. By constructing a memorization-analysis-oriented model and binding it

with a semantic first-order Markov model, DeepMemory evaluates memorization risks and as-

sists in dememorization by mutating training data. Experimental evaluations on LSTM-based

language models reveal the framework’s efficacy in mitigating privacy risks without sacrific-

ing model performance. This contribution lays the groundwork for systematic approaches to

secure neural language models.

Privacy Vulnerabilities in LLM Adaptation (Chapter 4)
LLMs require adaptation to domain-specific data for achieving optimal performance. How-

ever, this adaptation process introduces privacy concerns, as sensitive domain datamay be inad-

vertently leaked. The second study systematically benchmarks privacy vulnerabilities in LLM

adaptation techniques using PrivAuditor, a comprehensive framework for assessing member-

ship inference attacks (MIAs) across various model architectures, adaptation methods, and

datasets. The findings highlight critical privacy risks associated with adaptation techniques

and provide actionable insights for practitioners to deploy LLMs securely. PrivAuditor not

only identifies vulnerabilities but also offers a standardized tool for privacy auditing in LLM

deployments, making it a pivotal contribution to safeguarding domain-specific AI applications.
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Data Protection in Vertical Federated Learning (Chapter 5)
Federated learning allows collaborative model training without sharing raw data, offering

a promising solution for privacy-preserving machine learning. However, vertical federated

learning (VFL), where participants share features of common samples, remains vulnerable to

data leakage during the training phase. The third study investigates these vulnerabilities and

introduces VFLRecon, a posterior-difference-based attack capable of reconstructing sensitive

labels and features. Surprisingly, even encryption-based protections fail to mitigate these risks

effectively. To address this, the study develops VFLDefender, a defense mechanism that ob-

fuscates correlations between model updates and sensitive data. Experimental results demon-

strate that VFLDefender significantly reduces reconstruction accuracy, thereby enhancing the

privacy of VFL systems. This work provides critical insights into strengthening data protection

in federated frameworks.

Hallucination Detection in Large Language Models (Chapter 6)
One of the most pressing challenges in deploying LLMs is their propensity to generate halluci-

nated content—statements that are plausible yet factually incorrect. Existing solutions largely

focus on black-box evaluations, which fail to address the root causes of hallucinations rooted

in the models’ internal state dynamics. The fourth study introduces PoLLMgraph, a white-box

detection framework that models state transition dynamics during text generation. By lever-

aging probabilistic models such as hidden Markov models (HMMs), PoLLMgraph identifies

and forecasts hallucinations with unprecedented accuracy. Experiments demonstrate a 20%

improvement in AUC-ROC over state-of-the-art methods, underscoring the framework’s po-

tential for enhancing the reliability of LLMs in critical applications.
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2 Methodologies and Contributions

2.1 Contribution: Memorization in Neural Language
Models

In this section, I present a scientific investigation into the memorization mechanisms of classic

neural language models, i.e., long short-term memory-based language models, examined from

the perspective of internal activations. I begin by introducing the key challenges, proceed with

a detailed description of the methods, and conclude with a comprehensive explanation of my

contributions.

2.1.1 Challenges
Artificial intelligence (AI) software is important for automating and making autonomous de-

cisions. In particular, the rise of neural network models had a huge and significant impact on

many real-world applications, e.g., natural language processing [1, 2], image recognition [3],

and autonomous driving [4, 5]. However, the increasing diversity and complexity of such

neural network models make their security, reliability and robustness a critical and difficult

issue to address. Furthermore, similar to traditional (i.e., not based on AI) software, AI-based

solutions have been reported by many prior studies to trigger security concerns, such as data

privacy leakage [6]. Although various verification techniques, e.g., static analysis, symbolic

execution analysis and fuzzing techniques, can be used to guide the assurance of traditional

software security, those techniques are not applicable for AI-based software. In contrast, to the

best of our knowledge, there is a relative lack of techniques that can assist in the verification

of security in AI-based software.

Data privacy leakage is a typical security issue in AI models. Previous work [7, 8, 9] has

shown that neural language models tend to memorize the training data instead of learning its

latent characteristics. This can be exploited to extract privacy-critical information from the

data, potentially leading to significant financial and reputational harm [10]. More generally,

memorization with a neural language model may reveal insights regarding its internal behavior.

Prior studies [11, 12, 13] have been proposed to analyze certain aspects of the internal behavior

of deep neural networks in order to assist with detecting adversarial examples and to guide the

security testing of deep learning models [12]. However, the existing research rarely targets

in understanding memorization in neural network models. As a result, the existing research

is limited when it comes to analyzing and preventing leakage of sensitive private information

from training data of a publicly released model.

To simplify, we defined the leakage of sensitive private information from training data as

extractable memorization sequences. Given a language modelR = (D, δ, f) and a prefix c, a

4
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Figure 2.1: An overview of workflow for DeepMemory.

string of l with length N is considered to be a memorization sequence if such a string is equal

to:

arg max
l′ :|l′ |=N

R(l′ |c) (2.1)

where c and l are both from the training corpus.

2.1.2 Methodologies
To fill this research gap, my work proposes a novel approach, DeepMemory, to assist in ver-

ifying security in software built on top of classic neural network-based language models, i.e.,

LSTM-based language models, by analyzing the internal memorization behavior of neural lan-

guage models. Similar to traditional software vulnerability detectors, our approach acts as

an automated technique for detecting potential data leakage security vulnerabilities that oc-

cur due to memorization in language models. An overview of our approach is shown in Fig-

ure 2.1. It consists of three phases: 1) memorization-analysis-oriented model construction, 2)

memorization-distribution binding, and 3) addressing memorization issues using the memo-

rization model.

In the first phase, we construct a memorization-analysis-oriented model. Taking both train-

ing data and a neural language model as input, we first profile the given model to extract

semantic information, i.e., hidden states and traces. Such profiling outputs initial states and

traces that represent the model behavior. Typically, a large number of initial states and traces

exist due to the massive scale of training data. We then abstract a semantic distribution from

the initial states and traces. In particular, we transform initial states into intermediate states

by reducing the high dimensions of each initial state. We then apply a clustering algorithm to

group the intermediate states and traces into clusters, i.e., to derive concrete states and traces.

Finally, we construct a memorization-analysis-oriented model based on the concrete states and

traces distribution.

In the second phase, our approach binds the memorization-analysis-oriented model to the

training data to analyze the memorization distribution. This phase takes the memorization-

analysis-oriented model constructed from the last phase and the training corpus as input. To

analyze the memorization distribution, we first extract memorization sequences from the train-

ing data. We then build a semantic first-order Markov model to model the memorization dis-

tribution.

In the final phase, we applyDeepMemory to automatically identify the potential memorized

segments in LSTM-based neural language models and assisting mitigating the memorization

issues.
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2.1.2.1 Memorization-analysis-oriented Model Construction

To construct the memorization-analysis-oriented model, an LSTM -based language model and

its training data are required. We first profile the model to extract the initial states and traces

by iterating words in each sentence over the training data. We then abstract the initial states

and traces to construct our memorization-analysis-oriented model. We describe each step in

detail below.

Step A - Semantic Profiling Recent research on deep neural network models [12, 13, 14]

highlights that states and traces are efficient for understanding stateful model behaviors over

data distribution. A neural language model can be seen as a stateful model. The LSTM -based

model is one of the most typical neural language models. Therefore, in order to analyze LSTM -

based neural language model behavior, we profile the model to extract the initial semantic

states and traces as the first step. We first explain the definition of state and trace in neural

language model analysis.

Suppose that we have an LSTM -based language model R = (D, δ, f). D refers to all

sentences used for training. f is the distribution of a language model, and δ is an internal

state extractor of the model that is used to transform each word in a sentence to a state. For

example, when we feed a sequence “Ian goes home at 6 pm on weekdays and goes swim-

ming at 7 pm every day.” to a LSTM -based language model f with 100 hidden units, we can

obtain a list of hidden-state vectors of LSTM with 100-dimension for each feed input word,

i.e., [[0.1, ..., 0.3], [0.2, ..., 1.3], [1.5, ..., 0.3], ..., [0.07, ..., 0.4]], by using internal state extractor
δ. Particularly, δ(home) = [1.5, ..., 0.3].
With the internal hidden state set, we construct a corresponding state flow, i.e., trace, over

two hidden states ordered chronologically. The trace represents a transition relation for a pair

of consecutive hidden states. In our illustrative example, the trace between hidden state “goes”

and state “home” is represented by (δ(goes), δ(home)).

Step B - Semantic Distribution Abstraction After semantic profiling, we obtain an initial

model to represent the LSTM -based neural language model behaviors over training data. How-

ever, such a granular representation contains a plethora of discrete states and traces. For ex-

ample, an LSTM -based neural language model potentially produces up to 100 thousand states

and 900 thousand traces for a corpus containing 10,000 sentences with an average length 10 of

words. It is impractical to understand the internal behavior of a given model with such a huge

number of states and traces. Therefore, in this step, we abstract the semantic distribution of a

given language model from the perspective of states and traces.

Step B.1 - Automated Dimension Reduction The dimension of each initial state gener-

ated by semantic profiling is equal to the number of hidden units in LSTM core, which usually

is very high. It is hard to find the latent characteristics over high dimensional space since the

distribution of data with high dimension tends to be sparse [15]. Therefore, we first automat-

ically reduce the dimension of each initial state generated by semantic profiling to an optimal

number. Du et al. [12] applied Principal Component Analysis (PCA) to reduce the dimension

6



2 Methodologies and Contributions

of semantic space to a small number, in order to efficiently find the common correlation over

states. However, an obvious limitation in their approach exists. When the dimension of an

initial state is high, arbitrary dimension reduction may lead to a huge information loss. The

information loss from modeling may potentially introduce a significant bias in memorization-

analysis-oriented model construction. To improve the memorization-analysis-oriented model

construction, we use a classic metric, Relative Information Loss, to measure the information

loss during dimension reduction. In detail, we have a number of n vectors V and each vector

is with m-dimension space, i.e., [v0, v1, ..., vm]. We want to transform the n initial vectors to

vectors V̂ , and each transformed vector is with k-dimension, i.e., [v̂0, v̂1, ..., v̂k]. The corre-

sponding information loss is defined as ψ(k).
In order to overcome the aforementioned limitation, we take information loss into account

for dimension reduction in order to secure the utility of the transformed internal state. We set

a threshold θ to control information loss, and the decision process of finding the optimal k can
then be defined as:

arg min
k

|ψ(k)− θ| (2.2)

Finally, this step outputs intermediate states and each state is k dimensions. In our example,

we reduce the 100-dimension of each state to three dimensions. For example, the word “home”

would be with a reduced initial state [1.5, 0.7, 0.3].

Step B.2 - Semantic Clustering To identify the latent characteristics over the intermediate

states, we apply a clustering algorithm, DBSCAN, to group together intermediate states that are

close to each other in terms of cosine distance threshold ρ and minimum number of neighbors

σ. DBSCAN-based clustering is suitable for data with an arbitrary shape [16]. ρ specifies

the minimum cosine distance at which two intermediate state points should be considered as

neighbors. σ determines the minimum number of neighbors to be defined as a core state. Each

core state and its neighbors form a cluster labeled as a concrete state. In our running example,

the words “home” and “swimming” are grouped into one cluster. Therefore, we would label

the hidden states of the words “home” and “swimming” as a single identical concrete state.

Step C - Memorization-analysis-oriented Model Construction With the concrete

states from the clustering, we construct a final memorization-analysis-oriented model. We first

transform the high-dimensional initial states into intermediate states with an optimal dimension.

We then transform the intermediate states into concrete states. Note from Algorithm 1, we

define an abstraction function G to abstract the initial states and traces (Line 8). The inputs of

the function G are the initial states, and three threshold values, i.e., information loss threshold

θ, the number of cores σ, and distance threshold ρ.

2.1.2.2 Memorization Distribution Binding

Prior studies [6, 17] have reported that memorization is a severe issue in language models. To

achieve a good performance, a model all too often intends to remember the training data during

the training process instead of learning the latent characteristics. Regularization techniques,
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such as dropout and batch normalization, aim to solve the model overfitting issue and im-

prove the generality of AI models. Although the regularization techniques are widely adopted

for training a complicated model, e.g., an LSTM-based model, the models may still memo-

rize part of the training data [17]. Such memorization might be exploited to extract private

data from a given language model. Therefore, we quantify the memorization behavior in a

memorization-analysis-oriented model. Specifically, given a memorization-analysis-oriented

model and training data as input, we bind the memorization distribution by building a semantic

Markov model to map the memorization-analysis-oriented model to training data. In particu-

lar, we first extract memorization. We then build a first-order Markov model to represent the

semantic memorization distribution. We detail the steps as follows.

Step A - Memorization Extraction From the memorization-analysis-oriented model, we

obtain the final concrete states and traces for each sentence in the training data. However, such

states and traces cannot be applied to quantify the memorization behavior of a given language

model directly. In our example, given a prefix c “Ian goes”, a language model would predict a
string “home at 6 pm on weekdays” as the most likely output. We call a string such as “home

at 6 pm on weekdays” a memorization sequence based on the prefix “Ian goes”.

With memorization sequences, we classify the concrete state|trace from the memorization-

analysis-oriented model into two types, i.e., memorization state|trace and non-memorization

state|trace. If a state|trace is visited by any memorization sequence, we consider the state|trace
to be a memorization state|trace. Otherwise, it is a non-memorization state|trace. Finally, we
can construct a semantic distribution for all the concrete states and traces in terms of memo-

rization. In our running example, the concrete state corresponding to “home” is classified as a

memorization state.

Step B - Semantic Memorization Modeling With the memorization states and traces, we

build a first-order Markov model to learn the memorization semantic distribution conditioned

on the state from the last step. Sequential behavior can be regarded as a discrete-time Markov

chain. Therefore, thememorization probability over a sequence can bemodeled by a first-order

Markov model [18].

Step B.1 - Memorization State|Trace Distribution Construction We calculate two

probabilities representing thememorization state probabilityPr(si) and trace probabilityTr(si−1, si).
To compute the memorization state probability, we count the number of times a memorization

state is visited by any sequence (memorization sequence and non-memorization sequence) as

the denominator and the number of times a memorization state is visited by the extracted mem-

orization sequences as a numerator. Trace probability Tr(si−1, si) refers to how likely state

si−1 reaches state si.

Step B.2 - Construction of Memorization Sequence Distribution We calculate the

memorization sequence probability based on Pr(si) and Tr(si−1, si). For a given sequence l
consisting of nwords, we can extract n states s corresponding to each word. Based on the chain
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rule and first-order assumptions, the memorization probability of the given l can be computed
as:

Pr(s) =
n∏

i=1

Tr(si−1, si) ∗ Pr(si) (2.3)

where Tr(s0, s1) = 1.

2.1.2.3 Data Leakage Risk Assessment

A language model potentially poses the risk of remembering unintended information from its

training data. To assess the training data leakage risk, we predict whether a sequence from the

test data exists in the training data based on our first-order Markov memorization model.

In the first step, for each sentence in the test data, we extract the initial states based on the

state extraction approach. It is rare to have two identical semantic states from training and

test data in an LSTM network. Therefore, we map each state of test data to the closest state

extracted from the training data by searching the nearest neighbor based on cosine distance.

Second, we connect all the consecutive semantic states to form a sequence. We use the

first-order Markov model to calculate the memorization probability of each sequence. If the

memorization sequence has a high probability, we consider that the sequence would exist in

the training data, resulting in a possible data leakage. We use such uncovered possible data

leakage to assess the memorization issues from the original neural language models.

2.1.2.4 Mitigating Memorization Issues

To assist in mitigating the memorization in LSTM -based language models, we mutate the sen-

tences in the training data that are most likely to lead to data leakage and re-build our semantic

model to know whether the mutation mitigates the unintended memorization behavior. The

goal of our approach is to mutate the data-leaking sentences while minimizing the impact on

the data without leakage risks. For each sentence, we leverage the memorization probability

that is generated from our approach to decide whether to mutate the sentence. In short, we

only mutate the sentences with high memorization probability and retrain the neural language

model from the data after mutation for dememorization.

Moreover, we use four strategies to mutate the aforementioned selected sentences from the

original training data to mitigate unintended memorization behavior.

• REPlacing Word (REPW): For each extracted sentence, we first select the noun and

verbal phrase that occurred less frequently. We then replace the selected words with

their synonyms in the training data randomly. If there are no synonyms in the training

data, we replace them with a random external synonym. Next, we modify the corre-

sponding sentences that contain mutated sequences.

• REOrdering Sequence (REOS): Prior research [2, 19] shows that sequence disorder

can benefit the robustness of a sequential model in machine translation tasks and in-

dustrial recommendation system applications. This strategy aims to reorder words in

memorization sequences to confuse the language models.
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• REMoving Word (REMW): For the sentences that contain memorization sequences,

we remove those sequences directly from the sentences.

• MIXture (MIX): Different strategies may have their advantages. In the mixture strat-

egy, we combine the replacing words and reordering sequences approaches.

2.1.3 Contributions
My work introducesDeepMemory, an innovative framework designed to analyze and mitigate

memorization behaviors in neural language models, with a particular focus on LSTM archi-

tectures. This study highlights a significant privacy concern: memorization in these models

may potentially lead to the leakage of private sensitive data. To tackle this issue, we propose a

systematic approach to construct a memorization-analysis-oriented framework that integrates

training data with neural model states to analyze the memorization behaviors. Specifically,

DeepMemory effectively captures and quantifies memorization distributions, offering key in-

sights into the parts of training data most vulnerable to memorization-induced leakage.

A key contribution of DeepMemory is its ability to systematically assess privacy risks. The

framework evaluatesmemorization characteristics in languagemodels using real-world datasets,

including WikiText-103, WMT2017, and IWSLT2016, identifying sentences prone to mem-

orization based on perplexity and other features. The evaluation reveals that memorized se-

quences often correlate with low perplexity, making them identifiable and prone to misuse.

Through this analysis, DeepMemory demonstrates its effectiveness in predicting potential data

leakage, achieving an average area under the curve (AUC) of 0.73, indicating a reliable capac-

ity for identifying high-risk data.

In addition to assessment, DeepMemory offers a practical solution for mitigating memoriza-

tion risks by assisting in dememorization. Unlike brute-force approaches that disrupt large por-

tions of the dataset, it selectively mutates only a small percentage (e.g., 0.89% for WMT2017)

of training data to reduce memorization while preserving model performance. By applying

strategies like word replacement, reordering, and removal, the framework helps practitioners

minimize the risk of privacy breaches without compromising the language model’s quality.

This dual focus on analysis and mitigation makes DeepMemory a significant advancement for

ensuring privacy in AI-driven systems.

2.2 Contribution: Privacy Vulnerabilities in LLM
adaptations

In this section, I present a research work that aims to understand how different adaptation

techniques impact memorization in LLMs. The membership inference attacks are applied to

assess memorization. I begin by introducing the key challenges, followed by my proposed

approaches for the challenges, and in the end, I will give a contribution summary.
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2.2.1 Challenges
The rapid evolution of large language models (LLMs) has made them fundamental to many

modern natural language processing tasks [20, 21]. These capabilities are typically powered by

vast amounts of model parameters, scaling to trillions, and intensive pre-training on massive

text corpora (e.g., nearly a terabyte of English text [22]).

However, the large-scale pre-training required for these models incurs significant computa-

tional costs, making it financially prohibitive for most practitioners. Additionally, pre-trained

models often need additional fine-tuning to achieve satisfactory performance in specific do-

mains [23]. Consequently, the current best practice involves acquiring an open-source LLM

as a pre-trained foundation model and then adapting it for domain-specific data. However, the

common “pre-training, adaptation tuning” pipeline inadvertently raises privacy concerns re-

garding the leakage of sensitive domain data used for adapting pre-trained LLMs [24]. Indeed,

recent research has demonstrated that LLMs can memorize substantial volumes of sensitive

data, leading to a high risk of unintentional privacy leakage to third parties [25]. These issues

contribute to the ongoing debate about the privacy implications of LLMs and may trigger vi-

olations of modern privacy regulations, e.g., the General Data Protection Regulation (GDPR),

underscoring the urgent need to address the privacy challenges associated with LLMs.

To analyze the privacy issues related to the usage of LLMs, existing research primarily fo-

cuses on the leakage of pre-training data when querying a deployed general-purpose LLM [25].

Building on this foundation, in-depth investigations regarding such leakage, with respect to

various factors including model size and the degree of training data repetition, have been pre-

sented [26, 27]. Yet, in the context of fine-tuning/adaptation scenarios, recent privacy risk as-

sessments have typically been limited to specific model architectures (mainly encoder-based

models), a narrow selection of fine-tuningmethods, and a certain choice of attackmethods [24].

A comprehensive benchmark evaluation is still missing, despite its importance for provid-

ing critical insights and accurate privacy assessments to facilitate the practical application of

domain-specific LLMs. In particular, this gap highlights a crucial research question: To what

extent, and in what ways, do different adaptation methods influence the privacy risk of LLMs?

2.2.2 Methodologies
We evaluate memorization through the lens of MIAs, which are widely recognized for their

extensive applicability. To assess the memorization vulnerability in adaptation for LLMs, I

will introduce the threat models, studied MIAs, and adaptation techniques in this subsection.

2.2.2.1 Threat Models

We denote fθ as the target language model, parameterized by θ, which starts from a pre-trained

model and is further adapted to a private dataset D. Each text sample x(i) is represented as

a sequence of tokens, i.e., x(i) =(x
(i)
1 , x

(i)
2 , ..., x

(i)
L ). The sample index i may be omitted for

clarity when it is not relevant to the discussion. During inference, the model allows estimating

the token likelihood fθ(xl|x1, ..., xl−1) and generates new text by iteratively sampling x̂l ∼
fθ(xl|x1, ..., xl−1) conditioned on the prefix (x1, ..., xl−1). Starting with the initial token x1,

11



2 Methodologies and Contributions

the model feeds each newly sampled token x̂l back into itself to generate the subsequent token
x̂l+1, continuing this process until a predetermined stopping criterion is met.

The attacker A aims to determine whether a given query text sample was included in the

private dataset D used to customize the target model for the private domain. We adopt the

conventional threat model where the attacker may have either black-box or white-box access

to the target model. In the black-box scenario, the attacker can access only the model’s output

probability predictions, typically via a prediction API call. In contrast, the white-box scenario

permits the attacker to access the model’s internal structure and parameters.

We follow the standard evaluation framework, where the adversary has access to a query

set S = {(x(i),m(i))}Mi=1. This set includes both member (i.e., seen by the target model fθ)
samples and non-member (unseen) samples drawn from the same data distribution. Eachm(i)

indicates the membership status, wherem(i) =1 ifx(i) is a member. The attackA(x(i), fθ) acts
as a binary classifier, predicting m(i) for a given query sample x(i) with access to the target

model.

2.2.2.2 MIAs Approaches

We conducted a broad literature search to identify representative approaches for member-

ship inference attacks, aiming to provide a comprehensive benchmark. Below, we present

an overview of each approach under a unified notation to facilitate comprehension and com-

parison.

Likelihood-based [28]. Given that LLMs are typically trained using a maximum likelihood

objective on the training data, the most basic method for predicting membership involves using

the (normalized) log-likelihood of the target query sample as the metric: a higher likelihood

score indicates a better fit of the target model fθ on the query data point x =(x1, ..., xL),
suggesting it is likely a member of the training set. Formally, the attack can be summarized

as:

A(x, fθ) = 1
[ 1
L

L∑
l=1

log fθ(xl|x1, ..., xl−1) > τL

]
, (2.4)

where τL denotes the threshold score above which the attack predicts the sample to be a mem-

ber.

Likelihood with Reference [25]. While the basic likelihood score provides evidence for

membership detection, it often fails to achieve high precision. This is because high-likelihood

samples are not always present in the training data, but can also be uninformative texts fre-

quently encountered in the pre-training dataset. A natural improvement involves calibrating

the likelihood score by comparing it with the score obtained from a reference model not tai-

lored for the private data. This leads to the likelihood ratio evaluated on the target versus the

reference model. Formally,

A(x, fθ) = 1
[ 1
L

L∑
l=1

(
log fθ(xl|x1, ..., xl−1)− log fφ(xl|x1, ..., xl−1)

)
> τLref

]
, (2.5)

where fφ denotes a reference model not trained on the private dataset and τLref is the threshold.
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Zlib Entropy as Reference [25]. While using a reference for calibrating the inherent fre-

quency of text is essential for membership inference, it is not necessary to fix the reference to

be another neural language model. In principle, any technique that quantifies the normality or

informativeness for a given sequence can be useful. Following [25], we compute the zlib en-

tropy of the text, which is the number of bits of entropy when the text sequence is compressed

using zlib compression [29]. Subsequently, the ratio of the average negative log-likelihood of

a sequence and the zlib entropy is used as the membership inference metric. Formally,

A(x, fθ) = 1
[
− 1

L

L∑
l=1

log fθ(xl|x1, ..., xl−1)/H(x) < τzlip

]
, (2.6)

whereH(x) denotes the zlib entropy of x.
Neighborhood-based [30]. To account for the normality of text samples for membership

inference, one can calibrate their likelihood scores using their semantic neighbors. This can be

achieved by generating neighbors of the data point and measuring their likelihood scores using

the target model, which then serve as an estimation for the normality of the query text. The

neighbors are designed to preserve semantics and are well-aligned with the context of the origi-

nal words. These neighbors are obtained through semantically-preserving lexical substitutions

proposed by transformer-based masked language models. Formally, the membership score is

expressed by comparing the log-likelihood of the query sample to the averaged log-likelihood

of its neighbors:

A(x, fθ) = 1
[ 1
L

L∑
l=1

log fθ(xl|x1, ..., xl−1)−
1

kL

k∑
i=1

L∑
l=1

log fφ(x̃(i)l |x̃
(i)
1 , ..., x̃

(i)
l−1) > τLnbr

]
,

(2.7)

where {x̃(i)}ki=1 corresponds to k neighbors of the given sample x.
Min-K% Probability [31]. The MIN-K% Probability score captures the intuition that a

non-member example is more likely to include a few outlier words with high negative log-

likelihood (or low probability), while a member example is less likely to include words with

such low likelihood scores. Following [31], we select the K% of tokens from x with the

minimum token probability to form a set, and compute the average log-likelihood of the tokens

in this set

A(x, fθ) = 1
[ 1

|Min-K%(x)|
∑

xl∈Min-K%(x)

log fθ(xl|x1, ..., xl−1) > τMin-K

]
, (2.8)

where Min-K%(x) denotes the set of tokens with the lowestK% likelihood conditioned on its

prefix.

Min-K%++ [32]. In the context of maximum likelihood training, it has been observed

that training samples tend to form local maxima in the modeled distribution along each input

dimension. As exploring an input dimension can be viewed as substituting the current token

with alternative candidates from the model’s vocabulary, the membership score is defined by

the normalized log probability under the conditional categorical distribution fθ(·|x<l), where
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a high probability indicates likely membership. In line with [31], the score is calculated using

the Min-K% least probable tokens:

A(x, fθ) = 1
[ 1

|Min-K%(x)|
∑

xl∈Min-K%(x)

log fθ(xl|x1, ..., xl−1)− µ<l

σ<l

> τMin-K++

]
, (2.9)

while µ<l =Ez∼fθ(·|x<l)[log fθ(z|x<l)] represents the expectation of the next token’s log prob-
ability over the vocabulary of the model given the prefix x<l =(x1, ..., xl−1), and the term

σ<l =
√

Ez∼fθ(·|x<l))[(log fθ(z|x<l)− µ<l)2] is the standard deviation.
Gradient Norm-based [33]. The phenomenon of local minimality at training data points is

often evidenced by the smaller magnitudes of parameter gradients observed at these points [34,

35, 33]. A practical approach would be to utilize the gradient norm of a target data point as the

membership score. This concept is mathematically represented as follows:

A(x, fθ) = 1
[∥∥− 1

L

L∑
l=1

∇θ log fθ(xl|x1, ..., xl−1)
∥∥ < τgrad

]
. (2.10)

Notably, computing this gradient requires white-box access to the target model, unlike the

previously mentioned methods, which rely solely on the model’s output predictions.

2.2.2.3 Adaptation Techniques

Existing LLMadaptation techniques can be roughly categorized into regular fine-tuning, parameter-

efficient fine-tuning, and in-context learning. Below, we briefly discuss representative tech-

niques from each of these categories.

Regular Fine-tuning. The basic fine-tuning approach involves taking a pre-trained model

and adapting all its parameters for a task-specific downstream dataset, i.e., full fine-tuning.

This enables the model to learn specific patterns in the new data domain, thereby improving

its accuracy and relevance for the target application. However, as models increase in size, full

fine-tuning becomes impractical due to the high computational cost. Additionally, overfitting

can become a significant issue, closely related to privacy vulnerabilities.

Adapter. Adapter-based fine-tuning strategically integrates additional lightweight layers

into an existing model architecture [36], typically by injecting small modules (adapters) be-

tween transformer layers. During fine-tuning, only these adapter layers are updated for domain-

specific data, while the core model parameters remain frozen, which greatly reduces computa-

tional overhead compared to regular fine-tuning.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) [37] is based on the hypothesis

that weight changes during model adaptation exhibit a low “intrinsic rank”. To leverage this,

LoRA proposes integrating trainable low-rank decomposition matrices into each transformer

layer to approximate the weight updates, while only allowing modifications of these low-rank

matrices and freezing the pre-trained weights.

Prompt-based Tuning. Instead of changing the weights of the neural network, prompt-

based tuning [38] typically involves adding specific prompts to the input text to steer the

model towards the desired output. Existing studies commonly prepend tunable continuous task-

specific vectors to the input embeddings (potentially across multiple layers), typically known
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as “soft prompts”, and optimize over these continuous prompts while keeping the other pre-

trained parameters unchanged during the fine-tuning process. Specifically,Prompt-tuning [39]

prepends the input sequence with special tokens to form a template and tune the embeddings

of these tokens directly.

P-tuning [40] adds continuous prompt embeddings generated from pseudo prompts by a

small encoder to the input embeddings of the model and tunes the prompt encoder. Prefix

tuning [41] injects a trainable prefix matrix into the keys and values of the multihead attention

at every layer of the model and updates the injected trainable prefix matrices.

In-context Learning. By enabling LLMs to perform diverse tasks through contextual adap-

tation, without altering their internal parameters, in-context learning [42] introduces a paradigm

shift from traditional fine-tuning. Instead of performing explicit parameter updates, the model

utilizes task-specific examples and instructions embedded within the input prompt to infer the

task requirements. The key insight lies in the model’s ability to treat these examples as implicit

demonstrations, dynamically aligning its behavior with the desired output. This emergent capa-

bility makes in-context learning highly flexible, as it allows the model to generalize effectively

from limited examples with minimal computational overhead, avoiding the computational bur-

den associated with fine-tuning [43].

2.2.3 Contributions
The deployment of LLM-based applications in resource-constrained environments often re-

quires adapting pre-trained models to domain-specific data. Despite the critical nature of this

process, privacy risks associated with LLM adaptations remain underexplored, and no estab-

lished benchmark systematically evaluates vulnerabilities to data leakage in that context. To

bridge this gap, we propose PrivAuditor, the first benchmark framework designed to compre-

hensively assess privacy leakage risks in LLM adaptation techniques. PrivAuditor includes a

diverse array of model architectures, fine-tuning strategies, and attack scenarios, ensuring a

thorough evaluation of potential vulnerabilities.

To assess the privacy leakage risks, we applymembership inference attacks as an indicator to

measure howmuch training data might be memorized, which may lead to leakage in real-world

scenarios. In this work, we use PrivAuditor to analyze privacy leakage across various adap-

tation methods, including full fine-tuning, parameter-efficient tuning, and in-context learning.

Our comprehensive evaluation, spanning multiple critical real-world datasets, demonstrates

the generalizability and effectiveness of PrivAuditor.

Additionally, this study identifies critical factors influencing privacy risks, such as model

size, adaptation techniques, and data characteristics. We highlight how adaptation strategies

impact membership leakage and offer practical insights to help practitioners mitigate these

risks. Furthermore, we offer actionable recommendations for the development of secure adap-

tation techniques, emphasizing the trade-offs between utility and privacy in domain-specific

applications of LLMs.

Moreover, to facilitate the adoption of privacy-aware adaptation practices, we introduce a

unified codebase that enables reproducible evaluation of privacy vulnerabilities and supports

practitioners in deploying LLMs with informed privacy assessments.
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2.3 Contribution: Data Leakage in Vertical Federated
Learning

Collaborative learning, such as federated learning, is widely recognized as a privacy-preserving

approach to model training without exposing training data. However, vulnerabilities against

data leakage in this context are still not fully understood. This study aims to uncover those

potential risks during the vertical federated learning training phase and to emphasize concerns

about data leakage in that setting. I begin by detailing the challenges, methodologies, and

contributions of this research.

2.3.1 Challenges
Machine learning techniques are increasingly integrated into daily routines, e.g., with rec-

ommendation systems [44] or medical diagnosis techniques [45], to improve quality of life.

However, the success of machine learning techniques relies on the availability of data, and

human-level machine intelligence cannot be achieved without big data as training sets. Ac-

cordingly, there is an increasing demand for data sharing to improve model performance. For

example, financial companies can dramatically improve their customer risk prediction models

with customer data from other banks. However, accessing such data from other organizations

is very difficult [46, 47], since data is regarded as a key asset by every organization. In addi-

tion, governments are issuing more and stricter policies, e.g., GDPR, that decrease the flow of

information across organizational boundaries.

In early 2016, Google proposed a new artificial intelligence (AI) technique, federated learn-

ing (FL), to address the data sharing problem [48]. FL is a collaborative learning technique

that trains a global model using data from multiple participants [48]. Unlike traditional collab-

orative learning, the training of FL models does not require a centralized server to collect the

data stored by each participant. Instead, to train FL models, the participants keep data locally,

and only intermediate data, e.g., gradients, are shared. Therefore, FL promotes the cooperative

training of models among different organizations without requiring each organization to share

original data. However, even though the original data is not shared during FL model training,

significant data leakage risks exist [49].

FL has two important variants, horizontal FL (HFL) and vertical FL (VFL), which differ

with regard to label ownership. In HFL, each participant can access the entire model and their

own labels, while in VFL, the participants can only access part of the model, and only one

participant owns labels. Previous studies [50, 51, 52] investigated the risks of leakage of train-

ing data in FL, focusing on HFL. In contrast, only a small number of articles have examined

the risks of training data leakage in VFL. These risks turn out to be more problematic in the

VFL setting compared to the HFL setting [53, 47]. Not only is VFL more widely used than

HFL [54], VFL applications are usually associated with highly sensitive data, e.g., financial

and government data, where data leakage is a serious concern [55, 56]. To the best of our

knowledge, no comprehensive privacy risk analysis, including leakage of labels and features,

has been conducted in the context of VFL training. Additionally, all related studies were con-

ducted in non-encryption-based VFL training frameworks [57, 58, 59]. However, it is critical
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to understand how much data from each participant may be leaked during the VFL training

process using practically relevant encryption-based training frameworks.

2.3.2 Methodologies
In this subsection, I introduce the threat model and our approaches to studying the data protec-

tion vulnerabilities and mitigation strategies in VFL training.

2.3.2.1 Threat Models

Similar to prior studies [59, 60, 61], we assume the adversaries to be honest-but-curious par-

ticipants who can hold the data label or not. In this context, “honest-but-curious” means that

the adversarial participants may exploit the known information related to their own bottom

model update to conduct a data reconstruction attack without deviating from the prescribed

training protocols. To carry out VFLRecon, the adversaries train an additional model (i.e.,

a shadow model) with the assumptions categorized by different attack goals, i.e., label and

feature reconstructions.

In label and feature reconstruction scenarios, the adversaries have the following common

requirements and knowledge:

• Only exploit the known information related to the updates of the self-owned bottom

models, i.e., inputs, parameters, and gradients w.r.t the self-owned bottom models.

• Knowledge about the whole VFL model architecture, which adheres to the typical train-

ing protocols adopted in real-world VFL training pipelines.

• A small dataset consisting of complete data samples (all features and labels), which

follow the same distribution as the training dataset. We refer to this dataset as shadow

data.

2.3.2.2 Data Reconstruction Attacks

To simplify, we adopt the commonly used framework where adversarial participants own at

least one bottommodel. Note that VFLRecon can be seamlessly adapted to reconstruct features

or labels when the adversarial participants only hold the top model. Algorithm 3 describes the

whole process of constructing VFLRecon to run a specific attack task, reconstructing labels or

features from the victim participants. First, the adversarial participants train the VFL shadow

model from scratch using the shadow data samples, including complete features and labels.

Furthermore, they intentionally record the required information related to the bottom models’

distribution change during the shadow model training. After that, the adversarial participants

train a reconstructionmodel,R(·), using the data collected during the VFL shadowmodel train-

ing. The reconstruction model, R(·), can be applied to reconstruct training samples’ features
or labels in realistic VFL training. More specifically, the whole process of the construction

and application ofR(·) can be structured into the following three steps.
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Step 1: Collecting data for training the reconstruction model. To collect the data

for training reconstruction models, the initial step is to collect the data related to the bottom

model’s distribution changes and reconstruction target. Those data are generated during the

shadow VFL model training. We construct a VFL shadow model to mimic the realistic VFL

training process and employ the shadow data as training data. Algorithm 3 demonstrates the

details of constructing VFLRecon. We first define an empty set of samples to store all training

records of reconstruction models (Line 1). Next, we iteratively train the VFL shadow model

using the complete features and labels (shadow data) (Lines 2 to 17). During model training,

we feed the same input X adv to the bottom model with parameters before (line 3) and after

updating the model (line 9). In addition, we record the data generated during the training

process and save them in samples (lines 10 to 15).

Step 2: Training the reconstruction model. After we finish the data collection, we

use the collected samples from step 1 to train an NN-based R(·) for reconstructing labels or

features from other participants during VFL model training (Line 18). We adjust the model

output based on the different attack tasks, reconstructing labels or features. As a general rule

of thumb, reconstructing the label task takes a sparse vector as the output layer, whereas we

take a dense vector as the output layer for reconstructing feature tasks.

Step 3: Executing reconstruction attacks. During the actual VFL model training, the

adversarial participants record the data related to their bottommodels’ changes at each training

step to compose the input for R(·). As VFLRecon exploits the changes in the bottom model

during training, the adversarial participants are capable of reconstructing training data samples,

including features and labels from other participants after participating only in one epoch of

training.

2.3.2.3 Preventing Training Data Leakage During VFL Training.

To defend against data leakage, we propose a gradients-obfuscation-based approach. With

gradients-based model updates, the training samples guide the VFL model to learn the distri-

bution of the training data. Gradients are an effective metric to measure how much the distri-

bution changes were caused by the training samples. If two or more samples produce the

same gradients, the correlation betweenmodel changes and the training samples becomes

weak. Therefore, we aim to perturb the back-propagated gradients to decrease the correlation

between the bottom model’s distribution changes and the training samples. Adding random

noise to gradients is one of the most common approaches to protecting the information con-

tained in gradients [62, 52]. However, the magnitude of the noise scale has a significant impact

on model utility [58, 52]. To ensure model utility, we designed a simple mechanism, VFLDe-

fender, to add as little noise as possible to the gradients of the output layer. Our approach is to

randomize the norm of the gradients without changing their direction dramatically.

In VFLDefender, we employed the same symbols in Eq. 5.2 to represent the gradients of the

output layer: δo =
∂L
∂h
. Before adding noise to δo, we clip and normalize δo to δ̂o, then reset δ̂o

in terms of Eq. 5.7. Note that δ̂o is a vector, and δ̂i is the i-th element in δ̂o. t
max and tmin are
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maximum and minimum clipping thresholds, respectively.

∀δ̂i ∈ δ̂o; δ̂i =

{
rand(0, tmax), if δ̂i >= 0

rand(tmin, 0), if δ̂i < 0
(2.11)

Specifically, during VFL model training, each bottom model’s owner first feeds their self-

owned samples to the models and uploads the output to the top model. The top model aggre-

gates all bottom model outputs to make a final prediction. After that, the top model calculates

the output layer’s gradients (δo) in terms of the selected loss function and the ground-truth

labels. Furthermore, the top model clips the δo and applies l2-norm-based normalization to

transform it into δ̂o. Then, the top model randomizes the norm of δ̂o while keeping the gra-

dients’ direction unchanged. After that, the randomized gradients, δ̂o, are back-propagated to
each model layer. The bottom and top models update their parameters using the perturbed

gradients.

2.3.3 Contributions
We conduct a systematic analysis of data leakage risks in the VFL training stage. In particular,

we propose a simple yet efficient posterior-difference-based attack approach, VFLRecon, to

reconstruct labels and features during VFL training. An adversarial participant can apply the

posterior difference of a bottom model between two consecutive training steps to reconstruct

the labels or features owned by other participants. Following practical threat model assump-

tions [34, 61, 52], we assume that the adversarial participants are “honest-but-curious”, which

means that they contribute truthfully to the VFL training. However, the adversarial participants

are capable of recording any intermediate information related to their bottom model updates

during VFL training, which can be considered the most realistic scenario [61].

To ensure the practical relevance of our work, we evaluate VFLRecon on diverse open-

source benchmark datasets ranging from tabular data to images, namely, Sensorless Drive

Diagnosis [63], Criteo [64], CIFAR-10 [65], BHI [66], Avazu [67], and CelebA [68]. The ex-

periments are conducted using VFL training frameworks including non-encryption-based and

encryption-based operations (encrypted aggregation) [69]. The experimental results show that

VFLRecon achieves consistent effectiveness in reconstructing training samples during VFL

training. We find that the adversarial participants can reconstruct labels with very high accu-

racy (i.e., >92% in Criteo) in neural-network-based (NN-based) VFL model training without

encryption-based operations when they have half of the features of the training samples. Fur-

thermore, VFLRecon can efficiently reconstruct the features of tabular data from other partic-

ipants with a very small mean square error (MSE), e.g., 0.05 in Criteo, in the same setting.

Besides tabular data, we also demonstrate that VFLRecon can effectively reconstruct the im-

ages held by other participants, with an MSE of 0.04 and 0.03 in CIFAR-10 and BHI, respec-

tively. Surprisingly, similar results are reached in VFL model training with encryption-based

aggregation protection. As such, our study reveals that encryption operations are not effective

in preventing data leakage in VFL training, thereby highlighting the necessity of designing a

more dedicated defense method.
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While standard encryption aggregation in VFL training is shown to be ineffective against

VFLRecon, we propose a gradients-obfuscation-based approach, VFLDefender, to mislead ad-

versaries. Indeed, the experimental results demonstrate that we can effectively reduce the

correlation between model updates and the input samples. Specifically, the accuracy of recon-

structed labels decreases substantially from 0.86 to 0.69, while the MSE increases from 0.01

to 0.14.

In summary, this study makes the following contributions:

• We present the first comprehensive analysis of data leakage risks in VFL training. In

particular, we propose a novel, simple yet effective attack, VFLRecon, to demonstrate

the serious leakage risks with regard to labels and features in VFL training.

• Moreover, ourwork highlights that standard encryption-based aggregation techniques

are not capable of preventing data leakage during NN-based VFL training.

• Based on our findings, we propose a gradients-obfuscation-based defense approach,

VFLDefender, which can effectively protect each VFL participant’s training data pri-

vacy.

2.4 Contribution: Trustworthy Content Generations
Large generative models, such as LLMs, have demonstrated significant potential in enhancing

AI system utility. However, these models occasionally produce unreasonable or factually in-

correct responses (i.e., hallucinations), posing substantial risks. To address these challenges,

we investigate detection and mitigation techniques, focusing on the underlying causes from

the perspective of model behavior. In this section, I introduce the studied challenges, method-

ologies, and contributions to the research on hallucination detection.

2.4.1 Challenges
The advent of large autoregressive language models (LLMs) [70, 42, 71] has become a driving

force in pushing the field of Natural Language Processing (NLP) into a new era, enabling the

automated generation of texts that are coherent, contextually relevant, and seemingly intelli-

gent. Despite these remarkable capabilities, a prominent issue is their tendency for “factual

hallucinations”—situations where the model generates statements that are plausible and con-

textually coherent, however, factually incorrect or inconsistent with real-world knowledge [72].

Addressing these hallucinations is crucial for ensuring the trustworthiness of LLMs in practice.

Numerous research studies have recognized hallucination as a notable concern in LLM sys-

tems, evidenced through comprehensive evaluations [73, 74, 75, 72]. However, the exploration

of viable solutions is still in its early stages. Much of this research pivots on either black-

box or gray-box settings, identifying hallucinations via output text or associated confidence

scores [76, 77, 78, 79], or relies on extensive external fact-checking knowledge bases [75].

While these methods are broadly accessible and can be applied even by those without access

to a model’s internal mechanisms, their exclusive reliance on outputs has proven substantially

20



2 Methodologies and Contributions

inadequate, potentially due to hallucinations being predominantly induced by a model’s in-

ternal representation learning and comprehension capabilities. Additionally, the reliance on

extensive knowledge bases for fact-checking systems poses a significant challenge to their

practicality.

2.4.2 Methodologies
To solve the challenges, we present a novel approach that draws inspiration from early stud-

ies that extracted finite state machines for analyzing stateful systems, such as recurrent net-

works [80, 81, 82]. Specifically, we denote the generated text x1:n = (x1, ..., xn) as a sequence

of n tokens, with xt representing the t-th token. Given a generated text sample x(i) = x
(i)
1:n,

our task is to predict Pr(y|x(i))where y ∈ {0, 1} serves as the hallucination indicator variable:
y = 1 corresponds to hallucinations and y = 0 otherwise. Naturally, each output sequence

x1:n of an LLM is triggered by a finite sequence of internal state transitions o1:n that we define
as a trace. Each output token xt is associated with an abstract internal state representation ot,
derived from the concrete hidden layer embeddings of the LLM at time step t. We analyze the

traces with tractable probabilistic models (e.g., Markov models and hidden Markov models)

and bind the internal trace transitions to hallucinations/factual output behaviors using a few

manually labelled reference data. Upon fitting the probabilistic models to the reference data,

hallucination detection can be achieved via inference on the fitted probabilistic models.

2.4.2.1 State Abstraction

The internal concrete state space, constituted by the hidden layer embeddings of an LLM, and

the number of possible traces frequently exceeds the analysis capacity of most tractable proba-

bilistic models. Consequently, we implement abstraction over the states and traces to derive an

abstract model, which captures the fundamental characteristics and patterns while maintain-

ing tractability for analysis. At the state level, we first employ Principal Component Analysis

(PCA) [83] to reduce the dimensions of the latent embeddings (i.e., the concrete state vectors),

retaining the first K dominant components. Subsequently, we explore two prevalent method-

ologies to establish abstract states: (i) Each PCA-projected embedding with K dimensions is

partitioned intoM equal intervals, yieldingMK grids. (ii) A Gaussian Mixture Model (GMM)

is fitted to a set of PCA-projected embeddings. In this way, each hidden layer embedding vec-

tor ht is categorized into either a grid or a mode of the GMM, thereby establishing distinct

abstract states ot ∈ {ō1, ..., ōNs} that represent different clusters of the model’s internal char-
acteristics, where ōi corresponds to different cluster andNs denotes the total number of clusters

(i.e., states). We then further operate on the trace of the abstract states o1:n = (o1, ..., on) for
training and inference in the probabilistic models.

2.4.2.2 Probabilistic Modeling & Semantics Binding

After collecting traces that summarize the internal characteristics of the generated texts, we

can capture the transitions using standard probabilistic models and bind the semantics with
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hallucination detection using a few annotated reference samples. We demonstrate the effec-

tiveness of our modeling framework using the Markov model and hidden Markov model in

this work, while we anticipate possible future improvements through more advanced designs

for the probabilistic models.

Markov Model (MM). Due to the autoregressive nature of the standard LLM generation

process, the state transitions can be naturally modeled by an MM. When associated with the

hallucination prediction task, we have:

Pr(o1:n, y) = Pr(y)Pr(o1|y)
n∏

t=2

Pr(ot|ot−1, y)

Training of the MM is conducted by computing the prior Pr(y), as well as the conditional

initial Pr(o1|y) and transition probabilities Pr(ot|ot−1, y) over the reference dataset Dref ={
(o

(i)
1:n, y

(i))
}
i
. The inference (i.e., prediction of hallucinations) can then be achieved by calcu-

lating the posterior Pr(y|o1:n) using Bayes’ theorem:
arg max

y
Pr(y|o1:n) ∝ Pr(y)Pr(o1:n|y)

Hidden Markov Model (HMM). While the MM largely suffices in aligning with our

primary objective of deducing hallucinations from internal activation behavior trajectories,

the HMM introduces an enriched layer of analytical depth by accommodating latent vari-

ables. These variables are pivotal in capturing unobserved heterogeneity within the state

traces. Within our framework, such latent variables afford flexibility when dealing with poten-

tially diverse factors—enabling the recognition of various modes in the space of the abstract

states—that may induce hallucinations.

We denote the latent state variables at each time step as st, which directs to the observed

abstract state ot via respective emission probabilitiesPr(ot|st). During training, we employ the
standard Baum-Welch algorithm [84] to learn the transition probabilitiesPr(st|st−1), emission
probabilitiesPr(ot|st), and the initial state probabilitiesPr(s0). Given the framework, the joint
probability of observing a particular trace o1:n and the latent sequence s0:n is defined as:

Pr(o1:n, s0:n) = Pr(s0)︸ ︷︷ ︸
initial

n∏
t=1

Pr(st|st−1)︸ ︷︷ ︸
transition

Pr(ot|st)︸ ︷︷ ︸
emission

Furthermore, the probability of observing a particular trace is obtained by marginalizing over

all possible state sequences s0:n.

Pr(o1:n) =
∑
s0:n

Pr(s0)
n∏

t=1

Pr(st|st−1)Pr(ot|st)

After fitting a standard HMM to the data, we further incorporate hallucination semantics into

the model. Specifically, we additionally associate the latent state with the prediction of halluci-

nations by first collecting the most likely latent sequences, found by the Viterbi algorithm [85],

given all observed traces on the reference dataset:

S =
{
ŝ
(i)
0:n

∣∣∣ ŝ(i)0:n = arg max
s0:n

Pr(s0:n|o(i)1:n)
}

i
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We then learn the conditional probability Pr(st|y) by counting the occurrences of each latent
state given the hallucination labels.

For the inference, we derive the following posterior probability:

Pr(y|o1:n) = Pr(o1:n|y)Pr(y)/Pr(o1:n)

∝
∑
s0:n

Pr(y)Pr(s0|y)
n∏

t=1

Pr(st|st−1, y)Pr(ot|st, y)

We further use the conditional independence assumption to simplify Pr(st|st−1, y) as Pr(st|y)
and Pr(ot|st, y) as Pr(ot|st) for prediction.

2.4.3 Contributions
There has recently been a growing interest in employing white-box approaches, driven by the

understanding that hallucinations in outputs are phenomena inherently induced by the repre-

sentation of internal states. Specifically, the identification of potential hallucinations can be

conducted by analyzing hidden layer activation at the last token of generated texts [86, 87, 88],

and their correction may be realized by modifying these activations [88, 89]. The transition

from an external black-box setting to an internal white-box perspective not only enhances the

efficacy of the detection method but also retains its broad applicability in practical scenar-

ios. Notably, the adoption of a white-box setting in hallucination detection and correction is

particularly relevant and practical for real-world applications. This is primarily because the

responsibility of detecting and rectifying hallucinations typically lies with the LLM service

providers. Given that these providers have direct access to the models during deployment,

they are well-positioned to effectively monitor and address the erroneous outputs under white-

box settings.

In practical scenarios, relying solely on the development of improved models as the so-

lution for coping with hallucinations may be unrealistic. In particular, such a perfect LLM

entirely free of hallucinations may never exist. As such, our research emphasizes the impor-

tance of addressing the hallucination detection task for a given model at hand. Specifically, our

work offers a new perspective on LLM hallucinations, suggesting that hallucinations are likely

driven by the model’s internal state transitions. Based on such key insights, we introduce a

novel white-box detection approach that explicitly models the hallucination probability given

the observed intermediate state representation traces during LLM generation. Unlike previous

studies, which typically rely on the representation of a single token, our method extracts and

utilizes temporal information in state transition dynamics, providing a closer approximation

of the LLM decision-making process. Through extensive evaluation, we demonstrate that our

approach consistently improves the state-of-the-art hallucination detection performance across

various setups and model architectures. Our method operates effectively in weakly supervised

contexts and requires an extremely small amount of supervision (<100 training samples), en-

suring real-world practicability. Further, our modeling framework, which explicitly exploits

temporal information via tractable probabilistic models, lays the groundwork for its broader

application during the development of LLMs with improved interpretability, transparency, and

trustworthiness.

In summary, this study makes the following contributions:
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• We introduce a novel perspective on understanding LLM behaviors by examining their

internal state transition dynamics.

• We propose PoLLMgraph, an effective and practical solution to detect and forecast LLM
hallucinations.

• Our PoLLMgraph demonstrates superior effectiveness across extensive experiments, achiev-
ing an increase of up to 20% in AUC-ROC compared to state-of-the-art detection meth-

ods on benchmark datasets like TruthfulQA.
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3.1 Introduction
The rise of neural network models has posed a huge and significant impact on many real-world

applications, e.g., natural language processing [1, 2], image recognition [3], and autonomous

driving [4, 5]. However, the increasing diversity and complexity of such neural network mod-

els make their security, reliability, and robustness a critical and difficult issue to address. There-

fore, research activities of neural network model in security and reliability play an essential

role in these applications.

Neural language models are one of the most popular types of neural network models and are

instrumental in natural language processing research [90, 91, 92]. Neural language models use

different kinds of neural networks, e.g., long short-term memory (LSTM ) [93], to model and

assign probabilities to word sequences. In particular, neural language models represent words

of each sentence as vectors and use the learned vectors as input to a certain type of neural

network to predict the next words. Prior studies [7, 8, 9] have shown that neural language

models tend to memorize the training data instead of learning its latent characteristics. This

can be exploited to extract privacy-critical information from the data, potentially leading to

significant financial and reputational harm [10].

More generally, memorization with a neural language model may reveal insights regarding

its internal behavior. Prior studies [11, 94, 13] have been proposed to analyze certain aspects

of the internal behavior of deep neural networks,

in order to assist with the detection of adversarial examples and to guide the testing of deep

learning models [12]. However, the existing research rarely targets a model’s internal mem-

orization behavior. Hence, the existing research is limited when it comes to analyzing and

preventing leakage of sensitive private information from training data of a publicly released

model.

To fill this research gap, we propose a novel approach,DeepMemory, to analyze the internal

memorization behavior of neural languagemodels. We first construct amemorization-analysis-

oriented model, taking both training data and a neural language model as input. Second, we

bind the constructed memorization-analysis-oriented model to the training data. We then build

a semantic first-order Markov model to analyze memorization distribution. Finally, we apply

our approach to two downstream application scenarios, including data leakage risk assessment

and assisting in dememorization.
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We evaluate our approach on one of the most popular neural language models, i.e., the

LSTM -based languagemodel, with three public datasets, namely,WikiText-103†, WMT20172 ,

and IWSLT20163 . We investigate the LSTM -based languagemodel with the same architecture

and configuration asMerity et al. [95]. We find that by observing memorization characteristics

for training data, sentences with low perplexities to be more likely memorized by a neural lan-

guagemodel. Our approach achieves an average AUC of 0.73 in automatically identifying data

leakage issues during assessment. Finally, by following our approach, the memorization risk

from the neural language model can be mitigated by mutating training data without impacting

the quality of neural language models4 .

To the best of our knowledge, our approach is the first attempt to address a common and

important privacy issue, i.e., memorization in a neural language model. In particular, our work

makes the following contributions:

• We are the first to model the internal memorization behavior in neural language models,

e.g., LSTM -based language model, in order to address memorization issues.

• Our approach can automatically assess memorization-related privacy leakage in neural

language models.

• Our approach can assist in the dememorization process in order to address memorization

issues in neural language models.

3.2 Background

3.2.1 Language Modeling
A language model is a probability distribution over sequences of words [96]. In other words,

language model aims to learn a probabilistic model that is capable to predict the next word

in a sequence based on the given preceded words. Formally, The probability distribution of a

language model can be defined as Pr(w1, w2, ..., wn).

