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Attenuation Coefficient Estimation for PET/MRI
With Bayesian Deep Learning Pseudo-CT
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Abstract—A major remaining challenge for magnetic
resonance-based attenuation correction methods (MRAC) is their
susceptibility to sources of magnetic resonance imaging (MRI)
artifacts (e.g., implants and motion) and uncertainties due to
the limitations of MRI contrast (e.g., accurate bone delineation
and density, and separation of air/bone). We propose using a
Bayesian deep convolutional neural network that in addition
to generating an initial pseudo-CT from MR data, it also pro-
duces uncertainty estimates of the pseudo-CT to quantify the
limitations of the MR data. These outputs are combined with
the maximum-likelihood estimation of activity and attenuation
(MLAA) reconstruction that uses the PET emission data to
improve the attenuation maps. With the proposed approach
uncertainty estimation and pseudo-CT prior for robust MLAA
(UpCT-MLAA), we demonstrate accurate estimation of PET
uptake in pelvic lesions and show recovery of metal implants.
In patients without implants, UpCT-MLAA had acceptable but
slightly higher root-mean-squared-error (RMSE) than Zero-echo-
time and Dixon Deep pseudo-CT when compared to CTAC.
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In patients with metal implants, MLAA recovered the metal
implant; however, anatomy outside the implant region was
obscured by noise and crosstalk artifacts. Attenuation coefficients
from the pseudo-CT from Dixon MRI were accurate in normal
anatomy; however, the metal implant region was estimated to
have attenuation coefficients of air. UpCT-MLAA estimated atten-
uation coefficients of metal implants alongside accurate anatomic
depiction outside of implant regions.

Index Terms—Bayesian deep learning, deep learning, magnetic
resonance-based attenuation correction (MRAC), maximum-
likelihood estimation of activity and attenuation (MLAA),
synthetic CT.

I. INTRODUCTION

THE QUANTITATIVE accuracy of simultaneous positron
emission tomography and magnetic resonance imag-

ing (PET/MRI) depends on accurate attenuation correction.
Simultaneous imaging with positron emission tomography
and computed tomography (PET/CT) is the current clinical
gold standard for PET attenuation correction since the CT
images can be used for attenuation correction of 511-keV
photons with piecewise-linear models [1]. Magnetic resonance
imaging (MRI) measures spin density rather than electron den-
sity and, thus, cannot directly be used for PET attenuation
correction.

A comprehensive review of attenuation correction meth-
ods for PET/MRI can be found at [2]. Briefly, current
methods for attenuation correction in PET/MRI can be
grouped into the following categories: atlas based, segmenta-
tion based, and machine learning based. Atlas-based methods
utilize a CT atlas that is generated and registered to the
acquired MRI [3]–[6]. Segmentation-based methods use spe-
cial sequences such as ultrashort echo-time (UTE) [7]–[11]
or zero echo-time (ZTE) [12]–[16] to estimate bone density
and Dixon sequences [17]–[19] to estimate soft-tissue densi-
ties. Machine learning-based methods, including deep learning
methods, use sophisticated machine learning models to learn
mappings from MRI to pseudo-CT images [20]–[26] or PET
transmission images [27]. There have also been methods that
estimate attenuation coefficient maps from the PET emission
data [28], [29] or directly correct PET emission data [30]–[32]
using deep learning.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0893-3350
https://orcid.org/0000-0001-7252-2607
https://orcid.org/0000-0002-2228-5823
https://orcid.org/0000-0003-4183-3634


LEYNES et al.: ATTENUATION COEFFICIENT ESTIMATION FOR PET/MRI 679

For PET alone, an alternative method for attenuation correc-
tion is “joint estimation,” also known as maximum-likelihood
estimation of activity and attenuation (MLAA) [33], [34].
Rather than relying on an attenuation map that was mea-
sured or estimated with another scan or modality, the PET
activity image (λ-map) and PET attenuation coefficient map
(μ-map) are estimated jointly from the PET emission data
only. However, MLAA suffers from numerous artifacts and
high noise [35].

In positron emission tomography and MRI (PET/MRI),
recent methods developed to overcome the limitations of
MLAA include using MR-based priors [36], [37], constraining
the region of joint estimation [38] or using deep learn-
ing to denoise the resulting λ-map and/or μ-map from
MLAA [39]–[42]. Mehranian and Zaidi’s [36] approach of
using priors improved MLAA results; however, this was not
demonstrated on metal implants. Ahn et al.’s and Fuin et al.’s
methods [37], [38] that also use priors were able to recover
metal implants in the PET image reconstruction, but the
μ-maps were missing bones and other anatomical features.
Furthermore, their methods require a manual or semiau-
tomated segmentation step to delineate the regions where
to apply the correct priors (such as the metal implant
region). The approaches by Hwang et al. [39]–[41] and
Choi et al. [42] that utilize supervised deep learning resulted
in anatomically correct and accurate μ-maps; however, the
method was not demonstrated in the presence of metal
implants.

Utilizing supervised deep learning is considered a very
promising method for accurate and precise PET/MRI attenua-
tion correction. However, the main limitation of a supervised
deep learning method is the finite data set that needs to have
a diverse set of well-matched inputs and outputs.

In PET/MRI, the presence of metal implants complicates
training because there are resulting metal artifacts in both
CT and MRI. Furthermore, the artifacts appears differently:
a metal implant produces a star-like streaking pattern with
high Hounsfield unit values in the CT image [43] and a signal
void in the MRI image [37]. This makes registration between
MRI and CT images difficult and the artifacts lead to intrinsic
errors in the training dataset.

In addition, there will arguably always be edge cases and
rare features that cannot be captured with enough represen-
tation in a training data set. Images of humans can have
rare features not easily obtained (e.g., missing organs due
to surgery, a new or uncommon implant). Under these con-
ditions, a standard supervised deep learning approach may
produce incorrect predictions and the user (or any downstream
algorithm) will be unaware of the errors.

A recent study by Ladefoged et al. [44] demonstrated the
importance of a high-quality data set in deep learning-based
brain PET/MRI attenuation correction. A large, diverse set
of at least 50 training examples were required to achieve
robustness and they highlighted that the remaining errors and
limitations in deep learning-based MR attenuation correction
were due to “abnormal bone structures, surgical deformation,
and metal implants.”

In this work, we propose the use of supervised Bayesian
deep learning to estimate predictive uncertainty to detect rare
or previously unseen image structures and estimate intrin-
sic errors that traditional supervised deep learning approaches
cannot.

Bayesian deep learning provides tools to address the limi-
tations of a finite training dataset: the estimation of epistemic
and predictive uncertainty [45]. A general introduction to
uncertainties in machine learning can be found at [46].

Epistemic uncertainty is the uncertainty on learned model
parameters that arises due to incomplete knowledge or, in the
case of supervised machine learning, the lack of training data.
Epistemic uncertainty is manifested as a diverse set of different
model parameters that fit the training data.

The epistemic uncertainty of the model can then be used to
produce predictive uncertainty that captures if there are any
features or structures that deviate from the training dataset on
a test image. This allows for the detection of rare or previously
unseen image structures without explicitly training to identify
these structures.

Typical supervised deep learning approaches do not capture
the epistemic nor predictive uncertainty because only one set
of model parameters is learned and only a single prediction is
produced (e.g., a single pseudo-CT image).

In this work for PET/MRI attenuation correction, the
predictive uncertainty is used to automatically weight the
balance between the deep learning μ-map prediction from
MRI and the μ-map estimates from the PET emission data
from MLAA. When the model is expected to have good
performance on a region in a test image, then MLAA has
minimal contribution. However, when the model is expected
to have poor performance on regions in a test image, then
MLAA has a stronger contribution to the attenuation coeffi-
cient estimates of those regions.

Specifically, we extend the framework of Ahn et al.’s
MLAA regularized with MR-based priors [37] and gener-
ate MR-based priors with a Bayesian convolutional neural
network (BCNN) [47] that additionally provides a predictive
uncertainty map to automatically modulate the strength of the
MLAA priors. We demonstrate a proof-of-concept methodol-
ogy that produces anatomically correct, accurate, and precise
μ-maps with high SNR that can recover metal implants for
PET/MRI attenuation correction in the pelvis.

II. MATERIALS AND METHODS

Uncertainty estimation and pseudo-CT prior for robust
MLAA (UpCT-MLAA) is composed of two major elements:
1) initial pseudo-CT characterization with Bayesian deep
learning through the Monte Carlo Dropout [47] and 2) PET
reconstruction with regularized MLAA [37]. The algorithm
is depicted in Fig. 1 and each component is described in
detail below.

A. Bayesian Deep Learning

The architecture of the BCNN is shown in Fig. 2. It was
based on the U-net-like network in [21] with the following
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Fig. 1. Schematic flow of UpCT-MLAA. Monte Carlo Dropout is first performed with the BCNN, then the outputs are provided as inputs to PET reconstruction
with regularized MLAA.

Fig. 2. Deep convolutional neural network architecture used in this work.

modifications: 1) Dropout [47], [48] was included after every
convolution; 2) the patch size was increased to 64 × 64 ×
32 voxels; and 3) each layer’s number of channels was
increased by four times to compensate for the reduction
of information capacity due to the Dropout. The PyTorch
software package [49] (v0.4.1, http//pytorch.org) was used.

Inputs to the model were volume patches of the follow-
ing dimensions and size: 64 pixels × 64 pixels × 32 pixels
× 3 channels. Each channel was a volume patch of the bias-
corrected and fat-tissue normalized Dixon in-phase image,
Dixon fractional fat image, and Dixon fractional water image,
respectively, at the same spatial locations [50]. The output
was a corresponding pseudo-CT image with size 64 pixels
× 64 pixels × 32 pixels × 1 channel. ZTE MRI was not used
as inputs to this model since it has been demonstrated that
accurate HU estimates can be achieved with only the Dixon
MR pulse sequence [22], [50].