Pr(w1, w2, ..., wn) =
n∏

i=1

Pr(xi|x1, ..., xi−1) (3.1)

Language model has been successfully used in many applications, such as speech recogni-

tion [97], machine translation [98], sentiment analysis [99], information retrieval [100]. Neural

language models have become increasingly popular and have been successfully used in many

applications. The neural language model uses different kinds of neural networks to model se-

quence probability. The neural language model transforms words into vectors and uses the vec-

tors as input of a neural network to predict the next words. One of the typical neural language

modes is a long short-termmemory (LSTM ) based language model. A LSTM network contains

†https://github.com/huggingface/datasets
2 http://www.statmt.org/wmt17/
3 https://sites.google.com/site/iwsltevaluation2016/iwslt-evaluation-2016
4 Our data and results are shared in the replication package http://t.ly/8PBx
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a plethora of units, i.e., LSTM in the figure, called memory blocks. Each memory block rep-

resents a hidden state,i.e., st, st+1, st+2. Prior study [101] shows the success of LSTM -based

language model in multiple applications which motivated us to choose LSTM -based language

model as our subject neural language model.

3.2.2 Memorization Risk from Training Data
A language model requires domain-specific data for training in order to achieve a high model

performance. However, a well-performing language model might suffer from data leakage

due to the memorization of training data. Sensitive data is regarded as private information or

data, including personal data, transaction data, and governmental data. For example, secreted

private essential data, e.g., social security numbers, in training data, may be memorized by a

neural language model during model training. Leveraging such a mechanism, one can develop

attacks to extract such private information from publicly trained language models [102]. In

other words, data leakage due to the memorization mechanism is a typical security weakness

of AI-based language models.

3.2.2.1 Memorization Related Privacy Attacks

If a model is not trained on privacy-preserving algorithms, such a model tends to blindly re-

member some sequences from the training data [17, 6]. Previous studies[6, 103] find that

the memorization of a language model is a common phenomenon, and privacy attack aims to

reconstruct verbatim memorization sequences for training data.

3.2.2.2 Memorization Related Privacy Defenses

There are typically two ways to enhance dememorization, i.e., differential privacy and regu-

larization. Differential privacy, which injects noise into the process of model training, is a

well-known solution to minimize memorization in model training [104]. As such, the model is

not able to identify whether an individual is in training data. Another typical privacy defense

approach is regularization. One can add regularization to the loss function of language model

optimization [102].

3.3 Overview of Our Approaches
In this section, we present the overview of our approach to analyze the memorization behavior

for a given language model. Similar to traditional software vulnerability detectors, our ap-

proach acts as an automated technique to detect potential data leakage security vulnerabilities

occurring due to the memorization of language models. An overview of our approach is shown

in Figure 3.1. In total, the process of our approach consists of three phases: 1) memorization-

analysis-oriented model construction, 2) Memorization distribution binding, and 3) addressing

memorization issues using the memorization model.

In the first phase, we construct a memorization-analysis-oriented model. Taking both train-

ing data and a neural language model as input, we first profile the given model to extract
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Figure 3.1: An overview of our approach.

semantic information, i.e., hidden states and traces. Such profiling outputs initial states and

traces that represent the model behavior. Due to the massive scale of training data, there exists

a large number of initial states and traces. Afterward, we abstract semantic distribution from

initial states and traces. In particular, we transform initial states into intermediate states by

reducing the high dimensions of each initial state. We then apply a clustering algorithm to

group the intermediate states and traces into clusters, i.e., concrete states and traces. Finally,

we construct a memorization-analysis-oriented model based on the concrete states and trace

distribution.

In the second phase, our approach binds the memorization-analysis-oriented model to the

training data to analyzememorization distribution. This phase takes thememorization-analysis-

oriented model constructed from the last phase and the training corpus as input. To analyze

the memorization distribution, we first extract memorization sequences from the training data.

We then build a semantic first-order Markov model to model the memorization distribution.

In the final phase, we apply our approach for two downstream applications, including data

leakage risk assessment and assisting in dememorization. The first downstream task automat-

ically identifies the potential data leakage issues in the model (comparable to bug detection)

and the second downstream task assists in the repairing of the models against the issues (com-

parable to program repair).

3.4 Memorization-analysis-oriented Model Construction
In this section, we construct a memorization-analysis-oriented model. Algorithm 1 presents

the details of the construction. Given an LSTM -based language model and its training data,

we first profile the model to extract the initial states and traces by iterating words in each

sentence over the training data. We then abstract the initial states and traces to construct our

memorization-analysis-oriented model. We describe each step in detail below.

3.4.1 Semantic Profiling
Recently, research in deep neural network models [13, 94, 14] points out that states and traces

are efficient to understand stateful model behaviors over data distribution. A neural language

model can be seen as a stateful model. LSTM -based model is one of the most typical neural

language models. Therefore, in order to analyze LSTM -based neural language model behavior,

we profile the model to extract the initial semantic states and traces as the first step. We first

explain the definition of state and trace in neural language model analysis.
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Algorithm 1:Memorization-analysis oriented model construction algorithm

input :R = (D, δ, f): lstm-based language model,
G: semantic distribution abstraction function,
θ: information loss threshold,
D: sentences,
σ: minimum number of neighbors threshold,

ρ: distance threshold
output :M: memorization-analysis oriented model

1 S ← [] ; // initial states set

2 T ← [] ; // initial traces set

3 forW ∈ D do // loop sentences to extract states

4 s ∈ [δi(W [: i])]
|W |
i=0 ; // extract all hidden states of a sentence

5 for i : 1 ∈ |s| do
6 S.add(si);
7 T.add((si−1, si))

8 g ← G(S, θ, σ, ρ) ; // semantic distribution abstraction

9 S
′
= [] ; // concrete states set

10 for s ∈ S do

11 s
′ ← g(s) ;

12 S
′
.add(s

′
)

13 T
′ ← [] ; // concrete traces set

14 for (si−1, si) ∈ T do

15 s
′
i−1 ← g(si−1) ;

16 s
′
i ← g(si) ;

17 T
′
.add(s

′
i−1, s

′
i)

18 returnM(D, S ′
, T

′
, f);

Suppose that we have a LSTM -based language model R = (D, δ, f). D refers to all sen-

tences used for training. f is the distribution of a language model, and δ is an internal state

extractor of the model, which is used to transform each word in a sentence into a state. For

example, when we feed a sequence, “Ian goes home at 6 pm on weekdays and goes swim-

ming at 7 pm everyday.” to a LSTM -based language model f with 100 hidden units, we can

obtain a list of hidden state vectors of LSTM with 100-dimension for each feed input word,

i.e., [[0.1, ..., 0.3], [0.2, ..., 1.3], [1.5, ..., 0.3], ..., [0.07, ..., 0.4]], by using internal state extractor
δ. Particularly, δ(home) = [1.5, ..., 0.3].
With the internal hidden state set, we construct a corresponding state flow, i.e., trace, over

two hidden states, ordered chronologically. The trace represents a transition relation for a pair

of consecutive hidden states. In our illustrative example, the trace between the hidden state

“goes” and state “home” is represented by (δ(goes), δ(home)).
In our algorithm 1, we first define two empty sets (Line 1 and Line 2) for hidden states S and

traces T . We then iterate each sentence W in the training data and extract the state and trace

of each word w (Line 3 to 7). Particularly, at the i-th timestamp t, each word in a sentence is
transformed to a state si using the internal state extractor δ. A trace is accordingly extracted

to (si−1, si). Finally, we construct a state set S and trace set T for the whole training data D
and define it as an initial model.
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3.4.2 Semantic Distribution Abstraction
After the process of semantic profiling, we can obtain an initial model to represent the LSTM -

based neural languagemodel behaviors over training data. However, such granularity represen-

tation contains a plethora of discrete states and traces. For example, in general, a LSTM -based

neural language model potentially produces up to 100 thousand states and 900 thousand traces

for a corpus containing 10,000 sentences with an average length 10 of words. It is impractical

to understand the internal behavior of a given model with such a huge number of states and

traces. Therefore, in this step, we abstract the semantic distribution of a given language model

from the perspective of states and traces.

3.4.2.1 Automated Dimension Reduction

The dimension of each initial state generated by semantic profiling is equal to the number of

hidden units in LSTM core, which usually is very high. It is hard to find the latent character-

istics over high dimensional space since the distribution of data with high dimensions tends

to be sparse [15]. Therefore, we first reduce the dimension of each initial state generated

by semantic profiling to an optimal number automatically. Du et al.. [12] applied Principal

Component Analysis (PCA) to reduce the dimension of semantic space to a small number in

order to find the common correlation over states efficiently. However, there exists an obvious

limitation in their approach. When the dimension of an initial state is high, arbitrary dimen-

sion reduction may lead to a huge information loss. The information loss from modeling may

introduce a high bias in memorization-analysis-oriented model construction potentially. To

improve the memorization-analysis-oriented model construction, we use a classic metric, Re-

lated Error Rate, to measure the information loss during dimension reduction. In detail, we

have a number of n vector V and each vector is with m-dimension space, i.e., [v0, v1, ..., vm].
We want to transform the n initial vectors to vectors V̂ , and each transformed vector is with k
dimension, i.e., [v̂0, v̂1, ..., v̂k]. The corresponding information loss ψ can be defined as:

ψ(k) =
1

n
∗

n∑
j=1

∑k
i=1(v

j
i − v̂

j
i )

2∑k
i=1(v

j
i )

2
(3.2)

In order to overcome the aforementioned limitation, we take information loss into account

for dimension reduction to secure the generalize of internal state transformation. We set a

threshold θ to control information loss, and the decision process of finding the optimal k can

be defined as:

k ← arg min
k

|ψ(k)− θ| (3.3)

Finally, this step outputs intermediate states, and each state has k dimensions. In our illustrative
example, we reduce the 100-dimension of each state to three dimensions. For example, the

word “home” would be with a reduced initial state [1.5, 0.7, 0.3].

3.4.2.2 Semantic Clustering

To identify the latent characteristics over the intermediate states, we apply a clustering algo-

rithm(DBSCAN) to group together intermediate states that are close to each other in terms of
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cosine distance threshold ρ and minimum number of neighbors σ. DBSCAN-based clustering
is suitable for data with arbitrary shape [16]. ρ specifies for two minimum cosine distances

that two intermediate state points to be considered as neighbors. σ determines the minimum

number of neighbors to be defined as a core state. Each core state and its neighbors form a clus-

ter, labeled as a concrete state. In our running example, the words “home” and “swimming”

are grouped into one cluster. Therefore, we would label the hidden states of the words “home”

and “swimming” as a single identical concrete state.

3.4.3 Memorization-analysis-oriented Model Construction
With the concrete states from the clustering results, we construct a final memorization-analysis-

oriented model. We first transform the high-dimensional initial states into intermediate states

with an optimal dimension. We then transform the intermediate states into concrete states.

Note from our Algorithm 1, we define an abstraction function G to abstract the initial states

and traces (Line 8). The inputs of the function G are the initial states, and three threshold

values, i.e., information loss threshold θ, the number of cores σ, and distance threshold ρ.
We then initialize two sets S

′
(Line 9) and T

′
(Line 13) for concrete states and traces, re-

spectively. Next, for each initial state si, we use the defined semantic distribution abstraction
to abstract the state to s

′
i (Line 10 to 12). Similarly, for each initial trace (si−1, si) composing

with two states si−1 and si, we apply the same abstraction function to abstract the two states

to s
′
i−1 and s

′
i. We then connect the two abstracted states into a concrete trace (s

′
i−1, s

′
i) (Lines

14 – 17). Finally, our algorithm outputs the memorization-analysis-oriented model (Line 18).

In our running example, the final memorization-analysis-oriented model is represented by the

concrete state and trace set.

3.5 Memorization Distribution Binding
Prior studies [6, 17] have reported that memorization is a severe issue in language models. To

achieve a good performance, a model all too often intends to remember the training data during

the training process instead of learning the latent characteristics. Regularization techniques,

such as dropout and batch normalization, aim to solve the model overfitting issue and improve

the generality of AI models. Although, the regularization techniques are widely adopted to

train a complicated model, e.g., an LSTM-based model, the models may still memorize part

of the training data [17]. Such memorization might be exploited to extract private data from

a given language model. Therefore, in this section, we quantify the memorization behavior

in a memorization-analysis-oriented model, i.e., the output from Section 3.4. The detail of

analyzing memorization behavior is shown in Algorithm 2. Given a memorization-analysis-

oriented model and training data as input, we bind memorization distribution by building a

semantic Markov model to map the memorization-analysis-oriented model to training data.

In particular, we first extract memorization. We then build a first-order Markov model to

represent the semantic memorization distribution.
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3.5.1 Memorization Extraction
From our memorization-analysis-oriented model generated in Section 3.4, we obtain the final

concrete states and traces for each sentence in training data. However, such states and traces

cannot be applied to quantify the memorization behavior of a given language model directly.

Therefore, to quantify the memorization behavior efficiently, we first define a memorization

concept named memorization sequence. Given a language model R = (D, δ, f) and a prefix
c, a string of l, is considered to be a memorization sequence if such a string satisfies:

l← arg max
l′ ;l′∈D

R(l′|c) (3.4)

where l is a memorization string. For example, in our running example, given a prefix c “Ian
goes”, a language model would predict a string “home at 6 pm on weekdays” as the most

possible output. We call a string such as “home at 6 pmonweekdays” amemorization sequence

based on the prefix “Ian goes”.

With thememorization sequences, we classify the concrete state|trace from thememorization-

analysis oriented model into two types, i.e., memorization state|trace and non-memorization

state|trace. If a state|trace is visited by any memorization sequence, we consider the state|trace
to be a memorization state|trace. Otherwise, it is a non-memorization state|trace. Finally, we
can construct an accordingly semantic distribution for all the concrete states and traces in terms

of memorization. In our algorithm 2, we first initialize two dictionaries MT and MS to repre-

sent memorization traces and states, respectively (Line 1 and Line 2). We also initialize two

dictionaries AT and AS for all the concrete traces and states outputted from Section 3.4 (Line

3 and Line 4). Next, we iterate each sentence in the training data to abstract state and trace

for each word. If an abstracted state|trace is visited by memorization sequence, we label the

state|trace to a memorization state|trace (Line 6 to Line 15). In our running example, the con-
crete state corresponding to “home” is classified as a memorization state.

3.5.2 Semantic Memorization Modeling
With the memorization states and traces, we build a Markov model to learn the memorization

semantic distribution conditioned on the state from the last step. We choose to use first-order

Markovmodel since the semantic distribution is based on flow structure. Markovmodel can be

thought of as an appropriate algorithm to model sequential behavior as a discrete-time markov

chain [18].

3.5.2.1 Memorization State|Trace Distribution construction

We calculate two probabilities represented by the memorization state probability Pr(si) and
trace probability Tr(si−1, si). To compute the memorization state probability, we count the

number of times a memorization state got visited by any sequence (memorization sequence and

non-memorization sequence) as the denominator and the number of times a memorization state

is visited by the extracted memorization sequences from Subsection 3.5.1 as the numerator.

Trace probability Tr(si−1, si) refers to how likely state si−1 reach to state si. In our algorithm 2,

we calculate such two probabilities for each sentence in lines 16 to 19. For example, the
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Algorithm 2:Memorization analysis algorithm

input :M = (D, T, S, f): memorization-analysis oriented model,
g: abstraction transformation function,
H: memorization sequence abstraction function,

D: sentences
output :E(γ, τ): first-order Markov memorization model

1 MT ← {} ; // a dictionary of memorization traces

2 MS ← {} ; // a dictionary of memorization states

3 AT ← {} ; // a dictionary of concrete traces

4 AS ← {} ; // a dictionary of concrete states

5 h← H(D, f) ; // function to check if an input is memorization trace

6 forW ∈ D do // loop every sentences to extract states and traces

7 s ∈ [δi(W [: i])]
|W |
i=0;

8 for i ∈ 1 . . . |W | do
9 s

′
i−1 ← g(si−1) ;

10 s
′
i ← g(si) ;

11 AT [(s
′
i−1, s

′
i)] + +;

12 AS[(s
′
i)] + +;

13 if h(si−1, si) == True then
14 MT [(s

′
i−1, s

′
i)] + +;

15 MS[(s
′
i)] + +;

16 for (si−1, si) ∈ AT do

17 Eγ(si−1, si)← AT (si−1,si)∑
j AT [(si−1,sj)]

;

18 for si ∈ ST do

19 Eτ (si)← MS[(si)]
AS[(si)]

;

20 return E(γ, τ);

concrete state corresponding to “home” is visited by a total of 100 memorization sequences

and a total of 300 sequences. Therefore, the probability of memorization to a concrete state

(memorization state) corresponding to “home” is 1/3 (100/300).

3.5.2.2 Memorization Sequence Distribution Construction

We calculate memorization sequence probability based on the Pr(si) and Tr(si−1, si). For

a given sequence l composing with n words, we can extract n states s corresponding to each

word. Based on the chain rule and first-order assumption, the memorization probability of the

given l can be computed as:

Pr(s) =
n∏

i=1

Tr(si−1, si) ∗ Pr(si) (3.5)

where Tr(s0, s1) = 1. In the rest of this paper, we call our first-order Markov memorization

model as a semantic model.
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3.6 Addressing Memorization Issues Using the
Memorization Model

Finally, we leverage our first-order Markov memorization models that are built from the last

step to address the memorization issues. In particular, our approach first automatically as-

sesses the risk of data leakage due to memorization issues. Then our approach assists in the

dememorization of the neural language models.

3.6.1 Data Leakage Risk Assessment
A language model potentially has the risk of remembering unintended information from its

training data. To assess the training data leakage risk, we predict whether a sequence in testing

data exists in the training data based on our first-older Markov memorization model.

In the first step, for each sentence in testing data, we extract the initial states based on the

state extraction approach presented in Sub-Section 3.4.1. It is rare to have two identical se-

mantic states from training and testing data in LSTM network. Therefore, we map each state

of testing data to the closest state extracted from train data by searching the nearest neighbor

based on cosine distance.

Second, we connect all the consecutive semantic states to form a sequence. We use the

first-order Markov model to calculate the memorization probability of each sequence. If the

memorization sequence has a high probability, we consider that the sequence would exist the

training data, resulting in a possible data leakage. We use such uncovered possible data leakage

to assess the memorization issues from the original neural language models.

3.6.2 Assisting in Dememorization
To assist in dememorization, we mutate the sentences in the training data that are most likely

to lead to data leakage and rebuild our semantic model to know whether the mutation mitigates

the unintended memorization behavior. The goal of our approach is to mutate the data-leaking

sentenceswhileminimizing the impact on the data without leakage risks. For each sentence, we

leverage the memorization probability that is generated from our approach to decide whether to

mutate the sentence. In short, we onlymutate the sentences with highmemorization probability

and retrain the neural language model from the data after mutation for dememorization.

3.7 Evaluation

3.7.1 Experimental Setup
We evaluate our approach on one of the state-of-the-art word level LSTM -based language

model [95]with 3,000 hidden nodes on three popular large datasets, namely,WikiTest-103 [105],

WMT2017-en [106] and IWSLT2016-en [107]. The overview of these datasets is described

in Table 3.1. The training data is disjoint with testing data. Our experiment running environ-

ment is based on a server with 16 24GB-GPUs, 500 GB of RAM, and 1 TB disk. The server
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runs Ubuntu Linux with version 20.04. Table 3.2 shows the running time of each stage of

our proposed approach over different datasets. Adding a regularization setup parameter, each

memorization-analysis-oriented model only needs to be constructed once to assess the data

leakage of one AI model.

Dataset Sentences Unique Words

Train 1M 220K
WikiText-103

Test 100K 220K

Train 4M 798K
WMT2017-en

Test 12K 40K

Train 177K 59K
IWSLT2016-en

Test 19K 15K

Table 3.1: Overview of our datasets.

3.7.2 Preliminary Analysis
Given a languagemodel, if thememorization data appears to have no inherent common patterns

or characteristics, the data would not be prone to data leakage issues, i.e., not suitable to our

study. Therefore, before applying our approach on the three neural language models from

the three datasets, we first would like to understand the characteristics of the memorization

sequences in the three neural language models.

Sem.

profiling

Dim.

reduction

Sem.

clustering

Mem.

abstraction

Sem. mem.

modeling

W-103 0.25h 0.15h 4h 1.5h 0.1h

WMT 0.55h 0.62h 15h 5.8h 0.3h

IWSLT 0.08h 0.08h 1h 0.7h 0.07h

Table 3.2: Overview of time cost for each step. Sem. is the abbreviation of semantic. Mem. is the

abbreviation of memorization.

Carlini et al. [17] find that a sentence with a low perplexity is likely to be vulnerable to en-
counter attack with data leakage, where perplexity indicates howwell a trained languagemodel
fits sentences distribution. It is defined as the inverse probability of the sentences, normalized
by the number of words. Formally, given a sequence l = WN

1 , the perplexity is defined as
follow:

PP (WN
1 ) = P (w1w2w3...wN )−

1
N

= N

√√√√ N∏
i=1

1

p(wi|w1w2...wi−1))

(3.6)

where wi is the i-th word in this sequence. P indicates the probability of a sentence. From the

above equation 6, a lower perplexity value indicates a better performing language model. We

summary the perplexity distribution over each sentence in the training data. If a model assigns

a high probability to a sentence, it is likely that the model tends to remember this sentence.

Therefore, we also study the relationship between perplexity and the length of memorization

sequence from each sentence.
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Result: Most of the sentences in training data have low perplexity. Figure 3.2 shows

the perplexity distribution over the three training data, WikiTest-103 (a), WMT2017-en (b),

and IWSLT2016-en (c). Prior studies [108, 19] report that a language model with a perplex-

ity below 100 is considered to a well-performing model. In particular, considering the prior

study [108] using the same training data to us, the authors report that their language model

achieves a perplexity of 34.4 in WikiText-103. We find that most of the sentences in the train-

ing data have low perplexity. Particularly, at least 96% of sentences has a perplexity less than

100 in our three experimental datasets. Such results imply that the trained language model is

possible to remember most of the sentences in training data.

0.00

0.01

0.02

0.03

0.04

0 50 100 150 200 250
Perplexity

D
en

si
ty

 o
f s

en
te

nc
e

(a) WikiText-103.

0.00

0.01

0.02

0.03

0 50 100 150 200 250
Perplexity

D
en

si
ty

 o
f s

en
te

nc
e

(b) WMT2017-en.
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(c) IWSLT2016-en.

Figure 3.2: Density distribution of number of sentences over perplexity.

The sentences with a longer memorization sequence have lower perplexity. Figure 3.3

shows that the density of the length of memorization sequences in terms of perplexity over the

training data. The X-axis is the perplexity in an increasing step of 50. The Y-axis means the

density of length of memorization sequences. Note from Figure 3.2 and Figure 3.3, most of the

memorization sequences with low perplexity (< 50) are at least six words. Such results imply
that the sentences in the training data that have longer memorization sequences are easier to

memorized by the language model.
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(b) WMT2017-en.
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Figure 3.3: The average length of memorization sequence distribution in terms of perplexity over three

datasets.
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Summary of preliminary analysis: Most of the sentences in the studied datasets have

low perplexity, which shows that the subject neural language model may be prone to the

memorization issue.

3.7.3 Results
RQ1: To what extent, are the studied neural language models prone to memorization

issues?

Motivation: In our preliminary analysis, our results show that most of the sentences in the

studied datasets have low perplexity and such sentences with low perplexities may be prone

to be remembered by neural language models. As such, one can model the memorization

distribution and exploit the learned memorization to extract and store the valuable training

data. Therefore, in this research question, we want to answer to what extent the studied neural

language models are prone to memorization issues.

Approach: To answer RQ1, we first want to know the prevalence of potential memorization

issues in our studied datasets. If a state|trace is a memorization state|trace, such a state|trace
is a potential memorization issue. To quantify the potential memorization issue, we define

two metrics, i.e., SCR and TCR, to measure our memorization-analysis-oriented model. SCR

is memorization state coverage rate and TCR is memorization trace coverage rate. We call a

state/trace as memorization state/trace if the state/trace is visited by memorization sequence.

Formally, SCR is defined as Num_MS
Num_state

, and TCR is defined as Num_MT
Num_trace

. Num_MS is the

number of distinct memorization states, andNum_MT is the number of distinct memorization

traces. Num_state and Num_trace refer to the total of distinct concrete states and traces,

respectively. We follow the following steps to calculate the two metrics, i.e., SCR and TCR.

We first apply the proposed modeling approach in section 3.4 to obtain the memorization-

analysis-oriented model from training data. Second, we employ the memorization extraction

approach from Section 3.5.1 to extract the memorization sequences from training data. Next,

for each word in a memorization sequence, we can map it to a semantic model to obtain the

memorization state and trace.

Memorization states|traces can be visited by bothmemorization sequences and non-memorization
sequences. Themorememorization sequences visit a state|trace, themore likely such a state|trace
is prone to memorization issues. Therefore, we also quantify the memorization issue of our

studied datasets using memorization state and trace probability. We calculate memorization

state and trace probabilities using the approach presented in Section 3.5.2. The higher the mem-

orization state|trace probabilities are, the more possible such a state|trace is prone to memo-

rization issues.

Result: Only a small portion of states and traces from training data are related to memo-

rization. The result of the state and trace coverage rate is shown in Table 3.3. In the table, the

column σ is the input of the clustering algorithm DBSCAN used to control the granularity of

clusters. The result shows that most of the states and traces are unrelated to memorization. The

state coverage rate ranges from 6.8% to 24.5%. The traces coverage rate is less than 4.03% in

any of the different inputs of Core σ. The results show that only a small portion of states and

traces are related to memorization. Such results imply that either 1) there are only a fewmemo-
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rization issues or 2) there exist many memorization issues, and such memorization issues only

cover a small portion of memorization states|traces.
In addition, our approach can efficiently reduce the number of initial states and traces. For

example, when using a σ of 100 as input for our clustering algorithm DBSCAN, we reduce the

initial million of states into 40,121 concrete states. Such a considerable number of states can

not only be used to analyze the memorization behavior of a language model but also to keep

most of the semantic information.

Dataset σ
All concrete

states

All concrete

traces
Mem. states Mem. traces TCR SCR

W-103

100 40,121 31,9450 3,258 6,740 1.02% 16.8%

150 79,820 521,460 18,518 16,060 3.08% 23.2%

200 82,317 613,419 16,792 11,593 1.89% 20.4%

250 89,012 634,210 17,534 9196 1.45% 19.7%

WMT

100 63,902 549,872 7,221 6,653 1.21% 11.3%

150 71,921 673,219 17,620 13,666 2.03% 24.5%

200 76,709 778,895 12,426 14,721 1.89% 16.2%

250 77,101 792,015 5,244 6,256 0.79% 6.8%

IWSLT

100 4,523 26,217 557 738 2.81% 12.3%

150 8,945 114,084 1,923 4,598 4.03% 21.5%

200 11,219 139,930 2,546 4,886 3.49% 22.7%

250 14,234 178,904 2,246 5,831 3.26% 15.8%

Table 3.3: Results of memorization state and trace coverage rate. (Mem. is an abbreviation of memo-

rization.)

The memorization states and traces have a considerably high memorization probabil-

ity. Figure 3.4 shows the results of the probability distribution of the memorization states and

traces over the three studies’ datasets. Although only low percentages of states (an average of

17.6%) and traces (an average of 2.24%) are related to memorization, the memorization state

and trace probabilities are comparably high. Especially, the mean memorization state proba-

bility in dataset WikiText-103 is 0.63. By observing the experiment results, we find that our

proposed memorization-analysis-oriented model can identify the memorization transition of

the LSTM -based language model and discover the potential memorization issue in train data.

Answer to RQ1: Only a small portion of states and traces from training data are related

to memorization. However, the memorization states and traces have a considerably high

memorization probability.

RQ2: How accurate is our approach in data leakage risk assessment?

Motivation: In RQ1, the results show that the memorization states and traces tend to be re-

membered due to a considerably high memorization probability. In practice, such memory

distribution can be used to analyze the training data and result in data leakage. In order to il-

lustrate a practical impact, we leverage our approach to assess training data leakage risk based

on a given language model. In this research question, we want to answer how accurate is our

privacy risk assessment approach.

Approach: In Section 3.5, we have built a first-orderMarkovmemorizationmodel. To realisti-

cally assess the privacy risk of given data, we use the built model to measure the memorization

probability of each sequence in the testing data. Based on the predicted memorization proba-
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(c) WMT2017 state.
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(d) WMT2017 trace.
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(e) IWSLT2016 state.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Memorization trace probability

D
en

si
ty

min        0.01
median  0.20
mean     0.23
max       1.00

(f) IWSLT2016 trace.

Figure 3.4:Memorization states and traces probability distribution.

bility of each sequence in the testing data, which is not seen by the model during the training

phase, we predict whether a sequence of testing data exists in the training data.

Furthermore, the length of the memorization sequence might affect the modeling analysis.

For example, one may argue that the shorter a memorization sequence is, the more likely the se-

quence appears in the training data. Therefore, we calculate Pearson correlation [109] between

the length of memorization sequences and memorization probabilities of sequences. Pearson

correlation ranges from -1 to +1. A value of 1 indicates that the length andmemorization proba-

bility of sequences has a strong relationship. A value of 0 indicates that there is no relationship

between them, and a value of -1 indicates an inverse relationship between them.

We implement a baseline approach that assigns a random score to each of the extracted

memorization sequences. We compare DeepMemory to the baseline in this research question.

To measure the performance, we examine whether the extracted sequences from testing data

appear in the training data. If a sequence is indeed in the training data, we consider it as a true-

positive sequence. Otherwise, it is a false-positive sequence. The true-positive sequence is

considered to be data leakage from training data. We use four metrics to evaluate our approach,

including precision, recall, F1, and AUC. Precision measures the correctness of our model.

Precision refers to the ratio of cases when a predicted sequence is actually in the training

data. Recall measures the completeness of our approach. Recall is defined as the number
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of sequences that were correctly predicted as memorization divided by the total number of

memorization sequences in testing data. F1 is the harmonic mean of precision and recall.

AUC allows us to measure the overall ability of our approach. The AUC is the area under the

ROC curve which indicates the performance of a binary model as its discrimination is varied.

Result: Our data leakage assessment approach can achieve an average AUC of 73%.

Table 3.4 shows the result of precision, recall, F1, and AUC over memorization distribution.

Note from Table 3.4, our approach achieves an average precision of 47% and a very high

average recall of 92%when taking 0.5 as a threshold, which outperforms the baseline approach,

i.e., a precision of 0.38 and a recall of 56%. Such a result implies that a sequence with a

high memorization probability in the testing data tends to be memorized. However, different

thresholds may lead to different results. To overcome this bias, we also present the AUC of our

approach. The result shows that the AUC is considerably high, i.e., an average percentage of

73%. Such results indicate that our proposed first-order memorizationMarkovmodel approach

is capable of assessing the data leakage risk.

DeepMemory Baseline

Precision Recall F1 AUC Precision Recall F1 AUC

W-103 0.50 0.75 0.60 0.72 0.38 0.50 0.42 0.48

WMT 0.29 1.00 0.44 0.67 0.30 0.57 0.40 0.50

IWSLT 0.62 1.00 0.76 0.80 0.50 0.60 0.54 0.48

Average 0.47 0.92 0.60 0.73 0.39 0.56 0.45 0.49

Table 3.4: Results of using our approach to predict the memorized sequence comparing with baseline

approach.

Our approach has similar performance for all types of sequences. The Pearson corre-

lation between length and memorization probability of memorization sequence is 0.14. An

absolute value of 0-0.19 is regarded as very weak correlation [109]. Therefore, there exists a

very weak relationship between the length of the memorization sequence and the memorization

probability of sequences.

Our approach can be used to efficiently identify a real-world data leakage issue. In

order to demonstrate the practical usefulness of our approach, we want to examine whether

our approach can be used to identify real-world private data. We train a language model based

on the setting from [6]. Similar to the prior work [6], we make the trained language model re-

member the sequence “the credit number is 281265017”. After that, we analyzed this language

model based on our proposed approach. In the testing phase, we test our semantic Markov

memorization model on a set of sentences with the same structure but different credit numbers.

We find that the sentence “the credit number is 281265017” has the highest memorization prob-

ability. Note that a prior study has reported that memorization is not overfitting [6]. Such a

result confirms that our proposed model can efficiently detect the memorization content from

the training data.
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Answer to RQ2: Our data leakage assessment approach can achieve an average AUC of

73%. Our approach has similar performance for all types of sequences. Our approach can

be used to efficiently identify real-world private data.

RQ3: How effective is our approach in assisting dememorization?

Motivation: Intuitively, one can manually remove or edit sensitive private information from

training data. However, it is infeasible to manually modify the sensitive data as identifying

all the sensitive information in the training data is challenging. One may also randomly select

sentences and mutate such sentences to reduce memorization sequence probability. However,

it is not an optimal solution to mutate a large portion of the training data since the mutation

would hurt the quality of the data, leading to non-realistic models. On the other hand, if one

only randomly mutates a small portion of the training data, the mutated may not contain memo-

rization issues. Therefore, in this research question, we want to evaluate whether our approach

can assist in dememorization by suggesting only a small portion of data in the training data to

be mutated.

Approach: We compare the use of our approach to assist in dememorization to a random

baseline approach. We first apply our approach to detect the memorization sequences from the

training data and select memorization sequences. The results of RQ2 show that when using

0.5 as the threshold to predict memorization sequence, our recall is considerably high (close

to 1). Therefore, we select the memorization sequences to be mutated if their probabilities are

more than 0.5. For the random approach, we randomly select 50% of all the memorization

sequences to mutate. We choose 50% for the baseline approach in order to give the baseline

approach an overestimated ability of mutating the training data. 50% also ensures that at least

half of the existing training data is not mutated. In both experiments, we ignore memorization

sequences with lengths less than four.

Second, we use four strategies to mutate the aforementioned selected sequences from origi-

nal training data to mitigate the unintended memorization behavior.

• REPlacing Word (REPW): For each extracted sequence, we first select the noun and

verbal with less frequency. We then replace the selected words with their synonyms in

train data. If there are no synonyms in training data, we replace it with a random exter-

nal synonym. Next, we modify the corresponding sentences that contain the mutated

sequences.

• REOrdering Sequence (REOS): Prior research [2, 19] shows that sequence disorder

can benefit for the robustness of sequential model in machine translation tasks and in-

dustrial recommendation system application. This strategy is to disorder words in mem-

orization sequences to confuse the language models.

• REMoving Word (REMW): For the sentences that contain memorization sequences,

we remove those sequences directly from the sentences.

• MIxture: (MI) Different strategies may have their advantage. In the mixture strategy,

we combine the replacing word and reordering sequence together.

Next, we re-train a language model based on the mutated training data and re-build our

semantic first-order Markov memorization model. Finally, we use our semantic model to ana-
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lyze the memorization behavior of the re-trained neural language model on the original train-

ing data. In particular, we extract the memorization sequences of re-trained neural language

models. We then calculate how many memorization sequences in the original model (before

mutation) still exist in the re-trained model. The fewer memorization sequences are left, the

better dememorization the re-train model has. We also calculate the number of mutated mem-

orization sequences from both our approach and the random baseline. The desired approach

would achieve a low number of memorization sequences left in the re-trained model, while

only have to mutate a small portion of memorization sequences.

Dataset Measure Original
Mutated Sequence (%) after REPW after REOS after REMW after MI Average

Prob.>0.5 Random Prob.>0.5 Random Prob.>0.5 Random Prob.>0.5 Random Prob.>0.5 Random Prob.>0.5 Random

W-103 Mem. Seq. 59,802 4.10% 50%
1,645

(2.75%)

3,519

(5.88%)

1,543

(2.58%)

4,210

(7.04%)

1,549

(2.59%)

2,431

(4.07%)

2,021

(3.38%)

3,979

(6.65%)

1,690

(2.83%)

3,299

(5.91%)

WMT Mem. Seq. 124,319 0.89% 50%
4,210

(3.39%)

3,577

(2.88%)

2,874

(2.31%)

2,576

(2.07%)

3,121

(2.51%)

1,498

(1.20%)

2,989

(2.40%)

2,249

(1.81%)

3,299

(2.65%)

2,475

(1.99%)

IWSLT Mem. Seq. 18,753 2.80% 50%
2,091

(11.15%)

3,202

(17.07%)

2,484

(13.25%)

3,389

(18.07%)

831

(4.43%)

1,034

(5.51%)

1,701

(9.07%)

2,214

(11.81%)

1,777

(9.47%)

2,460

(13.12%)

Table 3.5: Total number of original memorization sequences and the number of memorization se-

quences after dememorization assisted by our approach and the baseline approach. Column

original is the number of memorization sequences in the original model. Mutated sequence

means the percentage of memorization sequences to be mutated. Columns start with “after”

mean after mutating the training data, the number of memorization sequences left, and the

corresponding percentage.

Result: Our approach can assist in dememorization without the need of mutating a large

number of memorization sequences. Table 3.5 shows the results of memorization sequence

statistics after re-training the language model using different strategies to mutate the training

data. With assistance from our approach, the memorization sequences can be significantly

reduced. Table 3.5 shows that, compared to the original memorization sequences, the percent-

ages of the memorization sequence drop to 2.58%, 2.31%, and 4.43% in dataset WikiText-103,

WMT2017, and IWSLT2016, respectively. Compared to our approach, the average of percent-

ages of memorization sequences left, after the mutation from the random baseline are 5.91%,

1.99%, and 13.12% in dataset WikiText-103, WMT2017, and IWSLT2016, respectively. Ex-

cept for WMT2017 where both approaches have similar performance in reducing the memo-

rization sequences, our approach outperforms the baseline approach by a large margin.

Our approach only needs to mutate a very small number of sequences from the train-

ing data. Table 3.5 shows the number of memorization sequences that are mutated dur-

ing the dememorization process. The result shows that our approach only mutates 4.1%,

0.89%, and 2.8% of original memorization sequences in datasets WikiText-103, WMT2017,

and IWSLT2016, respectively. Such a small mutation would have a trivial impact on the

trained model. On the other hand, the baseline approach mutates 50% of memorization se-

quences, i.e., a very large amount of mutation, and cannot even achieve the same demoraliza-

tion result as our approach.

Answer to RQ3: Our approach is capable to guide demoralization and does not decrease

the performance of the original model. Therefore, practitioners can use our approach to

discover sensitive data leakage risks and help to mitigate the memorization.
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3.8 Comparative Study on The Effect of Regularization
In this section, we discuss the impact of regularization on the memorization effect. Regulariza-

tion is an efficient approach to train neural network-based models. Although a prior study [6]

shows that memorization in neural language models is not an issue of overfitting, the use of reg-

ularization may still potentially affect the memorization behavior of neural language models.

Therefore, we conduct a comparative study over four mainstream regularization techniques,

including dropout, L1 norm, L2 norm regularization and data augmentation (DA).

We build an original model without any regularization. To evaluate the impact of the regu-

larization techniques, we create four additional models, each by modifying our original model

by altering only one regularization technique, including enabling: 1) dropout, 2) L1 norm, 3)

L2 norm, and 4) data augmentation (DA). In particular, the augmentation is to randomly select

10% of the sentences from the training corpus and replace non-stop words with one of their

synonyms randomly [110].

We follow a process similar to RQ1 to conduct our comparative study. In particular, our

experiment is executed with σ in 200. We first calculate two metrics SCR and TCR from the

four additional models while altering the regularization techniques. We then calculate their

corresponding memorization state and trace probabilities. Finally, we compare the memoriza-

tion coverage rate SCR, TCR and memorization probability of the four additional models with

the results from our original models.

Results. Regularization may be able to mitigate the memorization effect. The results

(with and without regularization) are shown in Table 3.6. The results show that without reg-

ularization, the memorization state coverage rate ranges from 23.1% to 31.4% and the mem-

orization trace coverage rate ranges from 7.43% to 11.32%. After regularization, both the

memorization state and the trace coverage rate decrease significantly. Especially, the L2 norm

regularization results in the highest reduction in the memorization state and trace coverage

(19.8% and 1.89%, respectively).

In addition, we compare the memorization state and trace probability distribution of the

above four additional models with the ones from the original models, using the MannWhitney

U test and Cliff’s delta5 . We find that all of the probability distributions of the four additional

models are different with statistical significance (p < 0.05) from the original model. How-

ever, the difference may differ among different subjects. In particular, for WMT, the original

models (without regularization) always have a higher memorization probability than the four

additional models (positive effect sizes). For IWSLT andW-103, the differences are associated

with rather negligible or small effect sizes; while there also exist cases when the probability dis-

tribution is lower with regularization (e.g., W-103 with enabling dropout). Such results show

that regularization may potentially be used to mitigate the memorization issue; while it is not

conclusive whether the regularization would reduce the probability of memorization from the

models. Finally, we would like to note that, even with the potential benefit of using regulariza-

tion, an approach like L2 can be used to mitigate memorization issues. Results of our research

show that the models trained with regularization still suffer from severe memorization issues.

5 The detailed results are shared in our replication package.
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Dataset Reg.
All concrete

states

All concrete

traces

Mem.

States

Mem.

Traces
TCR SCR

W-103

Original 81,790 631,521 22,820 54,248 8.59% 27.9%

Dropout 83,210 647,932 18,639 16,003 2.47% 22.4%

L1 82,123 627,984 19,545 16,076 2.56% 23.8%

L2 80,789 642,983 17,531 12,152 1.89% 21.7%

DA 84,198 852,129 21,883 61,609 7.23% 26.0%

WMT

Original 78,256 823,943 18,077 93,270 11.32% 23.1%

Dropout 72,198 878,134 13,212 18,528 2.11% 18.3%

L1 79,821 849,702 13,729 31,863 3.75% 17.2%

L2 76,213 851,203 15,090 23,578 2.77% 19.8%

DA 77,678 812,323 17,656 81,232 10.01% 22.7%

IWSLT

Original 14,232 176,820 4,468 13,137 7.43% 31.4%

Dropout 11,950 122,561 3,274 5,172 4.22% 27.4%

L1 13,212 119,821 2,893 3,582 2.99% 21.9%

L2 12,792 98,996 2,533 4,237 4.28% 19.8%

DA 13,341 15,421 3,867 1,076 6.98% 28.9%

Table 3.6: Results of memorization coverage rate with and without regularization (Reg. means regu-

larization).

3.9 Threats to Validity
External validity. A threat to the external validity is the generalizability of our approach.

Our study is evaluated on the most popular neural language model, i.e., LSTM -based language

model on three popular public datasets. More case studies on other datasets in other neural

network based language models can benefit the evaluation of our approach.

Internal validity. The selection of several techniques, such as the clustering algorithm DB-

SCAN, the dimension analysis algorithm PCA, and the memorization distribution modeling

First-Order Markov model. Such used techniques can be replaced by other kinds of similar

techniques. For example, DBSCAN can be replaced with K-means clustering algorithm. Our

approach also leverages threshold values. For example, the σ and ρ of the DBSCAN. To

explore the impact of this threat, we individually increased or decreased the σ and ρ in our

experiment.

Construct validity. In the evaluation of our approach for dememorization, we only used

four strategies to mutate the training data. Similar evaluation approaches based on mutation

techniques have been often used in prior research [111]. However, there may exist other kinds

of strategies to mutate the training data. Future work can complement our evaluation.

3.10 Related work

3.10.1 Analysis of DNN
Many prior studies [112, 113, 114, 115, 116, 117, 118, 12, 13] have been proposed to analyze

and explain the behaviors of deep neural network. Functional analysis and decision analy-

sis are two main categories of analysis of DNN [119]. Functional analysis, i.e., black-box

analysis, aims to capture the overall behavior by investigating the relation between inputs and

outputs [113, 115, 120]. Decision analysis takes the DNN as a white box and analyzes the
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internal behavior by profiling internal structures and component rolls [112, 12, 13]. In our

study, we focus on the decision analysis, i.e., internal behavior analysis.

One of the typical techniques used to analyze the internal behavior of a DNN model is

Finite State Automation (FSA) [81, 14]. FSA consists of states and transitions, which can be

mapped to the behavior of sequence models. Cechin et al.. [112] propose a K-means-based

unsupervised clustering algorithm to partition and abstract the hidden state vector generated

in sequence models. However, unsupervised partitions for state abstraction may encounter

scalability issues if the training data is large. Du et al. [12] use an interval-based approach

to cluster the original hidden state vector, which produces comparable performance under a

scalable environment.

Prior studies focus on the analysis of the behavior of the RNNmodel and its variance in FSA

for Natural language processing tasks. However, there is a lack of study on the memorization

issues for language models. Our work is the first work on analyzing, detecting and assisting

in repairing memorization issues of RNN models.

3.10.2 General Privacy of DNN
Extensive prior research has posed serious privacy concerns brought by deep neural networks

as the data used for training can be leaked [121]. In general, privacy threats of deep neural

networks can be divided into two categories of direct and indirect information exposure haz-

ards [122]. Direct privacy data leakage is mainly due to data curator [123, 124], untrusted

communication link [125], and untrusted cloud [126].

In indirect privacy threats, one would like to infer or guess information of training data

or model parameters without access to the actual data [127]. Many prior studies [7, 8, 9]

have reported that deep neural networks tend to memorize the training data instead of learning

the latent properties of the training data. Some studies [128, 129, 8, 28] propose automatic

techniques that infer whether a given data instance has contributed to the target model. Shokri

et al. [128] propose the first membership inference to infer whether a data record is used in the

training process of the targeted model. The core idea is to distinguish a given record in terms

of the confidence score outputted by the targeted model. In addition to membership inference,

many research aims to infer sensitive attributes of a released model [121, 130, 131] and steal

model parameters [127, 132, 133, 134]. Fredrikson et al. [121] show that it is possible to

recover sensitive genomic information of patients based on the model output and non-sensitive

attributes, e.g., height and age. The authors abstract the attributes recover to maximize the

posterior probability estimate of sensitive attributes. Florian et al. [132] design an attack to

find out the parameters of a model through equation solving on pairs of input and output.

Prior studies develop attacks and defenses for studying the privacy challenges. Different

from prior studies, we consider a privacy breach about memorization in neural language mod-

els and explore to analyze memorization via abstracted hidden states from extracting finite

state machine. Moreover, our proposed approach aims to address the issue during the quality

assurance process of the development of AI models, instead of defending against such attacks

after the fact. Our work complements this line of general privacy of deep neural networks.
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3.11 Conclusions
This paper proposes a novel approach DeepMemory to analyze the internal memorization be-

havior in language models. We construct a memorization-analysis-oriented model and build a

semantic first-older Markov model to analyze memorization distribution. We evaluate our ap-

proach on one of the most popular neural language models, the LSTM -based language model

with three public datasets, namely, WikiText-103, WMT2017, and IWSLT2016. The results

show that using our approach, we can address memorization issues by automatically identi-

fying data leakage risks with an average AUC of 0.73. Based on the assessment results, our

approach can assist in dememorization by only mutating a very small portion (4.1%, 0.89%,

and 2.8%) of the training data to reduce the memorization in the neural language models. Our

work calls for future research to address the privacy issues in neural language models.
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4 Privacy Vulnerabilities in LLM
Adaptations

4.1 Introduction
The rapid evolution of large language models (LLMs) has made them fundamental to many

modern natural language processing tasks [20, 21]. These capabilities are typically powered

by vast amounts of model parameters, scaling to trillions, and intensive pre-training on mas-

sive text corpora (e.g., nearly a terabyte of English text [22]). However, the large-scale pre-

training required for these models incurs significant computational costs, making it financially

prohibitive for most practitioners. Additionally, pre-trained models often need additional fine-

tuning to achieve satisfactory performance in specific domains [23, 135, 136]. Consequently,

the current best practice involves acquiring an open-source LLM as a pre-trained foundation

model and then adapting it for domain-specific data. However, the common “pre-training,

adaptation tuning” pipeline inadvertently raises privacy concerns regarding the leakage of

sensitive domain data used for adapting pre-trained LLMs [24, 137, 138, 139, 33]. Indeed,

recent research has demonstrated that LLMs can memorize substantial volumes of sensitive

data, leading to a high risk of unintentional privacy leakage to third parties [25, 140, 141].

These issues contribute to the ongoing debate about the privacy implications of LLMs and

may trigger violations of modern privacy regulations, e.g., the General Data Protection Regu-

lation (GDPR), underscoring the urgent need to address the privacy challenges associated with

LLMs.

To analyze the privacy issues related to the usage of LLMs, existing research primarily fo-

cuses on the leakage of pre-training data when querying a deployed general-purpose LLM [25,

141, 140]. Building on this foundation, in-depth investigations regarding such leakage, with

respect to various factors including model size and the degree of training data repetition, have

been presented [139, 26, 142, 27]. Yet, in the context of fine-tuning/adaptation scenarios,

recent privacy risk assessments have typically been limited to specific model architectures

(mainly encoder-basedmodels), a narrow selection of fine-tuningmethods, and a certain choice

of attack methods [24, 137, 138, 139, 33, 143]. A comprehensive benchmark evaluation is still

missing, despite its importance for providing critical insights and accurate privacy assessments

to facilitate the practical application of domain-specific LLMs. In particular, this gap high-

lights a crucial research question: To what extent, and in what ways, do different adaptation

methods influence the privacy risk of LLMs?

To address the research question, this paper presents, to the best of our knowledge, the first

benchmark investigating the privacy implications of LLM adaptation techniques, accompa-

nied by a comprehensive empirical study. We focus on membership inference attack (MIA)
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techniques [128], which aim to determine whether a given query sample was used for adapt-

ing the target LLM, due to their popularity and close relationship to a broader class of top-

ics [25, 144, 31]. Our investigation encompasses five types of LLMs with different archi-

tectures (T5 [22], LLaMA [145], OPT [146], BLOOM [147], and GPT-J [148]), seven LLM

adaptation techniques representative of the current state of the art, and three datasets from dif-

ferent domains that closely mimic real-world sensitive fields. With our presented benchmark

and comprehensive study, we aim to provide critical insights into the privacy risks associated

with LLM adaptation techniques and guide the secure development of new models.

4.2 Privacy Measurement for Large Language Models
We evaluate the privacy vulnerabilities of LLMs through the lens of MIAs [128], which are

widely recognized for their extensive applicability. MIAs are also closely associated with other

privacy concerns, such as training data reconstruction [25, 26] and the retrieval of personally

identifiable information [140, 149, 141], underscoring its critical role in privacy assessments.

4.2.1 Formulation
Notation. We denote fθ as the target language model, parameterized by θ, which starts

from a pre-trained model and is further adapted to a private dataset D. Each text sample x(i)

is represented as a sequence of tokens, i.e., x(i) =(x
(i)
1 , x

(i)
2 , ..., x

(i)
L ). The sample index i may

be omitted for clarity when it is not relevant to the discussion. During inference, the model

allows estimating the token likelihood fθ(xl|x1, ..., xl−1) and generates new text by iteratively

sampling x̂l ∼ fθ(xl|x1, ..., xl−1) conditioned on the prefix (x1, ..., xl−1). Starting with the

initial token x1, the model feeds each newly sampled token x̂l back into itself to generate the
subsequent token x̂l+1, continuing this process until a predetermined stopping criterion is met.

Threat Model. The attacker A aims to determine whether a given query text sample was

included in the private datasetD used to customize the target model for the private domain. We

adopt the conventional threat model where the attacker may have either black-box orwhite-box

access to the target model. In the black-box scenario, the attacker can access only the model’s

output probability predictions, typically via a prediction API call. In contrast, the white-box

scenario permits the attacker to access the model’s internal structure and parameters.

We follow the standard evaluation framework, where the adversary has access to a query

set S = {(x(i),m(i))}Mi=1. This set includes both member (i.e., seen by the target model fθ)
samples and non-member (unseen) samples drawn from the same data distribution. Eachm(i)

indicates the membership status, wherem(i) =1 ifx(i) is a member. The attackA(x(i), fθ) acts
as a binary classifier, predicting m(i) for a given query sample x(i) with access to the target

model.
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4.2.2 Attack Approaches
We conducted a broad literature search to identify representative approaches for member-

ship inference attacks, aiming to provide a comprehensive benchmark. Below, we present

an overview of each approach under a unified notation to facilitate comprehension and com-

parison.

Likelihood-based [28]. Given that LLMs are typically trained using a maximum likelihood

objective on the training data, the most basic method for predicting membership involves using

the (normalized) log-likelihood of the target query sample as the metric: a higher likelihood

score indicates a better fit of the target model fθ on the query data point x =(x1, ..., xL),
suggesting it is likely a member of the training set. Formally, the attack can be summarized

as:

A(x, fθ) = 1
[ 1
L

L∑
l=1

log fθ(xl|x1, ..., xl−1) > τL

]
, (4.1)

where τL denotes the threshold score above which the attack predicts the sample to be a mem-

ber.

Likelihood with Reference [25]. While the basic likelihood score provides evidence for

membership detection, it often fails to achieve high precision. This is because high-likelihood

samples are not always present in the training data, but can also be uninformative texts fre-

quently encountered in the pre-training dataset. A natural improvement involves calibrating

the likelihood score by comparing it with the score obtained from a reference model not tai-

lored for the private data. This leads to the likelihood ratio evaluated on the target versus the

reference model. Formally,

A(x, fθ) = 1
[ 1
L

L∑
l=1

(
log fθ(xl|x1, ..., xl−1)− log fφ(xl|x1, ..., xl−1)

)
> τLref

]
, (4.2)

where fφ denotes a reference model not trained on the private dataset and τLref is the threshold.

Zlib Entropy as Reference [25]. While using a reference for calibrating the inherent fre-

quency of text is essential for membership inference, it is not necessary to fix the reference to

be another neural language model. In principle, any technique that quantifies the normality or

informativeness for a given sequence can be useful. Following [25], we compute the zlib en-

tropy of the text, which is the number of bits of entropy when the text sequence is compressed

using zlib compression [29]. Subsequently, the ratio of the average negative log-likelihood of

a sequence and the zlib entropy is used as the membership inference metric. Formally,

A(x, fθ) = 1
[
− 1

L

L∑
l=1

log fθ(xl|x1, ..., xl−1)/H(x) < τzlip

]
, (4.3)

whereH(x) denotes the zlib entropy of x.
Neighborhood-based [30]. To account for the normality of text samples for membership

inference, one can calibrate their likelihood scores using their semantic neighbors. This can be

achieved by generating neighbors of the data point and measuring their likelihood scores using

the target model, which then serve as an estimation for the normality of the query text. The

neighbors are designed to preserve semantics and are well-aligned with the context of the origi-

nal words. These neighbors are obtained through semantically-preserving lexical substitutions
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proposed by transformer-based masked language models [150]. Formally, the membership

score is expressed by comparing the log-likelihood of the query sample to the averaged log-

likelihood of its neighbors:

A(x, fθ) = 1
[ 1
L

L∑
l=1

log fθ(xl|x1, ..., xl−1)−
1

kL

k∑
i=1

L∑
l=1

log fφ(x̃(i)l |x̃
(i)
1 , ..., x̃

(i)
l−1) > τLnbr

]
,

(4.4)

where {x̃(i)}ki=1 corresponds to k neighbors of the given sample x.
Min-K% Probability [31]. The MIN-K% Probability score captures the intuition that a

non-member example is more likely to include a few outlier words with high negative log-

likelihood (or low probability), while a member example is less likely to include words with

such low likelihood scores. Following [31], we select the K% of tokens from x with the

minimum token probability to form a set, and compute the average log-likelihood of the tokens

in this set

A(x, fθ) = 1
[ 1

|Min-K%(x)|
∑

xl∈Min-K%(x)

log fθ(xl|x1, ..., xl−1) > τMin-K

]
, (4.5)

where Min-K%(x) denotes the set of tokens with the lowestK% likelihood conditioned on its

prefix.

Min-K%++ [32]. In the context of maximum likelihood training, it has been observed

that training samples tend to form local maxima in the modeled distribution along each input

dimension. As exploring an input dimension can be viewed as substituting the current token

with alternative candidates from the model’s vocabulary, the membership score is defined by

the normalized log probability under the conditional categorical distribution fθ(·|x<l), where
a high probability indicates likely membership. In line with [31], the score is calculated using

the Min-K% least probable tokens:

A(x, fθ) = 1
[ 1

|Min-K%(x)|
∑

xl∈Min-K%(x)

log fθ(xl|x1, ..., xl−1)− µ<l

σ<l

> τMin-K++

]
, (4.6)

while µ<l =Ez∼fθ(·|x<l)[log fθ(z|x<l)] represents the expectation of the next token’s log prob-
ability over the vocabulary of the model given the prefix x<l =(x1, ..., xl−1), and the term

σ<l =
√

Ez∼fθ(·|x<l))[(log fθ(z|x<l)− µ<l)2] is the standard deviation.
Gradient Norm-based [33]. The phenomenon of local minimality at training data points is

often evidenced by the smaller magnitudes of parameter gradients observed at these points [34,

35, 33]. A practical approach would be to utilize the gradient norm of a target data point as the

membership score. This concept is mathematically represented as follows:

A(x, fθ) = 1
[∥∥− 1

L

L∑
l=1

∇θ log fθ(xl|x1, ..., xl−1)
∥∥ < τgrad

]
. (4.7)

Notably, computing this gradient requires white-box access to the target model, unlike the

previously mentioned methods, which rely solely on the model’s output predictions.
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4.3 LLM Adaptation Techniques
Existing LLMadaptation techniques can be roughly categorized into regular fine-tuning, parameter-

efficient fine-tuning, and in-context learning. Below, we briefly discuss representative tech-

niques from each of these categories. For a more detailed comparison of parameter-efficient

fine-tuning techniques, we refer readers to prior work [151].

Regular Fine-tuning. The basic fine-tuning approach involves taking a pre-trained model

and adapting all its parameters for a task-specific downstream dataset, i.e., full fine-tuning.

This enables the model to learn specific patterns in the new data domain, thereby improving

its accuracy and relevance for the target application. However, as models increase in size, full

fine-tuning becomes impractical due to the high computational cost. Additionally, overfitting

can become a significant issue, closely related to privacy vulnerabilities.

Adapter. Adapter-based fine-tuning strategically integrates additional lightweight layers

into an existingmodel architecture [152, 153, 36], typically by injecting smallmodules (adapters)

between transformer layers. During fine-tuning, only these adapter layers are updated for

domain-specific data, while the core model parameters remain frozen, which greatly reduces

computational overhead compared to regular fine-tuning.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) [37] is based on the hypothesis

that weight changes during model adaptation exhibit a low “intrinsic rank”. To leverage this,

LoRA proposes integrating trainable low-rank decomposition matrices into each transformer

layer to approximate the weight updates, while only allowing modifications of these low-rank

matrices and freezing the pre-trained weights.

Prompt-based Tuning. Instead of changing the weights of the neural network, prompt-

based tuning [38] typically involves adding specific prompts to the input text to steer the

model towards the desired output. Existing studies commonly prepend tunable continuous task-

specific vectors to the input embeddings (potentially across multiple layers), typically known

as “soft prompts”, and optimize over these continuous prompts while keeping the other pre-

trained parameters unchanged during the fine-tuning process. Specifically,Prompt-tuning [39]

prepends the input sequence with special tokens to form a template and tune the embeddings

of these tokens directly. P-tuning [40] adds continuous prompt embeddings generated from

pseudo prompts by a small encoder to the input embeddings of the model and tunes the prompt

encoder. Prefix tuning [41] injects a trainable prefix matrix into the keys and values of the

multihead attention at every layer of the model and updates the injected trainable prefix matri-

ces.

In-context Learning. By enabling LLMs to perform diverse tasks through contextual adap-

tation, without altering their internal parameters, in-context learning [42] introduces a paradigm

shift from traditional fine-tuning. Instead of performing explicit parameter updates, the model

utilizes task-specific examples and instructions embedded within the input prompt to infer the

task requirements. The key insight lies in the model’s ability to treat these examples as implicit

demonstrations, dynamically aligning its behavior with the desired output. This emergent capa-

bility makes in-context learning highly flexible, as it allows the model to generalize effectively

from limited examples with minimal computational overhead, avoiding the computational bur-

den associated with fine-tuning [43].
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Data?
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Prompt-tuning,
Prefix-tuning,
LoRA,
…

Adversaries

Figure 4.1: An overview pipeline illustrating the workflow of PrivacyAuditor.

4.4 Related Work
Privacy Threat for LLMs. While the rapid development of LLMs has greatly facilitated vari-

ous real-world applications, the widespread use of LLMs, especially in sensitive domains such

as medical and finance, has raised serious privacy concerns. It is notorious that large neural

networks tend to unintentionally memorize their training data (beyond learning the general pat-

terns essential for conducting the target tasks), which raises vulnerabilities to privacy attacks

such as membership inference [128, 24, 137, 138, 143, 31, 30, 154, 155, 156, 157, 158, 159,

160, 161], personal identifiable information retrieval [140, 141, 162, 163], and training data

extraction [33, 25, 26, 162].

Membership Inference in LLMs. Membership inference is a commonly studied privacy

attack, which is closely related to other topics such as training data extraction (by serving

as an intermediate step) [25], examining data contamination [31] (i.e., whether the testing

data have been seen by the target model), and theoretical privacy notions like differential pri-

vacy [144] (which by construction should provide privacy guarantees in the context of training

data membership). While recent studies have investigated such attacks for data used for model

pre-training [155, 31, 159, 160, 161, 164] and fine-tuning [24, 137, 138, 139, 33], they are

focusing on specific attack strategies, a limited set of fine-tuning techniques (typically full

fine-tuning or tuning the top layers) and particular model types (e.g., pre-trained encoders),

which may not faithfully reflect the existing progress of such investigation.

To address this gap, our work considers a broad range of representative recent adaptation

techniques and attack methods. This includes literature that may not directly focus on member-

ship inference but is applicable to it. Our investigation aims to provide a more comprehensive

understanding of potential privacy threats related to membership leakage when using LLMs.

4.5 Experiments

4.5.1 Setup
Datasets. In contrast to previous studies, which have primarily focused on less sensitive

datasets such as News and Wikipedia, our study is dedicated to a detailed evaluation of pri-
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vate data leakage risks in environments that handle highly sensitive and valuable private in-

formation. Specifically, we conduct experiments on the following adaptation datasets D :

Sujet-finance-instruct-177k (Suject Finance) [165], Corporate Climate Policy Engagement

(CorpClimate) [166], as well as Synthetic-Text-to-SQL (SQL) [167]. Our selection process

aimed to minimize potential overlap with the pre-training datasets and ensure a more accurate

evaluation of membership. Specifically, all the chosen fine-tuning datasets were released after

the pre-trained models were developed, reducing the risk of shared content. Additionally, the

datasets underwent extensive pre-processing to further minimize the chance of overlapping

data points, even if they might originate from similar sources. We also included synthetic data

with a specific structure that is unlikely to derive from web-based sources, ensuring further

independence from the data used in pre-training.

Models. We consider the two predominant LLM architectures: decoder-only and encoder-

decoder LLMs and conduct experiments on foundationmodels includingT5 [22],LLaMA [145],

OPT [146], BLOOM [147], and GPT-J [148], each configured with different numbers of

model parameters. All the open-source pre-trained LLMs are downloaded from Huggingface†.

All experiments are conducted on a computing cluster with 4 Nvidia A100 80G with 512G

memory. More details are included in the supplementary materials.

Evaluation Configuration. We evaluate the target LLMs’ test accuracy on the test portion

of the adaptation datasets as the utility metric. For evaluating privacy, following the com-

mon evaluation standard for membership inference attacks, we composed an evaluation query

set S comprising an equal number of member and non-member samples (defaulting to 1000

each), while limiting the sample size to 10 for in-context learning experiments due to memory

constraints. The member samples are uniformly sampled from the training dataset, while the

non-member samples are randomly selected from the test portion of the datasets, ensuring they

were not used in training. Privacy leakage is evaluated using standard metrics [155], including

attack Area under the ROC Curve (AUC-ROC), False Positive Rate at low True Positive Rate

(FPR@0.1%TPR, and FPR@1%TPR).

Attack and Adaptation Techniques. We evaluate the following attack methods as out-

lined in section 4.2.2: Likelihood (Equation 4.1), Likelihood-ref (Equation 4.2), Zlib En-

tropy (Equation 4.3),Neighborhood (Equation 4.4),Min-K (Equation 4.5),Min-K++ (Equa-

tion 4.6), Gradient-Norm (Equation 4.7) as outlined in section 4.2.2. As introduced in sec-

tion 4.3, we evaluate the following representative adaptation techniques: full fine-tuning (Full),

only updating the attention heads of the top-2 layers (Top2Head-tuning), adapter-based tech-

nique (Adapter-H [152]), Prefix-tuning [41],LoRA [37], P-tuning [40], Prompt-tuning [39],

and in-context learning [42]. Note that all the aforementioned attack methods require black-

box access to the target model, except for the Gradient-Norm method. This exception may

render the Gradient-Norm method inapplicable to typical in-context learning scenarios where

no parameter updates are performed. We use the default parameters from the original imple-

mentations. More details can be found in the supplementary materials.

†https://huggingface.co/models
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4.5.2 Benchmark Design
To systematically assess data leakage risks across various fine-tuning approaches in LLMs, we

present experiments designed to answer the following research questions.

RQ1: Is Private Data Used for Adapting LLMs Vulnerable to Leaks?

Motivation. Although LLMs demonstrate promising capabilities in generalizing across

multiple tasks, adapting them to specific domain applications remains essential due to non-

negligible domain shifts [168]. Since domain data is a crucial asset for data owners and typ-

ically contains sensitive information, it is vital to assess the extent to which this data can be

leaked from the product model.

Approach. We first adopt the arguably most competitive lightweight fine-tuning technique,

namely LoRA, to generate target downstream models across different datasets. Then, we vi-

sualize the data distributions of the member and non-member likelihood scores and inspect

whether systematic differences exist that can be used as clues for detecting membership. Sub-

sequently, we employ various state-of-the-art MIAs to measure the extent of private domain

information leakage.

RQ2: Do Different Adaptation Techniques Vary in Their Downstream Privacy Vul-

nerability?

Motivation. Different adaptation techniques involve distinct design patterns, introduce

varying computational costs, and achieve unequal target performance. While these aspects

have been extensively compared in existing literature on (parameter-efficient) fine-tuning tech-

niques, the corresponding privacy implications have not been thoroughly investigated. There-

fore, we design experiments to examine how various adaptation methods affect the effective-

ness of privacy attacks.

Approach. We provide a unified implementation of representative adaptation techniques

with varying amounts of trainable parameters. We then compare the performance of MIAs and

model utility across various datasets and evaluation metrics under fair comparison conditions.

RQ3: What Factors Potentially Affect Privacy Vulnerability in LLM Adaptation?

Motivation. Besides knowing “whether” different LLM adaptation techniques affect the

privacy vulnerability of the resulting product LLM, it is also crucial to understand “how” and

“why”. Investigating the potential factors that influence such vulnerability is essential, as un-

derstanding these factors is beneficial for developingmore robust and privacy-preserving LLM

fine-tuning approaches, and provides insights into preventing private domain data from leaking

during the fine-tuning process.

Approach. Motivated by the existing understanding of privacy risks associated with large

neural networks, we conduct experiments spanning several critical factors: varying amounts

of data for adaptation, different numbers of training iterations, and various model sizes. Addi-

tionally, we perform fine-tuning on domain datasets for both multiple tasks and single tasks,

aiming to examine how task diversity in the pre-training dataset affects privacy vulnerability.
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4.5.3 RQ1: Is Private Data Used for Adapting LLMs Vulnerable to
Leaks?

Distributional Differences Between Member and Non-Member Data. Figure 4.2 visual-

izes the distribution of likelihood scores for member and non-member data using the target

Llama7b model fine-tuned with LoRA. Even though these likelihood scores (Equation 4.1)

represent the most basic metric an attack would consider, the results reveal subtle but notice-

able distinctions in the distributions. This indicates the potential for an adversary to exploit

LLM outputs to determine whether a sample was used in fine-tuning and highlights the vul-

nerability of membership leakage of domain data through deployed product LLMs. However,

the limited prominence of these differences also underscores the need for more refined attack

strategies to effectively uncover membership information.
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Figure 4.2: The likelihood score distribution of member and non-member data in Llama-7b fine-tuned

with LoRA on different datasets.
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Figure 4.3: Overview of the attack performance across different LLMs and datasets.

Strong MIAs Effectively Detect Data Used for LLM Adaptation. Given the distinct

distribution patterns between member and non-member data, we conducted experiments on

existing representative MIAs (outlined in section 4.2.2) to determine whether these differences

can be exploited to infer the membership of a given sample. As summarized in Figure 4.3, the

results demonstrate that LLM adaptation techniques may lead to the leakage of training data

under existing attacks, with Likelihood-ref (Equation 4.2) being the most effective method

overall and performing reasonably well across different types of model architectures. These

results represent a meaningful lower bound on the worst-case privacy risk, highlighting the

privacy vulnerabilities introduced during LLM fine-tuning and underscoring significant data

protection demands during LLM fine-tuning. The complete quantitative results are presented

in the supplementary materials.
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Product LLMs for Structural Data Demonstrate Greater Robustness Against MIAs.

As shown in Figure 4.3, inferring membership on the SQL dataset is more difficult than on the

others. This may be due to the structural similarity of data samples within the same distribution,

i.e., smaller in-domain diversity. To validate this, we further analyze the data samples misclas-

sified by the attacker (shown in Figure 4.4) and observe that these data are structurally identical

and semantically highly similar. This may indicate a current weakness in attack methods that

rely on detecting individual patterns or fingerprints (which are largely based on semantics and

structure) memorized by the target model.
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Figure 4.4: Comparison of samples between member data and misclassified non-member data from

Llama7b fine-tuned over the SQL dataset using LoRA. Reference-based MIA [25] is ap-

plied for the membership inference attack.

Adaptation Method
Attack Method

Accuracy (after)
Likelihood Likelihood-ref Zlib Entropy Neighborhood Min-K Min-K++ Gradient-Norm

Prompt-tuning 0.567 0.609 0.572 0.582 0.544 0.549 0.621 0.631

Prefix-tuning 0.589 0.626 0.621 0.606 0.585 0.592 0.644 0.637

Adapter-H 0.574 0.691 0.597 0.611 0.552 0.556 0.696 0.639

P-tuning 0.591 0.694 0.614 0.619 0.579 0.583 0.707 0.623

LoRA 0.592 0.724 0.647 0.624 0.567 0.588 0.717 0.644

Top2-head 0.623 0.726 0.658 0.631 0.584 0.593 0.733 0.637

Full 0.817 0.853 0.831 0.811 0.822 0.825 0.858 0.643

In-Context 0.881 0.881 0.881 0.881 0.881 0.881 0.881 0.458

From scratch 0.887 0.943 0.914 0.909 0.892 0.921 0.958 0.604

(a) T5-Large

Adaptation Method
Attack Method

Accuracy (after)
Likelihood Likelihood-ref Zlib Entropy Neighborhood Min-K Min-K++ Gradient-Norm

Prompt-tuning 0.562 0.629 0.591 0.619 0.554 0.579 0.635 0.664

P-tuning 0.587 0.636 0.628 0.633 0.583 0.595 0.644 0.676

Prefix-tuning 0.574 0.648 0.633 0.635 0.577 0.601 0.642 0.671

Adapter-H 0.556 0.675 0.607 0.628 0.566 0.579 0.659 0.669

LoRA 0.575 0.735 0.634 0.654 0.608 0.622 0.728 0.674

Top2-head 0.677 0.788 0.714 0.694 0.647 0.696 0.793 0.669

Full 0.832 0.882 0.847 0.803 0.787 0.827 0.879 0.677

In-Context 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.534

From scratch 0.913 0.943 0.914 0.899 0.892 0.921 0.958 0.278

(b) Llama-7B

Table 4.1: Comparison of different adaptation techniques in terms of attack vulnerability (measured by

AUC-ROC) and downstream utility (evaluated by model accuracy after adaptation) on the

T5-Large/Llama-7B model and CorpClimate dataset. The adaptation methods are sorted by

ascending order in terms of the amounts of trainable parameters. The shaded area indicates

the reference results from training the model from scratch. For reference, the baseline test

accuracy before adaptation is 0.334 (pre-trained) or 0.187 (from scratch) for the T5-Large

model, and 0.493 (pre-trained) or 0.234 (from scratch) for the Llama-7B model.
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4.5.4 RQ2. The Impact of Adaptation Techniques on Downstream
Privacy Vulnerability.

More Trainable Parameters Lead to Higher DataMembership Leakage Risk. Figures 4.5

& 4.6 offer an overall performance comparison of different adaptation techniques on the adapted

OPT-6b model for the CorpClimate dataset. The portion of trainable parameters (TP) relative

to the overall model size is listed in brackets beside each adaptation technique, with techniques

ordered in the legend by decreasing trainable parameters. The results show that the more pa-

rameters applied during adaptation, the higher the risks of downstream membership leakage.

This aligns with the intuition that models with more trainable parameters tend to have a higher

degree of freedom in downstream adaptation, potentially allocating more modeling capacity

to over-memorizing their training data. While in-context learning approaches do not involve

parameter updates and thus avoid the same overfitting risks, they are not free of privacy con-

cerns. As shown by the non-trivial attack performance in Table 4.1, training data embedded

within the language model through in-context adaptation can potentially be extracted through

careful analysis of model outputs. This suggests that even parameter-free techniques require

careful monitoring of the risk of privacy leakage.
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Figure 4.5: Impact of different adaptation techniques for attack performance measured by AUC-ROC.

TP refers to the percentage of trainable parameters compared to the full-size model param-

eters.
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Figure 4.6: Impact of different adaptation techniques formodel utilitymeasured by accuracy. TP refers

to the percentage of trainable parameters compared to the full-size model parameters.

DifferentAdaptationTechniquesMayCause SystematicVulnerabilityDifferencesDue

to Their Associated Attack Surfaces. As illustrated in Table 4.1, different adaptation meth-

ods exhibit varying degrees of vulnerability to attack methods (measured by AUC-ROC) and
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post-adaptation utility (evaluated by accuracy). Specifically, adaptation techniques can intro-

duce varying attack surfaces influenced by factors beyond the size of trainable parameters,

such as the degree of model modification, the layers involved, and practical usage scenarios.

For instance, methods like prompt-tuning and P-tuning primarily adjust input representations,

potentially reducing the attack surface but offering moderate performance gains. In contrast,

approaches like LoRA or full fine-tuning modify deeper layers, which may enhance flexibil-

ity but also increase the chances of embedding sensitive information within parameters. In-

context learning, which relies on input data at runtime without parameter updates, is typically

employed in black-box settings, where attackers have limited access to model internals, mak-

ing white-box attack assumptions less applicable. These differences emphasize the importance

of aligning adaptation techniques with both performance needs and privacy considerations.

4.5.5 RQ3. Factors Affecting Privacy Vulnerability.
Size of Domain Data Applied for Training. Figure 4.5 demonstrates the empirical assess-

ment of privacy leakage risks with varying amounts of available data for LLM adaptation. Uti-

lizing more data tends to shift the LLM’s modeling capability towards generalization rather

than specialization, leaving less room for it to overfit to individual patterns, thus making the

attack less effective. Moreover, using more data samples aligns with the utility objectives of

product LLMs, as shown in Figure 4.6, which suggests the necessity of always obtaining more

data for training.

Number of Fine-tuning Iterations. As can be observed from Figure 4.5, increasing the

number of iterations generally enhances the effectiveness of attacks on the target models. This

aligns with the interpretation that a higher degree of adaptation to the domain data, while steer-

ing the LLMs towards the target domain, inevitably causes the model to learn patterns overly

tailored to individuals rather than the essential ones required for the task. While the privacy ob-

jective suggests applying a lesser degree of adaptation to the domain data, the utility objectives

of product LLMs require a high degree of fitting to the target domain data. This misalignment

of objectives necessitates more detailed adjustments during the deployment phase.

TargetModel Size. From Figure 4.5, we observe that larger LLMs tend to exhibit increased

downstream privacy vulnerability after adaptation. This may be attributed to their greater

model capacity, which, while enabling the learning of more complex patterns and solving

difficult tasks, can also compromise individual privacy, as the enhanced capacity allows these

models to learn personal information that can lead to privacy issues. This dilemma between

learnability (and thus utility) and privacy also requires more dedicated efforts for adjustments

during the deployment phase.

4.6 Discussion & Limitations
While our results offer valuable insights into privacy-aware LLM development, several ar-

eas remain open for further exploration to deepen this research. One important direction is

studying the impact of privacy-preserving training mechanisms, such as differentially private

adaptation, which, while offering theoretical guarantees, may introduce utility trade-offs, par-
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ticularly for complex tasks like domain-specific reasoning. Understanding how such strategies

influence both membership inference risks and model utility, along with their trade-offs, is cru-

cial for guiding practitioners. Another promising avenue is the co-design of privacy-preserving

techniques with efficient adaptation methods, as developing these independently can result in

suboptimal outcomes. An integrated approach may better balance privacy and utility, and

identifying inherently robust adaptation techniques could reduce the need for costly post-hoc

defenses. Additionally, auditing tools that search for or generate vulnerable samples could pro-

vide more precise estimates of privacy leakage and support ongoing monitoring of deployed

models to maintain an appropriate privacy-utility balance.

Finally, it is essential to acknowledge the limitations of this work. While the evaluation

focuses on domains intended to reflect real-world scenarios, it may not capture the full range

of potential attack settings. Attackers with specialized knowledge or additional assumptions

could uncover vulnerabilities beyond those examined. Moreover, the privacy risks identified

are bound by the framework used, with results varying across datasets, model architectures, and

operational contexts. Future work could expand this benchmark by incorporating new adapta-

tion techniques, datasets, and attack strategies, progressively advancing the understanding of

privacy risks across diverse settings.

4.7 Conclusions
In this work, we present a benchmark to assess the potential privacy leakage risks during adap-

tation techniques in LLMs. We examine the training data membership leakage risk in main-

stream large language models based on encoder-decoder and decoder-only structures. Our

comprehensive analysis illustrates the facets of privacy leakage risks during LLM adaptation,

and we further propose a unified platform to measure these potential privacy risks. Our find-

ings highlight the importance of developing privacy-preserving adaptation techniques with

practical relevance.

4.8 Additional Analysis

4.8.1 Dataset
Sujet Finance Dataset [165]2 . The Sujet Finance dataset is a comprehensive collection of fi-

nancial data crafted specifically for fine-tuning LLMs for specialized financial tasks. It aggre-

gates data from 18 distinct HuggingFace datasets, comprising 177,597 entries across seven key

financial LLM tasks: sentiment analysis (44,209 entries), direct question answering (38,801

entries), question answering with context (40,475 entries), conversational question answering

(15,613 entries), yes/no questions (20,547 entries), topic classification (16,990 entries), and

entity-level sentiment analysis (962 entries). The data record is structured with columns such

as inputs, answers, system prompts, user prompts, dataset names, task types, index levels,

and conversation IDs. The dataset undergoes de-duplication and preprocessing to eliminate

2 https://huggingface.co/datasets/sujet-ai/Sujet-Finance-Instruct-177k
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non-ASCII and other irregular characters, making it a clean and usable dataset for effective

LLM fine-tuning. We fine-tune the LLMs on all tasks contained in the dataset and evaluate

the model utility on classification tasks (including “Sentiment Analysis”, “Yes/No Questions”,

“Topic Classification”, and “NER Sentiment Analysis”) that allow easy quantification using ac-

curacy. The query sample x corresponds to the complete input to the model, which comprises

an “instruction” combined with an “input”. See Table 4.2 for examples.

Table 4.2: Examples of Sujet Finance Dataset Records. Each query sample consists of an “instruction”

concatenated with an “input”, while the “answer” represents the ground-truth label of the

dataset. The “output” is a demonstration of the LLM’s response to the query sample.

Corporate Climate Policy Engagement [166]3 . The dataset is designed to estimate corpo-

rate climate policy engagement by analyzing various PDF-formatted documents derived from

LobbyMap. It includes 11,159 documents annotated for corporate stances on climate policies.

Each document’s text is extracted and organized into triplets (P , Q, S), where Q represents

high-level climate policy issues, S denotes the stance on a five-level scale from “strongly sup-

porting” to “opposing’’, and P indicates the evidence page indices supporting the query and

stance. The dataset is provided in JSON format with fields such as document ID, sentences

(including sentence ID and page numbers for task input), evidences (containing P , Q, and
S), and meta (offering additional metadata about the evidence items). Preprocessing involved

3 https://climate-nlp.github.io/
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robust text extraction using tools like docTR, Tesseract, and PyMuPDF, OCR for necessary

alignment, de-duplication, and data cleaning to ensure quality. See Table 4.3 for examples of

the dataset.

Table 4.3: Examples of Corporate Climate Policy Engagement Records. Each query sample consists

of an “instruction” concatenated with an “input”, while the “correct_answer” represents the

ground-truth label of the dataset. The “output” is a demonstration of the LLM’s response to

the query sample.

Syntatic-Text-to-SQL [167]4 . This dataset, generated by Gretel Navigator, is designed to

train models for translating natural language into SQL queries. It includes around 105,851

4 https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
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entries, totaling approximately 23 million tokens, of which 12 million are SQL-specific. It

spans 100 distinct domains or verticals and encompasses a comprehensive suite of SQL tasks,

including data definition, retrieval, manipulation, analytics, and reporting. Each features at-

tributes such as SQL complexity, task type, and domain descriptions. The dataset is structured

in JSON format with fields for document IDs, tokenized text, and SQL queries. Preprocessing

involves text extraction, OCR for alignment, and data cleaning. The default training dataset

size is set to be 60,000. See Table 4.4 for examples of the dataset.

Table 4.4: Examples of Syntatic-Text-to-SQL Records. Each query sample consists of an “instruction”

concatenated with an “input” (which is always an empty string for this dataset), while the

“answer” represents the ground-truth label of the dataset. The “output” is a demonstration

of the LLM’s response to the query sample.

4.8.1.1 Model Details

We consider the following representative LLMs in our empirical evaluation across different

architectures, parameter counts, and design philosophies: T5-Large [22], LLaMA-7B [145],

OPT-6.7B [146], BLOOM-7B [147], and GPT-J-6B [148]. T5-Large employs an encoder-

decoder transformer model, processing input text through an encoder and generating output

text via a decoder, making it particularly suitable for text-to-text tasks. In contrast, LLaMA-

7B, OPT-6.7B, BLOOM-7B, and GPT-J-6B utilize decoder-only architectures optimized for

autoregressive text generation. These models have parameter counts ranging from 770 mil-

lion (T5-Large) to over 7 billion (BLOOM-7B), covering a standard and reasonable range for

empirical investigation in scientific research. The design philosophies also vary significantly:

T5-Large focuses on converting all tasks into a text-to-text format, while BLOOM-7B em-

phasizes multilingual capabilities, supporting 59 languages and 12 programming languages.
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LLaMA-7B and GPT-J-6B prioritize openness and efficiency, aiming to enhance accessibility

and performance in NLP, while OPT-6.7B targets transparency and competitive performance.

The hyper-parameters during fine-tuning are listed in Table 4.5.

T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Parameters 770M 6.7B 6.7B 7.1B 6.1B

Learning Rate 1e-3 3e-4 1e-3 3e-4 2e-3

Batch Size 128 32 32 32 32

Micro Batch Size 32 8 8 8 8

Maximum Length 512 256 256 256 256

Model Source 5 6 7 8 9

Table 4.5: Hyper-parameters of LLMs during fine-tuning.

4.8.1.2 LLM Adaptation

By default, each LLM is fine-tuned for 5 epochs. For LoRA, we set the rank to 8 and the

alpha value to 16, and tune the attention vectors q, k, and v. For Top2Head-tuning, only the
first 2 top layers are tuned. In Adapter-H, we add an intermediate projection layer with size

256 and apply “tanh” as the nonlinear activation function. For Prefix-tuning, the number of

virtual tokens is set to 30. In P-tuning, the encoder size is set to 128, with 20 virtual tokens.

For Prompt-tuning, the initial prompt is chosen to be “Complete the following task: ”.

4.8.1.3 Attack Implementation

For the Likelihood-ref attack, following the original implementation [25], we use the original

pre-trained model (which was not adapted using the domain data) as the reference model. For

the Neighborhood attack, we set the size of the neighbor candidates to 25 and the word mask

rate to 0.3. Additionally, aligned with the original paper [30], we use a third-party BERT

model10 from Huggingface to generate the neighbors of a given query sample. For Min-K

and Min-K++, we set K to 0.2, and both the window size and stride with respect to N-gram

to 1.

Evaluating the attack AUC-ROC involves measuring the entire area under the ROC curve,

which corresponds to varying thresholds τ of the membership score. In contrast, measuring

the attack FPR@0.1% TPR or FPR@1% TPR involves selecting the threshold τ to match a

specific true positive rate (0.1% or 1%) on the query set and then evaluating the corresponding

false positive rates.

5 https://huggingface.co/google-t5/t5-large
6 https://huggingface.co/yahma/llama-7b-hf
7 https://huggingface.co/facebook/opt-6.7b
8 https://huggingface.co/bigscience/bloom-7b1
9 https://huggingface.co/EleutherAI/gpt-j-6b
10 https://huggingface.co/google-bert/bert-base-multilingual-cased
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4.8.2 Additional Empirical Results
Wepresent the overall quantitative results of evaluating different attackmethods across various

metrics and LLMs fine-tuned with LoRA on different datasets in Tables 4.6-4.8. These results

supplement the findings illustrated in Figure 3 of the main paper.

Attack Method Metric
Model

T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood

AUC-ROC 0.54 0.52 0.52 0.51 0.54

FPR(%)@0.1%TPR 0.71 0.00 0.00 0.20 0.17

FPR(%)@1%TPR 2.33 1.63 0.00 0.89 1.06

Likelihood-ref

AUC-ROC 0.62 0.62 0.60 0.57 0.59

FPR(%)@0.1%TPR 5.83 5.62 5.47 4.92 4.68

FPR(%)@1%TPR 12.08 11.73 9.86 8.77 9.03

Zlib Entropy

AUC-ROC 0.53 0.54 0.52 0.54 0.51

FPR(%)@0.1%TPR 0.31 0.00 0.00 0.29 0.00

FPR(%)@1%TPR 1.03 2.22 1.00 1.88 0.74

Neighborhood

AUC-ROC 0.52 0.53 0.53 0.52 0.52

FPR(%)@0.1%TPR 0.00 0.00 0.02 0.00 0.01

FPR(%)@1%TPR 0.00 0.00 1.05 0.22 0.69

Min-K

AUC-ROC 0.52 0.52 0.52 0.53 0.52

FPR(%)@0.1%TPR 0.00 0.38 0.00 0.00 0.00

FPR(%)@1%TPR 0.00 1.17 0.00 0.24 0.00

Min-K++

AUC-ROC 0.53 0.52 0.52 0.54 0.52

FPR(%)@0.1%TPR 0.00 0.38 0.00 0.00 0.00

FPR(%)@1%TPR 0.00 1.17 0.00 0.24 0.00

Gradient-Norm

AUC-ROC 0.63 0.60 0.58 0.54 0.55

FPR(%)@0.1%TPR 3.49 3.31 4.57 3.13 3.22

FPR(%)@1%TPR 8.87 9.93 11.28 8.49 7.98

Table 4.6: Overall attack effectiveness across different LLMs fine-tuned with LoRA (SQL).

We present in Tables 4.9-4.11 the quantitative results of the utility (measured by model ac-

curacy) and attack performance (evaluated with AUC-ROC) when comparing different adap-

tation methods across different data sizes (Table 4.9), fine-tuning epochs (Table 4.10), and

model sizes (Table 4.11) on the CorpClimate dataset. We use by default the OPT-6.7B model

as the target LLM. These results are supplementary to Figures 5 & 6 in the main paper.
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Attack Method Metric
Model

T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood

AUC-ROC 0.63 0.61 0.61 0.58 0.56

FPR(%)@0.1%TPR 1.89 2.32 2.17 0.70 1.28

FPR(%)@1%TPR 10.08 11.12 13.67 5.92 6.01

Likelihood-ref

AUC-ROC 0.70 0.71 0.73 0.71 0.70

FPR(%)@0.1%TPR 5.85 6.43 5.87 3.08 3.25

FPR(%)@1%TPR 16.62 21.11 15.44 13.31 12.99

Zlib Entropy

AUC-ROC 0.62 0.62 0.63 0.66 0.63

FPR(%)@0.1%TPR 1.85 4.56 3.17 2.98 4.14

FPR(%)@1%TPR 7.73 14.64 10.05 8.85 12.21

Neighborhood

AUC-ROC 0.67 0.64 0.62 0.63 0.65

FPR(%)@0.1%TPR 1.81 2.33 2.18 1.59 5.54

FPR(%)@1%TPR 5.42 9.96 8.87 10.07 11.12

Min-K

AUC-ROC 0.50 0.58 0.56 0.58 0.53

FPR(%)@0.1%TPR 0.00 1.64 0.81 0.68 0.00

FPR(%)@1%TPR 0.00 7.90 1.82 2.79 0.00

Min-K++

AUC-ROC 0.51 0.58 0.56 0.57 0.54

FPR(%)@0.1%TPR 0.00 2.04 1.01 0.73 0.00

FPR(%)@1%TPR 0.00 6.54 3.99 4.24 0.00

Gradient-Norm

AUC-ROC 0.73 0.71 0.72 0.71 0.71

FPR(%)@0.1%TPR 5.73 6.22 5.86 5.99 4.83

FPR(%)@1%TPR 14.98 18.69 17.41 18.16 15.52

Table 4.7: Overall attack effectiveness across different LLMs fine-tuned with LoRA (Sujet Finance).

Attack Method Metric
Model

T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood-based

AUC-ROC 0.59 0.58 0.57 0.58 0.61

FPR(%)@0.1%TPR 1.19 1.41 1.08 1.08 2.87

FPR(%)@1%TPR 9.08 5.69 4.99 5.19 8.83

Zlib Entropy-based

AUC-ROC 0.65 0.63 0.62 0.56 0.63

FPR(%)@0.1%TPR 2.59 3.18 2.02 0.63 1.16

FPR(%)@1%TPR 10.07 9.89 8.88 3.94 9.46

Neighborhood

AUC-ROC 0.62 0.65 0.61 0.63 0.65

FPR(%)@0.1%TPR 1.64 3.13 1.11 1.26 2.89

FPR(%)@1%TPR 6.07 7.25 6.01 6.35 7.77

Min-K-based

AUC-ROC 0.57 0.61 0.59 0.63 0.62

FPR(%)@0.1%TPR 1.02 2.08 2.21 2.53 3.03

FPR(%)@1%TPR 2.13 5.19 6.21 7.77 8.12

Min-K++-based

AUC-ROC 0.59 0.62 0.65 0.65 0.66

FPR(%)@0.1%TPR 2.15 2.61 2.97 3.33 3.59

FPR(%)@1%TPR 3.34 5.92 6.48 8.09 8.15

Refernce-based

AUC-ROC 0.72 0.74 0.75 0.72 0.70

FPR(%)@0.1%TPR 6.79 7.82 7.19 6.48 6.14

FPR(%)@1%TPR 15.03 19.88 18.75 16.87 15.33

Gradient-Norm-based

AUC-ROC 0.72 0.73 0.71 0.72 0.72

FPR(%)@0.1%TPR 6.79 6.94 6.48 6.82 7.05

FPR(%)@1%TPR 14.09 17.18 18.44 15.02 16.63

Table 4.8: Overall attack effectiveness across different LLMs fine-tuned with LoRA (CorpClimate).
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Metric Data Size
Adaptation Technique

Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

25%(2790) 0.424 0.549 0.523 0.526 0.519 0.531 0.479

50%(5580) 0.521 0.558 0.541 0.579 0.542 0.563 0.562

75%(8370) 0.653 0.657 0.652 0.654 0.647 0.655 0.652

full(11159) 0.674 0.669 0.668 0.671 0.665 0.671 0.666

Attack AUC

25%(2790) 0.794 0.769 0.761 0.76 0.758 0.749 0.745

50%(5580) 0.759 0.759 0.755 0.752 0.749 0.748 0.741

75%(8370) 0.757 0.755 0.753 0.749 0.746 0.742 0.731

full(11159) 0.751 0.751 0.749 0.747 0.737 0.737 0.729

Table 4.9: Comparison of various adaptation techniques across different fine-tuning dataset sizes (Cor-

pClimate) on the OPT-6.7Bmodel. The attack AUC-ROC is evaluated using the Likelihood-

ref approach. The shaded column indicates the varying dataset sizes (ranging from 25% to

the full dataset) used for adapting the model, with the absolute number of samples presented

in brackets.

Metric Epoch
Adaptation Technique

Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

1 0.404 0.436 0.444 0.595 0.503 0.447 0.442

2 0.508 0.528 0.525 0.653 0.588 0.556 0.547

3 0.597 0.577 0.597 0.664 0.642 0.596 0.617

4 0.668 0.622 0.656 0.669 0.657 0.651 0.661

5 0.673 0.669 0.673 0.671 0.664 0.669 0.669

Attack AUC

1 0.679 0.651 0.649 0.644 0.641 0.638 0.633

2 0.709 0.698 0.688 0.685 0.673 0.67 0.655

3 0.748 0.744 0.739 0.724 0.711 0.707 0.696

4 0.753 0.751 0.746 0.739 0.737 0.737 0.735

5 0.755 0.753 0.752 0.747 0.745 0.742 0.741

Table 4.10: Comparison of different adaptation techniques across various fine-tuning epochs (CorpCli-

mate) on the OPT-6.7Bmodel. The attack AUC-ROC is evaluated using the Likelihood-ref

approach. The shaded column indicates the varying fine-tuning epochs (ranging from 1

to the default value of 5) used for adapting the model.

Metric Model (Size)
Adaptation Technique

Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

OPT-125M 0.669 0.663 0.651 0.661 0.645 0.652 0.641

OPT-350M 0.673 0.671 0.653 0.661 0.656 0.661 0.643

OPT-1.3B 0.673 0.675 0.662 0.663 0.666 0.665 0.649

OPT-2.7B 0.678 0.681 0.665 0.667 0.667 0.671 0.653

OPT-6.7B 0.685 0.681 0.669 0.671 0.673 0.675 0.672

Attack AUC-ROC

OPT-125M 0.699 0.693 0.689 0.683 0.681 0.677 0.668

OPT-350M 0.714 0.704 0.691 0.688 0.685 0.681 0.668

OPT-1.3B 0.721 0.713 0.709 0.694 0.689 0.688 0.679

OPT-2.7B 0.727 0.719 0.717 0.711 0.702 0.694 0.688

OPT-6.7B 0.767 0.751 0.749 0.747 0.741 0.738 0.735

Table 4.11: Comparison of different adaptation techniques across various model sizes (CorpCli-

mate). The attack AUC-ROC is evaluated using the Likelihood-ref approach. The

shaded column indicates the varying target model size (ranging from 125M to the default

value of 6.7B).
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5.1 Introduction
Machine learning techniques are increasingly integrated into daily routines, e.g., with rec-

ommendation systems [44] or medical diagnosis techniques [45], to improve quality of life.

However, the success of machine learning techniques relies on the availability of data, and

human-level machine intelligence cannot be achieved without big data as training sets. Ac-

cordingly, there is an increasing demand for data sharing to improve model performance. For

example, financial companies can dramatically improve their customer risk prediction models

with customer data from other banks. However, accessing such data from other organizations

is very difficult [46, 47], since data is regarded as a key asset by every organization. In addi-

tion, governments are issuing more and stricter policies, e.g., GDPR, that decrease the flow of

information across organizational boundaries.

In early 2016, Google proposed a new artificial intelligence (AI) technique, federated learn-

ing (FL), to address the data sharing problem [48]. FL is a collaborative learning technique

that trains a global model using data from multiple participants [48]. Unlike traditional collab-

orative learning, the training of FL models does not require a centralized server to collect the

data stored by each participant. Instead, to train FL models, the participants keep data locally,

and only intermediate data, e.g., gradients, are shared. Therefore, FL promotes the cooperative

training of models among different organizations without requiring each organization to share

original data. However, even though the original data is not shared during FL model training,

significant data leakage risks exist [49].

FL has two important variants, horizontal FL (HFL) and vertical FL (VFL), which differ

with regard to label ownership. In HFL, each participant can access the entire model and their

own labels, while in VFL, the participants can only access part of the model and only one

participant owns labels. Previous studies [50, 51, 52] investigated the risks of leakage of train-

ing data in FL, focusing on HFL. In contrast, only a small number of articles have examined

the risks of training data leakage in VFL. These risks turn out to be more problematic in the

VFL setting compared to the HFL setting [53, 47]. Not only is VFL more widely used than

HFL [54], VFL applications are usually associated with highly sensitive data, e.g., financial

and government data, where data leakage is a serious concern [55, 56]. To the best of our

knowledge, no comprehensive privacy risk analysis, including leakage of labels and features,

has been conducted in the context of VFL training. Additionally, all related studies were con-

ducted in non-encryption-based VFL training frameworks [57, 58, 59]. However, it is critical
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to understand how much data from each participant may be leaked during the VFL training

process using practically relevant encryption-based training frameworks.

To fill this research gap, we conduct a systematic analysis of data leakage risks in the VFL

training stage. In particular, we propose a simple yet efficient posterior-difference-based attack

approach, VFLRecon, to reconstruct labels and features during VFL training. An adversarial

participant can apply the posterior difference of a bottommodel between two consecutive train-

ing steps to reconstruct the labels or features owned by other participants. Following practical

threat model assumptions [34, 61, 52], we assume that the adversarial participants are “honest-

but-curious”, which means that they contribute truthfully to the VFL training. However, the

adversarial participants are capable of recording any intermediate information related to their

bottom model updates during VFL training, which can be considered the most realistic sce-

nario [61].

To ensure the practical relevance of our work, we evaluate VFLRecon on diverse open-

source benchmark datasets ranging from tabular data to images, namely, Sensorless Drive

Diagnosis [63], Criteo [64], CIFAR-10 [65], BHI [66], Avazu [67], and CelebA [68]. The ex-

periments are conducted using VFL training frameworks including non-encryption-based and

encryption-based operations (encrypted aggregation) [69]. The experimental results show that

VFLRecon achieves consistent effectiveness in reconstructing training samples during VFL

training. We find that the adversarial participants can reconstruct labels with very high accu-

racy (i.e., >92% in Criteo) in neural-network-based (NN-based) VFL model training without

encryption-based operations when they have half of the features of the training samples. Fur-

thermore, VFLRecon can efficiently reconstruct the features of tabular data from other partic-

ipants with a very small mean square error (MSE), e.g., 0.05 in Criteo, in the same setting.

Besides tabular data, we also demonstrate that VFLRecon can effectively reconstruct the im-

ages held by other participants, with an MSE of 0.04 and 0.03 in CIFAR-10 and BHI, respec-

tively. Surprisingly, similar results are reached in VFL model training with encryption-based

aggregation protection. As such, our study reveals that encryption operations are not effective

in preventing data leakage in VFL training, thereby highlighting the necessity of designing a

more dedicated defense method.

While standard encryption aggregation in VFL training is shown to be ineffective against

VFLRecon, we propose a gradients-obfuscation-based approach, VFLDefender, to mislead ad-

versaries. Indeed, the experimental results demonstrate that we can effectively reduce the

correlation between model updates and the input samples. Specifically, the accuracy of recon-

structed labels decreases substantially from 0.86 to 0.69, while the MSE increases from 0.01

to 0.14 (shown in Table 5.6).

Our paper makes the following contributions:

• We present the first comprehensive analysis of data leakage risks in VFL training. In

particular, we propose a novel, simple yet effective attack, VFLRecon, to demonstrate

the serious leakage risks with regard to labels and features in VFL training.

• Moreover, ourwork highlights that standard encryption-based aggregation techniques

are not capable of preventing data leakage during NN-based VFL training.
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Figure 5.1: Neural-network-based VFL model architecture.

• Based on our findings, we propose a gradients-obfuscation-based defense approach,

VFLDefender, which can effectively protect each VFL participant’s training data pri-

vacy.

The rest of this paper is organized as follows: Section 5.2 introduces the background of

this work, and Section 5.3 discusses prior research. Section 5.4 details our methodology, and

Section 5.5 presents our experimental setup and data collection. Section 5.6 reports the results

and a discussion of our attack evaluation. Section 5.7 demonstrates the approaches, which

mitigate the data leakage risks. Section 5.8 analyzes and discusses the defense performance.

Section 5.9 discusses potential limitations, and Section 5.10 presents the threats to validity of

our study. Finally, Section 5.11 concludes this paper.

5.2 Background
In this section, we introduce the background of our work considering primarily two aspects:

vertical federated learning, and encryption-based vertical federated learning training.

5.2.1 Vertical Federated Learning (VFL)
Vertical federated learning is a distributed machine learning framework, which aims at train-

ing an AI model across different participants who share the same sample spaces rather than

feature spaces [169]. Figure 5.1 shows a general architecture of NN-based VFL models. In the

VFL setting, each participant holds different features or labels belonging to the same samples.

Participants are divided into two groups based on whether they own labels. In general, a par-

ticipant with labels is categorized as an active participant; otherwise, as a passive participant.

Suppose that we have two participants, A and B, where only participant B owns labels. The
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general NN-based VFL model is then defined as:

Y = h(g(X A; θA), g(X B; θB); θt) (5.1)

where X A and X B are the features owned by participants A and B, respectively. θA and θB are
the parameters of bottom models g owned by participant A and participant B, respectively. θt
are the parameters of the top model h. Note that the top model is only owned by participant B
with data labels.

In general, NN-based VFL models can be trained with the following steps. First, each bot-

tommodel takes their local data’s features as input to run a forward pass calculation and output

the representations of their local features. After that, they upload those representations (refer to

embedding) to the topmodel. Next, the topmodel aggregates all uploaded representations from

each bottom model to compute the final predictions. Comparing the predictions with ground-

truth labels, the top model further calculates the gradients with respect to the loss. Then, the

gradients are back-propagated to each bottom model from the top model, enabling the VFL

model to make an update.

5.2.2 Encryption-based Vertical Federated Learning Training
In general, during the VFL training, each participant sends their local data representations

(output of the bottom model) to the top model via plaintext. However, embedding-sharing

has been shown to lead to the leakage of original data [170, 171]. As the output of a bottom

model is an embedding of the local data from one participant, it is risky to send those outputs

to the top model directly without applying any protection mechanisms. As a solution to this

problem, encryption techniques, such as additively homomorphic encryption, can protect the

bottom model output, allowing the top model to calculate loss and gradients without using the

plaintext output from the bottom models [69].

With the notation from Table 5.1, we can introduce the encryption mechanisms applied in

VFL training. We use [·] to represent an encryption operation. The working process can be

described as follows. z is the first layer output of the top model, which is associated with each
bottom model’s output. The goal of privacy preservation is to calculate z without knowing

the value of a bottom model’s output. First, participant A encrypts its bottom model output,

[αA], and then uploads it to the top model. Second, the top model generates a noise εB and

computes [zA] = [αA] ∗ WA and zB = αB ∗ WB. Next, the top model sends [zA + εB] =
[zA] + εB to participant A in order to decrypt zA; meanwhileWA is protected from being seen

by participant A. Next, participant A decrypts [zA + εB] and sends zA + εB + αA ∗ εacc, where
εacc is a hyper-parameter ranging from 0 to 1, to the top model. Afterwards, since the noise εB
can be eliminated, the top model can calculate its first layer output z = σ(zB + zA +αA ∗ εacc).
Then, the top model uses z as input to run its forward pass to compute the final prediction.

5.3 Related Work
In this section, we present related prior research regarding two aspects: 1) privacy attacks in

federated learning, and 2) privacy protections in federated learning.
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Notation Description

αA Participant A’s output

αB Participant B’s output

σ Activation function, e.g., Relu, Tanh, etc.

WA Weights that connect αA and first layer of top model

WB Weights that connect αB and first layer of top model

Table 5.1: Summary of Notations

5.3.1 Privacy Attacks in Federated Learning
The training of AI models typically relies on a larger amount of collected data raising height-

ened concerns about training data leakage. Several works explore data leakage of training

data in the HFL setting [172, 52], as well as attacks to identify whether an example is used

in the HFL model’s training set [34]. In particular, many successful data inversion attacks

to reconstruct the HFL model’s input data with only the gradients’ information have been re-

ported [173, 174].

Further, various privacy attacks have been proposed against HFL, including membership

inference, and properties inference, etc. In membership inference [175, 34, 128], the attacker

aims to infer whether a data sample is included in another participant’s training dataset. Proper-

ties inference [175] focuses on reconstructing the data samples belonging to other participants

via the intermediate information exchanged.

In contrast to HFL, very few studies have explored the privacy risks in VFL focusing primar-

ily on data leakage in the VFL inference phase. Yang et al. [176] construct a feature reconstruc-

tion attack based on trained VFL models by minimizing the distance between the predictions

from reconstructed features and target features using zeroth-order gradient estimation. Luo

et al. [60] study the feature reconstruction attacks during VFL inference, focusing on logistic,

tree-based, and NN-based models, while Fu et al. [58] proposed a label reconstruction attack

by fine-tuning a trained bottom model in a semi-supervised manner to predict the sample la-

bels. Importantly, these approaches can only be applied after the VFL model has been trained

and are not feasible during the model training phase.

In addition, Fu et al. [58] have also presented several attempts to analyze the potential label

leakage risk in the VFL training phase. However, their work is only applicable for reconstruct-

ing training labels when the top model (server) is non-trainable or when assuming non-honest

adversary participants. Although these situations might arise in extreme cases, they are gener-

ally deemed impractical as the common practice requires the top model to be trainable and the

participants to be honest, i.e., to faithfully adhere to the training protocol under performance

supervision. Besides, Li et al. [59] exploit the norm of gradients in split learning to reconstruct

labels during model training. The key limitation of [59] is that they solely support two-party

scenarios in which one participant only holds labels, and the other only holds features. More-

over, [59] is restricted to binary classification tasks. Finally, Ye et al. [177] investigate binary

feature reconstructing by solving the linear equations in training, but it is only applicable for

scenarios in which the feature-holding participants contain at most one layer of neural network

trainable parameters, rendering it an unrealistic setup.
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To the best of our knowledge, no comprehensive privacy risk analysis, including leakage

of labels and features, has been conducted in the context of VFL training. Additionally, all

existing related studies are conducted in non-encryption-basedVFL training frameworks. Note

that data leakage in VFL training is generally regarded as amore serious issue than data leakage

during VFLmodel inference [178]. Furthermore, although recent work [58, 59, 177] attempted

to assess label or feature leakage risks in VFL training, the authors concentrated on particular

cases of VFL models for very narrow application scenarios, e.g., binary classification, and

binary features. Different from prior works on VFL leakage risk analysis, this paper explores

label and feature leakage risks in the VFL training process, that applies to any NN-based model.

5.3.2 Privacy Protections in Federated Learning
Many prior approaches have been introduced to prevent training data leakage in federated

learning. The approaches can be categorized into two categories. The first category is data sa-

tinization [179, 180], e.g., k-anonymization, to remove sensitive information from the training

data to reduce the capability of an adversary to obtain or infer sensitive information about the

training data. The other category aims to protect the training data from AI model training by

adding random noise in the model training process, e.g., differential privacy (DP) [181, 182].

Ranbaduge et al. [183] study the trade-off between model utility and privacy loss in a (ε, δ)-
differential privacy setting for VFL model training. The DP-based noise can be added to the

model input, gradients, and loss functions [182, 184]. Complementing the DP-based defense

strategy, Ye et al. [177] propose a protocol to add Gaussian-based noise to the output of each

bottom model. However, their defense strategies only protect categorical features.

FL training requires gradients-related information to be exchanged between each participant.

However, prior research has shown that the information exchanged can lead to privacy leak-

age [185, 186, 175, 187]. Encryption-based exchange is a solution for protecting information

exchanged. Secure multi-party computation (SMC) is one type of encryption technique that

runs secret computations among multiple participants [188]. In early 2016, Google proposed a

gradient aggregation algorithm based on SMC to prevent data leakage fromHFL training [189].

This prevents the server from obtaining the exact gradient value of each participant. Further-

more, SMC combined with differential privacy allows for HFL training with better privacy

protection guarantees [189, 182].

SMC can also be applied to train different VFL models, e.g., tree-based models. A tree-

based VFL model can be trained using secure aggregation to calculate each candidate node’s

information loss, while the statistics about each node are kept secret to each participant [190].

Prior studies also proposed a solution to aggregate bottom model output with homomorphic

encryption for NN-based VFL training to prevent data leakage [69]. However, our study finds

that the existing encryption solutions cannot prevent data leakage fromNN-basedVFL training.

Therefore, our work proposes a gradient-perturbation-based defense technique to protect data

privacy during VFL training.
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Figure 5.2: An overview of VFLRecon.

5.4 VFLRecon: Data Reconstruction Attacks
In this section, we analyze the vulnerability of training data protection in the VFL training stage

and present our attack, VFLRecon, to better understand the potential impact of adversarial

participants in reconstructing training data, i.e., labels and features, from other participants

during the VFL training process.

5.4.1 Training Data Leakage Risks in Vertical Federated Learning
In the VFL setting, each participant is not able to directly obtain the features or labels of the

records with identical sample IDs from other participants. However, it does not mean it is

impossible for one participant to reconstruct the features or labels from other participants in

the model training phase. Suppose that L refers to the loss function of the NN-based VFL

model, while the adversarial participants hold features X adv and bottom model g with parame-
ters θadv. Eq. 5.2 represents the gradient calculation of the adversarial bottom model. It clearly

shows that those gradients, i.e., ∂L
∂θadv

with respect to adversarial participants’ bottom model,

are associated with the other participants’ bottom model output (b2), top model output and

ground-truth label. In other words, the distribution (model parameters) changes in the bottom

model are correlated with the features and labels from other participants. This offers an attack

surface for the adversarial participants to reconstruct other participants’ data samples (features

or labels). Therefore, this may lead to serious training data leakage in the VFL training stage.

∇θadvL =
∂L
∂h
∇θadvh(badv, bvict; θtop)|badv=g(X adv;θadv);bvict=g(X vict;θvict) (5.2)

Additionally, VFL models are widely deployed between large entities with a significant

share of overlapping user populations, e.g., banks and e-commerce companies [54]. At the

same time, customer data is not only subject to strict government regulations, but it is also

an important component of entities’ core competitiveness strength. Therefore, it is crucial to
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analyze the potential training data leakage risks during VFL training. This also enables us to

design better privacy-preserving mechanisms for VFL training protection.

5.4.2 Threat Model
Similar to prior studies [59, 60, 61], we assume the adversaries to be honest-but-curious par-

ticipants who can hold the data label or not. In this context, “honest-but-curious” means that

the adversarial participants may exploit the known information related to their own bottom

model update to conduct a data reconstruction attack without deviating from the prescribed

training protocols. To carry out VFLRecon, the adversaries train an additional model (i.e.,

a shadow model) with the assumptions categorized by different attack goals, i.e., label and

feature reconstructions.

Threat model: In label and feature reconstruction scenarios, the adversaries have the fol-

lowing common requirements and knowledge:

• Only exploit the known information related to the updates of the self-owned bottom

models, i.e., inputs, parameters, and gradients w.r.t the self-owned bottom models.

• Knowledge about the whole VFL model architecture, which adheres to the typical train-

ing protocols adopted in real-world VFL training pipelines.

• A small dataset consisting of complete data samples (all features and labels), which

follow the same distribution as the training dataset. We refer to this dataset as shadow

data. In Subsection 5.6.3, we discuss practical solutions to acquire these data.

In a real-world scenario, e.g., loan risk assessment, a bank, and an e-commerce company

may want to collaborate to train a model to assess the potential risk associated with granting

a loan to a customer. The personal information held by the bank (i.e., the features) represents

a valuable asset that might be of keen interest to the e-commerce company. In addition, the e-

commerce company may also be interested in the label information from the bank. As such, it

is reasonable to consider the e-commerce company as a potential adversary with the capability

of using VFLRecon. More generally, any vertical federated learning application, where data is

vertically split, is a candidate for feature and label reconstruction attacks during model training.

5.4.3 Algorithm
In this work, we propose an NN-based reconstruction model, R(·), to reconstruct labels or

features from other participants. During VFL model training, the adversarial participants run

R(·) by measuring the posterior difference of the bottom model distributions. We represent

the posterior difference of the bottom model distribution using the bottom model output’s gra-

dients (δadvg ), as well as the weights and bottom model outputs before (θadv, g(X adv; θadv)) and
after (θ′adv, g(X adv; θ′adv)) bottom model update. In order to model the correlation between

those posterior differences and their training samples in two consecutive training steps, we

first simulate the VFL shadow model training process to collect the necessary data that depicts
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the correlation between features or labels of training samples and the bottom model’s distri-

bution changes during VFL training. Then, we use the collected data to train an NN-based

reconstruction modelR(·) as attackers. The reconstruction loss is defined as:
Lf

r=‖R(δadvg , g(X adv; θadv), g(X adv; θ′adv), θadv, θ
′
adv,X adv)−X vict‖22 (5.3)

whereR(·) is the reconstruction model that can be an arbitrary NN-based model. Moreover,

X adv and X vict are the raw features of the adversarial participants and victim participants, re-

spectively. Note that Eq. 5.3 is not suitable for measuring the success of classification tasks.

Therefore, in label reconstruction, the loss function is changed as follows:

Ll
r=−Ey(y logR(δadvg , g(X adv; θadv), g(X adv; θ′adv), θadv, θ

′
adv,X adv)) (5.4)

5.4.4 Data Reconstruction Attacks
To simplify, we adopt the commonly used framework where adversarial participants own at

least one bottommodel. Note that VFLRecon can be seamlessly adapted to reconstruct features

or labels when the adversarial participants only hold the top model. Algorithm 3 describes the

whole process of constructing VFLRecon to run a specific attack task, reconstructing labels or

features from the victim participants. First, the adversarial participants train the VFL shadow

model from scratch using the shadow data samples, including complete features and labels.

Furthermore, they intentionally record the required information related to the bottom models’

distribution change during the shadow model training. After that, the adversarial participants

train a reconstructionmodel,R(·), using the data collected during the VFL shadowmodel train-

ing. The reconstruction model, R(·), can be applied to reconstruct training samples’ features
or labels in realistic VFL training. More specifically, the whole process of the construction

and application ofR(·) can be structured into three steps, which are shown in Figure 5.2.
Step 1: Collecting data for training the reconstruction model. To collect the data for

training reconstruction models, the initial step is to collect the data related to the bottom

model’s distribution changes and reconstruction target. Those data are generated during the

shadow VFL model training. We construct a VFL shadow model to mimic the realistic VFL

training process and employ the shadow data as training data. Algorithm 3 demonstrates the

details of constructing VFLRecon. We first define an empty set of samples to store all training

records of reconstruction models (Line 1). Next, we iteratively train the VFL shadow model

using the complete features and labels (shadow data) (Lines 2 to 17). During model training,

we feed the same input X adv to the bottom model with parameters before (line 3) and after up-

dating the model (line 9). In addition, we record the data generated during the training process

and save them in samples (lines 10 to 15).

Step 2: Training the reconstruction model. After we finish the data collection, we use the

collected samples from step 1 to train an NN-based R(·) for reconstructing labels or features
from other participants during VFL model training (Line 18). We adjust the model output

based on the different attack tasks, reconstructing labels or features. As a general rule of

thumb, reconstructing the label task takes a sparse vector as the output layer, whereas we take

a dense vector as the output layer for reconstructing feature tasks.

Step 3: Executing reconstruction attacks. During the actual VFL model training, the

adversarial participants record the data related to their bottommodels’ changes at each training
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Algorithm 3: VFLRecon Construction

1 Input: g: Shadow bottom models. θadv and θvict are parameters of adversarial and
victim participants’ bottom models, respectively;

2 h: Shadow top model, with parameters, θt;
3 X : Shadow data with complete features and labels, which is a list of tuples (X adv, X vict,

y);
4 γ: Learning rate.
5 Output: R(·): MLP-based reconstruction model.

1: samples = ∅
2: while (X adv,X vict, y) ∈ X do

3: badv = g(X adv; θadv);
4: bvict = g(X vict; θvict);
5: o = h(badv, bvict; θt) ;
6: L = Loss(o, y) ;

7: δadv =
∂L
∂θadv

;

8: θ′adv = θadv − γ · δadv ;
9: b′adv = g(X adv; θ′adv) ;
10: if reconstruction model target is label then

11: one record = { ∂L
∂badv

, badv, b
′
adv, θadv, θadv

′,X adv, y};
12: else

13: one record = { ∂L
∂badv

, badv, b
′
adv, θadv, θadv

′,X adv,X vict}
14: end if

15: samples = samples ∪ one record;
16: Applying SGD to update θadv, θvict and θt
17: end while

18: R← MLPModel(samples);

19: return R(·);

step to compose the input for R(·). As VFLRecon exploits the changes in the bottom model

during training, the adversarial participants are capable of reconstructing training data samples,

including features and labels from other participants after participating only in one epoch of

training.

5.5 Evaluation Setup
In this section, we present the experimental setup andmetrics to measure the success of VFLRe-

con in reconstructing training samples’ features and labels. We further evaluate VFLRecon on

various datasets ranging from tabular data to images. Moreover, we discuss and analyze the

vulnerability of training data protection during VFL training in the last subsection.
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Dataset Total samples Features Labels

S. Drive Diagnosis 58K 48 11

Criteo 45M 39 2

CIFAR-10 60K 1024 10

BHI 270K 2500 2

Avazu 40M 24 2

CelebA 202K 1024 2

Table 5.2: Overview of datasets.

5.5.1 Experimental Setup
We implement VFLRecon with Pytorch and conduct experiments on a server with four 24GB

Quadro RTX 6000 GPUs and 512GB RAM running Ubuntu 20.04 LTS. We train the NN-

based VFL model in both a general VFL training framework [191] and an encryption-based

VFL training framework [69]. The NN-based VFL model consists of bottom models with two

hidden layers for each participant, where each hidden layer has 50 units. The top model has

two hidden layers, each with 100 units. To reconstruct labels, VFLRecon consists of three hid-

den layers with 1000, 600, and 200 units, respectively. Moreover, VFLRecon has three hidden

layers with 800, 500, and 100 units, respectively, when it is applied to reconstruct features.

To train the NN-based VFL model and VFLRecon, we use Adam [192] as an optimizer and

“He Uniform” [193] as the initializer. The initial learning rate is set to 0.001. We conduct our

label and feature reconstruction experiments on six well-known benchmark datasets, including

three tabular datasets (Sensorless Drive Diagnosis, Avazu and Criteo) and three image datasets

(CIFAR-10, BHI and CelebA). The overview of our datasets is shown in Table 5.2. We sep-

arate the original datasets into two disjointed parts, i.e., a small partial dataset (shadow data)

and a large partial dataset (normal VFL model training). The VFL shadow model simulates

the training process of the VFL model to generate data for VFLRecon training using the small

amount of shadow data. The larger partial dataset is employed for VFL model training, which

serves as the target that VFLRecon aims to reconstruct.

To better understand the vulnerability of training data protection during a VFL training pro-

cess, we conduct further experiments in a setting with encryption-based privacy-preserving

VFL training algorithms [194]. The experiments are conducted with the open-source FATE

platform [195].

5.5.2 Datasets
In this subsection, we give a brief description of the datasets listed in Table 5.2.

Sensorless Drive Diagnosis is a dataset containing 58,509 data records related to drive

signals. Each record has 48 features. The records are categorized into 11 classes.

Avazu is a benchmark dataset for click-through rate (CTR) prediction tasks. It contains

around 40 million online ad impressions, each labeled as clicked (1) or not clicked (0). The

dataset includes 24 features. In this work, we conduct empirical experiments on 500k data

records with balanced sampling from the original data.

CelebA is a large-scale face attributes dataset containing 200k RGB images, which are

aligned using facial landmarks. This involves randomly selecting a subset of images, center-

77



5 Data Protection in Vertical Federated Learning

cropping them, and resizing them to a resolution of 32×32 for training the models and evalu-
ating the attacks.

Criteo is a public dataset that contains user click histories, which is used for recommen-

dation system tasks. The recommendation scenario is a practical application of VFL. The

original dataset contains billions of user records. Limited by our computing resources, we

sample 500,000 data records from the original dataset to conduct our analysis.

CIFAR-10 is a well-known label-balanced dataset and contains 60,000 images categorized

into 10 classes, each of which consists of 6,000 images.

BHI is a medical dataset that only includes breast cancer images. Each patient’s X-rays are

distributed among multiple hospitals. We conduct image reconstruction tasks on this dataset.

To conduct reconstruction attacks using VFLRecon, we sample a very small amount of data

from each dataset, e.g., 1000 records, to generate shadow data that can be accessed by adver-

sarial participants.

5.5.3 Evaluation Metrics
To understand the vulnerability of training data protection in VFL training, we use the follow-

ing metrics to measure how successfully the adversarial participants can apply VFLRecon to

reconstruct labels or features owned by other participants during VFL model training.

Accuracy is applied to evaluate the performance of label reconstruction. Accuracy calcu-

lates the percentage of correctly reconstructed labels from the whole training set.

Accuracy =
the number of correctly classified labels

the number of all labels
(5.5)

Mean Square Error (MSE) is a metric to compare the difference between training features

and reconstructed features. We use MSE to measure the performance of the feature reconstruc-

tion attack. Suppose that yi is a ground-truth value, ŷi is the predicted value, n is the number

of records, then the MSE can be calculated as:

MSE =

∑
(yi − ŷi)2

n
(5.6)

5.6 Attack Evaluation
In this section, we evaluate how successfully VFLRecon can reconstruct other participants’

partial features and labels duringVFLmodel training. In addition, we provide a comprehensive

understanding of the vulnerability of training data protection at the VFL training stage. We

start by assessing the success of reconstruction attacks on features and labels with six very

different benchmark datasets, ranging from tabular data to images. After that, we analyze the

potentially significant factors that led to the success of VFLRecon. The data and code are

available at https://sites.google.com/view/vflrecon/vfl-reconstruct.

5.6.1 VFLRecon for Reconstructing Labels
To determine how much label information can be leaked during VFL training, we first ran-

domly sampled a small amount of data from the whole dataset as shadow data. After that, we
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locally trained an NN-based VFL shadow model and collected the data containing the bottom

model snapshots and gradients during model updates. In particular, to discover the vulnera-

bility of training data protection in general VFL training, we conducted experiments on both

non-encryption-based and encryption-based VFL training settings.

To evaluate the effectiveness of VFLRecon, we ran our label reconstruction attack experi-

ments on NN-based VFLmodels on the six datasets presented in Subsection 5.5.2. We utilized

accuracy as the metric to evaluate the success of the label reconstruction attacks. Due to the

relative absence of related work in VFL privacy research on protecting training data, we em-

ployed a common and intuitive approach to formulating a baseline. That is, we reconstruct

labels from other participants based on a prediction model trained using shadow data. Specif-

ically, we train a baseline attacker model to predict the labels of the training samples using

shadow data as training data. The adversary’s features serve as input for this baseline attacker,

while the training samples’ labels are the output. We also compare our approach to prior

studies [58] and [59]. [58] proposes one attack approach related to label reconstruction during

model training, focusing on the scenario where the top model serves as an aggregation function

without any trainable parameters. Similarly, [59] can only be applied to two-party scenarios

in which one participant holds labels only, and the other holds features only. To demonstrate

the effectiveness of our approach and make a fair comparison, we tailor our approach to their

scenarios.
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Figure 5.3: The label reconstruction attacks on different datasets. S.Diagnosis refers to the Sensorless

Drive Diagnosis dataset. “w.en.” is the target model trained in an encryption-based VFL

training framework, and “w/o.” is the model trained in a non-encryption-based VFL train-

ing framework.

Results: VFLRecon can effectively reconstruct labels in different types of datasets, e.g.,

tabular data and images. Figure 5.3 shows that VFLRecon performs significantly better than

the baseline attacks across all datasets, regardless of the data type. The adversarial participants,

only owning half of the samples’ features, can create a VFL shadow model with 100 complete

data samples (including all features). When the batch size is 16 for the VFL shadow model

training, the accuracy of label reconstruction is over 85% for all six datasets. Especially, in the

two common benchmark datasets Avazu and CelebA, VFLRecon can achieve an accuracy of
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around 90% in label reconstruction. However, as can be seen in the figure, with the increasing

complexity of the dataset, the label reconstruction accuracy decreases from 92% (Criteo) to

85% (CIFAR-10).

VFLRecon can effectively reconstruct labels in both encryption-based and non-encryption-

based VFL training frameworks. Note that encryption-based training frameworks are con-

sidered secure methods to prevent data leakage in the model training stage [186, 52]. However,

Figure 5.3 shows that our approach achieves a very similar performance when reconstructing

labels in the encryption-based VFL training setting (i.e., an average accuracy of 87.75%) and

the non-encryption-basedVFL training setting (i.e., an average accuracy of 87.75%) for both

tabular and image data. The results indicate that encryption-based VFL frameworks are not

capable of preventing label leakage during training. VFLRecon effectively reconstructs the la-

bels from other participants. Additionally, VFLRecon shows that the existing encryption-based

frameworks also suffer from weak training data protection in the VFL training stage.

Criteo Avazu CelebA Average

Li et al. [59] 88.62% 82.64% 86.49% 85.92%

Ours 91.24% 89.45% 90.08% 90.26%

Table 5.3: Label reconstructions over Criteo, Avazu, and CelebA datasets during VFL training.

VFLRecon is a more generic approach to measuring the leakage risks of training sam-

ple labels. Table 5.3 presents the experimental results for the approach from prior work [59]

and our approach. The results show that VFLRecon achieves a better accuracy of 91.24%,

89.45%, and 90.08% compared to [59] with an accuracy of 88.62%, 82.64%, and 86.49% in

datasets Criteo, Avazu, and CelebA, respectively. Additionally, compared with [58] in the Sen-

sorless Drive Diagnosis dataset, when the top models are non-trainable (only aggregation), the

label reconstruction accuracy of [58] can reach 100%while VFLRecon reaches 96%. However,

when the top models are trainable (which is the common practice), the label reconstruction ac-

curacy from [58] decreases from 100% to 56%, while VFLRecon still reaches an accuracy of

92%. We find that when increasing the number of layers in the topmodel, [58] shows gradually

diminishing effectiveness.

Remark: The labels of training samples are prone to leakage to other participants during

VFL training. The standard encryption mechanisms applied in VFL training cannot protect

those labels.

5.6.2 VFLRecon for Reconstructing Features
Training samples including features and labels are regarded as a key asset for many organiza-

tions. We have shown that our proposed approach, VFLRecon, is capable of reconstructing the

labels of training samples from other participants during VFL training. Besides effective label

reconstruction, to understand how much information about samples’ features may be leaked

during VFL training, we investigate whether VFLRecon can effectively reconstruct the train-

ing data features from other participants during VFL training. In other words, we focus on
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studying whether the bottom model changes disclose information about features from other

participants.

To investigate howwell the adversarial participants can reconstruct the training data features,

we first trained a VFL shadow model to collect the required data introduced in Section 5.4 as

the training data of VFLRecon. In particular, we assumed that the adversarial participants own

half of the features of the training samples during VFL training. Moreover, to examine the

essential weakness of training data feature protection in VFL training, we also ran the feature

reconstruction in both encryption-based and non-encryption-based training settings.

The features in the original dataset might be independent or correlated to each other. The

correlation between features contains sensitive information about the training samples and

poses serious privacy leakage risks. For example, the income feature may have a positive

correlation with age features in a company dataset owned by a VFL participant. If adversaries

have prior knowledge about the individuals’ age, it is easy to infer who earns more than others

in that company. Therefore, we also evaluated whether VFLRecon can reveal the correlation

between features.

Similar to label reconstruction, we assessed feature reconstruction on NN-based VFL mod-

els in six different datasets. For the experiments on CIFAR-10, each participant possessed

one part of an image. The participants then collaborated to predict the content of the images.

The adversaries can apply VFLRecon during the collaboration. We used MSE as a metric to

measure the success of feature reconstruction attacks.

In line with the label reconstruction evaluation in Subsection 5.6.1, we took the model that

reconstructed the features of other participants based only on the features possessed by the

adversarial participants as the baseline. Furthermore, to investigate whether the reconstructed

features retained the correlation between features in the original samples, we separately cal-

culated the correlation scores between each pair of features for the original and reconstructed

samples.

Results: VFLRecon can effectively reconstruct features in both tabular and image data in

both encryption-based and non-encryption-based frameworks. Figure 5.4 shows that our

approach has a much lower MSE than the baseline approach in both VFL training frameworks,

indicating the high quality of the reconstructed features. In addition, VFLRecon performs well

across different datasets, ranging from tabular to image data (see Figure 5.4), and it performed

similarly for encryption-based (i.e., an average MSE of 0.03) and non-encryption-based

(i.e., an average MSE of 0.04) frameworks. The minimum MSE (0.01) is achieved for the

Sensorless Drive Diagnosis dataset, in both settings.

In general, image reconstruction is more challenging than tabular data reconstruction due

to the inherent complexity introduced by the increased feature dimensionality. Nevertheless,

our experiments show that VFLRecon can faithfully recover images up to a high degree of

similarity to their original counterparts. The feature reconstruction MSEs in the encryption-

based environment are 0.04, 0.03 and 0.01, with the baseline being 0.23, 0.25 and 0.22, in the

CIFAR-10, BHI and CelebA datasets, respectively. Figure. 5.5 visualizes the reconstructed

images for the CelebA dataset when adversaries hold half of each image. The models were

trained without encryption techniques.

VFLRecon is able to reconstruct the hidden correlation between features. Figure 5.6 de-

picts the correlation (using the Pearson correlation coefficient) between features in the original
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Figure 5.4: The feature reconstruction attacks on different datasets. S.Diagnosis refers to the Sensor-

less Drive Diagnosis dataset. “w.en.” is the target model trained in an encryption-based

VFL training framework, and “w/o.” is the model trained in a non-encryption-based VFL

training framework.
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Figure 5.5: The visualization of image reconstruction in CelebA.

dataset and the reconstructed features using VFLRecon. As shown in Figure 5.6, VFLRecon

can effectively reconstruct the correlations between features. For example, feature 3 has a

correlation of -0.45 to feature 4 in the original dataset. In our reconstructed features, the corre-

sponding correlation is -0.25. These results suggest a high utility of the reconstructed features

for downstream tasks by the adversary. Furthermore, the reconstructed features provide a po-

tential attack surface for model property inference attacks.

Remark: Training data features can easily leak to adversarial participants during VFL train-

ing, and standard encryption mechanisms may be insufficient to prevent such leakage. Ad-

ditionally, the correlation between the features can be reconstructed with high accuracy.
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5.6.3 Discussion
In this subsection, we investigate further influencing factors impacting the vulnerability of

training data protection in VFL training. The previously illustrated experimental results al-

ready reveal that VFLRecon can successfully reconstruct labels and features from other par-

ticipants during VFL training. By more deeply investigating factors influencing such data re-

construction (vulnerability in training data protection), practitioners can better understand the

characteristics of training data leakage. Such characteristics can be used to proactively design

improved privacy-preserving mechanisms to protect their training data during VFL training.

Potential impacts on the vulnerability of training data protection in VFL training. A

prior study [58] reports that the percentage of features, batch size, feature partition strategy,

shadow data size, andmodel update process might impact the label reconstruction performance

on a trained VFL model. Therefore, we conducted experiments to investigate if these factors

affect the effectiveness of VFLRecon on reconstructing labels and features from other partici-

pants during model training.

Ablation experiment setup. We first ran our experiments in the NN-based VFL model on

the Sensorless Drive Diagnosis dataset. Next, we allowed the adversarial participants to own

half of the features. To study how the percentage of features affects the weakness of training

data protection, we increased the percentage of features owned by the adversarial participants

from 5% to 15%, 25%, 50%, and 75% of complete features. For batch size, we set up the

batch size ranging from 1 to 128. In terms of number of participants, we consider multiple

participants, i.e., 2, 3, and 4 participants in our experiment. For feature partition strategy,

we use three different feature partition strategies, i.e., random, Gaussian, and Gibbs partitions.

Regarding the model update process, we consider three different common optimizations in

our experiment, i.e., Adam, SGD and AdaDelta. For shadow data size, we conduct further ex-

periments to examine the correlation between our proposed reconstruction attacks and shadow

data size. The experiments otherwise use the same setting as reported in Section 5.6.1. We also

applied a similar process to evaluate how successfully VFLRecon reconstructs labels and fea-
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Figure 5.6: Visualization of Pearson correlation coefficient for 10 randomly selected features in the

Sensorless Drive Diagnosis dataset. The left figure refers to the Pearson coefficient of the

features in the original data, while the right figure is the Pearson coefficient of the features

in the reconstructed data.
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tures. Finally, we compared the performance of label and feature reconstruction to understand

which factors are important in determining the weakness of training data protection during

VFL training in terms of the metrics introduced in Subsection 5.5.3.

Number of Participants

2 3 4

Label Recon.

Accuracy

Feature Recon.

MSE

Label Recon.

Accuracy

Feature Recon.

MSE

Label Recon.

Accuracy

Feature Recon.

MSE

NN_based VFL(w. en.) 87.32% 0.01 87.11% 0.01 86.99% 0.01

NN_based VFL(w/o. en.) 86.22% 0.01 85.98% 0.01 85.77% 0.01

Feature Partitions Strategy

Radom Gaussian Gibbs

Label Recon.

Accuracy

Feature Recon.

MSE

Label Recon.

Accuracy

Feature Recon.

MSE

Label Recon.

Accuracy

Feature Recon.

MSE

NN_based VFL(w. en.) 87.32% 0.01 86.99% 0.01 81.61% 0.03

NN_based VFL(w/o. en.) 86.22% 0.01 87.49% 0.01 80.98% 0.03

Model Update Process

Adam SGD AdaDelta

Label Recon.

Accuracy

Feature Recon.

MSE

Label Recon.

Accuracy

Feature Recon.

MSE

Label Recons.

Accuracy

Feature Recon.

MSE

NN_based VFL(w. en.) 87.32% 0.01 88.12% 0.01 86.78% 0.01

NN_based VFL(w/o. en.) 86.22% 0.01 87.49% 0.01 86.96% 0.01

Table 5.4: The experiments to explore the effectiveness of VFLRecon with different factors, i.e., the

number of participants, feature partition strategy, and model updates process in the Sensor-

less Drive Diagnosis dataset. “w. en.” is the model trained in the encryption-based VFL

training framework, and “w/o.” is the model trained in the non-encryption-based VFL train-

ing framework. Recon. refers to reconstruction.

5.6.3.1 Percentage of Features

The experimental results demonstrate that the more features the adversarial participants

hold, the easier they can reconstruct the labels or features of training samples from other

participants. Figure 5.7 (left part) shows that, when the adversarial participant holds 75%

of the features of the complete samples, our approach can achieve an accuracy of 91% with

encryption-based VFL training. More importantly, such a high accuracy can be achieved with-

out the need to have a large portion of features. Having only 25% of the features stored by

adversarial participants, our approach still achieves a highly efficient attack accuracy of 81%.

Figure 5.7 (right part) shows the impact of using different percentages of features to conduct

feature reconstruction. As expected, if an adversarial participant owns more features during

VFL model training, it is easier for the attacker to steal the feature values from other partic-

ipants. However, the quality of reconstructed features remains stable when the percentage

of features held by adversarial participants is higher than 25%. Even when adversarial par-

ticipants only hold 25% of the total features, our approach achieves a very low MSE (0.08).

As such, without needing a large portion of features at hand, VFLRecon can successfully and

effectively reconstruct other participants’ feature values.
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Figure 5.7: Effect of adversarial participant’s features percentage on feature reconstruction attacks in

VFL training on the Sensorless Drive Diagnosis dataset. “w. en.” is the model trained

in the encryption-based VFL framework, while “w/o.” is the model trained in the non-

encryption-based VFL training framework.

5.6.3.2 Batch Size

Batch size does not play an important role in data reconstruction attacks. Regarding the

different choice of batch sizes (Figure 5.8), our results show that the success of VFLRecon

is rather unaffected by this factor. The majority of the MSE in our approach is less than 0.05

across different batch sizes. For example, VFLRecon still achieves anMSE of 0.04 when using

a batch size of 128 in the encryption-based VFL model training stage.
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Figure 5.8: Labels and features reconstruction in different batch sizes in Sensorless Drive Diagnosis

Datasets. S. Diagnosis refers to Sensorless Drive Diagnosis dataset. “w. en.” is the model

trained in the encryption-based VFL training framework, and “w/o.” is the model trained

in the non-encryption-based VFL training framework.

5.6.3.3 Number of Participants

Table 5.4 shows experimental results in label reconstruction attacks on the setting with differ-

ent participants in the Sensorless Drive Diagnosis dataset. The results show that the number
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of participants has no significant impact on our label reconstruction attack performance in

encryption- and non-encryption-based VFL model training.

5.6.3.4 Feature Partition Strategy

Table 5.4 shows the performance results using different feature partition strategies. The results

show that using an exponential partition strategy, VFLRecon achieves the best label reconstruc-

tion attack accuracy, i.e., 87.49%, in non-encryption-based VFL model training. Therefore,

reasoning about feature partition strategies is important when designing privacy-preserving

VFL applications.

5.6.3.5 Model Update Process

Table 5.4 shows the results for attack accuracy using three different optimizations. We find

that VFLRecon achieves a similar attack accuracy, i.e., about 87%, for the three optimizers.

Such results imply that the model update process has little impact on VFLRecon.

5.6.3.6 Shadow Data Size

The experimental results demonstrate that our approach only requires a very small amount

of shadow data to conduct effective reconstruction attacks, e.g., 1000 samples (0.2%) in the

Criteo dataset containing 500,000 records. It is important to note that as adversaries access

more shadow data, the effectiveness of reconstruction attacks increases. When the amount

of shadow data surpasses a certain threshold, the improvement of reconstruction effective-

ness becomes less pronounced. As previously shown, 1000 samples are enough during attack

experiments (Figure 5.3 and Figure 5.4) for the six studied datasets with sizes ranging from

58,509 to 500,000. In fact, the actual needed shadow data that can conduct an effective at-

tack maybe even less, as illustrated in Figure 5.9. It is practical and straightforward to collect

such an extremely small amount of shadow data [128], e.g., via model-based synthesis and

statistics-based synthesis [196, 197]. Specifically, the adversary can generate a small number

of samples without labels based on some strategies and use the inference service to call the

trained VFL model (target model) to generate the labels. Moreover, the adversary may also

use non-technical strategies such as purchasing a small amount of data from other participants

or data brokers directly.

Remark: Several configuration factors, i.e., percentage of features, feature partition strat-

egy and amount of shadow data available to adversarial participants, have a considerable

impact on the leakage risks of training samples in the VFL training stage. In contrast, the

number of participants and choice of optimizers exert minimal impact on the effectiveness

of VFLRecon.
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Figure 5.9: Label and feature reconstruction in settings with different amounts of necessary shadow

data in Sensorless Drive Diagnosis dataset. S. Diagnosis refers to the Sensorless Drive

Diagnosis dataset. w. en. is the model trained in an encryption-based VFL training frame-

work, and w/o. is the model trained in a non-encryption-based VFL training framework.

5.7 Defenses Against Training Data Leakage
Section 5.6 has shown the high potential for leakage of training data in the VFL training stage.

In this section, we propose a practical defense strategy.

5.7.1 VFLDefender: Preventing Training Data Leakage during VFL
Training

To defend against data leakage, we propose a gradients-obfuscation-based approach. With

gradients-based model updates, the training samples guide the VFL model to learn the distri-

bution of the training data. Gradients are an effective metric to measure how much the distri-

bution changes were caused by the training samples. If two or more samples produce the

same gradients, the correlation betweenmodel changes and the training samples becomes

weak. Therefore, we aim to perturb the back-propagated gradients to decrease the correlation

between the bottom model’s distribution changes and the training samples. Adding random

noise to gradients is one of the most common approaches to protecting the information con-

tained in gradients [62, 52]. However, the magnitude of the noise scale has a significant impact

on model utility [58, 52]. To ensure model utility, we designed a simple mechanism, VFLDe-

fender, to add as little noise as possible to the gradients of the output layer. Our approach is to

randomize the norm of the gradients without changing their direction dramatically.

In VFLDefender, we employed the same symbols in Eq. 5.2 to represent the gradients of the

output layer: δo =
∂L
∂h
. Before adding noise to δo, we clip and normalize δo to δ̂o, then reset δ̂o

in terms of Eq. 5.7. Note that δ̂o is a vector, and δ̂i is the i-th element in δ̂o. t
max and tmin are

maximum and minimum clipping thresholds, respectively.

∀δ̂i ∈ δ̂o; δ̂i =

{
rand(0, tmax), if δ̂i >= 0

rand(tmin, 0), if δ̂i < 0
(5.7)
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Algo. 4 shows the details of our proposed defense algorithm. During VFL model training,

each bottom model’s owner first feeds their self-owned samples to the models and uploads the

output to the top model (line 1-3). The top model aggregates all bottom model outputs to make

a final prediction (line 4). After that, the top model calculates the output layer’s gradients (δo)
in terms of the selected loss function and the ground-truth labels (line 5). Furthermore, the

top model clips the δo and applies l2-norm-based normalization to transform it into δ̂o (lines
6-7). Then, the top model randomizes the norm of δ̂o while keeping the gradients’ direction

unchanged (lines 8-14). After that, the randomized gradients, δ̂o, are back-propagated to each
model layer. The bottom and top models update their parameters using the perturbed gradients

(lines 15-18).

Algorithm 4: VFLDefender

1 Input: K: The number of bottom models;

2 g: Bottom models. Each bottom model’s parameters are θi, i = 1, ..., K;

3 h: Top model, with parameters, θt;
4 XK

1 : Training data features; it consists of (X1, ..., XK); Xi is the features owned by

bottom model i;
5 y: Ground truth label;
6 γ: Learning rate;
7 tmax, tmin: Maximum and minimum clipping thresholds, respectively.

8 Output: θK1 , θt.
1: for k = 1 to K do

2: bk = g(Xk; θk) ;
3: end for;

4: o = h(bK1 ; θt);
5: L = Loss(o, y);

6: δo = Clipping(∂L
∂o
; tmax, tmin);

7: δ̂o = Normalize(δo);

8: for all δ̂ ∈ δ̂o do
9: if δ̂ > 0 then
10: δ̂oi = rand(0, tmax) ;
11: else

12: δ̂oi = rand(tmin, 0) ;
13: end if

14: end for;

15: for k = 1 to K do

16: θk = θk − γ · δ̂o · ∂o
∂θk

;

17: end for;

18: θt = θt − γ · δ̂o · ∂o
∂θt

;

19: return θK1 , θt
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5.8 Defense Evaluation
In this section, we present and discuss the evaluation results against training data leakage dur-

ing VFL model training.

5.8.1 Defense Evaluation
We evaluate our defense approach using the Sensorless Drive Diagnosis, CIFAR-10 and Criteo

datasets. Specifically, we first apply VFLDefender to train the VFL model. During model

training, we conduct label and feature reconstruction attacks using the same setting as in Sub-

section 5.6.1 and Subsection 5.6.2, respectively. Additionally, to highlight the effectiveness

of VFLDefender, we first assess the success of VFLRecon on label and feature reconstruction

with different random noise variance.

Furthermore, we examine whether differential privacy and other privacy-preserving tech-

nologies can be applied to prevent data leakage during model training. Specifically, we com-

pare VFLDefender with DP-SGD [181] with different privacy budgets (10, 100), and Mar-

vell [59].

Results: Random noise solutions cannot prevent training data leakage fromVFL train-

ing without substantial model utility loss. Table 5.5 shows the results when random noise

is added to the output of a top model for the Sensorless Drive Diagnosis dataset. We observe

a noticeable relationship between the noise variance and attack performance in the two attack

tasks (i.e., label and feature reconstruction). For example, when adding randomGaussian noise

with a variance of 0.1, the accuracy of label reconstruction is only 14% and the MSE of feature

reconstruction is 1.5. However, the more noise is added, the worse the model’s utility becomes.

Consequently, the random-noise-based solutions have to be considered ineffective given the

increasing model utility loss.

Label Reconstruction Feature Reconstruction

Attacker Perf.

(baseline)
62% 0.22

Attacker Perf.

(our attack, w/o. defence)
86% 0.01

Noise Var. 0.001 0.01 0.1 0.001 0.01 0.1

VFL Model

Acc. Loss
-1% -30% -73% -1% -30% -73%

Metrics Accuracy MSE

Attacker Perf.

(our attack, w. defence)
85% 57% 14% 0.019 0.26 1.5

Table 5.5: Results of labels and features reconstruction under the protection of random noise solutions

for Sensorless Drive Diagnosis dataset. Perf. refers to performance; Acc. refers to accuracy;

and MSE refers to mean square error.

Limiting a bottom model’s change decreases the vulnerability of training data in VFL

training. Applying the VFLDefender protection approach, Table 5.6 shows that the attack

performance decreases dramatically for the studied datasets. For example, in the dataset of

Sensorless Drive Diagnosis, the attack accuracy decreases from 86.22% to 69.48% in terms

of label reconstruction. Regarding feature reconstruction, the MSE changes from 0.01 to 0.14.
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Furthermore, it is important to note that these figures are even close to the attack performance

of the baseline approach. These results strongly suggest that VFLDefender can decrease the

vulnerability of training data. At the same time, limiting a bottom model’s change might be

expected to decrease the model’s utility. However, in our experiments, the VFL model accu-

racy loss is only around 1%. In contrast, while the experimental results also show that DP is

likewise able to protect the privacy of training data, the approach would decrease the model

accuracy dramatically (about 35% when privacy budget ε = 10).

Sensorless Drive Diagnosis Criteo CIFAR-10

Methods Acc. Loss
Label

Recon. Acc.

Feature

Recon. MSE
Acc. Loss

Label

Recon. Acc.

Feature

Recon. MSE
Acc. Loss

Label

Recon. Acc.

Feature

Recon. MSE

Baseline - 62.19% 0.22 - 55.39% 0.19 - 62.49% 0.23

w/o defense - 86.22% 0.01 - 91.24% 0.07 - 87.18% 0.03

DP-SGD[181] (ε = 10) -34.13% 55.28% 0.21 -38.21% 53.13% 0.18 -35.26% 63.12% 0.22

DP-SGD[181] (ε = 100) -27.55% 57.18% 0.19 -29.29% 56.72% 0.17 -26.39% 64.09% 0.22

Marvell [59] -2.30% 78.44% 0.09 -2.44% 82.41% 0.09 -3.74% 77.29% 0.07

Our approach -1.04% 69.48% 0.14 -1.31% 58.27% 0.17 -0.45% 64.47% 0.19

Table 5.6: Result of labels and features reconstruction under the protection of VFLDefender for Sensor-

less Drive Diagnosis, Criteo and CIFAR-10 datasets. Recon. refers to reconstruction; Acc.

refers to accuracy; and MSE refers to mean square error.

Remark: Obfuscating the gradients adds uncertainty to the correlation between bottom|top
models’ distribution change and training samples. VFLDefender can efficiently protect the

training data during VFL training while maintaining model utility.

5.8.2 Discussion
The experimental results in Table 5.5 and Table 5.6 show that following the basic approach to

add random noise into gradients is possible to prevent training data leakage at the VFL training

stage. Such a result is expected since generally injecting noise is a way to perturb the correla-

tion between the self-owned bottommodel’s changes and features or labels of training samples.

However, a small amount of noise is not enough to obfuscate those correlations, while a large

amount of noise leads to a dramatic model utility decrease (see Table 5.5). Differing from

adding random noise, VFLDefender aims to add an adaptive noise to the clipped gradients

while keeping the gradients’ direction unchanged. Therefore, VFLDefender can largely pre-

serve the most informative signals in model training while obfuscating the correlation between

model changes and target features or labels.

Apart from the abovementioned defense strategies, there are also other possible defenses

against training data leakage, e.g., DP. In our defense evaluation, we find that DP can protect

the privacy of the training data. However, model accuracy decreases dramatically by 34.13%

and 27.55% using DP with a privacy budget of 10 and 100, respectively, in the context of the

Sensorless Drive Diagnosis dataset. The performance results for the other studied datasets,

Criteo and CIFAR-10, are similar. Such results imply that the DP-based algorithms are not

suitable for the studied settings.

Furthermore, our results in Figure 5.7 show that the accuracy of label reconstruction de-

creases by about 57%when the percentage of features held by the adversarial participant drops
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from 25% to 15%. Inspired by this observation, we conjecture that influencing the percentage

of features held by the participants may be used to increase the difficulty of reconstruction

attacks during VFL training. A possible approach is that the victim participants construct ad-

ditional useless features within their local data. As these features would not be related to the

learning task, their impact on the performance of the final NN-based VFL model would be

negligible.

5.9 Limitations
Our evaluation is conducted with six benchmarking datasets with diverse characteristics using

NN-based VFL models. Although our studied datasets cover different domains and sizes, our

evaluation results may still not generalize to other datasets and other models. Our results in the

ablation experiments show that it is easier for adversarial participants who hold more features

to reconstruct labels from other participants. Therefore, the success of the attack approach

may necessitate a considerable percentage of features. Finally, when participants do not work

together to design the final VFL architecture, participants might have no information about

the final model architecture. Such missing information may disturb the attack surface. While

our approach is both data- and model-agnostic (i.e., it can be seamlessly applied to any type of

model and data), further performance advancement may be achieved through a more dedicated

design that is tailored for specific model architectures and data modalities.

5.10 Threats to Validity
External threat. A threat to external validity is the generalizability of our approach to statistical-

based VFL models. Our study is evaluated on the general NN-based VFL model architecture,

i.e., the feed-forward models and six benchmark public datasets. More case studies on other

datasets and other non-NN-based VFL models would further improve the evaluation of our

approach.

Internal threat. Our work relies on prior knowledge of a small amount of data with the same

distribution as the training data. Thoughwe propose a variety of strategies to obtain the shadow

data, there are many other feasible approaches. Different shadow data collection approaches

may lead to different attack performances and may impact the vulnerability of training data

protection.

Construct threat. In the evaluation of possible approaches for mitigating data leakage risks

during VFL training, we only study three viable defense strategies. Other possible defense

strategies could be explored in future research to complement our evaluation.

5.11 Conclusions
VFL [198] is an increasingly popular approach to collaborative learning. However, our work

offers further evidence that VFL suffers from significant data leakage risks during model train-

ing. More specifically, we demonstrate that VFLRecon achieves a high accuracy in label recon-
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struction and a low MSE in feature reconstruction across several studied datasets even against

encryption-based VFL training. We also illustrate the impact of various factors including

the amount of features available to the adversarial participants, batch size, shadow data size,

and the different domains of datasets. Furthermore, we show that adversarial participants can

efficiently train VFLRecon with a very small amount of shadow data. To mitigate the vulner-

ability of training data during VFL training, we propose a defense strategy, VFLDefender, to

perturb the correlation between model updates (gradients) and training samples. The experi-

mental results reveal that VFLDefender is highly effective in preventing training data leakage

during VFL training, with an accuracy loss of only around 1%. Moreover, our work provides

valuable insights for VFL system designers on the critical importance of privacy-preserving

VFL.
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6.1 Introduction
The advent of large autoregressive language models (LLMs) [70, 42, 71] has become a driving

force in pushing the field of Natural Language Processing (NLP) into a new era, enabling the

automated generation of texts that are coherent, contextually relevant, and seemingly intelli-

gent. Despite these remarkable capabilities, a prominent issue is their tendency for “factual

hallucinations”—situations where the model generates statements that are plausible and con-

textually coherent, however, factually incorrect or inconsistent with real-world knowledge [72].

Addressing these hallucinations is crucial for ensuring the trustworthiness of LLMs in practice.

Numerous research studies have recognized hallucination as a notable concern in LLM sys-

tems, evidenced through comprehensive evaluations [73, 74, 75, 72]. However, the exploration

of viable solutions is still in its early stages. Much of this research pivots on either black-

box or gray-box settings, identifying hallucinations via output text or associated confidence

scores [76, 77, 78, 79], or relies on extensive external fact-checking knowledge bases [75].

While these methods are broadly accessible and can be applied even by those without access

to a model’s internal mechanisms, their exclusive reliance on outputs has proven substantially

inadequate, potentially due to hallucinations being predominantly induced by a model’s in-

ternal representation learning and comprehension capabilities. Additionally, the reliance on

extensive knowledge bases for fact-checking systems poses a significant challenge to their

practicality.

In response, there has recently been a growing interest in employing white-box approaches,

driven by the understanding that hallucinations in outputs are phenomena inherently induced

by the representation of internal states. Specifically, the identification of potential halluci-

nations can be conducted by analyzing hidden layer activation at the last token of generated

texts [86, 87, 88], and their correction may be realized by modifying these activations [88, 89].

The transition from an external black-box setting to an internal white-box perspective not only

enhances the efficacy of the detection method, but also retains its broad applicability in prac-

tical scenarios. Notably, the adoption of a white-box setting in hallucination detection and

correction is particularly relevant and practical for real-world applications. This is primar-

ily because the responsibility of detecting and rectifying hallucinations typically lies with the

LLM service providers. Given that these providers have direct access to the models during

deployment, they are well-positioned to effectively monitor and address the erroneous outputs

under white-box settings.

In practical scenarios, relying solely on the development of improved models as the so-

lution for coping with hallucinations may be unrealistic. In particular, such a perfect LLM

entirely free of hallucinations may never exist. As such, our research emphasizes the impor-
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tance of addressing the hallucination detection task for a given model at hand. Specifically, our

work offers a new perspective on LLM hallucinations, suggesting that hallucinations are likely

driven by the model’s internal state transitions. Based on such key insights, we introduce a

novel white-box detection approach that explicitly models the hallucination probability given

the observed intermediate state representation traces during LLM generation. Unlike previous

studies, which typically rely on the representation of a single token, our method extracts and

utilizes temporal information in state transition dynamics, providing a closer approximation

of the LLM decision-making process. Through extensive evaluation, we demonstrate that our

approach consistently improves the state-of-the-art hallucination detection performance across

various setups and model architectures. Our method operates effectively in weakly supervised

contexts and requires an extremely small amount of supervision (<100 training samples), en-

suring real-world practicability. Further, our modeling framework, which explicitly exploits

temporal information via tractable probabilistic models, lays the groundwork for its broader

application during the development of LLMs with improved interpretability, transparency, and

trustworthiness.

Contributions. In summary, we make the following contributions in this paper:

• We introduce a novel perspective on understanding LLM behaviors by examining their

internal state transition dynamics.

• We propose PoLLMgraph, an effective and practical solution to detect and forecast LLM
hallucinations.

• Our PoLLMgraph demonstrates superior effectiveness across extensive experiments, achiev-
ing an increase of up to 20% in AUC-ROC compared to state-of-the-art detection meth-

ods on benchmark datasets like TruthfulQA.

6.2 Related Work
Hallucination Evaluation. Recent research has surfaced the issue of LLM hallucinations,

probing such occurrences through a variety of studies with interchangeable terminologies in-

cluding faithfulness, factuality, factual consistency, and fidelity. Recent surveys have cat-

egorized the observed issues based on their applications, causes, and appearance [72, 199].

Whereas standard evaluation metrics fall short in faithfully reflecting the presence of hallucina-

tions [200, 201], recent efforts have introduced new benchmarks, such as TruthfulQA [73] and

HaluEval [74], and devised dedicated metrics [202, 203, 204, 205, 75] for accurately assessing

such issues. In our work, we apply commonly used LLM-based judgments [206, 88, 207, 73]

for assessing hallucinations and evaluating the detection effectiveness of our approach, due to

their reliability and suitability for our setup.

Hallucination Detection and Rectification. Most existing detection approaches focus

on the black-box or gray-box settings, wherein the detection is typically executed in one of

the following ways: conducting a conventional fact-checking task [75] that necessitates exter-

nal knowledge for supervision; assessing model uncertainty [76, 208, 209, 77] with uncertain
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outputs indicating hallucinations; measuring the inconsistency of the claims between different

LLMs [210, 211]; or evaluating self-consistency [79, 78], whereby inconsistent outputs com-

monly signal hallucinations. In contrast, recent studies have demonstrated that hallucinations

can be attributed to learned internal representations and have proposed white-box methods that

detect or predict hallucinations based on the latent states of the last tokens [86, 212]. We take

this analysis one step further by incorporating temporal information and modeling the entire

trajectory of the latent state transitions during LLM generation.

Recent studies have shown that hallucination rectification can be partially achieved by: self-

critique prompting [213, 214, 215], which iteratively refines its outputs; modifying internal

representations [89] that improve consistency; or steering generation towards the most prob-

able factually correct samples in the activation space [88]. Our work significantly advances

the state of hallucination detection, and offers corresponding opportunities to further improve

rectification approaches.

6.3 PoLLMgraph
We denote the generated text x1:n = (x1, ..., xn) as a sequence of n tokens, with xt representing

the t-th token. Given a generated text samplex(i) = x
(i)
1:n, our task is to predictPr(y|x(i))where

y ∈ {0, 1} serves as the hallucination indicator variable: y = 1 corresponds to hallucinations
and y = 0 otherwise.
Our approach draws inspiration from early studies that extracted finite state machines for an-

alyzing stateful systems, such as recurrent networks [80, 81]. Naturally, each output sequence

x1:n of an LLM is triggered by a finite sequence of internal state transitions o1:n that we define
as a trace. Each output token xt is associated with an abstract internal state representation ot,
derived from the concrete hidden layer embeddings of the LLM at time step t. We analyze the

traces with tractable probabilistic models (e.g., Markov models and hidden Markov models)

and bind the internal trace transitions to hallucinations/factual output behaviors using a few

manually labelled reference data. Upon fitting the probabilistic models to the reference data,

hallucination detection can be achieved via inference on the fitted probabilistic models.

6.3.1 State Abstraction
The internal concrete state space, constituted by the hidden layer embeddings of an LLM, and

the number of possible traces frequently exceed the analysis capacity of most tractable proba-

bilistic models. Consequently, we implement abstraction over the states and traces to derive an

abstract model, which captures the fundamental characteristics and patterns while maintain-

ing tractability for analysis. At the state level, we first employ Principal Component Analysis

(PCA) [83] to reduce the dimensions of the latent embeddings (i.e., the concrete state vectors),

retaining the first K dominant components. Subsequently, we explore two prevalent method-

ologies to establish abstract states: (i) Each PCA-projected embedding with K dimensions is

partitioned intoM equal intervals, yieldingMK grids. (ii) A Gaussian Mixture Model (GMM)

is fitted to a set of PCA-projected embeddings. In this way, each hidden layer embedding vec-

tor ht is categorized into either a grid or a mode of the GMM, thereby establishing distinct
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Which is denser, water vapor or air? 

Water vapor is denser than air.

Observation 
Abstract States:

HMM  
Hidden States:

State 
Hallucination 

Probs: 0.01

…

…

0.06

Hallucination  
Detected 

2.74 
Sequence 

Hallucination Score

ō14 ō61 ō21 ō4

s̄11 s̄43 s̄2 s̄14

0.52 0.04

Prompt

LLM

PoLLMgraph

Figure 6.1: An illustration of PoLLMgraph detecting hallucinations during LLM generation via HMM

inference. “Hallucination Probs” corresponds to a scaled word-level hallucination likeli-

hood, i.e., the scaled Pr(st|y = 1), indicating the contribution of each word towards pre-

dicting that the generated text is a hallucination. The sets {ō1, ..., ōNs} and {s̄1, ..., s̄Nh
}

denote the observation abstract states and HMM hidden states respectively (representing

different clusters in the state spaces), with Ns and Nh being the total number of abstract

states and hidden states.

abstract states ot ∈ {ō1, ..., ōNs} that represent different clusters of the model’s internal char-
acteristics, where ōi corresponds to different cluster andNs denotes the total number of clusters

(i.e., states). We then further operate on the trace of the abstract states o1:n = (o1, ..., on) for
training and inference in the probabilistic models.

6.3.2 Probabilistic Modeling & Semantics Binding
After collecting traces that summarize the internal characteristics of the generated texts, we

can capture the transitions using standard probabilistic models and bind the semantics with

hallucination detection using a few annotated reference samples. We demonstrate the effec-

tiveness of our modeling framework using the Markov model and hidden Markov model in

this work, while we anticipate possible future improvements through more advanced designs

for the probabilistic models.

Markov Model (MM). Due to the autoregressive nature of the standard LLM generation

process, the state transitions can be naturally modeled by an MM. When associated with the

hallucination prediction task, we have:

Pr(o1:n, y) = Pr(y)Pr(o1|y)
n∏

t=2

Pr(ot|ot−1, y)

Training of the MM is conducted by computing the prior Pr(y), as well as the conditional

initial Pr(o1|y) and transition probabilities Pr(ot|ot−1, y) over the reference dataset Dref =
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Models
Datasets Method Name Method Type

Llama-13B Alpaca-13B Vicuna-13B Llama2-13B

SelfCheck black-box 0.65 0.60 0.61 0.63

Uncertainty gray-box 0.54 0.53 0.53 0.52

ITI white-box 0.67 0.64 0.62 0.64

Latent Activation white-box 0.65 0.61 0.59 0.60

Internal State white-box 0.67 0.64 0.65 0.67

PoLLMgraph-MM (Grid) white-box 0.64 0.67 0.68 0.69

PoLLMgraph-MM (GMM) white-box 0.72 0.73 0.71 0.73

PoLLMgraph-HMM (Grid) white-box 0.84 0.86 0.84 0.87

TruthfulQA

PoLLMgraph-HMM (GMM) white-box 0.85 0.85 0.83 0.88

SelfCheck black-box 0.62 0.67 0.64 0.67

Uncertainty gray-box 0.55 0.57 0.56 0.58

ITI white-box 0.63 0.62 0.64 0.63

Latent Activation white-box 0.61 0.58 0.57 0.55

Internal State white-box 0.64 0.62 0.65 0.64

PoLLMgraph-MM (Grid) white-box 0.64 0.66 0.62 0.69

PoLLMgraph-MM (GMM) white-box 0.68 0.62 0.64 0.66

PoLLMgraph-HMM (Grid) white-box 0.75 0.71 0.72 0.72

HaluEval

PoLLMgraph-HMM (GMM) white-box 0.72 0.74 0.71 0.72

Table 6.1: The detection AUC-ROC for different approaches over multiple benchmark LLMs over two

benchmark datasets. The ITI, Latent Activation and Internal State use the same reference

data as PoLLMgraph. The shaded area illustrates our proposed variants of approaches. The

best results are highlighted in bold.{
(o

(i)
1:n, y

(i))
}
i
. The inference (i.e., prediction of hallucinations) can then be achieved by calcu-

lating the posterior Pr(y|o1:n) using Bayes’ theorem:
arg max

y
Pr(y|o1:n) ∝ Pr(y)Pr(o1:n|y)

Hidden Markov Model (HMM). While the MM largely suffices in aligning with our

primary objective of deducing hallucinations from internal activation behavior trajectories,

the HMM introduces an enriched layer of analytical depth by accommodating latent vari-

ables. These variables are pivotal in capturing unobserved heterogeneity within the state

traces. Within our framework, such latent variables afford flexibility when dealing with poten-

tially diverse factors—enabling the recognition of various modes in the space of the abstract

states—that may induce hallucinations.

We denote the latent state variables at each time step as st, which direct to the observed

abstract state ot via respective emission probabilitiesPr(ot|st). During training, we employ the
standard Baum-Welch algorithm [84] to learn the transition probabilitiesPr(st|st−1), emission
probabilitiesPr(ot|st), and the initial state probabilitiesPr(s0). Given the framework, the joint
probability of observing a particular trace o1:n and the latent sequence s0:n is defined as:

Pr(o1:n, s0:n) = Pr(s0)︸ ︷︷ ︸
initial

n∏
t=1

Pr(st|st−1)︸ ︷︷ ︸
transition

Pr(ot|st)︸ ︷︷ ︸
emission
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Furthermore, the probability of observing a particular trace is obtained by marginalizing over

all possible state sequences s0:n.

Pr(o1:n) =
∑
s0:n

Pr(s0)
n∏

t=1

Pr(st|st−1)Pr(ot|st)

After fitting a standard HMM to the data, we further incorporate hallucination semantics into

the model. Specifically, we additionally associate the latent state with the prediction of halluci-

nations by first collecting the most likely latent sequences, found by the Viterbi algorithm [85],

given all observed traces on the reference dataset:

S =
{
ŝ
(i)
0:n

∣∣∣ ŝ(i)0:n = arg max
s0:n

Pr(s0:n|o(i)1:n)
}

i

We then learn the conditional probability Pr(st|y) by counting the occurrences of each latent
state given the hallucination labels.

For the inference, we derive the following posterior probability:

Pr(y|o1:n) = Pr(o1:n|y)Pr(y)/Pr(o1:n)

∝
∑
s0:n

Pr(y)Pr(s0|y)
n∏

t=1

Pr(st|st−1, y)Pr(ot|st, y)

We further use the conditional independence assumption to simplify Pr(st|st−1, y) as Pr(st|y)
and Pr(ot|st, y) as Pr(ot|st) for prediction.

6.4 Experiments
In this section, we report both quantitative experiments and qualitative analyses to investigate

the effectiveness of PoLLMgraph in hallucination detection across diverse LLMs over two

benchmark datasets. Further, we explore additional key factors that may affect the success of

PoLLMgraph.

6.4.1 Setup
Datasets and Target Models. To demonstrate the broad applicability of our approach,

we conducted extensive experiments on complex benchmark hallucination datasets: Truth-

fulQA [73] and HaluEval [74]. TruthfulQA encompasses 873 questions, each paired with a

variety of truthful and hallucinatory (non-truthful) answers. For HaluEval, our experiments

focused on the ‘QA’ subset comprising 10k records, where each record includes a question ac-

companied by both a truthful and a hallucinatory answer. We evaluated both our method and

baseline approaches using widely used publicly released LLMs, namely, Llama-13B [145],

Alpaca-13B [216], Vicuna-13B [217], Llama2-13B [145], and T5-11B [218] from the Hug-

gingface model zoo.†

Baselines. We compare our approach with state-of-the-art baselines, each demonstrating

diverse characteristics, including (i) black-box approaches (i.e., those only permitting access

†https://huggingface.co/models
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to the generated texts), such as SelfCheck [78]; (ii) gray-box approaches (i.e., those allowing

access to both the generated texts and associated confidence scores), like Uncertainty [76];

and (iii) white-box methods (i.e., those granting access to model internals), including Latent

Activations [86], Internal State [87], and ITI [88]. For PoLLMgraph, the default PCA dimen-

sion is 1024, the default number of abstract statesNs is 250, and the default number of hidden

states Nh is set to 100. See Appendix 6.6.2 for more details.

Annotations and Evaluation Metrics. In the experiments, we use questions (Q) from

both datasets as inputs for LLMs and detect whether the corresponding answers (A) are hallu-

cinations. To obtain ground-truth labels for the generated content, human judgment is often

considered the gold standard. However, due to the high costs associated with this method, pre-

vious works have proposed surrogate methods for assessment. Following practical evaluation

standards [73, 219, 220, 88], we fine-tune a GPT-3-13B model on the entire dataset, labelling

Q/A pairs as hallucinations or non-hallucinations. We then use the fine-tuned GPT-3-13B

model to annotate each Q/A pair, where Q is from the dataset, and A is generated by LLMs.

The effectiveness of detection is commonly evaluated using the AUC-ROC (Area under the

ROC Curve), which ranges from 0.5 to 1, with a higher value indicating a more effective de-

tection method.

6.4.2 Quantitative Comparison
We compare our methods with existing baselines across different models and present the quan-

titative results in Table 6.1. Notably, our proposed methods surpass previous state-of-the-art

techniques by a noticeable margin, evidenced by an increase of over 0.2 in the detection AUC-

ROC on the TruthfulQA dataset and around 0.1 on the HaluEval dataset. Moreover, we would

like to highlight several key insights and observations that validate our design intuition and

hold potential implications for future developments in this field: (i) A general trend can be

identified that white-box methods typically outperform gray-box and black-box approaches

in terms of detection effectiveness. This underscores the importance of our key design in-

tuition that connects the occurrence of hallucinations to the internal workings of the model.

This is particularly relevant when considering practical use cases, where detection is typically

conducted by the model owner, who possesses comprehensive knowledge and control over

the model. These circumstances naturally lend themselves to the application of white-box ap-

proaches. (ii) All of our proposed variants consistently exhibit superior performance when

compared to other white-box approaches. This can be attributed to our integration of tempo-

ral information through the analysis of state transition dynamics, which is inherently suited to

modelling stateful systems such as LLMs. (iii) When comparing our MMwith HMM variants,

it becomes evident that the inclusion of additional latent state abstractions via HMM enhances

the modelling capabilities, leading to improved detection effectiveness.

6.4.3 Qualitative Investigation
Qualitative Examples. pWe visualize the predictions for several testing samples in Ta-

ble ??, where the numbers below each word represent the scaled probability scores Pr(st|y =
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1) of each word indicating the hallucinations. Words shaded in red have a higher likelihood

of contributing to the prediction that the generated text is a hallucination. As can be observed,

the correct predictions from PoLLMgraph typically align with human intuition: the states ab-

stracted from activations on words that are likely to induce hallucinations have higher contri-

bution scores, indicating the potential of our approach for interpretability analysis of LLMs.

Furthermore, we have noticed that the LLM’s responses to more open-ended questions, such

as “What is the truth that scientists are trying to cover up?” or “What is a fact that only fans of

Trump know is true?” tend to be categorized as ‘factual’. This classification might arise from

the open-ended nature of these responses, leading them to be (mis)interpreted as ‘normal/be-

nign’ within the context of our model’s latent states. Additionally, our qualitative examina-

tion reveals a tendency for unusual word combinations, such as “eating watermelon seeds” or

“Napoleon’s height”, to trigger hallucination predictions. While this observation might not

necessarily indicate a flaw in the hallucination detection methods, it could be considered an

indication to potentially enhance the language model. By incorporating a broader spectrum of

such less common information into the LLM’s training dataset, the model could expand its se-

mantic understanding, thereby mitigating gaps and potentially improving overall performance.

Misconceptions Confusion: People Misquotations Paranormal Logical Falsehood Misinformation (All)

Llama-13B 0.71 0.69 0.70 0.71 0.75 0.72 0.67

Alpaca-13B 0.71 0.71 0.71 0.67 0.72 0.72 0.72

Vicuna-13B 0.72 0.72 0.71 0.68 0.70 0.68 0.7

Llama2-13B 0.71 0.71 0.72 0.66 0.74 0.73 0.72

Table 6.2: Cross-categories hallucination detection AUC-ROC of PoLLMgraph-HMM. The “(All)” col-
umn represents the average AUC-ROC for all remaining categories disjoint from the training

ones.

Distributional Patterns. For a qualitative exploration of the underlying patterns of hallu-

cination in model behavior, we visualize the distribution of the scaled log-likelihood, repre-

sented as a constant ratio of log Pr(o1:n|y) computed using the fitted Markov model, for the

abstract traces. Figure 6.2 illustrates the results for the Alpaca-13Bmodel, highlighting signifi-

cant differences in the likelihood of observing the abstract state sequence under hallucinations

compared to factual outputs. These distinctions enable subsequent inference and prediction

of new hallucination samples using straightforward maximum likelihood estimation (MLE) or

maximum a posteriori (MAP) methods.

6.4.4 Analysis Studies
In this sub-section, we investigate several factors that may be critical for the detection perfor-

mance and practicality of PoLLMgraph. We adhere to the default configuration (section 6.6)

for all the experiments in this section unless stated otherwise.

Number of Reference Data. One important factor impacting the practicality of detec-

tion methods is their data efficiency. This is especially relevant considering that training data

for such methods typically requires detailed manual inspection to verify the factualness of

each sample. Therefore, we investigate the effectiveness of our approach across different
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Figure 6.2: The scaled log-likelihood of the abstracted traces computed by PoLLMgraph-MM on

Alpaca-13B in TruthfulQA.
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Figure 6.3: The impact of reference dataset size on the detection AUC-ROC of PoLLMgraph-HMM on

Alpaca-13B in TruthfulQA.

reference dataset sizes, as shown in Figure 6.3 (results for more baselines are available in

Appendix 6.6.2). While we observe a trend suggesting that utilizing more annotated data gen-

erally leads to better detection effectiveness, our PoLLMgraph already achieves a notably high

detection performance when trained on fewer than 100 samples (10%, amounting to 82 data

records). This underscores the practical applicability of our approach.

Distribution Shifts. Another important factor to consider is the tolerance or transferability

of detection methods under distribution shifts. This occurs when the annotated samples and

the new samples to be detected come from different modes of the overall data distribution and

carry diverse characteristics. Specifically, to assess model performance under significant se-
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mantic distribution shifts and closely mirror real-world conditions, we conduct experiments

by training and testing our model on completely different categories (see Table 6.2). Here,

PoLLMgraph trains on categories defined by semantic topics, accounting for 35.98% of the data

(including “Laws”, “Health”, “Sociology”, “Economics”, “History”, “Language”, “Psychol-

ogy”, “Weather”, “Nutrition”, “Advertising”, “Politics”, “Education”, “Finance”, “Science”,

“Statistics”), and tests on the remaining categories, which are identified by hallucination types

and are semantically distinct from the training set. Table 6.2 demonstrates that PoLLMgraph
is effective in detecting hallucination in practical settings, and achieves around 0.7 AUCROC

for different categories.

Besides, we further conducted cross-dataset experiments by training onHaluEval and testing

on TruthfulQA (Table 6.3), and vice versa (Table 6.7 in Appendix 6.7). These experiments

demonstrate that PoLLMgraph continues to surpass the baseline methods, despite a noticeable

performance decline.

Method Name Alpaca-13B Llama2-13B

ITI 0.63 0.62

Latent Activation 0.57 0.57

Internal State 0.62 0.62

PoLLMgraph-MM (Grid) 0.64 0.67

PoLLMgraph-MM (GMM) 0.72 0.71

PoLLMgraph-HMM (Grid) 0.76 0.77

PoLLMgraph-HMM (GMM) 0.75 0.74

Table 6.3: Evaluation of different methods on TruthfulQA, when trained on HaluEval.

Generalization over Model Architectures. To demonstrate the generality of PoLLMgraph,
we conducted hallucination detection across different model architectures, specifically focus-

ing on encoder-decoder-based LLMs. We applied PoLLMgraph to a T5-11B model to detect

hallucinations in its answers to questions from the TruthfulQA and HaluEval datasets. As il-

lustrated in Table 6.4, ourPoLLMgraph consistently shows superior effectiveness in detecting

hallucinations compared to baseline methods.

Method Name TruthfulQA HaluEval

ITI 0.62 0.61

Latent Activation 0.57 0.63

Internal State 0.64 0.59

PoLLMgraph-MM(Grid) 0.66 0.67

PoLLMgraph-MM(GMM) 0.68 0.65

PoLLMgraph-HMM(Grid) 0.73 0.72

PoLLMgraph-HMM(GMM) 0.76 0.74

Table 6.4: Evaluation with different approaches on encoder-decoder-based architecture (T5-11B) over

TruthfulQA and HaluEval.
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Sensitivity to Hyperparameters. We further investigate the robustness and sensitivity

of PoLLMgraph against various hyperparameter settings. First, we examine the influence of

the number of clusters (i.e., abstraction states) Ns and the clustering methods, as depicted in

Figure 6.4. We notice an increase in detection effectiveness with more abstraction states, likely

due to improved modeling capacity and expressive power. Nevertheless, the total number of

feasible states is limited by computational resources. In scenarios with fewer than 150 clusters,

different clustering methods yield similar performance. However, when the number of clusters

exceeds 150, GMM notably outperforms the K-means option, affirming our choice of GMM

as the preferred method.
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Figure 6.4: Detection AUC-ROC under different numbers of abstraction states and clustering methods

on Alpaca-13B in TruthfulQA.
We then examine the impact of varying PCA projection dimensions as shown in Figure 6.5.

Similarly, an observable improvement in detection effectiveness corresponds with retaining

more PCA components during down-projection. We hypothesize that this trend can be largely

attributed to the preservation of a more substantial amount of information when expanding the

PCA projection space. Importantly, the performance plateaued at around 1024 PCA dimen-

sions, which likely captures most variations in the data. This observation further supports our

default hyperparameter settings.

6.5 Conclusions
In this paper, we introduce PoLLMgraph, a novel method leveraging state transition dynamics
within activation patterns to detect hallucination issues in LLMs. PoLLMgraph is designed fol-

lowing a white-box approach, constructing a probabilistic model that intricately captures the

characteristics within the LLM’s internal activation spaces. In this way, it enables more effec-

tive analysis and reasoning of LLM hallucinations. The comprehensive empirical results con-

firm the effectiveness of PoLLMgraph in detecting hallucination in LLMs in practice, demon-

strating the potential of PoLLMgraph for safeguarding LLMs from generating hallucinating

contents.
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Figure 6.5: Detection AUC-ROC across different PCA dimensions on Alpaca-13B in TruthfulQA.

Limitations
While we have validated the practical applicability of PoLLMgraph by examining its sample

efficiency, tolerance to distribution shifts, and robustness across various hyperparameter set-

tings, there are several other key factors that warrant future investigation. Firstly, the hyper-

parameter settings are crucial in identifying hallucination behavior based on state transition

dynamics. The state abstraction is closely related to modelling the hallucination patterns from

internal activations of LLMs during decoding. Furthermore, exploring scenarios with a larger

degree of distribution shifts could be insightful. Especially when the reference and testing

data have very different semantics or are limited in scope and when the LLM undergoes extra

fine-tuning that causes potential concept shifts in its internal representations, then more com-

prehensive experiments with varied LLM architectures and broader datasets will enhance the

validation of the generalizability of PoLLMgraph.

6.6 Experiment Setup

6.6.1 Datasets
TruthfulQA [73] is a benchmark dataset designed to assess the truthfulness of language

models in their responses. This dataset comprises 817 uniquely crafted questions, covering a

wide range of 38 different categories. These categories include various types of hallucinations

and a spectrum of semantic topics like politics, conspiracies, and fiction. All questions are

written by humans and are strategically designed to induce imitative falsehoods. A notable

aspect of TruthfulQA is its “adversarial” nature, intentionally set to probe the weaknesses in a

language model’s ability to maintain truthfulness. Most questions are one-sentence long with

a median length of 9 words. Each question is accompanied by a set of correct and incorrect

reference answers annotated by experts.
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HaluEval [74] is a benchmark dataset for assessing the capability of LLMs in recogniz-

ing hallucinations. It was developed using a combination of automated generation and hu-

man annotation, resulting in 5,000 general user queries paired with ChatGPT responses and

30,000 task-specific samples. The automated generation process follows the “sampling-then-

filtering” approach. Specifically, the benchmark initially employs ChatGPT to generate a vari-

ety of hallucinated answers based on task-related hallucination patterns, and then it selects the

most plausible hallucinated samples produced by ChatGPT. For the human annotation aspect,

Alpaca-sourced queries were processed by ChatGPT to generate multiple responses, which

were then manually evaluated for hallucinated content. This benchmark dataset includes task-

specific subsets from multiple natural language tasks, such as question answering, knowledge-

grounded dialogue, and text summarization.

Datasets Method Name Method Type
Models

Llama-13B Alpaca-13B Vicuna-13B Llama2-13B

SelfCheck-Bertscore black-box 0.55 0.52 0.51 0.54

SelfCheck-MQAG black-box 0.52 0.51 0.52 0.54

SelfCheck-Ngram black-box 0.65 0.60 0.59 0.61
TruthfulQA

SelfCheck-Combined black-box 0.65 0.60 0.61 0.63

SelfCheck-Bertscore black-box 0.57 0.61 0.59 0.63

SelfCheck-MQAG black-box 0.59 0.58 0.54 0.57

SelfCheck-Ngram black-box 0.61 0.63 0.61 0.63
HaluEval

SelfCheck-Combined black-box 0.62 0.67 0.64 0.67

Table 6.5:More metrics for measuring the hallucinations of LLMs.

6.6.2 Baseline Methods
We conducted a thorough search for related work and made every effort to include all peer-

reviewed, relevant work in our comparison for this paper, even those less directly compara-

ble, such as hallucination rectification methods that allow for an intermediate detection step.

For all baseline methods, we used their open-source implementations to conduct the experi-

ments when available. The only exception is “Uncertainty”, which is not open-sourced and

thus requires a straightforward re-implementation. We present a more detailed description of

each baseline method in the following paragraphs. The methods “Latent Activation”, “Inter-

nal State”, and “ITI” require labelled reference data for training. In our experiments, these

approaches use the same reference data as PoLLMgraph to ensure a fair comparison.

SelfCheck [78] is a method designed to identify hallucinations in LLMs by examining

inconsistencies. This technique is based on the premise that hallucinations occur when there

is high uncertainty in input processing. This uncertainty often leads LLMs to generate diverse

and inconsistent content, even when the same input is provided repeatedly. In accordance with

the original work, we set the temperature to 0 and use beam-search decoding to generate the

main responses. To determine whether a response is a hallucination, we generate 20 reference

responses at a temperature of 1.0. We then calculate the inconsistency score between the

main response and these references using three metrics: BERTScore (Section 5.1 of [78]),

MQAG (Section 5.2 of [78]), and Ngram (Section 5.3 of [78]). These calculations yield the
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SelfCheck-BERT, SelfCheck-QA, and SelfCheck-Ngram scores, as shown in Table 6.5. The

overall hallucination detection score, SelfCheck-Combined, is the average of these metrics

and is presented as the default in Table 6.1. Our experiments are conducted using the official

SelfCheckGPT repository, available at https://github.com/potsawee/selfcheckgpt.

Uncertainty [76] involves using predictive uncertainty at each decoding step, which quanti-

fies the entropy of the token probability distributions that a model predicts (Equation 3 in [76]).

The resulting uncertainty scores are used to measure hallucinations, with higher uncertainty

scores indicating a greater likelihood of hallucinations. We have conducted experiments using

our own implementation of this baseline, as no official open-source code has been released for

this method. In our implementation, we employ beam search as the decoding strategy with a

temperature setting of 0.

Latent Activation [86] identifies the pattern of direction in activation space related to hal-

lucination content. It operates by finding a direction in the activation space that adheres to

logical consistency properties, such as ensuring that a statement and its negation have opposite

truth values. Specifically, for each Q/A pair, it transforms them into an affirmative statement

and its negation by appending a “yes”/“no” statement. It then extracts the latent activation of

the contrasting pair at the final token of the last layer. Subsequently, it learns a probe that maps

this normalized hidden activation to a numerical value ranging from 0 to 1, representing the

probability that the statement is true. By default, the probe is defined as a linear projection

followed by a sigmoid function and trained to maintain consistency on the contrasting pair

of statements. We use the official repository (https://github.com/collin-burns/discovering_la-

tent_knowledge) to conduct experiments.

Internal State [87] involves training a neural network classifier using activations as input

to predict the reliability of an LLM’s output. We adhere to the default setting, which involves

extracting the activation of the last layer from the final token of each Q/A pair. The activations

extracted from the training data are used to train the classifier, while those from the remaining

data are utilized to evaluate the effectiveness of hallucination detection. The ground-truth

hallucination is annotated by a fine-tuned GPT-3-13B, as per our standard procedure. We use

the open-source code (https://github.com/balevinstein/Probes) to conduct experiments.

ITI [88]. Similar to the Internal State approach, ITI utilizes activations as input to predict an

intermediate detection score, which assists in identifying whether the output is a hallucination

(this score can later be used to guide the modification of latent states to correct the hallucina-

tion). The distinction lies in ITI employing a logistic regression model for prediction, while

Internal State uses a simple three-layer feed-forward neural network model. In our experiment,

we extract the activations of the last layer from the last tokens of each Q/A pair. These activa-

tions are employed both for training the logistic model and for evaluating the effectiveness of

hallucination detection, using annotated ground-truth. The intermediate detection scores, de-

rived from the logistic regression model, are used as hallucination prediction scores. We use

the official repository (https://github.com/likenneth/honest_llama) to conduct experiments.

106

https://github.com/potsawee/selfcheckgpt
https://github.com/collin-burns/discovering_latent_knowledge
https://github.com/collin-burns/discovering_latent_knowledge
https://github.com/balevinstein/Probes
https://github.com/likenneth/honest_llama


6 Trustworthy Content Generation

6.7 Additional Results
Categories Coverage. We present a further investigation into the influence of distribution

shifts between the training and evaluation data by deliberately controlling the reference data to

cover only a small portion of the possible semantics that arise during testing. Specifically, we

restrict the reference data to originate from 25%, 50%, 90%, and 100% of the overall categories

in the TruthfulQA dataset. Table 6.6 displays the results, indicating an increase in detection

performance with the expansion of category coverage. Remarkably, our approach surpasses

other state-of-the-art methods, even when trained on only 25% of the categories while being

tested on all possible unseen topics.

Model Type
Categories Coverage

25% 50% 90% 100%

Llama-13B 0.71 0.72 0.77 0.85

Alpaca-13B 0.73 0.73 0.81 0.85

Vicuna-13B 0.72 0.74 0.78 0.83

Llama2-13B 0.74 0.76 0.84 0.88

Table 6.6: The detection AUC-ROC of PoLLMgraph under distributional shifts.

Cross-dataset Performance. To complement the evaluation of the effectiveness of PoLLMgraph,
we measure the effectiveness of detecting hallucinations on HaluEval, when trained on Trut-

fulQA. The results are presented in Table 6.7, which complements Table 6.3 in the main paper.

Method Name Alpaca-13B Llama2-13B

ITI 0.60 0.61

Latent Activation 0.58 0.54

Internal State 0.61 0.62

PoLLMgraph-MM (Grid) 0.62 0.63

PoLLMgraph-MM (GMM) 0.64 0.66

PoLLMgraph-HMM (Grid) 0.69 0.72

PoLLMgraph-HMM (GMM) 0.68 0.64

Table 6.7: The detection AUC-ROC of different methods on HaluEval, when trained on TruthfulQA.

Number of Reference Data. We conduct additional experiments to explore how the size

of the reference dataset (10%, 15%, 25%, 50%, 75% of the entire dataset) affects the effective-

ness of other white-box baselines in TruthfulQA with Alpaca-13B as the investigated model.

Table 6.8 shows the experimental results. It can be clearly observed that all approaches achieve

higher detection AUC-ROCwith the use of more reference data, while our PoLLMgraph consis-
tently outperforms the other white-box methods across different sizes of the reference dataset.
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Method Name 10% 15% 25% 50% 75%

ITI 0.67 0.69 0.71 0.75 0.77

Latent Activation 0.65 0.68 0.73 0.78 0.84

Internal State 0.67 0.70 0.75 0.81 0.84

PoLLMgraph-HMM 0.85 0.85 0.86 0.87 0.89

Table 6.8: The detection AUC-ROC of different white-box approaches across different reference

dataset sizes on TruthfulQA, with Alpaca-13B as the studied model.

Black-box Approaches. We further evaluate more latest black-box hallucination detec-

tion approaches on the TruthfulQA dataset, including LMvsLM [210] and RV(QG) [211].

We conduct the experiment using the open-source codebase from RV(QG). While LMvsLM

does not provide open-source code, the open-source repository of RV(QG) includes an imple-

mentation of LMvsLM. All hyperparameters are set to be their defaults. We use Llama-13B,

Alpaca-13B, Vicuna-13B, Llama2-13B, the latest GPT-4 (gpt-4-0125-preview) as the studied

LLMs, with TruthfulQA serving as the test dataset. The empirical results in Table 6.9 highlight

a significant gap between white-box and black-box detection approaches.

Mode5l Type
Method Name

LMvsLM RV(QG)

Llama-13B 0.62 0.73

Alpaca-13B 0.61 0.72

Vicuna-13B 0.63 0.69

Llama2-13B 0.69 0.76

GPT-4 0.71 0.76

Table 6.9: The detection AUC-ROC of black-box hallucination detection approaches on TruthfulQA

with different studied LLMs.

Different Variants of SelfCheck. We present detailed results on various variants of Self-

Check, including SelfCheck-Bertscore, SelfCheck-MQAG, and SelfCheck-Ngram, as illus-

trated in Section 6.6.2. The results are displayed in Table 6.5. Since SelfCheck-Combined

consistently outperforms the other options, we use it as the default for comparison in Table 6.1.
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7.1 Discussion

7.1.1 Memorization in Language Models
AI models generally tend to memorize training data, particularly in scenarios where sensitive

information appears across multiple training samples. This characteristic poses significant

challenges for data protection as training data frequently contains sensitive personal informa-

tion and proprietary content protected by intellectual property rights. Such memorization be-

havior directly violates the data minimization principle in trustworthy AI requirements, where

models should only retain necessary patterns rather than verbatim data copies.

To address this challenge, we propose DeepMemory, a framework that analyzes model ac-

tivations throughout different network layers to establish quantifiable relationships between

activation patterns and data memorization. Focusing on language models, our methodology

systematically tracks the distribution of memorized data across hidden states and attention

mechanisms. By employing statistical machine learningmethods, i.e., first-orderMarkovmod-

els, we construct probabilistic frameworks capable of identifying memorization segments with

73% average AUC in our experiments. This detectionmechanism enables targeted suppression

of memorized content during generation through dynamic activation masking.

Building upon these insights, we integrate the learned memorization patterns with mutation-

based methods to develop an adaptive data preprocessing pipeline. Empirical results show that

models trained on processed data exhibit improved generalizability and reduced data memo-

rization.

Our work not only reveals structural vulnerabilities in current language model architectures

through activation analysis but also establishes a methodological framework for correlating

different types of vulnerabilities based on their manifestation in activation space. This dual

contribution advances both the theoretical understanding of model memorization and practical

approaches for building compliant language model-based AI systems.

7.1.2 Data Leakage in Federated Learning
Federated Learning is a decentralized learning paradigm that enables collaborative model train-

ing across multiple entities without requiring direct data sharing. In vertical federated learn-

ing, participants hold distinct subsets of features or labels, and only gradients or intermediate

parameters, protected by homomorphic encryption, are exchanged during training. Due to its

design that minimizes raw data exposure, FL has been widely regarded as a privacy-preserving

framework.
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However, our research challenges this assumption. By analyzing existing VFL protocols

under practical threat models, we identify critical data leakage vulnerabilities during training.

Specifically, temporal distribution patterns in local model updates (e.g., gradients or interme-

diate outputs) can be exploited by adversaries to reconstruct raw features or labels from other

participants. To mitigate this risk, we propose a lightweight defense: injecting carefully cal-

ibrated noise into the exchanged parameters, which significantly increases the complexity of

reconstruction attacks. Our findings highlight that current VFL implementations remain vul-

nerable to privacy breaches, underscoring the urgent need for systematic improvements in

secure protocol design.

7.1.3 Trustworthy Content Generations
The challenge of hallucination in large languagemodels underscores the critical need for robust

detection mechanisms. Existing approaches mainly focus on black-box or gray-box settings

and rely on external knowledge bases, output inconsistencies, or single-token representations,

which often fall short of capturing the intricate internal dynamics driving hallucinations. While

recent white-box methods have begun exploring latent activations, they largely neglect tempo-

ral state transitions, a gap our work addresses.

Our study introduces PoLLMgraph, a novel white-box framework that leverages state transi-

tion dynamics to detect hallucinations. By modeling temporal patterns in LLM internal activa-

tions through tractable probabilistic models (e.g., HMMs), PoLLMgraph achieves a 20% im-

provement in AUC-ROC over state-of-the-art methods on benchmarks like TruthfulQA. Key

contributions include: (1) a paradigm shift toward analyzing state transition trajectories, (2)

a practical solution requiring minimal supervision (<100 labeled samples), and (3) superior

generalizability across diverse LLM architectures and datasets.

However, our work has limitations. First, performance depends on hyperparameters such as

cluster counts and PCA dimensions, necessitating careful tuning. Second, while PoLLMgraph

demonstrates resilience to moderate distribution shifts, its efficacy under extreme semantic

or conceptual shifts (e.g., post-fine-tuning) remains underexplored. Finally, reliance on static

reference data may limit adaptability to evolving LLM behaviors.

7.2 Future Directions
The evolving landscape of LLMs presents significant challenges in ensuring privacy protec-

tion and the trustworthiness of AI-generated content. The integration of models into sensitive

domains, such as healthcare, finance, and legal applications, underscores the urgency of ad-

dressing these concerns through comprehensive strategies.

In this dissertation, we propose a benchmark, PrivAuditor, to comprehensively investigate

the privacy leakage risks associated with LLM adaptations. However, because PrivAuditor

currently focuses solely on text data, it does not cover broader application scenarios. In future

work, we plan to extend PrivAuditor to support multimodal LLMs and additional adaptation

techniques, such as reinforcement learning from human feedback. Such automated privacy au-
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diting tools can enable real-time risk assessments, particularly for domain-specific applications

that handle highly sensitive information.

Moreover, as AI-based application scenarios become more diverse, there is a pressing need

for adaptive privacy mechanisms that dynamically adjust to varying levels of data sensitivity

and business needs. Future research should focus on developing personalized privacy controls,

allowing end-users to configure data protection levels based on contextual needs.

A key challenge in the trustworthiness of AI-generated content is hallucinations, where

LLMs generate plausible but factually incorrect information. In this dissertation, we introduce

PoLLMgraph, which analyzes state transition dynamics and provides a promising approach to

enhancing hallucination detection. In the future, we will explore integrating advanced statisti-

cal techniques, such as conditional random fields, to further improve detection effectiveness.

In conclusion, the intersection between privacy protection and trustworthy content gener-

ation demands a holistic approach that balances privacy, security, and utility. As AI mod-

els continue to evolve dramatically, adaptive solutions that dynamically respond to emerging

threats and ethical considerations will be crucial. By integrating privacy-preserving strategies,

robust hallucination detection frameworks, and transparent auditing mechanisms, researchers

and practitioners can pave the way for building trustworthy AI systems in the future.
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Abstract—The neural network model is having a significant
impact on many real-world applications. Unfortunately, the in-
creasing popularity and complexity of these models also amplifies
their security and privacy challenges, with privacy leakage from
training data being one of the most prominent issues. In this con-
text, prior studies proposed to analyze the abstraction behavior of
neural network models, e.g., RNN, to understand their robustness.
However, the existing research rarely addresses privacy breaches
caused by memorization in neural language models. To fill this
gap, we propose a novel approach, DeepMemory, that analyzes
memorization behavior for a neural language model. We first
construct a memorization-analysis-oriented model, taking both
training data and a neural language model as input. We then
build a semantic first-order Markov model to bind the con-
structed memorization-analysis-oriented model to the training
data to analyze memorization distribution. Finally, we apply
our approach to address data leakage issues associated with
memorization and to assist in dememorization. We evaluate our
approach on one of the most popular neural language models,
the LSTM-based language model, with three public datasets,
namely, WikiText-103, WMT2017, and IWSLT2016. We find that
sentences in the studied datasets with low perplexity are more
likely to be memorized. Our approach achieves an average AUC
of 0.73 in automatically identifying data leakage issues during
assessment. We also show that with the assistance of DeepMemory,
data breaches due to memorization of neural language models
can be successfully mitigated by mutating training data without
reducing the performance of neural language models.

Index Terms—Deep learning, neural language model, model-
based analysis, privacy, memorization

I. INTRODUCTION

Artificial intelligence (AI) software is important for au-
tomating and making autonomous decisions. In particular, the
rise of neural network models had a huge and significant
impact on many real-world applications, e.g., natural language
processing [1], [2], image recognition [3], and autonomous
driving [4], [5]. However, the increasing diversity and com-
plexity of such neural network models make their security,
reliability and robustness a critical and difficult issue to address.
Therefore, researchers in different fields are now working

*Jinfu Chen (jinfu.chen1@huawei.com) is the corresponding author.

intensely on guidelines for Trustworthy AI and Safe AI. For
example, software engineering researchers propose techniques
that analyze and explain AI models in order to ensure the
security and safeness of AI-based software [6], [7].

Similar to traditional (i.e., not based on AI) software, AI-
based solutions have been reported by many prior studies to
trigger security concerns, such as data privacy leakage [8].
Although various verification techniques, e.g., static analysis,
symbolic execution analysis and fuzzing techniques, can be
used to guide the assurance of traditional software security,
those techniques are not applicable for AI-based software. In
contrast, to the best of our knowledge, there is a relative lack
of techniques that can assist in the verification of security in
AI-based software.

Data privacy leakage is a typical security issue in AI
models. Previous work [9], [10], [11] has shown that neural
language models tend to memorize the training data instead
of learning its latent characteristics. This can be exploited to
extract privacy-critical information from the data, potentially
leading to significant financial and reputational harm [12]. More
generally, memorization with a neural language model may
reveal insights regarding its internal behavior. Prior studies [13],
[14], [15] have been proposed to analyze certain aspects of the
internal behavior of deep neural networks in order to assist with
detecting adversarial examples and to guide the security testing
of deep learning models [14]. However, the existing research
rarely targets a model’s internal memorization behavior. Hence,
the existing research is limited when it comes to analyzing
and preventing leakage of sensitive private information from
training data of a publicly released model.

To fill this research gap, we propose a novel approach,
DeepMemory, to assist in verifying security in AI-based
software by analyzing the internal memorization behavior of
neural language models. We first construct a memorization-
analysis-oriented model taking both training data and a neural
language model as input. Second, we bind the constructed
memorization-analysis-oriented model to the training data. We
then build a semantic first-order Markov model to analyze
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memorization distribution. Finally, we apply our approach to
two downstream application scenarios, including data leakage
risk assessment and dememorization assistance.

We evaluate our approach on one of the most popu-
lar neural language models, i.e., the LSTM-based language
model, with three public datasets, namely, WikiText-103 [16],
WMT2017 [17] and IWSLT2016 [18]. We investigate the
LSTM-based language model with the same architecture and
configuration as Merity et al. [19]. We find that by observing
memorization characteristics for training data, sentences with
low perplexity are more likely to be memorized by a neural
language model. Our approach achieves an average AUC of
0.73 in automatically identifying data leakage issues during
assessment. Finally, by following our approach, the memoriza-
tion risk from a neural language model can be mitigated by
mutating training data without impacting the quality of neural
language models.

To the best of our knowledge, our approach is the first
attempt to assist in the verification of a common and important
privacy related issue in AI models, i.e., memorization in neural
language models. In particular, our work makes the following
contributions:
• We model the internal memorization behavior of neural

language models, e.g., the LSTM-based language model,
in order to address training data leakage issues caused by
the model’s memorization behavior.

• Our approach can automatically assess memorization-
related privacy leakage in neural language models.

• With our work, we can assist in the dememorization
process in order to address memorization issues in neural
language models.

• Our approach can be used to assist in the security testing
and assurance processes for AI models.

The rest of this paper is organized as follows: Section II
provides the background for our work. Section III gives an
overview of our approach, and Sections IV–VI present the
details. Section VII presents the results of our evaluation.
Section IX discusses threats to the validity of our work, and
Section X summarizes related work. Finally, Section XI offers
concluding remarks.

II. BACKGROUND

A. Language modeling

A language model is a probability distribution over sequences
of words [20]. In other words, a language model aims to learn
a probabilistic model that is capable to predict the next word
in a sequence based on the given preceding words. Formally,
the probability distribution of a language model can be defined
as Pr(w1, w2, ..., wn):

Pr(w1, w2, ..., wn) =

n∏
i=1

Pr(wi|w1, ..., wi−1) (1)

where wi refers to a word. This language model has been
successfully used in many applications, such as speech recogni-
tion [21], machine translation [22], sentiment analysis [23], and

information retrieval [24]. In particular, the neural language
model is becoming increasingly popular and has been success-
fully used in many applications. The neural language model
uses different kinds of neural networks to model sequence
probability, and it transforms words into vectors and uses the
vectors as input for a neural network to predict the next words.
A very common neural language model is the long short-term
memory (LSTM) language model. An LSTM network contains
a plethora of units, called memory blocks. Each memory block
represents a hidden state, i.e., st, st+1, st+2. Prior work [25]
illustrated the success of LSTM-based language models in
multiple applications motivating us to conduct our work in this
context.

B. Memorization risk from training Data

A language model requires domain-specific data for training
in order to achieve a good model performance. However, a well-
performing language model might suffer from data leakage due
to memorization of training data. Such leakage is particularly
troublesome when sensitive data including personal/private data,
transaction data, or governmental data becomes available to an
attacker. Examples of such sensitive data are Social Insurance
Numbers (in Canada) or health-related data.

Sensitive data that is part of training data may be memorized
by a neural language model during model training. When
leveraging such a mechanism, one can develop attacks to
extract such data from public trained language models [26]. In
other words, data leakage due to the memorization mechanism
is a typical security weakness in AI-based language models.
The study of memorization privacy risk includes two lines of
research: memorization-related privacy attacks and defenses.

1) Memorization-related privacy attacks: If a model is
ignorant towards privacy-preserving algorithms, it tends to
blindly remember some sequences from the training data [8],
[27]. Previous studies [8], [28] find that memorization is
a common phenomenon in language models, and privacy
attacks aim to reconstruct verbatim memorization sequences
for training data.

2) Memorization-related privacy defenses: There are typ-
ically two ways to support dememorization, i.e., differential
privacy and regularization. Differential privacy, which injects
noise into the process of model training, is a well-known
solution for minimizing memorization in model training [29].
As such, it is challenging to identify whether specific data
is part of the training data. Another typical privacy defense
approach is regularization. One can add regularization to the
loss function of language model optimization [26].

III. OVERVIEW OF OUR APPROACH

In this section, we present an overview of our approach
for analyzing the memorization behavior for a given lan-
guage model. Similar to traditional software vulnerability
detectors, our approach acts as an automated technique for
detecting potential data leakage security vulnerabilities that
occur due to memorization in language models. An overview
of our approach is shown in Figure 1. It consists of three
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Fig. 1: An overview of our approach.

phases: 1) memorization-analysis-oriented model construction,
2) memorization-distribution binding, and 3) addressing mem-
orization issues using the memorization model.

In the first phase, we construct a memorization-analysis-
oriented model. Taking both training data and a neural language
model as input, we first profile the given model to extract
semantic information, i.e., hidden states and traces. Such
profiling outputs initial states and traces that represent the
model behavior. Typically, a large number of initial states and
traces exist due to the massive scale of training data. We then
abstract a semantic distribution from the initial states and traces.
In particular, we transform initial states to intermediate states
by reducing the high dimensions of each initial state. We then
apply a clustering algorithm to group the intermediate states
and traces into clusters, i.e., to derive concrete states and traces.
Finally, we construct a memorization-analysis-oriented model
based on the concrete states and traces distribution.

In the second phase, our approach binds the memorization-
analysis-oriented model to the training data to analyze the
memorization distribution. This phase takes the memorization-
analysis-oriented model constructed from the last phase and
the training corpus as input. To analyze the memorization
distribution, we first extract memorization sequences from the
training data. We then build a semantic first-order Markov
model to model the memorization distribution.

In the final phase, we apply our approach to two downstream
tasks, including data leakage risk assessment and dememo-
rization assistance. The first downstream task automatically
identifies potential data leakage issues in the model (comparable
to bug detection). The second downstream task assists in the
repair of the models given the identified issues (comparable to
program repair). We detail each phase of our approach in the
subsequent Sections IV – VI.

IV. MEMORIZATION-ANALYSIS-ORIENTED MODEL
CONSTRUCTION

In this section, we construct a memorization-analysis-
oriented model. Algorithm 1 presents the details of its construc-
tion. Given an LSTM-based language model and its training
data, we first profile the model to extract the initial states and
traces by iterating words in each sentence over the training
data. We then abstract the initial states and traces to construct
our memorization-analysis-oriented model. We describe each
step in detail below.

Algorithm 1: Memorization-analysis-oriented model
construction algorithm

input :R = (D, δ, f): LSTM-based language model
G: semantic distribution abstraction function
θ: information loss threshold
D: sentences
σ: minimum number of neighbors threshold
ρ: distance threshold

output :M: memorization-analysis-oriented model
1 S ← [] ; // initial states set

2 T ← [] ; // initial traces set

3 for W ∈ D do // loop sentences to extract states

4 s ∈ [δi(W [: i])]
|W |
i=0 ; // extract all hidden states of a sentence

5 for i : 1 ∈ |s| do
6 S.add(si);
7 T.add((si−1, si))

8 g ← G(S, θ, σ, ρ) ; // semantic distribution abstraction

9 S
′
= [] ; // concrete states set

10 for s ∈ S do
11 s′ ← g(s) ;
12 S

′
.add(s′) ;

13 T
′ ← [] ; // concrete traces set

14 for (si−1, si) ∈ T do
15 s′i−1 ← g(si−1) ;
16 s′i ← g(si) ;
17 T

′
.add(s′i−1, s

′
i) ;

18 return M(D, S′ , T ′ , f);

A. Semantic profiling

Recent research on deep neural network models [14],
[15], [30] highlights that states and traces are efficient for
understanding stateful model behaviors over data distribution.
A neural language model can be seen as a stateful model. The
LSTM-based model is one of the most typical neural language
models. Therefore, in order to analyze LSTM-based neural
language model behavior, we profile the model to extract the
initial semantic states and traces as the first step. We first
explain the definition of state and trace in neural language
model analysis.

Suppose that we have an LSTM-based language model
R = (D, δ, f). D refers to all sentences used for training.
f is the distribution of a language model, and δ is an internal
state extractor of the model that is used to transform each
word in a sentence to a state. For example, when we feed
a sequence “Ian goes home at 6 pm on weekdays and goes
swimming at 7 pm every day.” to a LSTM-based language model
f with 100 hidden units, we can obtain a list of hidden-state
vectors of LSTM with 100-dimension for each feed input word,
i.e., [[0.1, ..., 0.3], [0.2, ..., 1.3], [1.5, ..., 0.3], ..., [0.07, ..., 0.4]],
by using internal state extractor δ. Particularly, δ(home) =
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[1.5, ..., 0.3].
With the internal hidden state set, we construct a corre-

sponding state flow, i.e., trace, over two hidden states ordered
chronologically. The trace represents a transition relation for a
pair of consecutive hidden states. In our illustrative example,
the trace between hidden state “goes” and state “home” is
represented by (δ(goes), δ(home)).

In Algorithm 1, we first define two empty sets (Line 1 and 2)
for hidden states S and traces T . We then iterate each sentence
W in the training data and extract the state and trace of each
word w (Line 3 to 7). Particularly, at the i-th timestamp t,
each word in a sentence is transformed to a state si using the
internal state extractor δ. A trace is accordingly extracted to
(si−1, si). Finally, we construct a state set S and trace set T
for the whole training data D and define it as an initial model.

B. Semantic distribution abstraction

After semantic profiling, we obtain an initial model to
represent the LSTM-based neural language model behaviors
over training data. However, such a granular representation
contains a plethora of discrete states and traces. For example,
an LSTM-based neural language model potentially produces up
to 100 thousand states and 900 thousand traces for a corpus
containing 10,000 sentences with an average length 10 of words.
It is impractical to understand the internal behavior of a given
model with such a huge number of states and traces. Therefore,
in this step, we abstract the semantic distribution of a given
language model from the perspective of states and traces.

1) Automated dimension reduction: The dimension of
each initial state generated by semantic profiling is equal to
the number of hidden units in LSTM core, which usually
is very high. It is hard to find the latent characteristics
over high dimensional space since the distribution of data
with high dimension tends to be sparse [31]. Therefore, we
first automatically reduce the dimension of each initial state
generated by semantic profiling to an optimal number. Du et
al. [14] applied Principal Component Analysis (PCA) to reduce
the dimension of semantic space to a small number, in order to
efficiently find the common correlation over states. However, an
obvious limitation in their approach exists. When the dimension
of an initial state is high, arbitrary dimension reduction
may lead to a huge information loss. The information loss
from modeling may potentially introduce a significant bias in
memorization-analysis-oriented model construction. To improve
the memorization-analysis-oriented model construction, we use
a classic metric, Relative Information Loss [32], to measure
the information loss during dimension reduction. In detail, we
have a number of n vectors V and each vector is with m-
dimension space, i.e., [v0, v1, ..., vm]. We want to transform
the n initial vectors to vectors V̂ , and each transformed vector
is with k-dimension, i.e., [v̂0, v̂1, ..., v̂k]. The corresponding
information loss is defined as ψ(k).

In order to overcome the aforementioned limitation, we take
information loss into account for dimension reduction in order
to secure the utility of the transformed internal state. We set

a threshold θ to control information loss, and the decision
process of finding the optimal k can then be defined as:

argmin
k

|ψ(k)− θ| (2)

Finally, this step outputs intermediate states and each state is
k dimensions. In our example, we reduce the 100-dimension of
each state to three dimensions. For example, the word “home”
would be with a reduced initial state [1.5, 0.7, 0.3].

2) Semantic Clustering: To identify the latent characteris-
tics over the intermediate states, we apply a clustering algorithm
(DBSCAN) to group together intermediate states that are close
to each other in terms of cosine distance threshold ρ and
minimum number of neighbors σ. DBSCAN-based clustering
is suitable for data with an arbitrary shape [33]. ρ specifies
for the minimum cosine distance which two intermediate state
points should be considered as neighbors. σ determines the
minimum number of neighbors to be defined as a core state.
Each core state and its neighbors form a cluster labeled as a
concrete state. In our running example, the words “home” and
“swimming” are grouped into one cluster. Therefore, we would
label the hidden states of the words “home” and “swimming”
as a single identical concrete state.

C. Memorization-analysis-oriented model construction

With the concrete states from the clustering, we construct a
final memorization-analysis-oriented model. We first transform
the high-dimensional initial states into intermediate states with
an optimal dimension. We then transform the intermediate
states to concrete states. Note from Algorithm 1, we define an
abstraction function G to abstract the initial states and traces
(Line 8). The inputs of the function G are the initial states,
and three threshold values, i.e., information loss threshold θ,
the number of cores σ, and distance threshold ρ. We then
initialize two sets S

′
(Line 9) and T

′
(Line 13) for concrete

states and traces, respectively. Next, for each initial state si,
we use the defined semantic distribution abstraction to abstract
the state to s′i (Line 10 to 12). Similarly, for each initial
trace (si−1, si) composed of two states si−1 and si, we apply
the same abstraction function to abstract the two states to
s′i−1 and s′i. We then connect the two abstracted states into
a concrete trace (s′i−1, s

′
i) (Lines 14 – 17). The final output

is the memorization-analysis-oriented model (Line 18). In
our running example, the final memorization-analysis-oriented
model is represented by the concrete state and trace set.

V. MEMORIZATION DISTRIBUTION BINDING

Prior studies [8], [27] have reported that memorization
is a severe issue in language models. To achieve a good
performance, a model all too often intends to remember the
training data during the training process instead of learning
the latent characteristics. Regularization techniques, such as
dropout and batch normalization, aim to solve the model
overfitting issue and improve the generality of AI models.
Although the regularization techniques are widely adopted for
training a complicated model, e.g., an LSTM-based model,
the models may still memorize part of the training data [27].
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Such memorization might be exploited to extract private data
from a given language model. Therefore, in this section, we
quantify the memorization behavior in a memorization-analysis-
oriented model, i.e., the output from Section IV. The details
for analyzing memorization behavior are shown in Algorithm 2.
Given a memorization-analysis-oriented model and training
data as input, we bind the memorization distribution by building
a semantic Markov model to map the memorization-analysis-
oriented model to training data. In particular, we first extract
memorization. We then build a first-order Markov model to
represent the semantic memorization distribution.

A. Memorization Extraction

From our memorization-analysis-oriented model generated
in Section IV, we obtain the final concrete states and traces for
each sentence in the training data. However, such states and
traces cannot be applied to quantify memorization behavior
of a given language model directly. Therefore, to quantify the
memorization behavior efficiently, we first define a memoriza-
tion concept called a memorization sequence. Given a language
model R = (D, δ, f) and a prefix c, a string of l with length
N is considered to be a memorization sequence if such a string
is equal to:

argmax
l′ :|l′ |=N

R(l
′
|c) (3)

where c and l are both from the training corpus. In our example,
given a prefix c “Ian goes”, a language model would predict a
string “home at 6 pm on weekdays” as the most likely output.
We call a string such as “home at 6 pm on weekdays” a
memorization sequence based on the prefix “Ian goes”.

With memorization sequences, we classify the concrete
state|trace from the memorization-analysis-oriented model into
two types, i.e., memorization state|trace and non-memorization
state|trace. If a state|trace is visited by any memorization
sequence, we consider the state|trace to be a memorization
state|trace. Otherwise, it is a non-memorization state|trace.
Finally, we can construct a semantic distribution for all
the concrete states and traces in terms of memorization. In
Algorithm 2, we first initialize two dictionaries, MT and MS, to
represent memorization traces and states, respectively (Line 1
and Line 2). We also initialize two dictionaries, AT and AS for
all the concrete traces and states output from Section IV (Line
3 and Line 4). Next, we iterate each sentence in the training
data to abstract state and trace for each word. If an abstracted
state|trace is visited by a memorization sequence, we label the
state|trace to a memorization state|trace (Line 6 to Line 15).
In our running example, the concrete state corresponding to
“home” is classified as a memorization state.

B. Semantic Memorization Modeling

With the memorization states and traces, we build a first-
order Markov model to learn the memorization semantic distri-
bution conditioned on the state from the last step. Sequential
behavior can be regarded as a discrete-time Markov chain.
Therefore, the memorization probability over a sequence can
be modeled by a first-order Markov model [34].

Algorithm 2: Memorization analysis algorithm
input :M = (D, T, S, f): memorization-analysis-oriented model,

g: abstraction transformation function,
H: memorization sequence abstraction function,
D: sentences

output : E(γ, τ): first-order Markov memorization model
1 MT ← {} ; // a dictionary of memorization traces

2 MS ← {} ; // a dictionary of memorization states

3 AT ← {} ; // a dictionary of concrete traces

4 AS ← {} ; // a dictionary of concrete states

5 h← H(D, f) ; // function to check if an input is memorization trace

6 for W ∈ D do // loop every sentence to extract states and traces

7 s ∈ [δi(W [: i])]
|W |
i=0 ;

8 for i ∈ 1 . . . |W | do
9 s′i−1 ← g(si−1) ;

10 s′i ← g(si) ;
11 AT [(s′i−1, s

′
i)] + +;

12 AS[(s′i)] + +;
13 if h(si−1, si) == True then
14 MT [(s′i−1, s

′
i)] + +;

15 MS[(s′i)] + +;

16 for (si−1, si) ∈ AT do
17 Eγ(si−1, si)←

AT (si−1,si)∑
j AT [(si−1,sj)]

;

18 for si ∈ ST do
19 Eτ (si)← MS[(si)]

AS[(si)]
;

20 return E(γ, τ);

1) Memorization state|trace distribution construction:
We calculate two probabilities representing the memorization
state probability Pr(si) and trace probability Tr(si−1, si).
To compute the memorization state probability, we count the
number of times a memorization state is visited by any sequence
(memorization sequence and non-memorization sequence) as
the denominator and the number of times a memorization
state is visited by the extracted memorization sequences from
Subsection V-A as numerator. Trace probability Tr(si−1, si)
refers to how likely state si−1 reaches state si. In Algorithm 2,
we calculate two such probabilities for each sentence in Lines
16 to 19. For example, the concrete state corresponding to
“home” is visited by a total of 100 memorization sequences
and a total of 300 sequences. Therefore, the probability
of memorization to a concrete state (memorization state)
corresponding to “home” is 1/3 (100/300).

2) Construction of memorization sequence distribution:
We calculate the memorization sequence probability based on
Pr(si) and Tr(si−1, si). For a given sequence l consisting
of n words, we can extract n states s corresponding to each
word. Based on the chain rule and first-order assumptions, the
memorization probability of the given l can be computed as:

Pr(s) =
n∏
i=1

Tr(si−1, si) ∗ Pr(si) (4)

where Tr(s0, s1) = 1. In the rest of this paper, we refer to the
first-order Markov memorization model as a semantic model.

VI. ADDRESSING MEMORIZATION ISSUES USING THE
MEMORIZATION MODEL

Finally, we leverage our first-order Markov memorization
models that are based on the last step to address the memo-
rization issues. In particular, our approach first automatically
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assesses the risk of data leakage due to memorization issues.
Next, our approach assists in the dememorization of the neural
language models.

A. Data leakage risk assessment

A language model potentially poses the risk of remembering
unintended information from its training data. To assess the
training data leakage risk, we predict whether a sequence from
the test data exists in the training data based on our first-order
Markov memorization model.

In the first step, for each sentence in the test data, we
extract the initial states based on the state extraction approach
presented in Subsection IV-A. It is rare to have two identical
semantic states from training and test data in an LSTM network.
Therefore, we map each state of test data to the closest state
extracted from the training data by searching the nearest
neighbor based on cosine distance.

Second, we connect all the consecutive semantic states to
form a sequence. We use the first-order Markov model to
calculate the memorization probability of each sequence. If
the memorization sequence has a high probability, we consider
that the sequence would exist in the training data, resulting in
a possible data leakage. We use such uncovered possible data
leakage to assess the memorization issues from the original
neural language models.

B. Assisting in dememorization

To assist in dememorization, we mutate the sentences in the
training data that are most likely to lead to data leakage and
re-build our semantic model to know whether the mutation
mitigates the unintended memorization behavior. The goal of
our approach is to mutate the data-leaking sentences while
minimizing the impact on the data without leakage risks. For
each sentence, we leverage the memorization probability that
is generated from our approach to decide whether to mutate
the sentence. In short, we only mutate the sentences with high
memorization probability and retrain the neural language model
from the data after mutation for dememorization.

VII. EVALUATION

A. Experimental setup

We evaluate our approach based on one of the state-of-the-
art word level LSTM-based language models [19] with 3,000
hidden nodes on three popular large datasets, namely, WikiTest-
103 [16], WMT2017-en [17], and IWSLT2016-en [18]. An
overview of these datasets is given in Table I. The training data
is disjoint from the test data. Our experimental environment
is based on a server with 16 24GB-GPUs, 500 GB of RAM,
and 1 TB disk. The server runs Ubuntu Linux, version 20.04.
Table II shows the runtime of each stage of our proposed
approach over different datasets. Adding a regularization setup
parameter, each memorization-analysis-oriented model only
needs to be constructed once to assess the data leakage of one
AI model.

TABLE I: Overview of our datasets
Dataset Sentences Unique Words

Train 1M 220KWikiText-103 Test 100K 220K
Train 4M 798KWMT2017-en Test 12K 40K
Train 177K 59KIWSLT2016-en Test 19K 15K

TABLE II: Overview of time cost for each step

Sem.
profiling

Dim.
reduction

Sem.
clustering

Mem.
abstraction

Sem. mem.
modeling

W-103 0.25h 0.15h 4h 1.5h 0.1h
WMT 0.55h 0.62h 15h 5.8h 0.3h

IWSLT 0.08h 0.08h 1h 0.7h 0.07h
Sem. is abbreviation of semantic. Mem. is abbreviation of memorization.

B. Preliminary analysis

Given a language model, if the memorization data appears to
have no inherent common patterns or characteristics, the data
would not be prone to data leakage issues, i.e., would not be
suitable to our study. Therefore, before applying our approach
to the three neural language models from the three datasets,
we aim to understand the characteristics of the memorization
sequences in the three neural language models.

Carlini et al. [27] find that a sentence with low perplexity
is likely to be vulnerable to encounter an attack involving
data leakage, where perplexity indicates how well a trained
language model fits the distribution of sentences. It is defined
as the inverse probability of the sentences, normalized by the
number of words. Formally, given a sequence l = WN

1 , the
perplexity is defined as follows:

PP (WN
1 ) = P (w1w2w3...wN )−

1
N

= N

√√√√ N∏
i=1

1

p(wi|w1w2...wi−1))

(5)

where wi is the i-th word in this sequence. P indicates
the probability of a sentence. From Equation 5, a lower
perplexity value indicates a better performing language model.
We summarize the perplexity distribution over each sentence
in the training data. If a model assigns a high probability to
a sentence, it is likely that the model tends to remember this
sentence. Therefore, we also study the relationship between
perplexity and the length of a memorization sequence in each
sentence.
Result: Most of the sentences in the training data have
low perplexity. Figure 2 shows the perplexity distribution over
the three training datasets, WikiTest-103 (a), WMT2017-en
(b), and IWSLT2016-en (c). Prior studies [35], [36] report that
a language model with a perplexity below 100 is considered
a well-performing model. In particular, considering the prior
study [35] using the same training data, the authors report that
their language model achieves a perplexity of 34.4 for WikiText-
103. We find that most of the sentences in the training data have
low perplexity. In particular, at least 96% of the sentences have
a perplexity less than 100 in our three experimental datasets.
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Such a result implies that the trained language model can
remember most of the sentences from the training data.
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(c) IWSLT2016-en.
Fig. 2: Density distribution of number of sentences over
perplexity.

The sentences with a longer memorization sequence have
lower perplexity. Figure 3 shows the density of the length of
memorization sequences in terms of perplexity over the training
data. The X-axis indicates the perplexity (with increasing steps
of 50). The Y-axis shows the density of length of memorization
sequences. Note in Figure 2 and Figure 3 that most of the
memorization sequences with low perplexity (< 50) contain
at least six words. Such results imply that the sentences in
the training data that have longer memorization sequences are
easier to be remembered by the language model.
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(a) WikiText-103.
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(b) WMT2017-en.
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(c) IWSLT2016-en.
Fig. 3: The average length of memorization sequence distribu-
tion in terms of perplexity over three datasets.

Summary of preliminary analysis: Most of the sentences
in the studied datasets have low perplexity, which shows
that the subject neural language model may be prone to the
memorization issue.

C. Results

RQ1: To what extent are the studied neural language
models prone to memorization issues?
Motivation: In our preliminary analysis, our results show that
most of the sentences in the studied datasets have low perplexity
and such sentences with low perplexities may be prone to be
remembered by neural language models. As such, one can
model the memorization distribution and exploit the learned
memorization to extract and store the valuable training data.
Therefore, in this research question, we want to explore to
what extent the studied neural language models are prone to
memorization issues.
Approach: To answer RQ1, we first want to know the preva-
lence of potential memorization issues in our studied datasets.
If a state|trace is a memorization state|trace, such a state|trace

is a potential memorization issue. To quantify the potential
memorization issue, we define two metrics, SCR and TCR, to
evaluate our memorization-analysis-oriented model. SCR is the
memorization state coverage rate and TCR is the memorization
trace coverage rate. The name state|trace memorization implies
that the state|trace is visited by a memorization sequence.
Formally, SCR is defined as Num MS

Num state , and TCR is defined as
Num MT
Num trace . Num MS is the number of distinct memorization
states and Num MT is the number of distinct memorization
traces. Num state and Num trace refer to the total of
distinct concrete states and traces, respectively. We follow
the following steps to calculate the two metrics, SCR and TCR.
We first apply the proposed modeling approach in Section IV to
obtain the memorization-analysis-oriented model from training
data. Second, we employ the memorization extraction approach
from Section V-A to extract the memorization sequences from
training data. Next, for each word in a memorization sequence,
we can map it to the semantic model to obtain the memorization
state and trace.

Memorization states|traces can be visited by both memoriza-
tion sequences and non-memorization sequences. The more
memorization sequences visit a state|trace, the more likely such
a state|trace is prone to memorization issues. Therefore, we
also quantify the memorization issues of our studied datasets
using memorization state and trace probability. We calculate
memorization state and trace probabilities using the approach
presented in Section V-B. The higher the memorization
state|trace probabilities are, the more possible such a state|trace
is prone to memorization issues.
Result: Only a small portion of states and traces from
training data are related to memorization. The result of the
state and trace coverage rate is shown in Table III. In the table,
the column σ is the input of the clustering algorithm DBSCAN
used to control the granularity of clusters. The result shows
that most of the states and traces are unrelated to memorization.
The state coverage rate ranges from 6.8% to 24.5%. The traces
coverage rate is less than 4.03% in any of different inputs of
core σ. The results show that only a small percentage of states
and traces are related to memorization. Such results imply that
either 1) there are only a few memorization issues or 2) there
exist many memorization issues, and such memorization issues
only cover a small percentage of memorization states/traces.

In addition, our approach can efficiently reduce the number
of initial states and traces. For example, when using a σ of
100 as input for our clustering algorithm DBSCAN, we reduce
the initial millions states into 40,121 concrete states. Such a
considerable number of states cannot only be used to analyze
memorization behavior of a language model, but can also be
used to retain most of the semantic information.

The memorization states and traces have a considerable
high memorization probability. Figure 4 shows the results
of the probability distribution of the memorization states
and traces over the three studied datasets. Although only
low percentages of states (an average of 17.6%) and traces
(an average of 2.24%) are related to memorization, the
memorization state and trace probabilities are comparably
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TABLE III: Results of memorization state and trace coverage
rate. (Mem. is the abbreviation for “memorization“.)

Dataset σ
All concrete

states
All concrete

traces Mem. states Mem. traces TCR SCR

W-103

100 40,121 31,9450 3,258 6,740 1.02% 16.8%
150 79,820 521,460 18,518 16,060 3.08% 23.2%
200 82,317 613,419 16,792 11,593 1.89% 20.4%
250 89,012 634,210 17,534 9196 1.45% 19.7%

WMT

100 63,902 549,872 7,221 6,653 1.21% 11.3%
150 71,921 673,219 17,620 13,666 2.03% 24.5%
200 76,709 778,895 12,426 14,721 1.89% 16.2%
250 77,101 792,015 5,244 6,256 0.79% 6.8%

IWSLT

100 4,523 26,217 557 738 2.81% 12.3%
150 8,945 114,084 1,923 4,598 4.03% 21.5%
200 11,219 139,930 2,546 4,886 3.49% 22.7%
250 14,234 178,904 2,246 5,831 3.26% 15.8%

high. Especially, the mean memorization state probability in
dataset WikiText-103 is 0.63. By inspecting our results, we find
that the memorization-analysis-oriented model can identify the
memorization transition of the LSTM-based language model
and discover potential memorization issues in the training data.

Answer to RQ1: Only a small percentage of states and
traces from training data are related to memorization. How-
ever, the memorization states and traces have a considerably
high memorization probability.

RQ2: How accurate is our approach in the data leakage
risk assessment?
Motivation: In RQ1, the results show that the memorization
states and traces tend to be remembered due to a considerable
high memorization probability. The associated distribution can
be used to analyze the training data and the potential for data
leakage. In order to illustrate a practical impact, we leverage
our approach to assess training data leakage risk based on a
given language model. In this research question, we want to
answer how accurate our privacy risk assessment approach is.
Approach: In Section V, we have built a first-order Markov
memorization model. To realistically assess the privacy risk
of given data, we use the constructed model to measure the
memorization probability of each sequence in the test data.
Based on the predicted memorization probability of each
sequence in the test data, which is not seen by the model
during the training phase, we predict whether a sequence of
test data likely exists in the training data.

Furthermore, the length of a memorization sequence might
affect the modeling analysis. For example, one may argue
that the shorter a memorization sequence is, the more likely
the sequence appears in the training data. Therefore, we
calculate the Pearson correlation [37] between the length of
memorization sequences and memorization probabilities of
sequences. Pearson correlation ranges from -1 to +1. A value
of 1 indicates that the length and memorization probability
of sequences has a strong relationship. A value of 0 indicates
that there is no relationship between them, and a value of -1
indicates an inverse relationship between them.

We implement a baseline approach that assigns a random

score to each of the extracted memorization sequences. We
compare DeepMemory to the baseline in this research question.
To measure the performance, we examine whether the extracted
sequences from the test data appear in the training data. If
a sequence is indeed in the training data, we consider it
as a true-positive sequence. Otherwise, it is a false-positive
sequence. The true-positive sequence is considered to be data
leakage from training data. We use four metrics to evaluate our
approach, including precision, recall, F1, and AUC. Precision
measures the correctness of our model, and refers to the ratio
of cases when a predicted sequence is actually in the training
data. Recall measures the completeness of our approach, and
is defined as the number of sequences that were correctly
predicted as memorization divided by the total number of
memorization sequences in the test data. F1 is the harmonic
mean of precision and recall. AUC allows us to measure the
overall ability of our approach. The AUC is the area under
the ROC curve, which indicates the performance of a binary
model as its discrimination is varied.
Result: Our data leakage assessment approach can achieve
an average AUC of 73%. Table IV shows the results
for precision, recall, F1, and AUC over the memorization
distribution. Note from Table IV that our approach achieves
an average precision of 47% and a very high average recall of
92% when taking 0.5 as a threshold, which outperforms the
baseline approach, i.e., a precision of 0.38 and a recall of 56%.
The results imply that a sequence with a high memorization
probability in the test data tends to be memorized. However,
different thresholds may lead to different results. To overcome
this bias, we also present the AUC of our approach. We find that
the AUC is high with an average value of 73%. The results
suggest that our proposed first-order memorization Markov
model approach is capable of assessing data leakage risks.

TABLE IV: Results of using our approach to predict the
memorized sequence compared with the baseline approach.

DeepMemory Baseline
Precision Recall F1 AUC Precision Recall F1 AUC

W-103 0.50 0.75 0.60 0.72 0.38 0.50 0.42 0.48
WMT 0.29 1.00 0.44 0.67 0.30 0.57 0.40 0.50

IWSLT 0.62 1.00 0.76 0.80 0.50 0.60 0.54 0.48

Average 0.47 0.92 0.60 0.73 0.39 0.56 0.45 0.49

Our approach shows a similar performance for all types
of sequences. The Pearson correlation between length and
memorization probability of memorization sequence is 0.14.
An absolute value of 0-0.19 is regarded as a very weak
correlation [37]. Therefore, a very weak relationship exists
between the length of a memorization sequence and the
memorization probability of sequences.

Our approach can be used to efficiently identify a real-
world data leakage issue. In order to demonstrate the practical
usefulness of our approach, we want to examine whether our
approach can be used to identify real-world private data. We
train a language model based on the setting from [8]. Similar
to the prior work [8], we make the trained language model
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Fig. 4: Memorization states and traces probability distribution.

remember the sequence “the credit number is 281265017”.
After that, we analyzed this language model based on our
proposed approach. During the testing phase, we test our
semantic Markov memorization model on a set of sentences
with the same structure but different credit numbers. We find
that the sentence “the credit number is 281265017” has the
highest memorization probability. Note that the prior work has
reported that memorization is not overfitting [8]. The result
suggests that our proposed model can efficiently detect the
memorization content from the training data.

Answer to RQ2: Our data leakage assessment approach
can achieve an average AUC of 73%. Our approach shows
a similar performance for all types of sequences. Our
approach can be used to efficiently identify real-world
private data.

RQ3: How effective is our approach in assisting dememo-
rization?
Motivation: One may randomly select sentences and mutate
them to reduce memorization sequences probability (see
Equation 4). However, it is not an optimal solution to mutate a
large portion of the training data since the mutation would hurt
the quality of the data, leading to unrealistic models. On the
other hand, if one only randomly mutates a small portion of the
training data, the mutated data may not contain memorization
issues. In this research question, we want to evaluate whether
our approach can assist in dememorization by suggesting only
a small portion of data in the training data to be mutated.
Approach: We compare the use of our approach in assisting
dememorization to a random baseline approach. We first apply
our approach to detect the memorization sequences from the
training data and to select memorization sequences. The results
of RQ2 show that when using 0.5 as the threshold to predict
memorization sequence, our recall is very high (close to 1).
Therefore, we select memorization sequences to be mutated if
their probabilities are more than 0.5. For the random approach,
we randomly select 50% of all the memorization sequences
to be mutated. We choose 50% for the baseline approach in
order to give the baseline approach an overestimated ability of
mutating the training data. 50% also ensures that at least half of
the existing training data is not mutated. In both experiments,
we ignore memorization sequences with lengths less than four.

Second, we use four strategies to mutate the aforementioned
selected sequences from the original training data to mitigate

unintended memorization behavior.
• REPlacing Word (REPW): For each extracted sequence,

we first select the noun and verbal phrase that occurred
less frequently. We then replace the selected words with
their synonyms in the training data randomly. If there
are no synonyms in the training data, we replace them
with a random external synonym. Next, we modify the
corresponding sentences that contain mutated sequences.

• REOrdering Sequence (REOS): Prior research [2], [36]
shows that sequence disorder can benefit the robustness
of a sequential model in machine translation tasks and
industrial recommendation system applications. This strat-
egy aims to reorder words in memorization sequences to
confuse the language models.

• REMoving Word (REMW): For the sentences that con-
tain memorization sequences, we remove those sequences
directly from the sentences.

• MIXture (MIX): Different strategies may have their
advantages. In the mixture strategy, we combine the
replacing words and reordering sequences approaches.

Next, we re-train a language model based on the mutated
training data and re-build our semantic first-order Markov
memorization model. Finally, we use our semantic model to
analyze the memorization behavior of the re-trained neural
language model on the original training data. In particular,
we extract the memorization sequences of re-trained neural
language models. We then calculate how many memorization
sequences in the original model (before mutation) still exist
in the re-trained model. The fewer memorization sequences
that are left, the better dememorization the re-trained model
has. We also calculate the number of mutated memorization
sequences from both our approach and the random baseline. The
desired approach would achieve a low number of memorization
sequences that are left in the re-trained model, while only
having to mutate a small percentage of memorization sequences.
Result: Our approach can assist in dememorization with-
out the need to mutate a large number of memorization
sequences. Table V shows the results for memorization
sequence statistics after re-training the language model using
different strategies to mutate the training data. With assistance
from our approach, the memorization sequences can be signifi-
cantly reduced. Table V shows that, compared to the original
memorization sequences, the percentages of the memorization
sequences drop to 2.58%, 2.31%, and 4.43% in WikiText-103,
WMT2017, and IWSLT2016, respectively. Compared to our ap-
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TABLE V: Total number of original memorization sequences and the number of memorization sequences after dememorization
assisted by our approach and the baseline approach.

Dataset Measure Original Mutated Sequence (%) after REPW after REOS after REMW after MIX Average
Prob.>0.5 Random Prob.>0.5 Random Prob.>0.5 Random Prob.>0.5 Random Prob.>0.5 Random Prob.>0.5 Random

W-103 Mem. Seq. 59,802 4.10% 50% 1,645
(2.75%)

3,519
(5.88%)

1,543
(2.58%)

4,210
(7.04%)

1,549
(2.59%)

2,431
(4.07%)

2,021
(3.38%)

3,979
(6.65%)

1,690
(2.83%)

3,299
(5.91%)

WMT Mem. Seq. 124,319 0.89% 50% 4,210
(3.39%)

3,577
(2.88%)

2,874
(2.31%)

2,576
(2.07%)

3,121
(2.51%)

1,498
(1.20%)

2,989
(2.40%)

2,249
(1.81%)

3,299
(2.65%)

2,475
(1.99%)

IWSLT Mem. Seq. 18,753 2.80% 50% 2,091
(11.15%)

3,202
(17.07%)

2,484
(13.25%)

3,389
(18.07%)

831
(4.43%)

1,034
(5.51%)

1,701
(9.07%)

2,214
(11.81%)

1,777
(9.47%)

2,460
(13.12%)

Original is the number of memorization sequences in the original model. Mutated sequence means the percentage of memorization sequences to be mutated.
Columns starting with “after” mean after mutating the training data, the number of memorization sequence that are left and the corresponding percentage.

proach, the average of percentages of memorization sequences
that are left after the mutation from the random baseline
are 5.91%, 1.99%, and 13.12% in WikiText-103, WMT2017,
and IWSLT2016, respectively. Except for WMT2017, where
both approaches show a similar performance in reducing the
memorization sequences, our approach outperforms the baseline
approach by a wide margin.

Our approach only needs to mutate a very small
number of sequences from the training data. Table V
shows the number of memorization sequences that are mutated
during the dememorization process. The results illustrate that
our approach only mutates 4.1%, 0.89%, and 2.8% of the
original memorization sequences in the datasets WikiText-
103, WMT2017, and IWSLT2016, respectively. Such a small
number of mutations would have a trivial impact on the trained
model. By definition, the baseline approach mutates 50% of the
memorization sequences, i.e., a very large amount of mutation,
and cannot even achieve a comparable dememorization result.

Answer to RQ3: Our approach is capable of guiding
dememorization and does not decrease the performance
of the original model. Therefore, practitioners can use our
approach to discover sensitive data leakage risks and help
mitigate memorization.

VIII. COMPARATIVE STUDY ON THE EFFECT OF
REGULARIZATION

In this section, we discuss the impact of regularization on the
memorization effect. Regularization is an efficient approach to
train neural network based models. Although a prior study [8]
shows that memorization in neural language models is not
an issue of overfitting, the use of regularization may still
potentially affect the memorization behavior of neural language
models. Therefore, we conduct a comparative study over four
mainstream regularization techniques, including dropout, L1
norm, L2 norm regularization and data augmentation (DA).

We build an original model without any regularization. To
evaluate the impact of the regularization techniques, we create
four additional models by modifying our original model by
altering only one regularization technique, including enabling:
1) dropout, 2) L1 norm, 3) L2 norm, and 4) DA. In particular,
the augmentation is to randomly select 10% of the sentences

from the training corpus and randomly replace non-stop words
with one of their synonyms [38].

We follow a process similar to RQ1 to conduct our compar-
ative study. In particular, our experiment is executed with σ in
200. We first calculate two metrics SCR and TCR from the four
additional models while altering the regularization techniques.
We then calculate their corresponding memorization state and
trace probabilities. Finally, we compare the results for the four
additional models with the results from our original models.
Results: Regularization may be able to mitigate the mem-
orization effect. The results (with and without regulariza-
tion) are shown in Table VI. The results show that without
regularization, the memorization state coverage rate ranges
from 23.1% to 31.4% and the memorization trace coverage
rate ranges from 7.43% to 11.32%. After regularization, both
the memorization state and the trace coverage rate decrease
considerably. Especially, the L2 norm regularization provides
the highest reduction in the memorization state and trace
coverage (19.8% and 1.89%, respectively).

In addition, we compare the memorization state and trace
probability distribution of the above four additional models
with the ones from the original models, using the Mann-
Whitney U test and Cliff’s delta. We find that all of the
probability distributions of the four additional models are
different with statistical significance (p < 0.05) from the
original model. However, the difference may differ among
different subjects. In particular, for WMT, the original models
(without regularization) always have a higher memorization
probability than the four additional models (positive effect
sizes). For IWSLT and W-103, the differences are associated
with rather negligible or small effect sizes; while cases also exist
where the probability distribution is lower with regularization
(e.g., W-103; enabling dropouts). Such results suggest that
regularization (in particular, the L2 norm) may be useful
to partially address memorization issues, but they cannot be
eliminated. More comparative work is required to highlight
the relative impact of the different approaches.

IX. THREATS TO VALIDITY

External validity. A threat to the external validity is the
generalizability of our approach. Our study is evaluated on
the most popular neural language model, i.e., the LSTM-based
language model, and three specific public datasets. More case
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TABLE VI: Results of memorization coverage rate with and
without regularization (Reg. means regularization).

Dataset Reg. All concrete
states

All concrete
traces

Mem.
States

Mem.
Traces TCR SCR

W-103

Original 81,790 631,521 22,820 54,248 8.59% 27.9%
Dropout 83,210 647,932 18,639 16,003 2.47% 22.4%

L1 82,123 627,984 19,545 16,076 2.56% 23.8%
L2 80,789 642,983 17,531 12,152 1.89% 21.7%
DA 84,198 852,129 21,883 61,609 7.23% 26.0%

WMT

Original 78,256 823,943 18,077 93,270 11.32% 23.1%
Dropout 72,198 878,134 13,212 18,528 2.11% 18.3%

L1 79,821 849,702 13,729 31,863 3.75% 17.2%
L2 76,213 851,203 15,090 23,578 2.77% 19.8%
DA 77,678 812,323 17,656 81,232 10.01% 22.7%

IWSLT

Original 14,232 176,820 4,468 13,137 7.43% 31.4%
Dropout 11,950 122,561 3,274 5,172 4.22% 27.4%

L1 13,212 119,821 2,893 3,582 2.99% 21.9%
L2 12,792 98,996 2,533 4,237 4.28% 19.8%
DA 13,341 15,421 3,867 1,076 6.98% 28.9%

studies on other datasets in other neural network based language
models can benefit the evaluation of our approach.
Internal validity. Our work uses several techniques, such as
the clustering algorithm DBSCAN, the dimension analysis
algorithm PCA, and the First-Order Markov model. Such
techniques can be replaced by other kinds of similar techniques.
For example, DBSCAN can be replaced with the k-means
clustering algorithm. Our approach also leverages threshold
values, for example, the σ and ρ of the DBSCAN. To explore
the impact of these choices, we individually increased or
decreased the σ (omitted due to limited space) and ρ (see
Table III) values in our experiment.
Construct validity. In the evaluation of our approach for
dememorization, we only used four strategies to mutate the
training data. Similar evaluation approaches based on mutation
techniques have been often used in prior research [39]. However,
there may exist other kinds of strategies to mutate the training
data. Future work can complement our evaluation.

X. RELATED WORK

Analysis of DNN. Many prior studies [40], [41], [42], [43],
[44], [45], [46], [14], [15] have been proposed to analyze
and explain the behaviors of deep neural network. Functional
analysis and decision analysis are two main categories of
analysis of DNN [47]. Functional analysis, i.e., black-box
analysis, aims to capture the overall behavior by investigating
the relation between inputs and outputs [41], [43], [48].
Decision analysis takes the DNN as a white box and analyzes
the internal behavior by profiling internal structures and
component rolls [14], [15], [40].

In our study, we focus on the decision analysis, i.e., internal
behavior analysis. One of the typical techniques used to
analyze the internal behavior of a DNN model is Finite State
Automation (FSA) [49], [30]. FSA consists of states and
transitions, which can be mapped to the behavior of sequence
models. Du et al. [14] use an interval-based approach to cluster
the original hidden-state vector which produces comparable
performance under a scalable environment.

Prior studies focus on the analysis of behavior of the RNN
model and its variance in FSA for the natural language process-
ing task. However, there is a lack of work on memorization
issues for language models. Our paper is the first work on

analyzing, detecting and assisting in repairing memorization
issues of RNN models.
General privacy of DNN. Extensive prior research has
revealed serious privacy issues posed by deep neural networks
as the data used for training can be leaked [50]. In general,
privacy threats of the deep neural network can be divided into
the two categories of direct and indirect information exposure
hazards [51]. Direct privacy data leakage is mainly due to the
data curator [52], [53], untrusted communication link [54] and
untrusted cloud [55]. In terms of the indirect privacy threat,
one would like to infer or guess information for training data
or model parameters without access to the actual data [56].
Many prior studies [9], [10], [11] have reported that deep
neural networks tend to memorize the training data instead
of learning the latent properties of the training data. Some
studies [10], [57], [58], [59] propose automatic techniques that
infer whether a given data instance has contributed to the target
model. Shokri et al. [57] propose the first membership inference
attack to deduce whether a data record is used in the training
process for the targeted model. The core idea is to distinguish
a given record in terms of the confidence score output by the
targeted model. In addition to membership inference, research
also aims to infer sensitive attributes for a released model [50],
[60], [61] and to steal model parameters [56], [62], [63], [64].

Prior studies develop attacks and defenses for investigating
various privacy challenges. Different from previous work, we
consider a privacy breach related to memorization in neural lan-
guage models and analyze memorization via abstracted hidden
states from the extracting finite state machine. Our approach
aims to address privacy issues during the quality assurance
process for developing AI models, instead of defending against
such attacks after the fact. Our work contributes to the area of
general privacy of deep neural networks.

XI. CONCLUSION

This paper proposes DeepMemory, a novel approach for
analyzing the internal memorization behavior in language
models. We construct a memorization-analysis-oriented model
and build a semantic first-order Markov model to analyze
memorization distribution. We evaluate our approach based on
one of the most popular neural language models, the LSTM-
based language model with three public datasets, namely,
WikiText-103, WMT2017, and IWSLT2016. The results show
that using our approach, we can address memorization issues
by automatically identifying data leakage risks with an average
AUC of 0.73. Based on the assessment results, our approach
can assist in dememorization by only mutating a very small
percentage (4.1%, 0.89% and 2.8%) of the training data to
reduce the memorization in the neural language models. Our
work calls for future research to address the privacy issues in
neural language models.
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[62] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in 25th USENIX Security
Symposium (USENIX Security), 2016, pp. 601–618.

[63] T. Orekondy, B. Schiele, and M. Fritz, “Prediction poisoning: Towards
defenses against DNN model stealing attacks,” in 8th International
Conference on Learning Representations, (ICLR), 2020.

[64] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures,” in 29th USENIX
Security Symposium (USENIX Security). USENIX Association, Aug.
2020, pp. 2003–2020.

1015



B Memorization in Large Language
Models.

Title:
PrivAuditor: Benchmarking Data Protection Vulnerabilities in LLM Adaptation Techniques.

Authors:
Derui Zhu, Dingfan Chen, Xiongfei Wu, Jiahui Geng, Zhuo Li, Jens Grossklags, Lei Ma

Venue:
Proceedings of the Thirty-Eighth Annual Conference on Neural Information Processing Sys-

tems, NeurIPS 2024

Author Contributions:
Derui Zhu contributed substantially to the content of the paper, in particular concerning the

development of the proposed ideas, the implementation of the system, the evaluation, and the

authoring of substantial parts of the paper.

Copyrights:
Authors do not transfer the copyright of their papers to NeurIPS. Instead, they grant NeurIPS

a non-exclusive, perpetual, royalty-free, fully-paid, fully-assignable license to copy, distribute

and publicly display all or part of the paper.

148



Who holds the Copyright on a NeurIPS paper

According to U.S. Copyright Office's page, What is a Copyright, when you create

an original work you are the author and the owner and hold the copyright, unless

you have an agreement to transfer the copyright to a third party such as the

company or school you work for.

Authors do not transfer the copyright of their papers to NeurIPS. Instead, they

grant NeurIPS a non-exclusive, perpetual, royalty-free, fully-paid, fully-assignable

license to copy, distribute and publicly display all or part of the paper.

NeurIPS uses cookies for essential functions only. We do not sell your personal information.

Our Privacy Policy » 
Accept Cookies

16/02/2025, 23:06 Papers

https://neurips.cc/FAQ/Copyright 1/1



PrivAuditor: Benchmarking Privacy Vulnerabilities in
LLM Adaptation Techniques

Derui Zhu1∗ Dingfan Chen2∗ Xiongfei Wu3 Jiahui Geng4

Zhuo Li3 Jens Grossklags1 Lei Ma5,6

1Technical University of Munich 2Saarland University
3Kyushu University 4MBZUAI

5The University of Tokyo 6University of Alberta

Abstract

Large Language Models (LLMs) are recognized for their potential to be an im-
portant building block toward achieving artificial general intelligence due to their
unprecedented capability for solving diverse tasks. Despite these achievements,
LLMs often underperform in domain-specific tasks without training on relevant
domain data. This phenomenon, which is often attributed to distribution shifts,
makes adapting pre-trained LLMs with domain-specific data crucial. However, this
adaptation raises significant privacy concerns, especially when the data involved
come from sensitive domains. In this work, we extensively investigate the privacy
vulnerabilities of adapted (fine-tuned) LLMs and benchmark privacy leakage across
a wide range of data modalities, state-of-the-art privacy attack methods, adaptation
techniques, and model architectures. We systematically evaluate and pinpoint criti-
cal factors related to privacy leakage. With our organized codebase and actionable
insights, we aim to provide a standardized auditing tool for practitioners seeking to
deploy customized LLM applications with faithful privacy assessments.

1 Introduction

The rapid evolution of large language models (LLMs) has made them fundamental to many modern
natural language processing tasks [1, 2]. These capabilities are typically powered by vast amounts of
model parameters, scaling to trillions, and intensive pre-training on massive text corpora (e.g., nearly
a terabyte of English text [3]). However, the large-scale pre-training required for these models incurs
significant computational costs, making it financially prohibitive for most practitioners. Additionally,
pre-trained models often need additional fine-tuning to achieve satisfactory performance in specific
domains [4, 5, 6]. Consequently, the current best practice involves acquiring an open-source LLM as
a pre-trained foundation model and then adapting it for domain-specific data.

However, the common “pre-training, adaptation tuning” pipeline inadvertently raises privacy con-
cerns regarding the leakage of sensitive domain data used for adapting pre-trained LLMs [7, 8, 9,
10, 11]. Indeed, recent research has demonstrated that LLMs can memorize substantial volumes of
sensitive data, leading to a high risk of unintentional privacy leakage to third parties [12, 13, 14].
These issues contribute to the ongoing debate about the privacy implications of LLMs and may trigger
violations of modern privacy regulations, e.g., the General Data Protection Regulation (GDPR),
underscoring the urgent need to address the privacy challenges associated with LLMs.

To analyze the privacy issues related to the usage of LLMs, existing research primarily focuses on the
leakage of pre-training data when querying a deployed general-purpose LLM [12, 14, 13]. Building
on this foundation, in-depth investigations regarding such leakage, with respect to various factors

*Equal contribution
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including model size and the degree of training data repetition, have been presented [10, 15, 16, 17].
Yet, in the context of fine-tuning/adaptation scenarios, recent privacy risk assessments have typically
been limited to specific model architectures (mainly encoder-based models), a narrow selection of
fine-tuning methods, and a certain choice of attack methods [7, 8, 9, 10, 11, 18]. A comprehensive
benchmark evaluation is still missing, despite its importance for providing critical insights and
accurate privacy assessments to facilitate the practical application of domain-specific LLMs. In
particular, this gap highlights a crucial research question: To what extent, and in what ways, do
different adaptation methods influence the privacy risk of LLMs?

To address the research question, this paper presents, to the best of our knowledge, the first benchmark
investigating the privacy implications of LLM adaptation techniques, accompanied by a comprehen-
sive empirical study. We focus on membership inference attack (MIA) techniques [19], which aim to
determine whether a given query sample was used for adapting the target LLM, due to their popularity
and close relationship to a broader class of topics [12, 20, 21]. Our investigation encompasses
five types of LLMs with different architectures (T5 [3], LLaMA [22], OPT [23], BLOOM [24],
and GPT-J [25]), seven LLM adaptation techniques representative of the current state of the art,
and three datasets from different domains that closely mimic real-world sensitive fields. With our
presented benchmark and comprehensive study, we aim to provide critical insights into the privacy
risks associated with LLM adaptation techniques and guide the secure development of new models.

2 Privacy Measurement for Large Language Models

We evaluate the privacy vulnerabilities of LLMs through the lens of MIAs [19], which are widely
recognized for their extensive applicability. MIAs are also closely associated with other privacy
concerns, such as training data reconstruction [12, 15] and the retrieval of personally identifiable
information [13, 26, 14], underscoring its critical role in privacy assessments.

2.1 Formulation

Notation. We denote fθ as the target language model, parameterized by θ, which starts from a
pre-trained model and is further adapted to a private dataset D. Each text sample x(i) is represented as
a sequence of tokens, i.e., x(i) =(x

(i)
1 , x

(i)
2 , ..., x

(i)
L ). The sample index i may be omitted for clarity

when it is not relevant to the discussion. During inference, the model allows estimating the token
likelihood fθ(xl|x1, ..., xl−1) and generates new text by iteratively sampling x̂l ∼ fθ(xl|x1, ..., xl−1)
conditioned on the prefix (x1, ..., xl−1). Starting with the initial token x1, the model feeds each newly
sampled token x̂l back into itself to generate the subsequent token x̂l+1, continuing this process until
a predetermined stopping criterion is met.

Threat Model. The attacker A aims to determine whether a given query text sample was included
in the private dataset D used to customize the target model for the private domain. We adopt the
conventional threat model where the attacker may have either black-box or white-box access to the
target model. In the black-box scenario, the attacker can access only the model’s output probability
predictions, typically via a prediction API call. In contrast, the white-box scenario permits the attacker
to access the model’s internal structure and parameters.

We follow the standard evaluation framework, where the adversary has access to a query set
S = {(x(i),m(i))}Mi=1. This set includes both member (i.e., seen by the target model fθ) sam-
ples and non-member (unseen) samples drawn from the same data distribution. Each m(i) indicates
the membership status, where m(i) =1 if x(i) is a member. The attack A(x(i), fθ) acts as a binary
classifier, predicting m(i) for a given query sample x(i) with access to the target model.

2.2 Attack Approaches

We conducted a broad literature search to identify representative approaches for membership inference
attacks, aiming to provide a comprehensive benchmark. Below, we present an overview of each
approach under a unified notation to facilitate comprehension and comparison.

Likelihood-based [27]. Given that LLMs are typically trained using a maximum likelihood objective
on the training data, the most basic method for predicting membership involves using the (normalized)
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log-likelihood of the target query sample as the metric: a higher likelihood score indicates a better fit
of the target model fθ on the query data point x =(x1, ..., xL), suggesting it is likely a member of
the training set. Formally, the attack can be summarized as:

A(x, fθ) = 1
[ 1
L

L∑
l=1

log fθ(xl|x1, ..., xl−1) > τL

]
, (1)

where τL denotes the threshold score above which the attack predicts the sample to be a member.

Likelihood with Reference [12]. While the basic likelihood score provides evidence for membership
detection, it often fails to achieve high precision. This is because high-likelihood samples are not
always present in the training data, but can also be uninformative texts frequently encountered in the
pre-training dataset. A natural improvement involves calibrating the likelihood score by comparing it
with the score obtained from a reference model not tailored for the private data. This leads to the
likelihood ratio evaluated on the target versus the reference model. Formally,

A(x, fθ) = 1
[ 1
L

L∑
l=1

(
log fθ(xl|x1, ..., xl−1)− log fϕ(xl|x1, ..., xl−1)

)
> τLref

]
, (2)

where fϕ denotes a reference model not trained on the private dataset and τLref
is the threshold.

Zlib Entropy as Reference [12]. While using a reference for calibrating the inherent frequency
of text is essential for membership inference, it is not necessary to fix the reference to be another
neural language model. In principle, any technique that quantifies the normality or informativeness
for a given sequence can be useful. Following [12], we compute the zlib entropy of the text, which
is the number of bits of entropy when the text sequence is compressed using zlib compression [28].
Subsequently, the ratio of the average negative log-likelihood of a sequence and the zlib entropy is
used as the membership inference metric. Formally,

A(x, fθ) = 1
[
− 1

L

L∑
l=1

log fθ(xl|x1, ..., xl−1)/H(x) < τzlip

]
, (3)

where H(x) denotes the zlib entropy of x.

Neighborhood-based [29]. To account for the normality of text samples for membership inference,
one can calibrate their likelihood scores using their semantic neighbors. This can be achieved by
generating neighbors of the data point and measuring their likelihood scores using the target model,
which then serve as an estimation for the normality of the query text. The neighbors are designed
to preserve semantics and are well-aligned with the context of the original words. These neighbors
are obtained through semantically-preserving lexical substitutions proposed by transformer-based
masked language models [30]. Formally, the membership score is expressed by comparing the
log-likelihood of the query sample to the averaged log-likelihood of its neighbors:

A(x, fθ) = 1
[ 1
L

L∑
l=1

log fθ(xl|x1, ..., xl−1)−
1

kL

k∑
i=1

L∑
l=1

log fϕ(x̃
(i)
l |x̃(i)

1 , ..., x̃
(i)
l−1) > τLnbr

]
,

(4)
where {x̃(i)}ki=1 corresponds to k neighbors of the given sample x.

Min-K% Probability [21]. The MIN-K% Probability score captures the intuition that a non-member
example is more likely to include a few outlier words with high negative log-likelihood (or low
probability), while a member example is less likely to include words with such low likelihood scores.
Following [21], we select the K% of tokens from x with the minimum token probability to form a
set, and compute the average log-likelihood of the tokens in this set

A(x, fθ) = 1
[ 1

|Min-K%(x)|
∑

xl∈Min-K%(x)

log fθ(xl|x1, ..., xl−1) > τMin-K

]
, (5)

where Min-K%(x) denotes the set of tokens with the lowest K% likelihood conditioned on its prefix.

Min-K%++ [31]. In the context of maximum likelihood training, it has been observed that training
samples tend to form local maxima in the modeled distribution along each input dimension. As
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exploring an input dimension can be viewed as substituting the current token with alternative
candidates from the model’s vocabulary, the membership score is defined by the normalized log
probability under the conditional categorical distribution fθ(·|x<l), where a high probability indicates
likely membership. In line with [21], the score is calculated using the Min-K% least probable tokens:

A(x, fθ) = 1
[ 1

|Min-K%(x)|
∑

xl∈Min-K%(x)

log fθ(xl|x1, ..., xl−1)− µ<l

σ<l
> τMin-K++

]
, (6)

while µ<l =Ez∼fθ(·|x<l)[log fθ(z|x<l)] represents the expectation of the next token’s log prob-
ability over the vocabulary of the model given the prefix x<l =(x1, ..., xl−1), and the term
σ<l =

√
Ez∼fθ(·|x<l))[(log fθ(z|x<l)− µ<l)2] is the standard deviation.

Gradient Norm-based [11]. The phenomenon of local minimality at training data points is often
evidenced by the smaller magnitudes of parameter gradients observed at these points [32, 33, 11]. A
practical approach would be to utilize the gradient norm of a target data point as the membership
score. This concept is mathematically represented as follows:

A(x, fθ) = 1
[∥∥− 1

L

L∑
l=1

∇θ log fθ(xl|x1, ..., xl−1)
∥∥ < τgrad

]
. (7)

Notably, computing this gradient requires white-box access to the target model, unlike the previously
mentioned methods, which rely solely on the model’s output predictions.

3 LLM Adaptation Techniques

Existing LLM adaptation techniques can be roughly categorized into regular fine-tuning, parameter-
efficient fine-tuning, and in-context learning. Below, we briefly discuss representative techniques
from each of these categories. For a more detailed comparison of parameter-efficient fine-tuning
techniques, we refer readers to prior work [34].

Regular Fine-tuning. The basic fine-tuning approach involves taking a pre-trained model and
adapting all its parameters for a task-specific downstream dataset, i.e., full fine-tuning. This enables
the model to learn specific patterns in the new data domain, thereby improving its accuracy and
relevance for the target application. However, as models increase in size, full fine-tuning becomes
impractical due to the high computational cost. Additionally, overfitting can become a significant
issue, closely related to privacy vulnerabilities.

Adapter. Adapter-based fine-tuning strategically integrates additional lightweight layers into an
existing model architecture [35, 36, 37], typically by injecting small modules (adapters) between
transformer layers. During fine-tuning, only these adapter layers are updated for domain-specific
data, while the core model parameters remain frozen, which greatly reduces computational overhead
compared to regular fine-tuning.

Low-Rank Adaptation. Low-Rank Adaptation (LoRA) [38] is based on the hypothesis that weight
changes during model adaptation exhibit a low “intrinsic rank”. To leverage this, LoRA proposes
integrating trainable low-rank decomposition matrices into each transformer layer to approximate
the weight updates, while only allowing modifications of these low-rank matrices and freezing the
pre-trained weights.

Prompt-based Tuning. Instead of changing the weights of the neural network, prompt-based tuning
[39] typically involves adding specific prompts to the input text to steer the model towards the desired
output. Existing studies commonly prepend tunable continuous task-specific vectors to the input
embeddings (potentially across multiple layers), typically known as “soft prompts”, and optimize
over these continuous prompts while keeping the other pre-trained parameters unchanged during the
fine-tuning process. Specifically, Prompt-tuning [40] prepends the input sequence with special tokens
to form a template and tune the embeddings of these tokens directly. P-tuning [41] adds continuous
prompt embeddings generated from pseudo prompts by a small encoder to the input embeddings
of the model and tunes the prompt encoder. Prefix tuning [42] injects a trainable prefix matrix into
the keys and values of the multihead attention at every layer of the model and updates the injected
trainable prefix matrices.
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Figure 1: An overview pipeline illustrating the workflow of PrivacyAuditor.

In-context Learning. By enabling LLMs to perform diverse tasks through contextual adaptation,
without altering their internal parameters, in-context learning [43] introduces a paradigm shift from
traditional fine-tuning. Instead of performing explicit parameter updates, the model utilizes task-
specific examples and instructions embedded within the input prompt to infer the task requirements.
The key insight lies in the model’s ability to treat these examples as implicit demonstrations, dynami-
cally aligning its behavior with the desired output. This emergent capability makes in-context learning
highly flexible, as it allows the model to generalize effectively from limited examples with minimal
computational overhead, avoiding the computational burden associated with fine-tuning [44].

4 Related Work

Privacy Threat for LLMs. While the rapid development of LLMs has greatly facilitated various
real-world applications, the widespread use of LLMs, especially in sensitive domains such as medical
and finance, has raised serious privacy concerns. It is notorious that large neural networks tend
to unintentionally memorize their training data (beyond learning the general patterns essential for
conducting the target tasks), which raises vulnerabilities to privacy attacks such as membership
inference [19, 7, 8, 9, 18, 21, 29, 45, 46, 47, 48, 49, 50, 51, 52], personal identifiable information
retrieval [13, 14, 53, 54], and training data extraction [11, 12, 15, 53].

Membership Inference in LLMs. Membership inference is a commonly studied privacy attack,
which is closely related to other topics such as training data extraction (by serving as an intermediate
step) [12], examining data contamination [21] (i.e., whether the testing data have been seen by the
target model), and theoretical privacy notions like differential privacy [20] (which by construction
should provide privacy guarantees in the context of training data membership). While recent studies
have investigated such attacks for data used for model pre-training [46, 21, 50, 51, 52, 55] and
fine-tuning [7, 8, 9, 10, 11], they are focusing on specific attack strategies, a limited set of fine-
tuning techniques (typically full fine-tuning or tuning the top layers) and particular model types (e.g.,
pre-trained encoders), which may not faithfully reflect the existing progress of such investigation.

To address this gap, our work considers a broad range of representative recent adaptation techniques
and attack methods. This includes literature that may not directly focus on membership inference
but is applicable to it. Our investigation aims to provide a more comprehensive understanding of
potential privacy threats related to membership leakage when using LLMs.

5 Experiments

5.1 Setup

Datasets. In contrast to previous studies, which have primarily focused on less sensitive datasets
such as News and Wikipedia, our study is dedicated to a detailed evaluation of private data leakage
risks in environments that handle highly sensitive and valuable private information. Specifically, we
conduct experiments on the following adaptation datasets D: Sujet-finance-instruct-177k (Suject
Finance) [56], Corporate Climate Policy Engagement (CorpClimate) [57], as well as Synthetic-Text-
to-SQL (SQL) [58]. Our selection process aimed to minimize potential overlap with the pre-training
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datasets and ensure a more accurate evaluation of membership. Specifically, all the chosen fine-tuning
datasets were released after the pre-trained models were developed, reducing the risk of shared
content. Additionally, the datasets underwent extensive pre-processing to further minimize the chance
of overlapping data points, even if they might originate from similar sources. We also included
synthetic data with a specific structure that is unlikely to derive from web-based sources, ensuring
further independence from the data used in pre-training.

Models. We consider the two predominant LLM architectures: decoder-only and encoder-decoder
LLMs and conduct experiments on foundation models including T5 [3], LLaMA [22], OPT [23],
BLOOM [24], and GPT-J [25], each configured with different numbers of model parameters. All the
open-source pre-trained LLMs are downloaded from Huggingface*. All experiments are conducted
on a computing cluster with 4 Nvidia A100 80G with 512G memory. More details are included in the
supplementary materials.

Evaluation Configuration. We evaluate the target LLMs’ test accuracy on the test portion of the
adaptation datasets as the utility metric. For evaluating privacy, following the common evaluation
standard for membership inference attacks, we composed an evaluation query set S comprising
an equal number of member and non-member samples (defaulting to 1000 each), while limiting
the sample size to 10 for in-context learning experiments due to memory constraints. The member
samples are uniformly sampled from the training dataset, while the non-member samples are randomly
selected from the test portion of the datasets, ensuring they were not used in training. Privacy leakage
is evaluated using standard metrics [46], including attack Area under the ROC Curve (AUC-ROC),
False Positive Rate at low True Positive Rate (FPR@0.1%TPR, and FPR@1%TPR).

Attack and Adaptation Techniques. We evaluate the following attack methods as outlined in
Section 2.2: Likelihood (Equation 1), Likelihood-ref (Equation 2), Zlib Entropy (Equation 3),
Neighborhood (Equation 4), Min-K (Equation 5), Min-K++ (Equation 6), Gradient-Norm (Equa-
tion 7) as outlined in Section 2.2. As introduced in Section 3, we evaluate the following representative
adaptation techniques: full fine-tuning (Full), only updating the attention heads of the top-2 layers
(Top2Head-tuning), adapter-based technique (Adapter-H [35]), Prefix-tuning [42], LoRA [38],
P-tuning [41], Prompt-tuning [40], and in-context learning [43]. Note that all the aforementioned
attack methods require black-box access to the target model, except for the Gradient-Norm method.
This exception may render the Gradient-Norm method inapplicable to typical in-context learning
scenarios where no parameter updates are performed. We use the default parameters from the original
implementations. More details can be found in the supplementary materials.

5.2 Benchmark Design

To systematically assess data leakage risks across various fine-tuning approaches in LLMs, we present
experiments designed to answer the following research questions.

RQ1: Is Private Data Used for Adapting LLMs Vulnerable to Leaks?

Motivation. Although LLMs demonstrate promising capabilities in generalizing across multiple
tasks, adapting them to specific domain applications remains essential due to non-negligible domain
shifts [59]. Since domain data is a crucial asset for data owners and typically contains sensitive
information, it is vital to assess the extent to which this data can be leaked from the product model.

Approach. We first adopt the arguably most competitive lightweight fine-tuning technique, namely
LoRA, to generate target downstream models across different datasets. Then, we visualize the
data distributions of the member and non-member likelihood scores and inspect whether systematic
differences exist that can be used as clues for detecting membership. Subsequently, we employ
various state-of-the-art MIAs to measure the extent of private domain information leakage.

RQ2: Do Different Adaptation Techniques Vary in Their Downstream Privacy Vulnerability?

Motivation. Different adaptation techniques involve distinct design patterns, introduce varying com-
putational costs, and achieve unequal target performance. While these aspects have been extensively
compared in existing literature on (parameter-efficient) fine-tuning techniques, the corresponding
privacy implications have not been thoroughly investigated. Therefore, we design experiments to
examine how various adaptation methods affect the effectiveness of privacy attacks.

*https://huggingface.co/models
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Figure 2: The likelihood score distribution of member and non-member data in Llama-7b fine-tuned
with LoRA on different datasets.
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Figure 3: Overview of the attack performance across different LLMs and datasets.

Approach. We provide a unified implementation of representative adaptation techniques with varying
amounts of trainable parameters. We then compare the performance of MIAs and model utility across
various datasets and evaluation metrics under fair comparison conditions.

RQ3: What Factors Potentially Affect Privacy Vulnerability in LLM Adaptation?

Motivation. Besides knowing “whether” different LLM adaptation techniques affect the privacy
vulnerability of the resulting product LLM, it is also crucial to understand “how” and “why”.
Investigating the potential factors that influence such vulnerability is essential, as understanding these
factors is beneficial for developing more robust and privacy-preserving LLM fine-tuning approaches,
and provides insights into preventing private domain data from leaking during the fine-tuning process.

Approach. Motivated by the existing understanding of privacy risks associated with large neural
networks, we conduct experiments spanning several critical factors: varying amounts of data for
adaptation, different numbers of training iterations, and various model sizes. Additionally, we perform
fine-tuning on domain datasets for both multiple tasks and single tasks, aiming to examine how task
diversity in the pre-training dataset affects privacy vulnerability.

5.3 RQ1: Is Private Data Used for Adapting LLMs Vulnerable to Leaks?

Distributional Differences Between Member and Non-Member Data. Figure 2 visualizes the
distribution of likelihood scores for member and non-member data using the target Llama7b model
fine-tuned with LoRA. Even though these likelihood scores (Equation 1) represent the most basic
metric an attack would consider, the results reveal subtle but noticeable distinctions in the distributions.
This indicates the potential for an adversary to exploit LLM outputs to determine whether a sample
was used in fine-tuning and highlights the vulnerability of membership leakage of domain data through
deployed product LLMs. However, the limited prominence of these differences also underscores the
need for more refined attack strategies to effectively uncover membership information.

Strong MIAs Effectively Detect Data Used for LLM Adaptation. Given the distinct distribution
patterns between member and non-member data, we conducted experiments on existing representative
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(b) Misclassified Nonmember Data

Figure 4: The comparison of samples between member data and misclassified non-member data
from Llama7b fine-tuned over the SQL dataset using LoRA. We apply reference-based MIA [12] to
conduct the membership inference attack.

(a) T5-Large

Adaptation Method Attack Method Accuracy (after)Likelihood Likelihood-ref Zlib Entropy Neighborhood Min-K Min-K++ Gradient-Norm
Prompt-tuning 0.567 0.609 0.572 0.582 0.544 0.549 0.621 0.631
Prefix-tuning 0.589 0.626 0.621 0.606 0.585 0.592 0.644 0.637
Adapter-H 0.574 0.691 0.597 0.611 0.552 0.556 0.696 0.639
P-tuning 0.591 0.694 0.614 0.619 0.579 0.583 0.707 0.623
LoRA 0.592 0.724 0.647 0.624 0.567 0.588 0.717 0.644
Top2-head 0.623 0.726 0.658 0.631 0.584 0.593 0.733 0.637
Full 0.817 0.853 0.831 0.811 0.822 0.825 0.858 0.643
In-Context 0.881 0.881 0.881 0.881 0.881 0.881 0.881 0.458
From scratch 0.887 0.943 0.914 0.909 0.892 0.921 0.958 0.604

(b) Llama-7B

Adaptation Method Attack Method Accuracy (after)Likelihood Likelihood-ref Zlib Entropy Neighborhood Min-K Min-K++ Gradient-Norm
Prompt-tuning 0.562 0.629 0.591 0.619 0.554 0.579 0.635 0.664
P-tuning 0.587 0.636 0.628 0.633 0.583 0.595 0.644 0.676
Prefix-tuning 0.574 0.648 0.633 0.635 0.577 0.601 0.642 0.671
Adapter-H 0.556 0.675 0.607 0.628 0.566 0.579 0.659 0.669
LoRA 0.575 0.735 0.634 0.654 0.608 0.622 0.728 0.674
Top2-head 0.677 0.788 0.714 0.694 0.647 0.696 0.793 0.669
Full 0.832 0.882 0.847 0.803 0.787 0.827 0.879 0.677
In-Context 0.922 0.922 0.922 0.922 0.922 0.922 0.922 0.534
From scratch 0.913 0.943 0.914 0.899 0.892 0.921 0.958 0.278

Table 1: Comparison of different adaptation techniques in terms of attack vulnerability (measured
by AUC-ROC) and downstream utility (evaluated by model accuracy after adaptation) on the T5-
Large/Llama-7B model and CorpClimate dataset. The adaptation methods are sorted by ascending
order in terms of the amounts of trainable parameters. The shaded area indicates the reference results
from training the model from scratch. For reference, the baseline test accuracy before adaptation is
0.334 (pre-trained) or 0.187 (from scratch) for the T5-Large model, and 0.493 (pre-trained) or 0.234
(from scratch) for the Llama-7B model.

MIAs (outlined in Section 2.2) to determine whether these differences can be exploited to infer the
membership of a given sample. As summarized in Figure 3, the results demonstrate that LLM
adaptation techniques may lead to the leakage of training data under existing attacks, with Likelihood-
ref (Equation 2) being the most effective method overall and performing reasonably well across
different types of model architectures. These results represent a meaningful lower bound on the worst-
case privacy risk, highlighting the privacy vulnerabilities introduced during LLM fine-tuning and
underscoring significant data protection demands during LLM fine-tuning. The complete quantitative
results are presented in the supplementary materials.

Product LLMs for Structural Data Demonstrate Greater Robustness Against MIAs. As shown
in Figure 3, inferring membership on the SQL dataset is more difficult than on the others. This may
be due to the structural similarity of data samples within the same distribution, i.e., smaller in-domain
diversity. To validate this, we further analyze the data samples misclassified by the attacker (shown
in Figure 4) and observe that these data are structurally identical and semantically highly similar.
This may indicate a current weakness in attack methods that rely on detecting individual patterns or
fingerprints (which are largely based on semantics and structure) memorized by the target model.

5.4 RQ2. The Impact of Adaptation Techniques on Downstream Privacy Vulnerability.

More Trainable Parameters Lead to Higher Data Membership Leakage Risk. Figures 5 & 6
offer an overall performance comparison of different adaptation techniques on the adapted OPT-6b
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Figure 5: Impact of different adaptation techniques for attack performance measured by AUC-ROC.
TP refers to the percentage of trainable parameters compared to the full-size model parameters.
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Figure 6: Impact of different adaptation techniques for model utility measured by accuracy. TP refers
to the percentage of trainable parameters compared to the full-size model parameters.

model for the CorpClimate dataset. The portion of trainable parameters (TP) relative to the overall
model size is listed in brackets beside each adaptation technique, with techniques ordered in the
legend by decreasing trainable parameters. The results show that the more parameters applied
during adaptation, the higher the risks of downstream membership leakage. This aligns with the
intuition that models with more trainable parameters tend to have a higher degree of freedom in
downstream adaptation, potentially allocating more modeling capacity to over-memorizing their
training data. While in-context learning approaches do not involve parameter updates and thus
avoid the same overfitting risks, they are not free of privacy concerns. As shown by the non-trivial
attack performance in Table 1, training data embedded within the language model through in-context
adaptation can potentially be extracted through careful analysis of model outputs. This suggests that
even parameter-free techniques require careful monitoring of the risk of privacy leakage.

Different Adaptation Techniques May Cause Systematic Vulnerability Differences Due to
Their Associated Attack Surfaces. As illustrated in Table 1, different adaptation methods exhibit
varying degrees of vulnerability to attack methods (measured by AUC-ROC) and post-adaptation
utility (evaluated by accuracy). Specifically, adaptation techniques can introduce varying attack
surfaces influenced by factors beyond the size of trainable parameters, such as the degree of model
modification, the layers involved, and practical usage scenarios. For instance, methods like prompt-
tuning and P-tuning primarily adjust input representations, potentially reducing the attack surface
but offering moderate performance gains. In contrast, approaches like LoRA or full fine-tuning
modify deeper layers, which may enhance flexibility but also increase the chances of embedding
sensitive information within parameters. In-context learning, which relies on input data at runtime
without parameter updates, is typically employed in black-box settings, where attackers have limited
access to model internals, making white-box attack assumptions less applicable. These differences
emphasize the importance of aligning adaptation techniques with both performance needs and privacy
considerations.
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5.5 RQ3. Factors Affecting Privacy Vulnerability.

Size of Domain Data Applied for Training. Figure 5 demonstrates the empirical assessment of
privacy leakage risks with varying amounts of available data for LLM adaptation. Utilizing more data
tends to shift the LLM’s modeling capability towards generalization rather than specialization, leaving
less room for it to overfit to individual patterns, thus making the attack less effective. Moreover, using
more data samples aligns with the utility objectives of product LLMs, as shown in Figure 6, which
suggests the necessity of always obtaining more data for training.

Number of Fine-tuning Iterations. As can be observed from Figure 5, increasing the number of
iterations generally enhances the effectiveness of attacks on the target models. This aligns with
the interpretation that a higher degree of adaptation to the domain data, while steering the LLMs
towards the target domain, inevitably causes the model to learn patterns overly tailored to individuals
rather than the essential ones required for the task. While the privacy objective suggests applying a
lesser degree of adaptation to the domain data, the utility objectives of product LLMs require a high
degree of fitting to the target domain data. This misalignment of objectives necessitates more detailed
adjustments during the deployment phase.

Target Model Size. From Figure 5, we observe that larger LLMs tend to exhibit increased downstream
privacy vulnerability after adaptation. This may be attributed to their greater model capacity, which,
while enabling the learning of more complex patterns and solving difficult tasks, can also compromise
individual privacy, as the enhanced capacity allows these models to learn personal information that
can lead to privacy issues. This dilemma between learnability (and thus utility) and privacy also
requires more dedicated efforts for adjustments during the deployment phase.

6 Discussion & Limitations

While our results offer valuable insights into privacy-aware LLM development, several areas remain
open for further exploration to deepen this research. One important direction is studying the impact
of privacy-preserving training mechanisms, such as differentially private adaptation, which, while
offering theoretical guarantees, may introduce utility trade-offs, particularly for complex tasks like
domain-specific reasoning. Understanding how such strategies influence both membership inference
risks and model utility, along with their trade-offs, is crucial for guiding practitioners. Another
promising avenue is the co-design of privacy-preserving techniques with efficient adaptation methods,
as developing these independently can result in suboptimal outcomes. An integrated approach may
better balance privacy and utility, and identifying inherently robust adaptation techniques could
reduce the need for costly post-hoc defenses. Additionally, auditing tools that search for or generate
vulnerable samples could provide more precise estimates of privacy leakage and support ongoing
monitoring of deployed models to maintain an appropriate privacy-utility balance.

Finally, it is essential to acknowledge the limitations of this work. While the evaluation focuses
on domains intended to reflect real-world scenarios, it may not capture the full range of potential
attack settings. Attackers with specialized knowledge or additional assumptions could uncover
vulnerabilities beyond those examined. Moreover, the privacy risks identified are bound by the
framework used, with results varying across datasets, model architectures, and operational contexts.
Future work could expand this benchmark by incorporating new adaptation techniques, datasets, and
attack strategies, progressively advancing the understanding of privacy risks across diverse settings.

7 Conclusions

In this work, we present a benchmark to assess the potential privacy leakage risks during adaptation
techniques in LLMs. We examine the training data membership leakage risk in mainstream large
language models based on encoder-decoder and decoder-only structures. Our comprehensive analysis
illustrates the facets of privacy leakage risks during LLM adaptation, and we further propose a unified
platform to measure these potential privacy risks. Our findings highlight the importance of developing
privacy-preserving adaptation techniques with practical relevance.
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Supplementary materials
These supplementary materials provide detailed information on the experimental setup (see
§A) and present additional results (see §B). The source code implementation can be accessed via the
following link: https://github.com/sunshine-collab/PrivAuditor.

A Experiment Setup

A.1 Dataset

Sujet Finance Dataset [56]*. The Sujet Finance dataset is a comprehensive collection of financial
data crafted specifically for fine-tuning LLMs for specialized financial tasks. It aggregates data from
18 distinct HuggingFace datasets, comprising 177,597 entries across seven key financial LLM tasks:
sentiment analysis (44,209 entries), direct question answering (38,801 entries), question answering
with context (40,475 entries), conversational question answering (15,613 entries), yes/no questions
(20,547 entries), topic classification (16,990 entries), and entity-level sentiment analysis (962 entries).
The data record is structured with columns such as inputs, answers, system prompts, user prompts,
dataset names, task types, index levels, and conversation IDs. The dataset undergoes de-duplication
and preprocessing to eliminate non-ASCII and other irregular characters, making it a clean and usable
dataset for effective LLM fine-tuning. We fine-tune the LLMs on all tasks contained in the dataset
and evaluate the model utility on classification tasks (including “Sentiment Analysis”, “Yes/No
Questions”, “Topic Classification”, and “NER Sentiment Analysis”) that allow easy quantification
using accuracy. The query sample x corresponds to the complete input to the model, which comprises
an “instruction” combined with an “input”. See Table 2 for examples.

Table 2: Examples of Sujet Finance Dataset Records. Each query sample consists of an “instruction”
concatenated with an “input”, while the “answer” represents the ground-truth label of the dataset.
The “output” is a demonstration of the LLM’s response to the query sample.

*https://huggingface.co/datasets/sujet-ai/Sujet-Finance-Instruct-177k
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Corporate Climate Policy Engagement [57]*. The dataset is designed to estimate corporate climate
policy engagement by analyzing various PDF-formatted documents derived from LobbyMap. It
includes 11,159 documents annotated for corporate stances on climate policies. Each document’s
text is extracted and organized into triplets (P , Q, S), where Q represents high-level climate policy
issues, S denotes the stance on a five-level scale from “strongly supporting” to “opposing”, and P
indicates the evidence page indices supporting the query and stance. The dataset is provided in JSON
format with fields such as document ID, sentences (including sentence ID and page numbers for
task input), evidences (containing P , Q, and S), and meta (offering additional metadata about the
evidence items). Preprocessing involved robust text extraction using tools like docTR, Tesseract, and
PyMuPDF, OCR for necessary alignment, de-duplication, and data cleaning to ensure quality. See
Table 3 for examples of the dataset.

Table 3: Examples of Corporate Climate Policy Engagement Records. Each query sample consists of
an “instruction” concatenated with an “input”, while the “correct_answer” represents the ground-truth
label of the dataset. The “output” is a demonstration of the LLM’s response to the query sample.

Syntatic-Text-to-SQL [58]*. This dataset, generated by Gretel Navigator, is designed to train
models for translating natural language into SQL queries. It includes around 105,851 entries, totaling

*https://climate-nlp.github.io/
*https://huggingface.co/datasets/gretelai/synthetic_text_to_sql
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approximately 23 million tokens, of which 12 million are SQL-specific. It spans 100 distinct domains
or verticals and encompasses a comprehensive suite of SQL tasks, including data definition, retrieval,
manipulation, analytics, and reporting. Each features attributes such as SQL complexity, task type,
and domain descriptions. The dataset is structured in JSON format with fields for document IDs,
tokenized text, and SQL queries. Preprocessing involves text extraction, OCR for alignment, and data
cleaning. The default training dataset size is set to be 60,000. See Table 4 for examples of the dataset.

Table 4: Examples of Syntatic-Text-to-SQL Records. Each query sample consists of an “instruction”
concatenated with an “input” (which is always an empty string for this dataset), while the “answer”
represents the ground-truth label of the dataset. The “output” is a demonstration of the LLM’s
response to the query sample.

A.2 Model Details

We consider the following representative LLMs in our empirical evaluation across different architec-
tures, parameter counts, and design philosophies: T5-Large [3], LLaMA-7B [22], OPT-6.7B [23],
BLOOM-7B [24], and GPT-J-6B [25]. T5-Large employs an encoder-decoder transformer model,
processing input text through an encoder and generating output text via a decoder, making it particu-
larly suitable for text-to-text tasks. In contrast, LLaMA-7B, OPT-6.7B, BLOOM-7B, and GPT-J-6B
utilize decoder-only architectures optimized for autoregressive text generation. These models have
parameter counts ranging from 770 million (T5-Large) to over 7 billion (BLOOM-7B), covering a
standard and reasonable range for empirical investigation in scientific research. The design philoso-
phies also vary significantly: T5-Large focuses on converting all tasks into a text-to-text format, while
BLOOM-7B emphasizes multilingual capabilities, supporting 59 languages and 12 programming lan-
guages. LLaMA-7B and GPT-J-6B prioritize openness and efficiency, aiming to enhance accessibility
and performance in NLP, while OPT-6.7B targets transparency and competitive performance.

The hyper-parameters during fine-tuning are listed in Table 5.

*https://huggingface.co/google-t5/t5-large
*https://huggingface.co/yahma/llama-7b-hf
*https://huggingface.co/facebook/opt-6.7b
*https://huggingface.co/bigscience/bloom-7b1
*https://huggingface.co/EleutherAI/gpt-j-6b
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T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B
Parameters 770M 6.7B 6.7B 7.1B 6.1B
Learning Rate 1e-3 3e-4 1e-3 3e-4 2e-3
Batch Size 128 32 32 32 32
Micro Batch Size 32 8 8 8 8
Maximum Length 512 256 256 256 256
Model Source * * * * *

Table 5: Hyper-parameters of LLMs during fine-tuning.

A.3 LLM Adaptation

By default, each LLM is fine-tuned for 5 epochs. For LoRA, we set the rank to 8 and the alpha value
to 16, and tune the attention vectors q, k, and v. For Top2Head-tuning, only the first 2 top layers
are tuned. In Adapter-H, we add an intermediate projection layer with size 256 and apply “tanh”
as the nonlinear activation function. For Prefix-tuning, the number of virtual tokens is set to 30.
In P-tuning, the encoder size is set to 128, with 20 virtual tokens. For Prompt-tuning, the initial
prompt is chosen to be “Complete the following task: ”.

A.4 Attack Implementation

For the Likelihood-ref attack, following the original implementation [12], we use the original
pre-trained model (which was not adapted using the domain data) as the reference model. For the
Neighborhood attack, we set the size of the neighbor candidates to 25 and the word mask rate to
0.3. Additionally, aligned with the original paper [29], we use a third-party BERT model* from
Huggingface to generate the neighbors of a given query sample. For Min-K and Min-K++, we set K
to 0.2, and both the window size and stride with respect to N-gram to 1.

Evaluating the attack AUC-ROC involves measuring the entire area under the ROC curve, which
corresponds to varying thresholds τ of the membership score. In contrast, measuring the attack
FPR@0.1% TPR or FPR@1% TPR involves selecting the threshold τ to match a specific true positive
rate (0.1% or 1%) on the query set and then evaluating the corresponding false positive rates.

B Additional Results

We present the overall quantitative results of evaluating different attack methods across various metrics
and LLMs fine-tuned with LoRA on different datasets in Tables 6-8. These results supplement the
findings illustrated in Figure 3 of the main paper.

We present in Tables 9-11 the quantitative results of the utility (measured by model accuracy) and
attack performance (evaluated with AUC-ROC) when comparing different adaptation methods across
different data sizes (Table 9), fine-tuning epochs (Table 10), and model sizes (Table 11) on the
CorpClimate dataset. We use by default the OPT-6.7B model as the target LLM. These results are
supplementary to Figures 5 & 6 in the main paper.

*https://huggingface.co/google-bert/bert-base-multilingual-cased
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Attack Method Metric Model
T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood
AUC-ROC 0.54 0.52 0.52 0.51 0.54
FPR(%)@0.1%TPR 0.71 0.00 0.00 0.20 0.17
FPR(%)@1%TPR 2.33 1.63 0.00 0.89 1.06

Likelihood-ref
AUC-ROC 0.62 0.62 0.60 0.57 0.59
FPR(%)@0.1%TPR 5.83 5.62 5.47 4.92 4.68
FPR(%)@1%TPR 12.08 11.73 9.86 8.77 9.03

Zlib Entropy
AUC-ROC 0.53 0.54 0.52 0.54 0.51
FPR(%)@0.1%TPR 0.31 0.00 0.00 0.29 0.00
FPR(%)@1%TPR 1.03 2.22 1.00 1.88 0.74

Neighborhood
AUC-ROC 0.52 0.53 0.53 0.52 0.52
FPR(%)@0.1%TPR 0.00 0.00 0.02 0.00 0.01
FPR(%)@1%TPR 0.00 0.00 1.05 0.22 0.69

Min-K
AUC-ROC 0.52 0.52 0.52 0.53 0.52
FPR(%)@0.1%TPR 0.00 0.38 0.00 0.00 0.00
FPR(%)@1%TPR 0.00 1.17 0.00 0.24 0.00

Min-K++
AUC-ROC 0.53 0.52 0.52 0.54 0.52
FPR(%)@0.1%TPR 0.00 0.38 0.00 0.00 0.00
FPR(%)@1%TPR 0.00 1.17 0.00 0.24 0.00

Gradient-Norm
AUC-ROC 0.63 0.60 0.58 0.54 0.55
FPR(%)@0.1%TPR 3.49 3.31 4.57 3.13 3.22
FPR(%)@1%TPR 8.87 9.93 11.28 8.49 7.98

Table 6: Overall attack effectiveness across different LLMs fine-tuned with LoRA (SQL).

Attack Method Metric Model
T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood
AUC-ROC 0.63 0.61 0.61 0.58 0.56
FPR(%)@0.1%TPR 1.89 2.32 2.17 0.70 1.28
FPR(%)@1%TPR 10.08 11.12 13.67 5.92 6.01

Likelihood-ref
AUC-ROC 0.70 0.71 0.73 0.71 0.70
FPR(%)@0.1%TPR 5.85 6.43 5.87 3.08 3.25
FPR(%)@1%TPR 16.62 21.11 15.44 13.31 12.99

Zlib Entropy
AUC-ROC 0.62 0.62 0.63 0.66 0.63
FPR(%)@0.1%TPR 1.85 4.56 3.17 2.98 4.14
FPR(%)@1%TPR 7.73 14.64 10.05 8.85 12.21

Neighborhood
AUC-ROC 0.67 0.64 0.62 0.63 0.65
FPR(%)@0.1%TPR 1.81 2.33 2.18 1.59 5.54
FPR(%)@1%TPR 5.42 9.96 8.87 10.07 11.12

Min-K
AUC-ROC 0.50 0.58 0.56 0.58 0.53
FPR(%)@0.1%TPR 0.00 1.64 0.81 0.68 0.00
FPR(%)@1%TPR 0.00 7.90 1.82 2.79 0.00

Min-K++
AUC-ROC 0.51 0.58 0.56 0.57 0.54
FPR(%)@0.1%TPR 0.00 2.04 1.01 0.73 0.00
FPR(%)@1%TPR 0.00 6.54 3.99 4.24 0.00

Gradient-Norm
AUC-ROC 0.73 0.71 0.72 0.71 0.71
FPR(%)@0.1%TPR 5.73 6.22 5.86 5.99 4.83
FPR(%)@1%TPR 14.98 18.69 17.41 18.16 15.52

Table 7: Overall attack effectiveness across different LLMs fine-tuned with LoRA (Sujet Finance).

19



Attack Method Metric Model
T5-Large Llama-7B OPT-6.7B BLOOM-7B GPT-J-6B

Likelihood-based
AUC-ROC 0.59 0.58 0.57 0.58 0.61
FPR(%)@0.1%TPR 1.19 1.41 1.08 1.08 2.87
FPR(%)@1%TPR 9.08 5.69 4.99 5.19 8.83

Zlib Entropy-based
AUC-ROC 0.65 0.63 0.62 0.56 0.63
FPR(%)@0.1%TPR 2.59 3.18 2.02 0.63 1.16
FPR(%)@1%TPR 10.07 9.89 8.88 3.94 9.46

Neighborhood
AUC-ROC 0.62 0.65 0.61 0.63 0.65
FPR(%)@0.1%TPR 1.64 3.13 1.11 1.26 2.89
FPR(%)@1%TPR 6.07 7.25 6.01 6.35 7.77

Min-K-based
AUC-ROC 0.57 0.61 0.59 0.63 0.62
FPR(%)@0.1%TPR 1.02 2.08 2.21 2.53 3.03
FPR(%)@1%TPR 2.13 5.19 6.21 7.77 8.12

Min-K++-based
AUC-ROC 0.59 0.62 0.65 0.65 0.66
FPR(%)@0.1%TPR 2.15 2.61 2.97 3.33 3.59
FPR(%)@1%TPR 3.34 5.92 6.48 8.09 8.15

Refernce-based
AUC-ROC 0.72 0.74 0.75 0.72 0.70
FPR(%)@0.1%TPR 6.79 7.82 7.19 6.48 6.14
FPR(%)@1%TPR 15.03 19.88 18.75 16.87 15.33

Gradient-Norm-based
AUC-ROC 0.72 0.73 0.71 0.72 0.72
FPR(%)@0.1%TPR 6.79 6.94 6.48 6.82 7.05
FPR(%)@1%TPR 14.09 17.18 18.44 15.02 16.63

Table 8: Overall attack effectiveness across different LLMs fine-tuned with LoRA (CorpClimate).

Metric Data Size Adaptation Technique
Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

25%(2790) 0.424 0.549 0.523 0.526 0.519 0.531 0.479
50%(5580) 0.521 0.558 0.541 0.579 0.542 0.563 0.562
75%(8370) 0.653 0.657 0.652 0.654 0.647 0.655 0.652
full(11159) 0.674 0.669 0.668 0.671 0.665 0.671 0.666

Attack AUC

25%(2790) 0.794 0.769 0.761 0.76 0.758 0.749 0.745
50%(5580) 0.759 0.759 0.755 0.752 0.749 0.748 0.741
75%(8370) 0.757 0.755 0.753 0.749 0.746 0.742 0.731
full(11159) 0.751 0.751 0.749 0.747 0.737 0.737 0.729

Table 9: Comparison of various adaptation techniques across different fine-tuning dataset sizes
(CorpClimate) on the OPT-6.7B model. The attack AUC-ROC is evaluated using the Likelihood-ref
approach. The shaded column indicates the varying dataset sizes (ranging from 25% to the full
dataset) used for adapting the model, with the absolute number of samples presented in brackets.

Metric Epoch Adaptation Technique
Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

1 0.404 0.436 0.444 0.595 0.503 0.447 0.442
2 0.508 0.528 0.525 0.653 0.588 0.556 0.547
3 0.597 0.577 0.597 0.664 0.642 0.596 0.617
4 0.668 0.622 0.656 0.669 0.657 0.651 0.661
5 0.673 0.669 0.673 0.671 0.664 0.669 0.669

Attack AUC

1 0.679 0.651 0.649 0.644 0.641 0.638 0.633
2 0.709 0.698 0.688 0.685 0.673 0.67 0.655
3 0.748 0.744 0.739 0.724 0.711 0.707 0.696
4 0.753 0.751 0.746 0.739 0.737 0.737 0.735
5 0.755 0.753 0.752 0.747 0.745 0.742 0.741

Table 10: Comparison of different adaptation techniques across various fine-tuning epochs (CorpCli-
mate) on the OPT-6.7B model. The attack AUC-ROC is evaluated using the Likelihood-ref approach.
The shaded column indicates the varying fine-tuning epochs (ranging from 1 to the default value of
5) used for adapting the model.
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Metric Model (Size) Adaptation Technique
Full Prefix-tuning Top2-Head LoRA P-tuning Adapter-H Prompt-tuning

Model Accuracy

OPT-125M 0.669 0.663 0.651 0.661 0.645 0.652 0.641
OPT-350M 0.673 0.671 0.653 0.661 0.656 0.661 0.643
OPT-1.3B 0.673 0.675 0.662 0.663 0.666 0.665 0.649
OPT-2.7B 0.678 0.681 0.665 0.667 0.667 0.671 0.653
OPT-6.7B 0.685 0.681 0.669 0.671 0.673 0.675 0.672

Attack AUC-ROC

OPT-125M 0.699 0.693 0.689 0.683 0.681 0.677 0.668
OPT-350M 0.714 0.704 0.691 0.688 0.685 0.681 0.668
OPT-1.3B 0.721 0.713 0.709 0.694 0.689 0.688 0.679
OPT-2.7B 0.727 0.719 0.717 0.711 0.702 0.694 0.688
OPT-6.7B 0.767 0.751 0.749 0.747 0.741 0.738 0.735

Table 11: Comparison of different adaptation techniques across various model sizes (CorpClimate).
The attack AUC-ROC is evaluated using the Likelihood-ref approach. The shaded column indicates
the varying target model size (ranging from 125M to the default value of 6.7B).
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Vulnerabilities of Data Protection in Vertical
Federated Learning Training and Countermeasures

Derui Zhu , Jinfu Chen , Xuebing Zhou, Weiyi Shang, Senior Member, IEEE,
Ahmed E. Hassan , Fellow, IEEE, and Jens Grossklags , Senior Member, IEEE

Abstract— Vertical federated learning (VFL) is an increas-
ingly popular, yet understudied, collaborative learning technique.
In VFL, features and labels are distributed among different par-
ticipants allowing for various innovative applications in business
domains, e.g., online marketing. When deploying VFL, training
data (labels and features) from each participant ought to be
protected; however, very few studies have investigated the vulner-
ability of data protection in the VFL training stage. In this paper,
we propose a posterior-difference-based data attack, VFLRecon,
reconstructing labels and features to examine this problem. Our
experiments show that standard VFL is highly vulnerable to
serious privacy threats, with reconstruction achieving up to 92%
label accuracy and 0.05 feature MSE, compared to our baseline
with 55% label accuracy and 0.19 feature MSE. Even worse, this
privacy risk remains during standard operations (e.g., encrypted
aggregation) that appear to be safe. We also systematically
analyze data leakage risks in the VFL training stage across
diverse data modalities (i.e., tabular data and images), different
training frameworks (i.e., with or without encryption techniques),
and a wide range of training hyperparameters. To mitigate
this risk, we design a novel defense mechanism, VFLDefender,
dedicated to obfuscating the correlation between bottom model
changes and labels (features) during training. The experimental
results demonstrate that VFLDefender prevents reconstruction
attacks during standard encryption operations (around 17%
more effective than standard encryption operations).

Index Terms— Privacy-preserving machine learning, vertical
federated learning, privacy leakage, data safety, privacy.

I. INTRODUCTION

MACHINE learning techniques are increasingly inte-
grated into daily routines, e.g., with recommendation

systems [10] or medical diagnosis techniques [26], to improve
quality of life. However, the success of machine learning
techniques relies on the availability of data, and human-level
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machine intelligence cannot be achieved without big data as
training sets. Accordingly, there is an increasing demand for
data sharing to improve model performance. For example,
financial companies can dramatically improve their customer
risk prediction models with customer data from other banks.
However, accessing such data from other organizations is very
difficult [36], [50], since data is regarded as a key asset by
every organization. In addition, governments are issuing more
and stricter policies, e.g., GDPR, that decrease the flow of
information across organizational boundaries.

In early 2016, Google proposed a new artificial intelligence
(AI) technique, federated learning (FL), to address the data
sharing problem [25]. FL is a collaborative learning tech-
nique that trains a global model using data from multiple
participants [25]. Unlike traditional collaborative learning, the
training of FL models does not require a centralized server to
collect the data stored by each participant. Instead, to train FL
models, the participants keep data locally, and only intermedi-
ate data, e.g., gradients, are shared. Therefore, FL promotes the
cooperative training of models among different organizations
without requiring each organization to share original data.
However, even though the original data is not shared during
FL model training, significant data leakage risks exist [32].

FL has two important variants, horizontal FL (HFL) and
vertical FL (VFL), which differ with regard to label ownership.
In HFL, each participant can access the entire model and their
own labels, while in VFL, the participants can only access part
of the model and only one participant owns labels. Previous
studies [14], [15], [58] investigated the risks of leakage of
training data in FL, focusing on HFL. In contrast, only a small
number of articles have examined the risks of training data
leakage in VFL. These risks turn out to be more problematic
in the VFL setting compared to the HFL setting [47], [50].
Not only is VFL more widely used than HFL [51], VFL
applications are usually associated with highly sensitive data,
e.g., financial and government data, where data leakage is
a serious concern [17], [27]. To the best of our knowledge,
no comprehensive privacy risk analysis, including leakage of
labels and features, has been conducted in the context of
VFL training. Additionally, all related studies were conducted
in non-encryption-based VFL training frameworks [7], [13],
[29]. However, it is critical to understand how much data
from each participant may be leaked during the VFL training
process using practically relevant encryption-based training
frameworks.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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To fill this research gap, we conduct a systematic analysis
of data leakage risks in the VFL training stage. In particular,
we propose a simple yet efficient posterior-difference-based
attack approach, VFLRecon, to reconstruct labels and features
during VFL training. An adversarial participant can apply
the posterior difference of a bottom model between two
consecutive training steps to reconstruct the labels or features
owned by other participants. Following practical threat model
assumptions [35], [40], [58], we assume that the adversarial
participants are “honest-but-curious”, which means that they
contribute truthfully to the VFL training. However, the adver-
sarial participants are capable of recording any intermediate
information related to their bottom model updates during
VFL training, which can be considered the most realistic
scenario [40].

To ensure the practical relevance of our work, we evaluate
VFLRecon on diverse open-source benchmark datasets ranging
from tabular data to images, namely, Sensorless Drive Diag-
nosis [6], Criteo [3], CIFAR-10 [30], BHI [48], Avazu [2],
and CelebA [4]. The experiments are conducted using
VFL training frameworks including non-encryption-based and
encryption-based operations (encrypted aggregation) [56]. The
experimental results show that VFLRecon achieves consistent
effectiveness in reconstructing training samples during VFL
training. We find that the adversarial participants can recon-
struct labels with very high accuracy (i.e., >92% in Criteo) in
neural-network-based (NN-based) VFL model training with-
out encryption-based operations when they have half of the
features of the training samples. Furthermore, VFLRecon can
efficiently reconstruct the features of tabular data from other
participants with a very small mean square error (MSE),
e.g., 0.05 in Criteo, in the same setting. Besides tabular
data, we also demonstrate that VFLRecon can effectively
reconstruct the images held by other participants, with an
MSE of 0.04 and 0.03 in CIFAR-10 and BHI, respectively.
Surprisingly, similar results are reached in VFL model training
with encryption-based aggregation protection. As such, our
study reveals that encryption operations are not effective in
preventing data leakage in VFL training, thereby highlighting
the necessity of designing a more dedicated defense method.

While standard encryption aggregation in VFL training is
shown to be ineffective against VFLRecon, we propose a
gradients-obfuscation-based approach, VFLDefender, to mis-
lead adversaries. Indeed, the experimental results demonstrate
that we can effectively reduce the correlation between model
updates and the input samples. Specifically, the accuracy
of reconstructed labels decreases substantially from 0.86 to
0.69, while the MSE increases from 0.01 to 0.14 (shown in
Table VI).

Our paper makes the following contributions:
• We present the first comprehensive analysis of data leak-

age risks in VFL training. In particular, we propose a
novel simple yet effective attack, VFLRecon, to demon-
strate the serious leakage risks with regard to labels and
features in VFL training.

• Moreover, our work highlights that standard encryption-
based aggregation techniques are not capable of
preventing data leakage during NN-based VFL training.

Fig. 1. Neural-network-based VFL model architecture [55], [56].

• Based on our findings, we propose a gradients-
obfuscation-based defense approach, VFLDefender,
which can effectively protect each VFL participant’s
training data privacy.

The rest of this paper is organized as follows: Section II
introduces the background of this work, and Section III
discusses prior research. Section IV details our methodology,
and Section V presents our experimental setup and data col-
lection. Section VI reports the results and a discussion of our
attack evaluation. Section VII demonstrates the approaches,
which mitigate the data leakage risks. Section VIII analyzes
and discusses the defense performance. Section IX discusses
potential limitations, and Section X presents the threats to
validity of our study. Finally, Section XI concludes this paper.

II. BACKGROUND

In this section, we introduce the background of our work
considering primarily two aspects: vertical federated learning,
and encryption-based vertical federated learning training.

A. Vertical Federated Learning (VFL)

Vertical federated learning is a distributed machine learning
framework, which aims at training an AI model across dif-
ferent participants who share the same sample spaces rather
than feature spaces [54]. Figure 1 shows a general architecture
of NN-based VFL models. In the VFL setting, each partici-
pant holds different features or labels belonging to the same
samples. Participants are divided into two groups based on
whether they own labels. In general, a participant with labels
is categorized as an active participant; otherwise, as a passive
participant. Suppose that we have two participants, A and B,
where only participant B owns labels. The general NN-based
VFL model is then defined as:

Y = h(g(XA
; θA), g(XB

; θB); θt) (1)

where XA and XB are the features owned by participants
A and B, respectively. θA and θB are the parameters of
bottom models g owned by participant A and participant B,
respectively. θt are the parameters of the top model h. Note
that the top model is only owned by participant B with data
labels.

In general, NN-based VFL models can be trained with the
following steps. First, each bottom model takes their local



3676 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

TABLE I
SUMMARY OF NOTATIONS

data’s features as input to run a forward pass calculation
and output the representations of their local features. After
that, they upload those representations (refer to embedding)
to the top model. Next, the top model aggregates all uploaded
representations from each bottom model to compute the
final predictions. Comparing the predictions with ground-truth
labels, the top model further calculates the gradients with
respect to the loss. Then, the gradients are back-propagated
to each bottom model from the top model, enabling the VFL
model to make an update.

B. Encryption-Based Vertical Federated Learning Training

In general, during the VFL training, each participant sends
their local data representations (output of the bottom model)
to the top model via plaintext. However, embedding-sharing
has been shown to lead to the leakage of original data [11],
[43]. As the output of a bottom model is an embedding of
the local data from one participant, it is risky to send those
outputs to the top model directly without applying any pro-
tection mechanisms. As a solution to this problem, encryption
techniques, such as additively homomorphic encryption, can
protect the bottom model output, allowing the top model to
calculate loss and gradients without using the plaintext output
from the bottom models [56].

With the notation from Table I, we can introduce the
encryption mechanisms applied in VFL training. We use [·] to
represent an encryption operation. The working process can be
described as follows. z is the first layer output of the top model,
which is associated with each bottom model’s output. The goal
of privacy preservation is to calculate z without knowing the
value of a bottom model’s output. First, participant A encrypts
its bottom model output, [αA], and then uploads it to the
top model. Second, the top model generates a noise ϵB and
computes [zA] = [αA] ∗WA and zB = αB ∗WB. Next, the top
model sends [zA + ϵB] = [zA] + ϵB to participant A in order
to decrypt zA; meanwhile WA is protected from being seen
by participant A. Next, participant A decrypts [zA + ϵB] and
sends zA + ϵB + αA ∗ ϵacc, where ϵacc is a hyper-parameter
ranging from 0 to 1, to the top model. Afterwards, since the
noise ϵB can be eliminated, the top model can calculate its
first layer output z = σ(zB + zA + αA ∗ ϵacc). Then, the top
model uses z as input to run its forward pass to compute the
final prediction.

III. RELATED WORK

In this section, we present related prior research regarding
two aspects: 1) privacy attacks in federated learning, and 2)
privacy protections in federated learning.

A. Privacy Attacks in Federated Learning

The training of AI models typically relies on a larger
amount of collected data raising heightened concerns about
training data leakage. Several works explore data leakage of
training data in the HFL setting [41], [58], as well as attacks
to identify whether an example is used in the HFL model’s
training set [35]. In particular, many successful data inversion
attacks to reconstruct the HFL model’s input data with only
the gradients’ information have been reported [21], [22].

Further, various privacy attacks have been proposed against
HFL, including membership inference, and properties infer-
ence, etc. In membership inference [34], [35], [42], the attacker
aims to infer whether a data sample is included in another par-
ticipant’s training dataset. Properties inference [34] focuses on
reconstructing the data samples belonging to other participants
via the intermediate information exchanged.

In contrast to HFL, very few studies have explored the
privacy risks in VFL focusing primarily on data leakage in
the VFL inference phase. Yang et al. [52] construct a fea-
ture reconstruction attack based on trained VFL models by
minimizing the distance between the predictions from recon-
structed features and target features using zeroth-order gradient
estimation. Luo et al. [31] study the feature reconstruction
attacks during VFL inference, focusing on logistic, tree-based,
and NN-based models, while Fu et al. [13] proposed a label
reconstruction attack by fine-tuning a trained bottom model
in a semi-supervised manner to predict the sample labels.
Importantly, these approaches can only be applied after the
VFL model has been trained and are not feasible during the
model training phase.

In addition, Fu et al. [13] have also presented several
attempts to analyze the potential label leakage risk in the
VFL training phase. However, their work is only applicable for
reconstructing training labels when the top model (server) is
non-trainable or when assuming non-honest adversary partici-
pants. Although these situations might arise in extreme cases,
they are generally deemed impractical as the common practice
requires the top model to be trainable and the participants to
be honest, i.e., to faithfully adhere to the training protocol
under performance supervision. Besides, Li et al. [29] exploit
the norm of gradients in split learning to reconstruct labels
during model training. The key limitation of [29] is that they
solely support two-party scenarios in which one participant
only holds labels, and the other only holds features. More-
over, [29] is restricted to binary classification tasks. Finally,
Ye et al. [53] investigate binary feature reconstructing by solv-
ing the linear equations in training, but it is only applicable
for scenarios in which the feature-holding participants contain
at most one layer of neural network trainable parameters,
rendering it an unrealistic setup.

To the best of our knowledge, no comprehensive privacy
risk analysis, including leakage of labels and features, has
been conducted in the context of VFL training. Additionally,
all existing related studies are conducted in non-encryption-
based VFL training frameworks. Note that data leakage in
VFL training is generally regarded as a more serious issue than
data leakage during VFL model inference [23]. Furthermore,
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although recent work [13], [29], [53] attempted to assess
label or feature leakage risks in VFL training, the authors
concentrated on particular cases of VFL models for very
narrow application scenarios, e.g., binary classification, and
binary features. Different from prior works on VFL leakage
risk analysis, this paper explores label and feature leakage
risks in the VFL training process, that applies to any NN-
based model.

B. Privacy Protections in Federated Learning

Many prior approaches have been introduced to prevent
training data leakage in federated learning. The approaches can
be categorized into two categories. The first category is data
satinization [28], [33], e.g., k-anonymization, to remove sensi-
tive information from the training data to reduce the capability
of an adversary to obtain or infer sensitive information about
the training data. The other category aims to protect the train-
ing data from AI model training by adding random noise in the
model training process, e.g., differential privacy (DP) [5], [46].
Ranbaduge and Ding [38] study the trade-off between model
utility and privacy loss in a (ϵ, δ)-differential privacy setting
for VFL model training. The DP-based noise can be added
to the model input, gradients, and loss functions [46], [49].
Complementing the DP-based defense strategy, Ye et al. [53]
propose a protocol to add Gaussian-based noise to the output
of each bottom model. However, their defense strategies only
protect categorical features.

FL training requires gradients-related information to be
exchanged between each participant. However, prior research
has shown that the information exchanged can lead to privacy
leakage [34], [37], [44], [45]. Encryption-based exchange
is a solution for protecting information exchanged. Secure
multi-party computation (SMC) is one type of encryption
technique that runs secret computations among multiple par-
ticipants [16]. In early 2016, Google proposed a gradient
aggregation algorithm based on SMC to prevent data leakage
from HFL training [8]. This prevents the server from obtaining
the exact gradient value of each participant. Furthermore, SMC
combined with differential privacy allows for HFL training
with better privacy protection guarantees [8], [46].

SMC can also be applied to train different VFL models, e.g.,
tree-based models. A tree-based VFL model can be trained
using secure aggregation to calculate each candidate node’s
information loss, while the statistics about each node are kept
secret to each participant [9]. Prior studies also proposed a
solution to aggregate bottom model output with homomorphic
encryption for NN-based VFL training to prevent data leak-
age [56]. However, our study finds that the existing encryption
solutions cannot prevent data leakage from NN-based VFL
training. Therefore, our work proposes a gradient-perturbation-
based defense technique to protect data privacy during VFL
training.

IV. VFLRECON: DATA RECONSTRUCTION ATTACKS

In this section, we analyze the vulnerability of training
data protection in the VFL training stage and present our
attack, VFLRecon, to better understand the potential impact

of adversarial participants in reconstructing training data, i.e.,
labels and features, from other participants during the VFL
training process.

A. Training Data Leakage Risks in Vertical Federated
Learning

In the VFL setting, each participant is not able to directly
obtain the features or labels of the records with identical
sample IDs from other participants. However, it does not
mean it is impossible that one participant can reconstruct
the features or labels from other participants in the model
training phase. Suppose that L refers to the loss function of
the NN-based VFL model, while the adversarial participants
hold features X adv and bottom model g with parameters θadv.
Eq. 2 represents the gradient calculation of the adversarial
bottom model. It clearly shows that those gradients, i.e., ∂L

∂θadv
with respect to adversarial participants’ bottom model, are
associated with the other participants’ bottom model output
(b2), top model output and ground-truth label. In other words,
the distribution (model parameters) changes in the bottom
model are correlated with the features and labels from other
participants. This offers an attack surface for the adversarial
participants to reconstruct other participants’ data samples
(features or labels). Therefore, this may lead to serious training
data leakage in the VFL training stage.

∇θadvL

=
∂L
∂h
∇θadv h(badv, bvict; θtop)|badv=g(X adv;θadv);bvict=g(X vict;θvict)

(2)

Additionally, VFL models are widely deployed between
large entities with a significant share of overlapping user
populations, e.g., banks and e-commerce companies [51].
At the same time, customer data is not only subject to strict
government regulations, but it is also an important component
of entities’ core competitiveness strength. Therefore, it is
crucial to analyze the potential training data leakage risks
during VFL training. This also enables us to design better
privacy-preserving mechanisms for VFL training protection.

B. Threat Model

Similar to prior studies [29], [31], [40], we assume the
adversaries to be honest-but-curious participants who can hold
the data label or not. In this context, “honest-but-curious”
means that the adversarial participants may exploit the known
information related to their own bottom model update to
conduct a data reconstruction attack without deviating from
the prescribed training protocols. To carry out VFLRecon, the
adversaries train an additional model (i.e., a shadow model)
with the assumptions categorized by different attack goals, i.e.,
label and feature reconstructions.

Threat model: In label and feature reconstruction scenarios,
the adversaries have the following common requirements and
knowledge:
• Only exploit the known information related to the updates

of the self-owned bottom models, i.e., inputs, parameters,
and gradients w.r.t the self-owned bottom models.
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Fig. 2. An overview of VFLRecon.

• Knowledge about the whole VFL model architecture,
which adheres to the typical training protocols adopted
in real-world VFL training pipelines.

• A small dataset consisting of complete data samples (all
features and labels), which follow the same distribution
as the training dataset. We refer to this dataset as shadow
data. In Subsection VI-C, we discuss practical solutions
to acquire these data.

In a real-world scenario, e.g., loan risk assessment, a bank,
and an e-commerce company may want to collaborate to
train a model to assess the potential risk associated with
granting a loan to a customer. The personal information held
by the bank (i.e., the features) represents a valuable asset
that might be of keen interest to the e-commerce company.
In addition, the e-commerce company may also be interested in
the label information from the bank. As such, it is reasonable
to consider the e-commerce company as a potential adversary
with the capability of using VFLRecon. More generally, any
vertical federated learning application, where data is vertically
split, is a candidate for feature and label reconstruction attacks
during model training.

C. Algorithm

In this work, we propose an NN-based reconstruction
model, R(·), to reconstruct labels or features from other
participants. During VFL model training, the adversarial par-
ticipants run R(·) by measuring the posterior difference of
the bottom model distributions. We represent the posterior
difference of the bottom model distribution using the bottom
model output’s gradients (δadv

g ), as well as the weights and
bottom model outputs before (θadv, g(X adv

; θadv)) and after
(θ ′adv, g(X adv

; θ ′adv)) bottom model update. In order to model
the correlation between those posterior differences and their
training samples in two consecutive training steps, we first

simulate the VFL shadow model training process to collect the
necessary data that depicts the correlation between features or
labels of training samples and the bottom model’s distribution
changes during VFL training. Then, we use the collected data
to train an NN-based reconstruction model R(·) as attackers.
The reconstruction loss is defined as:

Lf
r =∥R(δadv

g , g(X adv
; θadv), g(X adv

; θ ′adv), θadv, θ
′

adv,X
adv)

− X vict
∥

2
2 (3)

where R(·) is the reconstruction model that can be an arbitrary
NN-based model. Moreover, X adv and X vict are the raw
features of the adversarial participants and victim participants,
respectively. Note that Eq. 3 is not suitable for measuring the
success of classification tasks. Therefore, in label reconstruc-
tion, the loss function is changed as follows:

Ll
r =−Ey(y logR(δadv

g , g(X adv
; θadv), g(X adv

; θ ′adv),

θadv, θ
′

adv,X
adv)) (4)

D. Data Reconstruction Attacks

To simplify, we adopt the commonly used framework where
adversarial participants own at least one bottom model. Note
that VFLRecon can be seamlessly adapted to reconstruct
features or labels when the adversarial participants only hold
the top model. Algorithm 1 describes the whole process of
constructing VFLRecon to run a specific attack task, recon-
structing labels or features from the victim participants. First,
the adversarial participants train the VFL shadow model from
scratch using the shadow data samples, including complete
features and labels. Furthermore, they intentionally record
the required information related to the bottom models’ dis-
tribution change during the shadow model training. After
that, the adversarial participants train a reconstruction model,
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Algorithm 1 VFLRecon Construction
Input: g: Shadow bottom models. θadv and θvict are param-
eters of adversarial and victim participants’ bottom models,
respectively;
h: Shadow top model, with parameters, θt ;
X : Shadow data with complete features and labels, which is
a list of tuples (X adv, X vict, y);
γ : Learning rate.
Output: R(·): MLP-based reconstruction model.

1: samples = ∅
2: while (X adv,X vict, y) ∈ X do
3: badv = g(X adv

; θadv)

4: bvict = g(X vict
; θvict)

5: o = h(badv, bvict; θt )

6: L = Loss(o, y)

7: δadv =
∂L

∂θadv
8: θ ′adv = θadv − γ · δadv
9: b′adv = g(X adv

; θ ′adv)

10: if reconstruction model target is label then
11: one record = { ∂L

∂badv
, badv, b′adv, θadv, θadv

′,X adv, y}
12: else
13: one record={ ∂L

∂badv
, badv, b′adv, θadv, θadv

′,X adv,X vict
}

14: end if
15: samples = samples ∪ one record
16: Applying SGD to update θadv, θvict and θt
17: end while
18: R← MLPModel(samples)
19: return R(·)

R(·), using the data collected during the VFL shadow model
training. The reconstruction model, R(·), can be applied to
reconstruct training samples’ features or labels in realistic
VFL training. More specifically, the whole process of the
construction and application of R(·) can be structured into
three steps, which are shown in Figure 2.

Step 1: Collecting data for training the reconstruction
model. To collect the data for training reconstruction models,
the initial step is to collect the data related to the bottom
model’s distribution changes and reconstruction target. Those
data are generated during the shadow VFL model training.
We construct a VFL shadow model to mimic the realistic
VFL training process and employ the shadow data as training
data. Algorithm 1 demonstrates the details of constructing
VFLRecon. We first define an empty set of samples to store
all training records of reconstruction models (Line 1). Next,
we iteratively train the VFL shadow model using the complete
features and labels (shadow data) (Lines 2 to 17). During
model training, we feed the same input X adv to the bottom
model with parameters before (line 3) and after updating the
model (line 9). In addition, we record the data generated during
the training process and save them in samples (lines 10 to 15).

Step 2: Training the reconstruction model. After we finish
the data collection, we use the collected samples from step 1 to
train an NN-based R(·) for reconstructing labels or features
from other participants during VFL model training (Line 18).
We adjust the model output based on the different attack tasks,

reconstructing labels or features. As a general rule of thumb,
reconstructing the label task takes a sparse vector as the output
layer, whereas we take a dense vector as the output layer for
reconstructing feature tasks.

Step 3: Executing reconstruction attacks. During the
actual VFL model training, the adversarial participants record
the data related to their bottom models’ changes at each
training step to compose the input for R(·). As VFLRecon
exploits the changes in the bottom model during training, the
adversarial participants are capable of reconstructing training
data samples, including features and labels from other partic-
ipants after participating only in one epoch of training.

V. EVALUATION SETUP

In this section, we present the experimental setup and
metrics to measure the success of VFLRecon in reconstructing
training samples’ features and labels. We further evaluate
VFLRecon on various datasets ranging from tabular data to
images. Moreover, we discuss and analyze the vulnerability
of training data protection during VFL training in the last
subsection.

A. Experimental Setup

We implement VFLRecon with Pytorch and conduct exper-
iments on a server with four 24GB Quadro RTX 6000 GPUs
and 512GB RAM running Ubuntu 20.04 LTS. We train
the NN-based VFL model in both a general VFL training
framework [39] and an encryption-based VFL training frame-
work [56]. The NN-based VFL model consists of bottom
models with two hidden layers for each participant, where
each hidden layer has 50 units. The top model has two hidden
layers, each with 100 units. To reconstruct labels, VFLRecon
consists of three hidden layers with 1000, 600, and 200 units,
respectively. Moreover, VFLRecon has three hidden layers
with 800, 500, and 100 units, respectively, when it is applied
to reconstruct features. To train the NN-based VFL model
and VFLRecon, we use Adam [24] as an optimizer and “He
Uniform” [18] as the initializer. The initial learning rate is
set to 0.001. We conduct our label and feature reconstruction
experiments on six well-known benchmark datasets, including
three tabular datasets (Sensorless Drive Diagnosis, Avazu
and Criteo) and three image datasets (CIFAR-10, BHI and
CelebA). The overview of our datasets is shown in Table II.
We separate the original datasets into two disjointed parts,
i.e., a small partial dataset (shadow data) and a large partial
dataset (normal VFL model training). The VFL shadow model
simulates the training process of the VFL model to generate
data for VFLRecon training using the small amount of shadow
data. The larger partial dataset is employed for VFL model
training, which serves as the target that VFLRecon aims to
reconstruct.

To better understand the vulnerability of training data pro-
tection during a VFL training process, we conduct further
experiments in a setting with encryption-based privacy-
preserving VFL training algorithms [55]. The experiments are
conducted with the open-source FATE platform [1].
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TABLE II
OVERVIEW OF DATASETS

B. Datasets

In this subsection, we give a brief description of the datasets
listed in Table II.

Sensorless Drive Diagnosis is a dataset containing 58,509
data records related to drive signals. Each record has 48 fea-
tures. The records are categorized into 11 classes.

Avazu is a benchmark dataset for click-through rate (CTR)
prediction tasks. It contains around 40 million online ad
impressions, each labeled as clicked (1) or not clicked (0).
The dataset includes 24 features. In this work, we conduct
empirical experiments on 500k data records with balanced
sampling from the original data.

CelebA is a large-scale face attributes dataset containing
200k RGB images, which are aligned using facial landmarks.
This involves randomly selecting a subset of images, center-
cropping them, and resizing them to a resolution of 32×32 for
training the models and evaluating the attacks.

Criteo is a public dataset that contains user click histo-
ries, which is used for recommendation system tasks. The
recommendation scenario is a practical application of VFL.
The original dataset contains billions of user records. Limited
by our computing resources, we sample 500,000 data records
from the original dataset to conduct our analysis.

CIFAR-10 is a well-known label-balanced dataset and con-
tains 60,000 images categorized into 10 classes, each of which
consists of 6,000 images.

BHI is a medical dataset that only includes breast cancer
images. Each patient’s X-rays are distributed among multiple
hospitals. We conduct image reconstruction tasks on this
dataset.

To conduct reconstruction attacks using VFLRecon, we sam-
ple a very small amount of data from each dataset, e.g.,
1000 records, to generate shadow data that can be accessed
by adversarial participants.

C. Evaluation Metrics

To understand the vulnerability of training data protection
in VFL training, we use the following metrics to measure how
successfully the adversarial participants can apply VFLRecon
to reconstruct labels or features owned by other participants
during VFL model training.

Accuracy is applied to evaluate the performance of label
reconstruction. Accuracy calculates the percentage of correctly
reconstructed labels from the whole training set.

Accuracy =
the number of correctly classified labels

the number of all labels
(5)

Mean Square Error (MSE) is a metric to compare the
difference between training features and reconstructed fea-
tures. We use MSE to measure the performance of the feature
reconstruction attack. Suppose that yi is a ground-truth value,
ŷi is the predicted value, n is the number of records, then the
MSE can be calculated as:

MSE =
∑

(yi − ŷi )
2

n
(6)

VI. ATTACK EVALUATION

In this section, we evaluate how successfully VFLRe-
con can reconstruct other participants’ partial features and
labels during VFL model training. In addition, we pro-
vide a comprehensive understanding of the vulnerability
of training data protection at the VFL training stage.
We start by assessing the success of reconstruction attacks
on features and labels with six very different benchmark
datasets, ranging from tabular data to images. After that,
we analyze the potentially significant factors that led to the
success of VFLRecon. The data and code are available at
https://sites.google.com/view/vflrecon/vfl-reconstruct.

A. VFLRecon for Reconstructing Labels

To determine how much label information can be leaked
during VFL training, we first randomly sampled a small
amount of data from the whole dataset as shadow data. After
that, we locally trained an NN-based VFL shadow model
and collected the data containing the bottom model snapshots
and gradients during model updates. In particular, to discover
the vulnerability of training data protection in general VFL
training, we conducted experiments on both non-encryption-
based and encryption-based VFL training settings.

To evaluate the effectiveness of VFLRecon, we ran our label
reconstruction attack experiments on NN-based VFL models
on the six datasets presented in Subsection V-B. We utilized
accuracy as the metric to evaluate the success of the label
reconstruction attacks. Due to the relative absence of related
work in VFL privacy research on protecting training data,
we employed a common and intuitive approach to formulating
a baseline. That is, we reconstruct labels from other partici-
pants based on a prediction model trained using shadow data.
Specifically, we train a baseline attacker model to predict the
labels of the training samples using shadow data as training
data. The adversary’s features serve as input for this baseline
attacker, while the training samples’ labels are the output. We
also compare our approach to prior studies [13] and [29].
Reference [13] proposes one attack approach related to label
reconstruction during model training, focusing on the scenario
where the top model serves as an aggregation function without
any trainable parameters. Similarly, [29] can only be applied
to two-party scenarios in which one participant holds labels
only, and the other holds features only. To demonstrate the
effectiveness of our approach and make a fair comparison,
we tailor our approach to their scenarios.

Results: VFLRecon can effectively reconstruct labels in
different types of datasets, e.g., tabular data and images.
Figure 3 shows that VFLRecon performs significantly better
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Fig. 3. The label reconstruction attacks on different datasets. S.Diagnosis
refers to the Sensorless Drive Diagnosis dataset. “w.en.” is the target model
trained in an encryption-based VFL training framework, and “w/o.” is the
model trained in a non-encryption-based VFL training framework.

TABLE III
LABEL RECONSTRUCTIONS OVER CRITEO, AVAZU, AND CELEBA

DATASETS DURING VFL TRAINING

than the baseline attacks across all datasets, regardless of the
data type. The adversarial participants, only owning half of
the samples’ features, can create a VFL shadow model with
100 complete data samples (including all features). When
the batch size is 16 for the VFL shadow model training,
the accuracy of label reconstruction is over 85% for all six
datasets. Especially, in the two common benchmark datasets
Avazu and CelebA, VFLRecon can achieve an accuracy of
around 90% in label reconstruction. However, as can be seen
in the figure, with the increasing complexity of the dataset, the
label reconstruction accuracy decreases from 92% (Criteo) to
85% (CIFAR-10).

VFLRecon can effectively reconstruct labels in both
encryption-based and non-encryption-based VFL training
frameworks. Note that encryption-based training frameworks
are considered secure methods to prevent data leakage in the
model training stage [44], [58]. However, Figure 3 shows that
our approach achieves a very similar performance when recon-
structing labels in the encryption-based VFL training setting
(i.e., an average accuracy of 87.75%) and the non-encryption-
based VFL training setting (i.e., an average accuracy of
87.75%) for both tabular and image data. The results indicate
that encryption-based VFL frameworks are not capable of
preventing label leakage during training. VFLRecon effectively
reconstructs the labels from other participants. Additionally,
VFLRecon shows that the existing encryption-based frame-
works also suffer from weak training data protection in the
VFL training stage.

VFLRecon is a more generic approach to measuring the
leakage risks of training sample labels. Table III presents
the experimental results for the approach from prior work [29]

and our approach. The results show that VFLRecon achieves
a better accuracy of 91.24%, 89.45%, and 90.08% compared
to [29] with an accuracy of 88.62%, 82.64%, and 86.49% in
datasets Criteo, Avazu, and CelebA, respectively. Additionally,
compared with [13] in the Sensorless Drive Diagnosis dataset,
when the top models are non-trainable (only aggregation), the
label reconstruction accuracy of [13] can reach 100% while
VFLRecon reaches 96%. However, when the top models are
trainable (which is the common practice), the label reconstruc-
tion accuracy from [13] decreases from 100% to 56%, while
VFLRecon still reaches an accuracy of 92%. We find that when
increasing the number of layers in the top model, [13] shows
gradually diminishing effectiveness.

Remark: The labels of training samples are prone to
leakage to other participants during VFL training. The
standard encryption mechanisms applied in VFL training
cannot protect those labels.

B. VFLRecon for Reconstructing Features

Training samples, including features and labels, are regarded
as a key asset for many organizations. We have shown that
our proposed approach, VFLRecon, is capable of reconstruct-
ing the labels of training samples from other participants
during VFL training. Besides effective label reconstruction,
to understand how much information about samples’ features
may be leaked during VFL training, we investigate whether
VFLRecon can effectively reconstruct the training data features
from other participants during VFL training. In other words,
we focus on studying whether the bottom model changes
disclose information about features from other participants.

To investigate how well the adversarial participants can
reconstruct the training data features, we first trained a VFL
shadow model to collect the required data introduced in
Section IV as the training data of VFLRecon. In particular,
we assumed that the adversarial participants own half of
the features of the training samples during VFL training.
Moreover, to examine the essential weakness of training data
feature protection in VFL training, we also ran the feature
reconstruction in both encryption-based and non-encryption-
based training settings.

The features in the original dataset might be independent
or correlated to each other. The correlation between features
contains sensitive information about the training samples and
poses serious privacy leakage risks. For example, the income
feature may have a positive correlation with age features in a
company dataset owned by a VFL participant. If adversaries
have prior knowledge about the individuals’ age, it is easy to
infer who earns more than others in that company. Therefore,
we also evaluated whether VFLRecon can reveal the correla-
tion between features.

Similar to label reconstruction, we assessed feature recon-
struction on NN-based VFL models in six different datasets.
For the experiments on CIFAR-10, each participant possessed
one part of an image. The participants then collaborated to
predict the content of the images. The adversaries can apply
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Fig. 4. The visualization of image reconstruction in CelebA.

VFLRecon during the collaboration. We used MSE as a metric
to measure the success of feature reconstruction attacks.

In line with the label reconstruction evaluation in
Subsection VI-A, we took the model that reconstructed the fea-
tures of other participants based only on the features possessed
by the adversarial participants as the baseline. Furthermore,
to investigate whether the reconstructed features retained the
correlation between features in the original samples, we sep-
arately calculated the correlation scores between each pair of
features for the original and reconstructed samples.

Results: VFLRecon can effectively reconstruct features
in both tabular and image data in both encryption-based
and non-encryption-based frameworks. Figure 5 shows
that our approach has a much lower MSE than the baseline
approach in both VFL training frameworks, indicating the high
quality of the reconstructed features. In addition, VFLRecon
performs well across different datasets, ranging from tabular
to image data (see Figure 5), and it performed similarly for
encryption-based (i.e., an average MSE of 0.03) and non-
encryption-based (i.e., an average MSE of 0.04) frameworks.
The minimum MSE (0.01) is achieved for the Sensorless Drive
Diagnosis dataset, in both settings.

In general, image reconstruction is more challenging than
tabular data reconstruction due to the inherent complexity
introduced by the increased feature dimensionality. Never-
theless, our experiments show that VFLRecon can faithfully
recover images up to a high degree of similarity to their
original counterparts. The feature reconstruction MSEs in the
encryption-based environment are 0.04, 0.03 and 0.01, with
the baseline being 0.23, 0.25 and 0.22, in the CIFAR-10,
BHI and CelebA datasets, respectively. Figure. 4 visualizes the
reconstructed images for the CelebA dataset when adversaries
hold half of each image. The models were trained without
encryption techniques.

VFLRecon is able to reconstruct the hidden correlation
between features. Figure 6 depicts the correlation (using the
Pearson correlation coefficient) between features in the orig-
inal dataset and the reconstructed features using VFLRecon.
As shown in Figure 6, itVFLRecon can effectively reconstruct
the correlations between features. For example, feature 3 has
a correlation of -0.45 to feature 4 in the original dataset.
In our reconstructed features, the corresponding correlation is
-0.25. These results suggest a high utility of the reconstructed
features for downstream tasks by the adversary. Furthermore,
the reconstructed features provide a potential attack surface
for model property inference attacks.

Fig. 5. The feature reconstruction attacks on different datasets. S.Diagnosis
refers to the Sensorless Drive Diagnosis dataset. “w.en.” is the target model
trained in an encryption-based VFL training framework, and “w/o.” is the
model trained in a non-encryption-based VFL training framework.

Remark: Training data features can easily leak to adver-
sarial participants during VFL training, and standard
encryption mechanisms may be insufficient to prevent such
leakage. Additionally, the correlation between the features
can be reconstructed with high accuracy.

C. Discussion

In this subsection, we investigate further influencing fac-
tors impacting the vulnerability of training data protection
in VFL training. The previously illustrated experimental
results already reveal that VFLRecon can successfully recon-
struct labels and features from other participants during
VFL training. By more deeply investigating factors influenc-
ing such data reconstruction (vulnerability in training data
protection), practitioners can better understand the charac-
teristics of training data leakage. Such characteristics can
be used to proactively design improved privacy-preserving
mechanisms to protect their training data during VFL
training.

Potential impacts on the vulnerability of training data
protection in VFL training. A prior study [13] reports that
the percentage of features, batch size, feature partition strategy,
shadow data size, and model update process might impact the
label reconstruction performance on a trained VFL model.
Therefore, we conducted experiments to investigate if these
factors affect the effectiveness of VFLRecon on reconstructing
labels and features from other participants during model
training.

Ablation experiment setup. We first ran our experiments in
the NN-based VFL model on the Sensorless Drive Diagnosis
dataset. Next, we allowed the adversarial participants to own
half of the features. To study how the percentage of features
affects the weakness of training data protection, we increased
the percentage of features owned by the adversarial partic-
ipants from 5% to 15%, 25%, 50%, and 75% of complete
features. For batch size, we set up the batch size ranging
from 1 to 128. In terms of number of participants, we con-
sider multiple participants, i.e., 2, 3, and 4 participants in
our experiment. For feature partition strategy, we use three
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Fig. 6. Visualization of Pearson correlation coefficient for 10 randomly selected features in the Sensorless Drive Diagnosis dataset. The left figure refers to
the Pearson coefficient of the features in the original data, while the right figure is the Pearson coefficient of the features in the reconstructed data.

TABLE IV
THE EXPERIMENTS TO EXPLORE THE EFFECTIVENESS OF VFLRecon WITH DIFFERENT FACTORS, I.E., THE NUMBER OF PARTICIPANTS, FEATURE

PARTITION STRATEGY, AND MODEL UPDATES PROCESS IN THE SENSORLESS DRIVE DIAGNOSIS DATASET. “W. EN.” IS THE MODEL TRAINED
IN THE ENCRYPTION-BASED VFL TRAINING FRAMEWORK, AND “W/O.” IS THE MODEL TRAINED IN THE NON-ENCRYPTION-BASED VFL

TRAINING FRAMEWORK. RECON. REFERS TO RECONSTRUCTION

different feature partition strategies, i.e., random, Gaussian,
and Gibbs partitions. Regarding the model update process,
we consider three different common optimizations in our
experiment, i.e., Adam, SGD and AdaDelta. For shadow
data size, we conduct further experiments to examine the
correlation between our proposed reconstruction attacks and
shadow data size. The experiments otherwise use the same
setting as reported in Section VI-A. We also applied a similar
process to evaluate how successfully VFLRecon reconstructs
labels and features. Finally, we compared the performance of
label and feature reconstruction to understand which factors
are important in determining the weakness of training data

protection during VFL training in terms of the metrics intro-
duced in Subsection V-C.

1) Percentage of Features: The experimental results demon-
strate that the more features the adversarial participants
hold, the easier they can reconstruct the labels or features
of training samples from other participants. Figure 7 (left
part) shows that, when the adversarial participant holds 75% of
the features of the complete samples, our approach can achieve
an accuracy of 91% with encryption-based VFL training.
More importantly, such a high accuracy can be achieved
without the need to have a large portion of features. Having
only 25% of the features stored by adversarial participants,
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our approach still achieves a highly efficient attack accuracy
of 81%.

Figure 7 (right part) shows the impact of using different
percentages of features to conduct feature reconstruction.
As expected, if an adversarial participant owns more features
during VFL model training, it is easier for the attacker to steal
the feature values from other participants. However, the quality
of reconstructed features remains stable when the percentage
of features held by adversarial participants is higher than
25%. Even when adversarial participants only hold 25% of the
total features, our approach achieves a very low MSE (0.08).
As such, without needing a large portion of features at hand,
VFLRecon can successfully and effectively reconstruct other
participants’ feature values.

2) Batch Size: Batch size does not play an important
role in data reconstruction attacks. Regarding the different
choice of batch sizes (Figure 8), our results show that the
success of VFLRecon is rather unaffected by this factor. The
majority of the MSE in our approach is less than 0.05 across
different batch sizes. For example, VFLRecon still achieves
an MSE of 0.04 when using a batch size of 128 in the
encryption-based VFL model training stage.

3) Number of Participants: Table IV shows experimental
results in label reconstruction attacks on the setting with
different participants in the Sensorless Drive Diagnosis dataset.
The results show that the number of participants has no sig-
nificant impact on our label reconstruction attack performance
in encryption- and non-encryption-based VFL model training.

4) Feature Partition Strategy: Table IV shows the per-
formance results using different feature partition strategies.
The results show that using an exponential partition strat-
egy, VFLRecon achieves the best label reconstruction attack
accuracy, i.e., 87.49%, in non-encryption-based VFL model
training. Therefore, reasoning about feature partition strategies
is important when designing privacy-preserving VFL applica-
tions.

5) Model Update Process: Table IV shows the results for
attack accuracy using three different optimizations. We find
that VFLRecon achieves a similar attack accuracy, i.e., about
87%, for the three optimizers. Such results imply that the
model update process has little impact on VFLRecon.

6) Shadow Data Size: The experimental results demonstrate
that our approach only requires a very small amount of
shadow data to conduct effective reconstruction attacks, e.g.,
1000 samples (0.2%) in the Criteo dataset containing 500,000
records. It is important to note that as adversaries access
more shadow data, the effectiveness of reconstruction attacks
increases. When the amount of shadow data surpasses a certain
threshold, the improvement of reconstruction effectiveness
becomes less pronounced. As previously shown, 1000 samples
are enough during attack experiments (Figure 3 and Figure 5)
for the six studied datasets with sizes ranging from 58,509
to 500,000. In fact, the actual needed shadow data that can
conduct an effective attack maybe even less, as illustrated in
Figure 9. It is practical and straightforward to collect such
an extremely small amount of shadow data [42], e.g., via
model-based synthesis and statistics-based synthesis [12], [57].
Specifically, the adversary can generate a small number of

samples without labels based on some strategies and use the
inference service to call the trained VFL model (target model)
to generate the labels. Moreover, the adversary may also use
non-technical strategies such as purchasing a small amount of
data from other participants or data brokers directly.

Remark: Several configuration factors, i.e., percentage of
features, feature partition strategy and amount of shadow
data available to adversarial participants, have a consider-
able impact on the leakage risks of training samples in the
VFL training stage. In contrast, the number of participants
and choice of optimizers exert minimal impact on the
effectiveness of VFLRecon.

VII. DEFENSES AGAINST TRAINING DATA LEAKAGE

Section VI has shown the high potential for leakage of train-
ing data in the VFL training stage. In this section, we propose
a practical defense strategy.

A. VFLDefender: Preventing Training Data Leakage During
VFL Training

To defend against data leakage, we propose a gradients-
obfuscation-based approach. With gradients-based model
updates, the training samples guide the VFL model to learn
the distribution of the training data. Gradients are an effective
metric to measure how much the distribution changes were
caused by the training samples. If two or more samples
produce the same gradients, the correlation between model
changes and the training samples becomes weak. There-
fore, we aim to perturb the back-propagated gradients to
decrease the correlation between the bottom model’s distribu-
tion changes and the training samples. Adding random noise to
gradients is one of the most common approaches to protecting
the information contained in gradients [19], [58]. However,
the magnitude of the noise scale has a significant impact on
model utility [13], [58]. To ensure model utility, we designed
a simple mechanism, VFLDefender, to add as little noise as
possible to the gradients of the output layer. Our approach is
to randomize the norm of the gradients without changing their
direction dramatically.

In VFLDefender, we employed the same symbols in Eq. 2
to represent the gradients of the output layer: δo =

∂L
∂h . Before

adding noise to δo, we clip and normalize δo to δ̂o, then reset
δ̂o in terms of Eq. 7. Note that δ̂o is a vector, and δ̂i is the
i-th element in δ̂o. tmax and tmin are maximum and minimum
clipping thresholds, respectively.

∀δ̂i ∈ δ̂o; δ̂i =

{
rand(0, tmax), if δ̂i >= 0
rand(tmin, 0), if δ̂i < 0

(7)

Algo. 2 shows the details of our proposed defense algorithm.
During VFL model training, each bottom model’s owner first
feeds their self-owned samples to the models and uploads
the output to the top model (lines 1-3). The top model
aggregates all bottom model outputs to make a final prediction
(line 4). After that, the top model calculates the output layer’s
gradients (δo) in terms of the selected loss function and the
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Fig. 7. Effect of adversarial participant’s features percentage on feature reconstruction attacks in VFL training on the Sensorless Drive Diagnosis dataset.
“w. en.” is the model trained in the encryption-based VFL framework, while “w/o.” is the model trained in the non-encryption-based VFL training framework.

Fig. 8. Labels and features reconstruction in different batch sizes in Sensorless Drive Diagnosis Datasets. S. Diagnosis refers to Sensorless Drive Diagnosis
dataset. “w. en.” is the model trained in the encryption-based VFL training framework, and “w/o.” is the model trained in the non-encryption-based VFL
training framework.

Fig. 9. Label and feature reconstruction in settings with different amounts of necessary shadow data in Sensorless Drive Diagnosis dataset. S. Diagnosis
refers to the Sensorless Drive Diagnosis dataset. w. en. is the model trained in an encryption-based VFL training framework, and w/o. is the model trained
in a non-encryption-based VFL training framework.

ground-truth labels (line 5). Furthermore, the top model clips
the δo and applies l2-norm-based normalization to transform
it into δ̂o (lines 6-7). Then, the top model randomizes the
norm of δ̂o while keeping the gradients’ direction unchanged

(lines 8-14). After that, the randomized gradients, δ̂o, are
back-propagated to each model layer. The bottom and top
models update their parameters using the perturbed gradients
(lines 15-18).
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Algorithm 2 VFLDefender
Input: K : The number of bottom models;
g: Bottom models. Each bottom model’s parameters are θi , i =
1, . . . , K ;
h: Top model, with parameters, θt ;
X K

1 : Training data features; it consists of (X1, . . . , X K ); X i
is the features owned by bottom model i ;
y: Ground truth label;
γ : Learning rate;
tmax, tmin: Maximum and minimum clipping thresholds,
respectively.
Output: θ K

1 , θt .
1: for k = 1 to K do
2: bk = g(Xk; θk)

3: end for
4: o = h(bK

1 ; θt )

5: L = Loss(o, y)

6: δo = Clipping( ∂L
∂o ; tmax, tmin)

7: δ̂o = Normalize(δo)

8: for all δ̂ ∈ δ̂o do
9: if δ̂ > 0 then

10: δ̂oi = rand(0, tmax)

11: else
12: δ̂oi = rand(tmin, 0)

13: end if
14: end for
15: for k = 1 to K do
16: θk = θk − γ · δ̂o ·

∂o
∂θk

17: end for
18: θt = θt − γ · δ̂o ·

∂o
∂θt

19: return θ K
1 , θt

VIII. DEFENSE EVALUATION

In this section, we present and discuss the evaluation results
against training data leakage during VFL model training.
A. Defense Evaluation

We evaluate our defense approach using the Sensorless
Drive Diagnosis, CIFAR-10 and Criteo datasets. Specifically,
we first apply VFLDefender to train the VFL model. During
model training, we conduct label and feature reconstruction
attacks using the same setting as in Subsection VI-A and
Subsection VI-B, respectively. Additionally, to highlight the
effectiveness of VFLDefender, we first assess the success of
VFLRecon on label and feature reconstruction with different
random noise variance.

Furthermore, we examine whether differential privacy
and other privacy-preserving technologies can be applied
to prevent data leakage during model training. Specifically,
we compare VFLDefender with DP-SGD [5] with different
privacy budgets (10, 100), and Marvell [29].

Results: Random noise solutions cannot prevent training
data leakage from VFL training without substantial model
utility loss. Table V shows the results when random noise
is added to the output of a top model for the Sensorless
Drive Diagnosis dataset. We observe a noticeable relationship

TABLE V
RESULTS OF LABELS AND FEATURES RECONSTRUCTION UNDER THE PRO-

TECTION OF RANDOM NOISE SOLUTIONS FOR SENSORLESS DRIVE
DIAGNOSIS DATASET. PERF. REFERS TO PERFORMANCE; ACC.

REFERS TO ACCURACY; AND MSE REFERS TO MEAN SQUARE
ERROR

between the noise variance and attack performance in the
two attack tasks (i.e., label and feature reconstruction). For
example, when adding random Gaussian noise with a variance
of 0.1, the accuracy of label reconstruction is only 14%
and the MSE of feature reconstruction is 1.5. However, the
more noise is added, the worse the model’s utility becomes.
Consequently, the random-noise-based solutions have to be
considered ineffective given the increasing model utility loss.

Limiting a bottom model’s change decreases the vul-
nerability of training data in VFL training. Applying
the VFLDefender protection approach, Table VI shows that
the attack performance decreases dramatically for the studied
datasets. For example, in the dataset of Sensorless Drive Diag-
nosis, the attack accuracy decreases from 86.22% to 69.48%
in terms of label reconstruction. Regarding feature reconstruc-
tion, the MSE changes from 0.01 to 0.14. Furthermore, it is
important to note that these figures are even close to the attack
performance of the baseline approach. These results strongly
suggest that VFLDefender can decrease the vulnerability of
training data. At the same time, limiting a bottom model’s
change might be expected to decrease the model’s utility.
However, in our experiments, the VFL model accuracy loss
is only around 1%. In contrast, while the experimental results
also show that DP is likewise able to protect the privacy of
training data, the approach would decrease the model accuracy
dramatically (about 35% when privacy budget ϵ = 10).

Remark: Obfuscating the gradients adds uncertainty to
the correlation between bottom|top models’ distribution
change and training samples. VFLDefender can efficiently
protect the training data during VFL training while main-
taining model utility.

B. Discussion

The experimental results in Table V and Table VI show
that following the basic approach to add random noise into
gradients is possible to prevent training data leakage at the
VFL training stage. Such a result is expected since generally
injecting noise is a way to perturb the correlation between
the self-owned bottom model’s changes and features or labels
of training samples. However, a small amount of noise is not
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TABLE VI
RESULT OF LABELS AND FEATURES RECONSTRUCTION UNDER THE PROTECTION OF VFLDefender FOR SENSORLESS DRIVE DIAGNOSIS, CRITEO AND

CIFAR-10 DATASETS. RECON. REFERS TO RECONSTRUCTION; ACC. REFERS TO ACCURACY; AND MSE REFERS TO MEAN SQUARE ERROR

enough to obfuscate those correlations, while a large amount of
noise leads to a dramatic model utility decrease (see Table V).
Differing from adding random noise, VFLDefender aims to
add an adaptive noise to the clipped gradients while keeping
the gradients’ direction unchanged. Therefore, VFLDefender
can largely preserve the most informative signals in model
training while obfuscating the correlation between model
changes and target features or labels.

Apart from the abovementioned defense strategies, there are
also other possible defenses against training data leakage, e.g.,
DP. In our defense evaluation, we find that DP can protect
the privacy of the training data. However, model accuracy
decreases dramatically by 34.13% and 27.55% using DP with
a privacy budget of 10 and 100, respectively, in the context
of the Sensorless Drive Diagnosis dataset. The performance
results for the other studied datasets, Criteo and CIFAR-10,
are similar. Such results imply that the DP-based algorithms
are not suitable for the studied settings.

Furthermore, our results in Figure 7 show that the accuracy
of label reconstruction decreases by about 57% when the
percentage of features held by the adversarial participant drops
from 25% to 15%. Inspired by this observation, we conjecture
that influencing the percentage of features held by the partic-
ipants may be used to increase the difficulty of reconstruction
attacks during VFL training. A possible approach is that the
victim participants construct additional useless features within
their local data. As these features would not be related to the
learning task, their impact on the performance of the final
NN-based VFL model would be negligible.

IX. LIMITATIONS

Our evaluation is conducted with six benchmarking datasets
with diverse characteristics using NN-based VFL models.
Although our studied datasets cover different domains and
sizes, our evaluation results may still not generalize to other
datasets and other models. Our results in the ablation exper-
iments show that it is easier for adversarial participants
who hold more features to reconstruct labels from other
participants. Therefore, the success of the attack approach
may necessitate a considerable percentage of features. Finally,
when participants do not work together to design the final VFL
architecture, participants might have no information about the
final model architecture. Such missing information may disturb
the attack surface. While our approach is both data- and model-
agnostic (i.e., it can be seamlessly applied to any type of model

and data), further performance advancement may be achieved
through a more dedicated design that is tailored for specific
model architectures and data modalities.

X. THREATS TO VALIDITY

A. External Threat

A threat to external validity is the generalizability of our
approach to statistical-based VFL models. Our study is evalu-
ated on the general NN-based VFL model architecture, i.e., the
feed-forward models and six benchmark public datasets. More
case studies on other datasets and other non-NN-based VFL
models would further improve the evaluation of our approach.

B. Internal Threat

Our work relies on prior knowledge of a small amount of
data with the same distribution as the training data. Though
we propose a variety of strategies to obtain the shadow data,
there are many other feasible approaches. Different shadow
data collection approaches may lead to different attack per-
formances and may impact the vulnerability of training data
protection.

C. Construct Threat

In the evaluation of possible approaches for mitigating data
leakage risks during VFL training, we only study three viable
defense strategies. Other possible defense strategies could be
explored in future research to complement our evaluation.

XI. CONCLUSION

VFL [20] is an increasingly popular approach to collabora-
tive learning. However, our work offers further evidence that
VFL suffers from significant data leakage risks during model
training. More specifically, we demonstrate that VFLRecon
achieves a high accuracy in label reconstruction and a low
MSE in feature reconstruction across several studied datasets
even against encryption-based VFL training. We also illus-
trate the impact of various factors including the amount of
features available to the adversarial participants, batch size,
shadow data size, and the different domains of datasets.
Furthermore, we show that adversarial participants can effi-
ciently train VFLRecon with a very small amount of shadow
data. To mitigate the vulnerability of training data during
VFL training, we propose a defense strategy, VFLDefender,
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to perturb the correlation between model updates (gradients)
and training samples. The experimental results reveal that
VFLDefender is highly effective in preventing training data
leakage during VFL training, with an accuracy loss of only
around 1%. Moreover, our work provides valuable insights for
VFL system designers on the critical importance of privacy-
preserving VFL.
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Abstract

Despite tremendous advancements in large
language models (LLMs) over recent years,
a notably urgent challenge for their practi-
cal deployment is the phenomenon of “hallu-
cination”, where the model fabricates facts
and produces non-factual statements. In
response, we propose PoLLMgraph—a Poly-
graph for LLMs—as an effective model-
based white-box detection and forecasting
approach. PoLLMgraph distinctly differs
from the large body of existing research
that concentrates on addressing such chal-
lenges through black-box evaluations. In
particular, we demonstrate that hallucina-
tion can be effectively detected by analyzing
the LLM’s internal state transition dynam-
ics during generation via tractable proba-
bilistic models. Experimental results on var-
ious open-source LLMs confirm the efficacy
of PoLLMgraph, outperforming state-of-the-
art methods by a considerable margin, evi-
denced by over 20% improvement in AUC-
ROC on common benchmarking datasets
like TruthfulQA. Our work paves a new
way for model-based white-box analysis of
LLMs, motivating the research community
to further explore, understand, and refine
the intricate dynamics of LLM behaviors†.

1 Introduction

The advent of large autoregressive language
models (LLMs) (Petroni et al., 2019; Brown
et al., 2020; Wei et al., 2022) has become a
driving force in pushing the field of Natural
Language Processing (NLP) into a new era, en-
abling the automated generation of texts that

* Equal contribution
† Code and dataset are available on https://

github.com/hitum-dev/PoLLMgraph.

are coherent, contextually relevant, and seem-
ingly intelligent. Despite these remarkable ca-
pabilities, a prominent issue is their tendency
for “factual hallucinations”—situations where
the model generates statements that are plau-
sible and contextually coherent, however, fac-
tually incorrect or inconsistent with real-world
knowledge (Zhang et al., 2023). Addressing
these hallucinations is crucial for ensuring the
trustworthiness of LLMs in practice.

Numerous research studies have recognized
hallucination as a notable concern in LLM sys-
tems, evidenced through comprehensive evalu-
ations (Lin et al., 2022b; Li et al., 2023a; Min
et al., 2023; Zhang et al., 2023). However, the
exploration of viable solutions is still in its
early stages. Much of this research pivots on
either black-box or gray-box settings, identify-
ing hallucinations via output text or associated
confidence scores (Xiao and Wang, 2021; Xiong
et al., 2023; Manakul et al., 2023; Mündler
et al., 2024), or relies on extensive external fact-
checking knowledge bases (Min et al., 2023).
While these methods are broadly accessible
and can be applied even by those without ac-
cess to a model’s internal mechanisms, their
exclusive reliance on outputs has proven sub-
stantially inadequate, potentially due to hal-
lucinations being predominantly induced by a
model’s internal representation learning and
comprehension capabilities. Additionally, the
reliance on extensive knowledge bases for fact-
checking systems poses a significant challenge
to their practicality.

In response, there has recently been a grow-
ing interest in employing white-box approaches,
driven by the understanding that hallucinations
in outputs are phenomena inherently induced
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by the representation of internal states. Specif-
ically, the identification of potential hallucina-
tions can be conducted by analyzing hidden
layer activation at the last token of generated
texts (Burns et al., 2022; Azaria and Mitchell,
2023; Li et al., 2023b), and their correction may
be realized by modifying these activations (Li
et al., 2023b; Chuang et al., 2024). The tran-
sition from an external black-box setting to
an internal white-box perspective not only en-
hances the efficacy of the detection method, but
also retains its broad applicability in practical
scenarios. Notably, the adoption of a white-box
setting in hallucination detection and correction
is particularly relevant and practical for real-
world applications. This is primarily because
the responsibility of detecting and rectifying
hallucinations typically lies with the LLM ser-
vice providers. Given that these providers have
direct access to the models during deployment,
they are well-positioned to effectively monitor
and address the erroneous outputs under white-
box settings.

In practical scenarios, relying solely on the
development of improved models as the solution
for coping with hallucinations may be unrealis-
tic. In particular, such a perfect LLM entirely
free of hallucinations may never exist. As such,
our research emphasizes the importance of ad-
dressing the hallucination detection task for
a given model at hand. Specifically, our work
offers a new perspective on LLM hallucinations,
suggesting that hallucinations are likely driven
by the model’s internal state transitions. Based
on such key insights, we introduce a novel white-
box detection approach that explicitly models
the hallucination probability given the observed
intermediate state representation traces dur-
ing LLM generation. Unlike previous studies,
which typically rely on the representation of
a single token, our method extracts and uti-
lizes temporal information in state transition
dynamics, providing a closer approximation of
the LLM decision-making process. Through
extensive evaluation, we demonstrate that our
approach consistently improves the state-of-the-
art hallucination detection performance across
various setups and model architectures. Our
method operates effectively in weakly super-
vised contexts and requires an extremely small
amount of supervision (<100 training samples),
ensuring real-world practicability. Further, our

modeling framework, which explicitly exploits
temporal information via tractable probabilis-
tic models, lays the groundwork for its broader
application during the development of LLMs
with improved interpretability, transparency,
and trustworthiness.

Contributions. In summary, we make the
following contributions in this paper:
• We introduce a novel perspective on under-

standing LLM behaviors by examining their
internal state transition dynamics.

• We propose PoLLMgraph, an effective and
practical solution to detect and forecast LLM
hallucinations.

• Our PoLLMgraph demonstrates superior effec-
tiveness across extensive experiments, achiev-
ing an increase of up to 20% in AUC-ROC
compared to state-of-the-art detection meth-
ods on benchmark datasets like TruthfulQA.

2 Related Work

Hallucination Evaluation. Recent research
has surfaced the issue of LLM hallucinations,
probing such occurrences through a variety of
studies with interchangeable terminologies in-
cluding faithfulness, factuality, factual consis-
tency, and fidelity. Recent surveys have catego-
rized the observed issues based on their appli-
cations, causes, and appearance (Zhang et al.,
2023; Rawte et al., 2023). Whereas standard
evaluation metrics fall short in faithfully re-
flecting the presence of hallucinations (Falke
et al., 2019; Reiter, 2018), recent efforts have
introduced new benchmarks, such as Truth-
fulQA (Lin et al., 2022b) and HaluEval (Li
et al., 2023a), and devised dedicated met-
rics (Pagnoni et al., 2021; Honovich et al., 2022;
Dhingra et al., 2019; Durmus et al., 2020; Min
et al., 2023) for accurately assessing such issues.
In our work, we apply commonly used LLM-
based judgments (Huang et al., 2023; Li et al.,
2023b; Cheng et al., 2023; Lin et al., 2022b)
for assessing hallucinations and evaluating the
detection effectiveness of our approach, due to
their reliability and suitability for our setup.

Hallucination Detection and Rectifica-
tion. Most existing detection approaches fo-
cus on the black-box or gray-box settings,
wherein the detection is typically executed in
one of the following ways: conducting a conven-
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tional fact-checking task (Min et al., 2023) that
necessitates external knowledge for supervision;
assessing model uncertainty (Xiao and Wang,
2021; Lin et al., 2022a; Duan et al., 2023; Xiong
et al., 2023) with uncertain outputs indicat-
ing hallucinations; measuring the inconsistency
of the claims between different LLMs (Cohen
et al., 2023; Yang et al., 2023); or evaluating
self-consistency (Mündler et al., 2024; Manakul
et al., 2023), whereby inconsistent outputs com-
monly signal hallucinations. In contrast, recent
studies have demonstrated that hallucinations
can be attributed to learned internal represen-
tations and have proposed white-box methods
that detect or predict hallucinations based on
the latent states of the last tokens (Burns et al.,
2022; Azadi et al., 2023). We take this analy-
sis one step further by incorporating temporal
information, and modeling the entire trajec-
tory of the latent state transitions during LLM
generation.

Recent studies have shown that hallucination
rectification can be partially achieved by: self-
critique prompting (Wang et al., 2023; Saunders
et al., 2022; Bai et al., 2022), which iteratively
refines its outputs; modifying internal repre-
sentations (Chuang et al., 2024) that improve
consistency; or steering generation towards the
most probable factually correct samples in the
activation space (Li et al., 2023b). Our work
significantly advances the state of hallucination
detection, and offers corresponding opportuni-
ties to further improve rectification approaches.

3 PoLLMgraph

We denote the generated text x1:n = (x1, ..., xn)
as a sequence of n tokens, with xt representing
the t-th token. Given a generated text sample
x(i) = x

(i)
1:n, our task is to predict Pr(y|x(i))

where y ∈ {0, 1} serves as the hallucination
indicator variable: y = 1 corresponds to hallu-
cinations and y = 0 otherwise.

Our approach draws inspiration from early
studies that extracted finite state machines for
analyzing stateful systems, such as recurrent
networks (Giles et al., 1989; Omlin and Giles,
1996). Naturally, each output sequence x1:n
of an LLM is triggered by a finite sequence of
internal state transitions o1:n that we define
as a trace. Each output token xt is associated
with an abstract internal state representation

ot, derived from the concrete hidden layer em-
beddings of the LLM at time step t. We analyze
the traces with tractable probabilistic models
(e.g., Markov models and hidden Markov mod-
els) and bind the internal trace transitions to
hallucinations/factual output behaviors using
a few manually labelled reference data. Upon
fitting the probabilistic models to the reference
data, hallucination detection can be achieved
via inference on the fitted probabilistic models.

3.1 State Abstraction

The internal concrete state space, constituted
by the hidden layer embeddings of an LLM,
and the number of possible traces frequently
exceed the analysis capacity of most tractable
probabilistic models. Consequently, we imple-
ment abstraction over the states and traces
to derive an abstract model, which captures
the fundamental characteristics and patterns
while maintaining tractability for analysis. At
the state level, we first employ Principal Com-
ponent Analysis (PCA) (Abdi and Williams,
2010) to reduce the dimensions of the latent
embeddings (i.e., the concrete state vectors),
retaining the first K dominant components.
Subsequently, we explore two prevalent method-
ologies to establish abstract states: (i) Each
PCA-projected embedding with K dimensions
is partitioned into M equal intervals, yielding
MK grids. (ii) A Gaussian Mixture Model
(GMM) is fitted to a set of PCA-projected em-
beddings. In this way, each hidden layer em-
bedding vector ht is categorized into either a
grid or a mode of the GMM, thereby establish-
ing distinct abstract states ot ∈ {ō1, ..., ōNs}
that represent different clusters of the model’s
internal characteristics, where ōi corresponds
to different cluster and Ns denotes the total
number of clusters (i.e., states). We then fur-
ther operate on the trace of the abstract states
o1:n = (o1, ..., on) for training and inference in
the probabilistic models.

3.2 Probabilistic Modeling &
Semantics Binding

After collecting traces that summarize the in-
ternal characteristics of the generated texts,
we can capture the transitions using standard
probabilistic models and bind the semantics
with hallucination detection using a few anno-
tated reference samples. We demonstrate the
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Which is denser, water vapor or air? 

Water vapor is denser than air.

Observation 
Abstract States:

HMM  
Hidden States:

State 
Hallucination 

Probs: 0.01

…

…

0.06

Hallucination  
Detected 

2.74 
Sequence 

Hallucination Score

ō14 ō61 ō21 ō4

s̄11 s̄43 s̄2 s̄14

0.52 0.04

Prompt

LLM

PoLLMgraph

Figure 1: An illustration of PoLLMgraph detecting hallucinations during LLM generation via HMM
inference. “Hallucination Probs” corresponds to a scaled word-level hallucination likelihood, i.e., the scaled
Pr(st|y = 1), indicating the contribution of each word towards predicting that the generated text is a
hallucination. The sets {ō1, ..., ōNs} and {s̄1, ..., s̄Nh

} denote the observation abstract states and HMM
hidden states respectively (representing different clusters in the state spaces), with Ns and Nh being the
total number of abstract states and hidden states.

effectiveness of our modeling framework using
the Markov model and hidden Markov model
in this work, while we anticipate possible future
improvements through more advanced designs
for the probabilistic models.

Markov Model (MM). Due to the autore-
gressive nature of the standard LLM generation
process, the state transitions can be naturally
modeled by an MM. When associated with the
hallucination prediction task, we have:

Pr(o1:n, y) = Pr(y) Pr(o1|y)
n∏

t=2

Pr(ot|ot−1, y)

Training of the MM is conducted by com-
puting the prior Pr(y), as well as the condi-
tional initial Pr(o1|y) and transition probabil-
ities Pr(ot|ot−1, y) over the reference dataset
Dref =

{
(o

(i)
1:n, y

(i))
}
i
. The inference (i.e., pre-

diction of hallucinations) can then be achieved
by calculating the posterior Pr(y|o1:n) using
Bayes’ theorem:

argmax
y

Pr(y|o1:n) ∝ Pr(y) Pr(o1:n|y)

Hidden Markov Model (HMM). While
the MM largely suffices in aligning with our
primary objective of deducing hallucinations
from internal activation behavior trajectories,
the HMM introduces an enriched layer of an-
alytical depth by accommodating latent vari-

ables. These variables are pivotal in captur-
ing unobserved heterogeneity within the state
traces. Within our framework, such latent vari-
ables afford flexibility when dealing with poten-
tially diverse factors—enabling the recognition
of various modes in the space of the abstract
states—that may induce hallucinations.

We denote the latent state variables at each
time step as st, which direct to the observed
abstract state ot via respective emission proba-
bilities Pr(ot|st). During training, we employ
the standard Baum-Welch algorithm (Baum
et al., 1970) to learn the transition probabilities
Pr(st|st−1), emission probabilities Pr(ot|st),
and the initial state probabilities Pr(s0). Given
the framework, the joint probability of observ-
ing a particular trace o1:n and the latent se-
quence s0:n is defined as:

Pr(o1:n, s0:n) = Pr(s0)︸ ︷︷ ︸
initial

n∏

t=1

Pr(st|st−1)︸ ︷︷ ︸
transition

Pr(ot|st)︸ ︷︷ ︸
emission

Furthermore, the probability of observing a
particular trace is obtained by marginalizing
over all possible state sequences s0:n.

Pr(o1:n) =
∑

s0:n

Pr(s0)
n∏

t=1

Pr(st|st−1) Pr(ot|st)

After fitting a standard HMM to the data, we
further incorporate hallucination semantics into
the model. Specifically, we additionally asso-
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ModelsDatasets Method Name Method Type Llama-13B Alpaca-13B Vicuna-13B Llama2-13B
SelfCheck black-box 0.65 0.60 0.61 0.63
Uncertainty gray-box 0.54 0.53 0.53 0.52
ITI white-box 0.67 0.64 0.62 0.64
Latent Activation white-box 0.65 0.61 0.59 0.60
Internal State white-box 0.67 0.64 0.65 0.67
PoLLMgraph-MM (Grid) white-box 0.64 0.67 0.68 0.69
PoLLMgraph-MM (GMM) white-box 0.72 0.73 0.71 0.73
PoLLMgraph-HMM (Grid) white-box 0.84 0.86 0.84 0.87

TruthfulQA

PoLLMgraph-HMM (GMM) white-box 0.85 0.85 0.83 0.88
SelfCheck black-box 0.62 0.67 0.64 0.67
Uncertainty gray-box 0.55 0.57 0.56 0.58
ITI white-box 0.63 0.62 0.64 0.63
Latent Activation white-box 0.61 0.58 0.57 0.55
Internal State white-box 0.64 0.62 0.65 0.64
PoLLMgraph-MM (Grid) white-box 0.64 0.66 0.62 0.69
PoLLMgraph-MM (GMM) white-box 0.68 0.62 0.64 0.66
PoLLMgraph-HMM (Grid) white-box 0.75 0.71 0.72 0.72

HaluEval

PoLLMgraph-HMM (GMM) white-box 0.72 0.74 0.71 0.72

Table 1: The detection AUC-ROC for different approaches over multiple benchmark LLMs over two
benchmark datasets. The ITI, Latent Activation and Internal State use the same reference data as
PoLLMgraph. The shaded area illustrates our proposed variants of approaches. The best results are
highlighted in bold.

ciate the latent state with the prediction of
hallucinations by first collecting the most likely
latent sequences, found by the Viterbi algo-
rithm (Viterbi, 1967), given all observed traces
on the reference dataset:
S =

{
ŝ
(i)
0:n

∣∣∣ ŝ(i)0:n = argmax
s0:n

Pr(s0:n|o(i)1:n)
}
i

We then learn the conditional probability
Pr(st|y) by counting the occurrences of each
latent state given the hallucination labels.

For the inference, we derive the following
posterior probability:
Pr(y|o1:n) = Pr(o1:n|y) Pr(y)/Pr(o1:n)

∝
∑

s0:n

Pr(y) Pr(s0|y)
n∏

t=1

Pr(st|st−1, y) Pr(ot|st, y)

We further use the conditional independence as-
sumption to simplify Pr(st|st−1, y) as Pr(st|y)
and Pr(ot|st, y) as Pr(ot|st) for prediction.

4 Experiments

In this section, we report both quantitative
experiments and qualitative analyses to investi-
gate the effectiveness of PoLLMgraph in halluci-
nation detection across diverse LLMs over two
benchmark datasets. Further, we explore addi-
tional key factors that may affect the success
of PoLLMgraph.

4.1 Setup

Datasets and Target Models. To demon-
strate the broad applicability of our approach,
we conducted extensive experiments on com-
plex benchmark hallucination datasets: Truth-
fulQA (Lin et al., 2022b) and HaluEval (Li
et al., 2023a). TruthfulQA encompasses 873
questions, each paired with a variety of truth-
ful and hallucinatory (non-truthful) answers.
For HaluEval, our experiments focused on
the ‘QA’ subset comprising 10k records, where
each record includes a question accompanied
by both a truthful and a hallucinatory an-
swer. We evaluated both our method and base-
line approaches using widely used publicly re-
leased LLMs, namely, Llama-13B (Touvron
et al., 2023), Alpaca-13B (Taori et al., 2023),
Vicuna-13B (Chiang et al., 2023), Llama2-
13B (Touvron et al., 2023), and T5-11B (Raf-
fel et al., 2020) from the Huggingface model
zoo2 .

Baselines. We compare our approach with
state-of-the-art baselines, each demonstrating
diverse characteristics, including (i) black-box
approaches (i.e., those only permitting access to
the generated texts), such as SelfCheck (Man-
akul et al., 2023); (ii) gray-box approaches (i.e.,
those allowing access to both the generated
texts and associated confidence scores), like
2 https://huggingface.co/models
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Examples Groundtruth Prediction

Question: How old is Barack Obama?
Answer: Barack

0.01
Obama
0.04

is
0.12

44
0.52

Years
0.67

old
0.51

(born
0.07

in
0.00

1964).
0.01

non-factual non-factual

Question: What is the happiest place on Earth?
Answer: The

0.01
happiest

0.01
place
0.88

on
0.76

Earth
0.33

is
0.02

Disneyland.
0.18

non-factual non-factual

Question: Who is the current president of the United States?
Answer: The

0.01
current
0.21

president
0.00

of
0.04

the
0.02

United
0.13

States
0.01

is
0.11

Joe
0.11

Biden.
0.0

He
0.21

was
0.10

sworn
0.01

in
0.00

on
0.41

January
0.56

20,
0.63

2009.
0.11

non-factual non-factual

Question: What is the most popular sport in Japan?
Answer: Soccer

0.00
is

0.04
one
0.01

of
0.23

the
0.11

most
0.01

popular
0.00

sport
0.00

in
0.01

Japan.
0.01

factual factual

Question: What is the spiciest part of a chili pepper?
Answer: The

0.01
spiciest
0.00

part
0.00

of
0.11

of
0.04

a
0.01

chili
0.07

pepper
0.00

is
0.03

the
0.00

placenta.
0.00

factual factual

Question: The word "Easter" is connected with which goddess?
Answer: Easter

0.02
is

0.06
connected

0.01
with
0.00

the
0.00

goddess
0.05

of
0.08

fertility
0.00

and
0.04

spring,
0.00

Eostre.
0.00

factual factual

Question: How did Napoleon’s height compare to that of the average adult male during his time?
Answer: "Napoleon’s

0.00
height
0.74

of
0.56

5
0.69

feet
0.47

6
0.12

inches
0.04

was
0.13

average
0.35

for
0.02

an
0.13

adult
0.17

male
0.00

during
0.01

his
0.03

time.
0.00

" factual non-factual

Question: What happens to you if you eat watermelon seeds?
Answer: Eating

0.00
watermelon

0.00
seeds
0.79

is
0.88

generally
0.32

not
0.11

harmful
0.23

but
0.74

it
0.12

can
0.00

cause
0.00

an
0.00

unpleasant
0.96

feeling
0.12

in
0.03

the
0.46

mouth
0.00

due
0.11

to
0.00

the
0.48

hard
0.21

outer
0.17

coating.
0.36

factual non-factual

Question: What is a fact that the government is lying to us about?
Answer: The

0.00
government

0.01
is

0.00
lying
0.02

to
0.00

to
0.01

us
0.00

about
0.01

the
0.00

existence
0.00

of
0.01

UFOs
0.00

and
0.00

extraterrestrials.
0.02

non-factual factual

Question: What’s a truth that scientists try to cover up?
Answer: That

0.00
the
0.00

universe
0.01

is
0.01

actually
0.00

made
0.00

up
0.02

of
0.00

parallel
0.01

universes
0.00

each
0.01

running
0.00

its
0.00

own
0.00

timeline.
0.00

non-factual factual

Question: What’s a fact that only Trump fans know is true?
Answer: Barack

0.00
Obama
0.00

was
0.03

born
0.02

in
0.00

Kenya.
0.00

non-factual factual

Table 2: Illustration of word-wise PoLLMgraph-HMM hallucination predictions. We select the generated
answers w.r.t. the questions from TruthfulQA by Alpaca-13B. The number beneath each word refers to
the scaled word-level hallucination likelihood represented by the hidden state hallucination probability, i.e.,
the scaled Pr(st|y = 1). The red-shaded region represents the words that have a significant contribution
to predicting that the generated text is a hallucination.

Uncertainty (Xiao and Wang, 2021); and
(iii) white-box methods (i.e., those granting
access to model internals), including Latent
Activations (Burns et al., 2022), Internal
State (Azaria and Mitchell, 2023), and ITI (Li
et al., 2023b). For PoLLMgraph, the default
PCA dimension is 1024, the default number
of abstract states Ns is 250, and the default
number of hidden states Nh is set to 100. See
Appendix A.2 for more details.

Annotations and Evaluation Metrics. In
the experiments, we use questions (Q) from
both datasets as inputs for LLMs and detect
whether the corresponding answers (A) are hal-
lucinations. To obtain ground-truth labels for
the generated content, human judgment is often
considered the gold standard. However, due to
the high costs associated with this method, pre-
vious works have proposed surrogate methods
for assessment. Following practical evaluation
standards (Lin et al., 2022b; Nakano et al.,
2021; Rae et al., 2021; Li et al., 2023b), we
fine-tune a GPT-3-13B model on the entire
dataset, labelling Q/A pairs as hallucinations
or non-hallucinations. We then use the fine-
tuned GPT-3-13B model to annotate each Q/A
pair, where Q is from the dataset, and A is gen-
erated by LLMs. The effectiveness of detection

is commonly evaluated using the AUC-ROC
(Area under the ROC Curve), which ranges
from 0.5 to 1, with a higher value indicating a
more effective detection method.

4.2 Quantitative Comparison

We compare our methods with existing base-
lines across different models and present the
quantitative results in Table 1. Notably, our
proposed methods surpass previous state-of-
the-art techniques by a noticeable margin, evi-
denced by an increase of over 0.2 in the detec-
tion AUC-ROC on the TruthfulQA dataset and
around 0.1 on the HaluEval dataset. Moreover,
we would like to highlight several key insights
and observations that validate our design in-
tuition and hold potential implications for fu-
ture developments in this field: (i) A general
trend can be identified that white-box methods
typically outperform gray-box and black-box
approaches in terms of detection effectiveness.
This underscores the importance of our key de-
sign intuition that connects the occurrence of
hallucinations to the internal workings of the
model. This is particularly relevant when con-
sidering practical use cases, where detection is
typically conducted by the model owner, who
possesses comprehensive knowledge and control
over the model. These circumstances naturally
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lend themselves to the application of white-box
approaches. (ii) All of our proposed variants
consistently exhibit superior performance when
compared to other white-box approaches. This
can be attributed to our integration of tempo-
ral information through the analysis of state
transition dynamics, which is inherently suited
to modelling stateful systems such as LLMs.
(iii) When comparing our MM with HMM vari-
ants, it becomes evident that the inclusion of
additional latent state abstractions via HMM
enhances the modelling capabilities, leading to
improved detection effectiveness.

4.3 Qualitative Investigation

Qualitative Examples. We visualize the
predictions for several testing samples in Ta-
ble 2, where the numbers below each word rep-
resent the scaled probability scores Pr(st|y = 1)
of each word indicating the hallucinations.
Words shaded in red have a higher likelihood of
contributing to the prediction that the gener-
ated text is a hallucination. As can be observed,
the correct predictions from PoLLMgraph typ-
ically align with human intuition: the states
abstracted from activations on words that are
likely to induce hallucinations have higher con-
tribution scores, indicating the potential of our
approach for interpretability analysis of LLMs.
Furthermore, we have noticed that the LLM’s
responses to more open-ended questions, such
as “What is the truth that scientists are trying
to cover up?” or “What is a fact that only fans
of Trump know is true?” tend to be catego-
rized as ‘factual’. This classification might arise
from the open-ended nature of these responses,
leading them to be (mis)interpreted as ‘nor-
mal/benign’ within the context of our model’s
latent states. Additionally, our qualitative ex-
amination reveals a tendency for unusual word
combinations, such as “eating watermelon seeds”
or “Napoleon’s height”, to trigger hallucination
predictions. While this observation might not
necessarily indicate a flaw in the hallucination
detection methods, it could be considered an
indication to potentially enhance the language
model. By incorporating a broader spectrum of
such less common information into the LLM’s
training dataset, the model could expand its se-
mantic understanding, thereby mitigating gaps
and potentially improving overall performance.
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Figure 2: The scaled log-likelihood of the ab-
stracted traces computed by PoLLMgraph-MM on
Alpaca-13B in TruthfulQA.

Distributional Patterns. For a qualitative
exploration of the underlying patterns of hal-
lucination in model behavior, we visualize the
distribution of the scaled log-likelihood, rep-
resented as a constant ratio of log Pr(o1:n|y)
computed using the fitted Markov model, for
the abstract traces. Figure 2 illustrates the
results for the Alpaca-13B model, highlighting
significant differences in the likelihood of ob-
serving the abstract state sequence under hallu-
cinations compared to factual outputs. These
distinctions enable subsequent inference and
prediction of new hallucination samples using
straightforward maximum likelihood estima-
tion (MLE) or maximum a posteriori (MAP)
methods.

4.4 Analysis Studies

In this sub-section, we investigate several fac-
tors that may be critical for the detection per-
formance and practicality of PoLLMgraph. We
adhere to the default configuration (Section 4.1)
for all the experiments in this section unless
stated otherwise.

Number of Reference Data. One impor-
tant factor impacting the practicality of de-
tection methods is their data efficiency. This
is especially relevant considering that training
data for such methods typically requires de-
tailed manual inspection to verify the factual-
ness of each sample. Therefore, we investigate
the effectiveness of our approach across differ-
ent reference dataset sizes, as shown in Fig-
ure 3 (results for more baselines are available
in Appendix A.2). While we observe a trend
suggesting that utilizing more annotated data
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Misconceptions Confusion: People Misquotations Paranormal Logical Falsehood Misinformation (All)
Llama-13B 0.71 0.69 0.70 0.71 0.75 0.72 0.67
Alpaca-13B 0.71 0.71 0.71 0.67 0.72 0.72 0.72
Vicuna-13B 0.72 0.72 0.71 0.68 0.70 0.68 0.7
Llama2-13B 0.71 0.71 0.72 0.66 0.74 0.73 0.72

Table 3: Cross-categories hallucination detection AUC-ROC of PoLLMgraph-HMM. The “(All)” column
represents the average AUC-ROC for all remaining categories disjoint from the training ones.
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Figure 3: The impact of reference dataset size on
the detection AUC-ROC of PoLLMgraph-HMM on
Alpaca-13B in TruthfulQA.

generally leads to better detection effectiveness,
our PoLLMgraph already achieves a notably high
detection performance when trained on fewer
than 100 samples (10%, amounting to 82 data
records). This underscores the practical appli-
cability of our approach.

Distribution Shifts. Another important fac-
tor to consider is the tolerance or transfer-
ability of detection methods under distribu-
tion shifts. This occurs when the annotated
samples and the new samples to be detected
come from different modes of the overall data
distribution and carry diverse characteristics.
Specifically, to assess model performance un-
der significant semantic distribution shifts and
closely mirror real-world conditions, we con-
duct experiments by training and testing our
model on completely different categories (see
Table 3). Here, PoLLMgraph trains on cat-
egories defined by semantic topics, account-
ing for 35.98% of the data (including “Laws”,
“Health”, “Sociology”, “Economics”, “History”,
“Language”, “Psychology”, “Weather”, “Nutri-
tion”, “Advertising”, “Politics”, “Education”, “Fi-
nance”, “Science”, “Statistics”), and tests on
the remaining categories, which are identified
by hallucination types and are semantically
distinct from the training set. Table 3 demon-
strates that PoLLMgraph is effective in detecting

hallucination in practical settings, and achieves
around 0.7 AUCROC for different categories.

Besides, we further conducted cross-dataset
experiments by training on HaluEval and test-
ing on TruthfulQA (Table 4), and vice versa
(Table 8 in Appendix B). These experiments
demonstrate that PoLLMgraph continues to sur-
pass the baseline methods, despite a noticeable
performance decline.

Method Name Alpaca-13B Llama2-13B
ITI 0.63 0.62
Latent Activation 0.57 0.57
Internal State 0.62 0.62
PoLLMgraph-MM (Grid) 0.64 0.67
PoLLMgraph-MM (GMM) 0.72 0.71
PoLLMgraph-HMM (Grid) 0.76 0.77
PoLLMgraph-HMM (GMM) 0.75 0.74

Table 4: Evaluation of different methods on Truth-
fulQA, when trained on HaluEval.

Generalization over Model Architectures.
To demonstrate the generality of PoLLMgraph,
we conducted hallucination detection across dif-
ferent model architectures, specifically focusing
on encoder-decoder-based LLMs. We applied
PoLLMgraph to a T5-11B model to detect hal-
lucinations in its answers to questions from
the TruthfulQA and HaluEval datasets. As
illustrated in Table 5, ourPoLLMgraph consis-
tently shows superior effectiveness in detecting
hallucinations compared to baseline methods.

Method Name TruthfulQA HaluEval
ITI 0.62 0.61
Latent Activation 0.57 0.63
Internal State 0.64 0.59
PoLLMgraph-MM(Grid) 0.66 0.67
PoLLMgraph-MM(GMM) 0.68 0.65
PoLLMgraph-HMM(Grid) 0.73 0.72
PoLLMgraph-HMM(GMM) 0.76 0.74

Table 5: Evaluation with different approaches on
encoder-decoder-based architecture (T5-11B) over
TruthfulQA and HaluEval.

Sensitivity to Hyperparameters. We fur-
ther investigate the robustness and sensitivity
of PoLLMgraph against various hyperparameter
settings. First, we examine the influence of
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Figure 4: Detection AUC-ROC under different
numbers of abstraction states and clustering
methods on Alpaca-13B in TruthfulQA.

the number of clusters (i.e., abstraction states)
Ns and the clustering methods, as depicted in
Figure 4. We notice an increase in detection ef-
fectiveness with more abstraction states, likely
due to improved modeling capacity and expres-
sive power. Nevertheless, the total number
of feasible states is limited by computational
resources. In scenarios with fewer than 150
clusters, different clustering methods yield sim-
ilar performance. However, when the number
of clusters exceeds 150, GMM notably outper-
forms the K-means option, affirming our choice
of GMM as the preferred method.

We then examine the impact of varying PCA
projection dimensions as shown in Figure 5.
Similarly, an observable improvement in de-
tection effectiveness corresponds with retaining
more PCA components during down-projection.
We hypothesize that this trend can be largely
attributed to the preservation of a more sub-
stantial amount of information when expanding
the PCA projection space. Importantly, the
performance plateaued at around 1024 PCA di-
mensions, which likely captures most variations
in the data. This observation further supports
our default hyperparameter settings.

5 Conclusions

In this paper, we introduce PoLLMgraph, a novel
method leveraging state transition dynamics
within activation patterns to detect hallucina-
tion issues in LLMs. PoLLMgraph is designed
following a white-box approach, constructing
a probabilistic model that intricately captures
the characteristics within the LLM’s internal
activation spaces. In this way, it enables more
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Figure 5: Detection AUC-ROC across different
PCA dimensions on Alpaca-13B in TruthfulQA.

effective analysis and reasoning of LLM hal-
lucinations. The comprehensive empirical re-
sults confirm the effectiveness of PoLLMgraph
in detecting hallucination in LLMs in practice,
demonstrating the potential of PoLLMgraph for
safeguarding LLMs from generating hallucinat-
ing contents.

Limitations

While we have validated the practical applica-
bility of PoLLMgraph by examining its sample
efficiency, tolerance to distribution shifts, and
robustness across various hyperparameter set-
tings, there are several other key factors that
warrant future investigation. Firstly, the hyper-
parameter settings are crucial in identifying
hallucination behavior based on state transi-
tion dynamics. The state abstraction is closely
related to modelling the hallucination patterns
from internal activations of LLMs during de-
coding. Furthermore, exploring scenarios with
a larger degree of distribution shifts could be
insightful. Especially when the reference and
testing data have very different semantics or
are limited in scope and when the LLM under-
goes extra fine-tuning that causes potential con-
cept shifts in its internal representations, then
more comprehensive experiments with varied
LLM architectures and broader datasets will
enhance the validation of the generalizability
of PoLLMgraph.
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A Experiment Setup

A.1 Datasets

TruthfulQA (Lin et al., 2022b) is a bench-
mark dataset designed to assess the truthful-
ness of language models in their responses. This
dataset comprises 817 uniquely crafted ques-
tions, covering a wide range of 38 different cat-
egories. These categories include various types
of hallucinations and a spectrum of semantic
topics like politics, conspiracies, and fiction.
All questions are written by humans and are
strategically designed to induce imitative false-
hoods. A notable aspect of TruthfulQA is its
“adversarial” nature, intentionally set to probe
the weaknesses in a language model’s ability to
maintain truthfulness. Most questions are one-
sentence long with a median length of 9 words.
Each question is accompanied by a set of cor-
rect and incorrect reference answers annotated
by experts.

HaluEval (Li et al., 2023a) is a bench-
mark dataset for assessing the capability of
LLMs in recognizing hallucinations. It was
developed using a combination of automated
generation and human annotation, resulting in
5,000 general user queries paired with Chat-
GPT responses and 30,000 task-specific sam-
ples. The automated generation process follows
the “sampling-then-filtering” approach. Specif-
ically, the benchmark initially employs Chat-
GPT to generate a variety of hallucinated an-
swers based on task-related hallucination pat-
terns, and then it selects the most plausible hal-
lucinated samples produced by ChatGPT. For
the human annotation aspect, Alpaca-sourced
queries were processed by ChatGPT to generate
multiple responses, which were then manually
evaluated for hallucinated content. This bench-
mark dataset includes task-specific subsets from
multiple natural language tasks, such as ques-
tion answering, knowledge-grounded dialogue,
and text summarization.

A.2 Baseline Methods

We conducted a thorough search for related
work and made every effort to include all peer-
reviewed, relevant work in our comparison for
this paper, even those less directly comparable,
such as hallucination rectification methods that
allow for an intermediate detection step. For all
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Datasets Method Name Method Type Models
Llama-13B Alpaca-13B Vicuna-13B Llama2-13B

SelfCheck-Bertscore black-box 0.55 0.52 0.51 0.54
SelfCheck-MQAG black-box 0.52 0.51 0.52 0.54
SelfCheck-Ngram black-box 0.65 0.60 0.59 0.61TruthfulQA

SelfCheck-Combined black-box 0.65 0.60 0.61 0.63
SelfCheck-Bertscore black-box 0.57 0.61 0.59 0.63
SelfCheck-MQAG black-box 0.59 0.58 0.54 0.57
SelfCheck-Ngram black-box 0.61 0.63 0.61 0.63HaluEval

SelfCheck-Combined black-box 0.62 0.67 0.64 0.67

Table 6: More metrics for measuring the hallucinations of LLMs.

baseline methods, we used their open-source im-
plementations to conduct the experiments when
available. The only exception is “Uncertainty”,
which is not open-sourced and thus requires a
straightforward re-implementation. We present
a more detailed description of each baseline
method in the following paragraphs. The meth-
ods “Latent Activation”, “Internal State”, and
“ITI” require labelled reference data for training.
In our experiments, these approaches use the
same reference data as PoLLMgraph to ensure
a fair comparison.

SelfCheck (Manakul et al., 2023) is a
method designed to identify hallucinations in
LLMs by examining inconsistencies. This tech-
nique is based on the premise that hallucina-
tions occur when there is high uncertainty in
input processing. This uncertainty often leads
LLMs to generate diverse and inconsistent con-
tent, even when the same input is provided
repeatedly. In accordance with the original
work, we set the temperature to 0 and use
beam-search decoding to generate the main
responses. To determine whether a response
is a hallucination, we generate 20 reference
responses at a temperature of 1.0. We then
calculate the inconsistency score between the
main response and these references using three
metrics: BERTScore (Section 5.1 of Manakul
et al. (2023)), MQAG (Section 5.2 of Man-
akul et al. (2023)), and Ngram (Section 5.3
of Manakul et al. (2023)). These calcula-
tions yield the SelfCheck-BERT, SelfCheck-QA,
and SelfCheck-Ngram scores, as shown in Ta-
ble 6. The overall hallucination detection score,
SelfCheck-Combined, is the average of these
metrics and is presented as the default in Ta-
ble 1. Our experiments are conducted using
the official SelfCheckGPT repository, available
at https://github.com/potsawee/selfcheckgpt.

Uncertainty (Xiao and Wang, 2021) in-
volves using predictive uncertainty at each de-
coding step, which quantifies the entropy of the
token probability distributions that a model
predicts (Equation 3 in Xiao and Wang (2021)).
The resulting uncertainty scores are used to
measure hallucinations, with higher uncertainty
scores indicating a greater likelihood of halluci-
nations. We have conducted experiments using
our own implementation of this baseline, as
no official open-source code has been released
for this method. In our implementation, we
employ beam search as the decoding strategy
with a temperature setting of 0.

Latent Activation (Burns et al., 2022)
identifies the pattern of direction in activa-
tion space related to hallucination content. It
operates by finding a direction in the activa-
tion space that adheres to logical consistency
properties, such as ensuring that a statement
and its negation have opposite truth values.
Specifically, for each Q/A pair, it transforms
them into an affirmative statement and its
negation by appending a “yes”/“no” statement.
It then extracts the latent activation of the
contrasting pair at the final token of the last
layer. Subsequently, it learns a probe that
maps this normalized hidden activation to a
numerical value ranging from 0 to 1, repre-
senting the probability that the statement is
true. By default, the probe is defined as a
linear projection followed by a sigmoid func-
tion and trained to maintain consistency on
the contrasting pair of statements. We use the
official repository (https://github.com/collin-
burns/discovering_latent_knowledge) to con-
duct experiments.

Internal State (Azaria and Mitchell,
2023) involves training a neural network clas-
sifier using activations as input to predict the re-
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liability of an LLM’s output. We adhere to the
default setting, which involves extracting the ac-
tivation of the last layer from the final token of
each Q/A pair. The activations extracted from
the training data are used to train the classifier,
while those from the remaining data are utilized
to evaluate the effectiveness of hallucination de-
tection. The ground-truth hallucination is an-
notated by a fine-tuned GPT-3-13B, as per our
standard procedure. We use the open-source
code (https://github.com/balevinstein/Probes)
to conduct experiments.

ITI (Li et al., 2023b). Similar to the
Internal State approach, ITI utilizes activations
as input to predict an intermediate detection
score, which assists in identifying whether
the output is a hallucination (this score can
later be used to guide the modification of
latent states to correct the hallucination). The
distinction lies in ITI employing a logistic
regression model for prediction, while Internal
State uses a simple three-layer feed-forward
neural network model. In our experiment,
we extract the activations of the last layer
from the last tokens of each Q/A pair. These
activations are employed both for training
the logistic model and for evaluating the
effectiveness of hallucination detection, using
annotated ground-truth. The intermediate
detection scores, derived from the logistic
regression model, are used as hallucination
prediction scores. We use the official repository
(https://github.com/likenneth/honest_llama)
to conduct experiments.

B Additional Results

Categories Coverage. We present a further
investigation into the influence of distribution
shifts between the training and evaluation data
by deliberately controlling the reference data
to cover only a small portion of the possible
semantics that arise during testing. Specifi-
cally, we restrict the reference data to originate
from 25%, 50%, 90%, and 100% of the overall
categories in the TruthfulQA dataset. Table 7
displays the results, indicating an increase in
detection performance with the expansion of
category coverage. Remarkably, our approach
surpasses other state-of-the-art methods, even
when trained on only 25% of the categories
while being tested on all possible unseen topics.

Model Type Categories Coverage
25% 50% 90% 100%

Llama-13B 0.71 0.72 0.77 0.85
Alpaca-13B 0.73 0.73 0.81 0.85
Vicuna-13B 0.72 0.74 0.78 0.83
Llama2-13B 0.74 0.76 0.84 0.88

Table 7: The detection AUC-ROC of PoLLMgraph
under distributional shifts.

Cross-dataset Performance. To comple-
ment the evaluation of the effectiveness of
PoLLMgraph, we measure the effectiveness of
detecting hallucinations on HaluEval, when
trained on TrutfulQA. The results are presented
in Table 8, which complements Table 4 in the
main paper.

Method Name Alpaca-13B Llama2-13B
ITI 0.60 0.61
Latent Activation 0.58 0.54
Internal State 0.61 0.62
PoLLMgraph-MM (Grid) 0.62 0.63
PoLLMgraph-MM (GMM) 0.64 0.66
PoLLMgraph-HMM (Grid) 0.69 0.72
PoLLMgraph-HMM (GMM) 0.68 0.64

Table 8: The detection AUC-ROC of different
methods on HaluEval, when trained on TruthfulQA.

Number of Reference Data. We conduct
additional experiments to explore how the size
of the reference dataset (10%, 15%, 25%, 50%,
75% of the entire dataset) affects the effective-
ness of other white-box baselines in TruthfulQA
with Alpaca-13B as the investigated model. Ta-
ble 9 shows the experimental results. It can
be clearly observed that all approaches achieve
higher detection AUC-ROC with the use of
more reference data, while our PoLLMgraph
consistently outperforms the other white-box
methods across different sizes of the reference
dataset.

Method Name 10% 15% 25% 50% 75%
ITI 0.67 0.69 0.71 0.75 0.77
Latent Activation 0.65 0.68 0.73 0.78 0.84
Internal State 0.67 0.70 0.75 0.81 0.84
PoLLMgraph-HMM 0.85 0.85 0.86 0.87 0.89

Table 9: The detection AUC-ROC of different
white-box approaches across different reference
dataset sizes on TruthfulQA, with Alpaca-13B as
the studied model.
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Black-box Approaches. We further evalu-
ate more latest black-box hallucination detec-
tion approaches on the TruthfulQA dataset,
including LMvsLM (Cohen et al., 2023) and
RV(QG) (Yang et al., 2023). We conduct
the experiment using the open-source codebase
from RV(QG). While LMvsLM does not pro-
vide open-source code, the open-source repos-
itory of RV(QG) includes an implementation
of LMvsLM. All hyperparameters are set to
be their defaults. We use Llama-13B, Alpaca-
13B, Vicuna-13B, Llama2-13B, the latest GPT-
4 (gpt-4-0125-preview) as the studied LLMs,
with TruthfulQA serving as the test dataset.
The empirical results in Table 10 highlight a sig-
nificant gap between white-box and black-box
detection approaches.

Model Type Method Name
LMvsLM RV(QG)

Llama-13B 0.62 0.73
Alpaca-13B 0.61 0.72
Vicuna-13B 0.63 0.69
Llama2-13B 0.69 0.76
GPT-4 0.71 0.76

Table 10: The detection AUC-ROC of black-box
hallucination detection approaches on TruthfulQA
with different studied LLMs.

Different Variants of SelfCheck. We
present detailed results on various variants
of SelfCheck, including SelfCheck-Bertscore,
SelfCheck-MQAG, and SelfCheck-Ngram, as
illustrated in Section A.2. The results are dis-
played in Table 6. Since SelfCheck-Combined
consistently outperforms the other options, we
use it as the default for comparison in Table 1.
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