1) Model Training: Model training was performed simi-
larly to our previous work [21], [50]. The loss function was
a combination of the L1-loss, gradient difference loss (GDL),
and the Laplacian difference loss (LDL)

Loss = |y − ŷ|
+ λGDL

(

|∇xy − ∇xŷ|2 + ∣

∣∇yy − ∇yŷ
∣

∣

2

+ |∇zy − ∇zŷ|2
)

+ λLDL

(

|�y − �̂y|2
)

(1)

where ∇ is the gradient operator, � is the Laplacian opera-
tor, y is the ground-truth CT image patch, and ŷ is the output
pseudo-CT image patch with λGDL = 0.01 and λLDL = 0.01.
The Adam optimizer [51] (learning rate = 1×10−5, β1 = 0.9,
β2 = 0.999, ε = 1 × 10−8) was used to train the neural
network. An L2 regularization (λ = 1 × 10−5) on the weights
of the network was used. He initialization [52] was used and
a minibatch of four volumetric patches was used for training
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on two NVIDIA GTX Titan X Pascal (NVIDIA Corporation,
Santa Clara, CA, USA) graphics processing units. The models
were trained for approximately 68 h to achieve 100 000
iterations.

B. Pseudo-CT Prior and Weight Map

The generation of the pseudo-CT estimate and variance
image was performed through Monte Carlo Dropout [47] with
the BCNN described above. The Monte Carlo Dropout infer-
ence is outlined in Fig. 1. A total of 243 Monte Carlo samples
were performed to generate a pseudo-CT estimate and a
variance map

pCT = 1

N

N
∑

i=1

f i(x) (2)

σ 2 = 1

N

N
∑

i=1

(

f i(x) − pCT
)2 (3)

where f i is a sample of the BCNN with Dropout, x is the
input Dixon MRI, and N is the number of Monte Carlo
samples. Inference took approximately 40 min per patient
on 8 NVIDIA K80 graphics processing units. We include
a detailed description of the sources of uncertainties and
variations in the supplementary material.

The pseudo-CT estimate was converted to a μ-map with
a bilinear model [1] and the variance map was converted to
a weight map with a range of 0.0 to 1.0 with the following
empirical transformation:

w
(−→r ) = 1

1 + exp
(

0.1
((

σ 2(−→r )
1000

)

− 25
)) (4)

where σ 2
(−→r )

is the variance at voxel position −→r . The
sigmoidal transformation was calibrated by inspecting the
resulting variance maps. It was designed such that the tran-
sition band of the sigmoid covers the range of variances in
the body and finally saturates at uncertainty values of bowel
air and metal artifact regions. With the constants chosen, the
transition band of the sigmoid corresponds to variances of
0 to ∼100 000 HU2 (standard deviations of 0 to ∼300 HU).
The weight map was then linearly scaled to have a range of
1×103 to 5×106, called βMR. The low βMR values correspond
to regions with high uncertainty and, thus, the estimation
for these regions would be dominated by the emission data.
Additional information about the empirical transformation is
provided in the supplementary material.

The weight map was additionally processed to set weights
outside the body (e.g., air voxels) to 0.0 so that these were
not included in MLAA reconstruction. A body mask was
generated by thresholding (> −400 HU) the pseudo-CT
estimate. The initial body mask was morphologically eroded
by a 1-voxel radius sphere. Holes in the body were then
filled in with the imfill function (Image Processing Toolbox,
MATLAB 2014b) at each axial slice. The body masks were
then further refined by removing arms as in our previous
work [14].

C. Uncertainty Estimation and Pseudo-CT Prior for Robust
Maximum-Likelihood Estimation of Activity and Attenuation

UpCT-MLAA is a combination of the outputs of the BCNN
and regularized MLAA. The process is depicted in Fig. 1. MRI
and CT images of patients without metal implants were used
to train the BCNN.

We explicitly trained the network only on patients without
metal implants to force the BCNN to extrapolate on the voxel
regions containing metal implant (i.e., “out-of-distribution”
features) to maximize the uncertainty in these regions.

Thus, a high variance (>=∼ 1 × 105 HU2) emerged in
implant regions compared to a low variance in normal anatomy
(0 to ∼ 2.5 × 104 HU2) with the uncertainty estimation as
can be seen in Fig. 1. The μ-map estimate and the weight
map were then provided to the regularized MLAA [37] to
perform PET reconstruction (five iterations with 28 subsets,
each iteration consists of one time-of-flight ordered subsets
expectation maximization with a point spread function model
(TOF-OSEM) iteration and five ordered subsets transmis-
sion (OSTR) iterations, βMR as described above, βsmooth =
2 × 104). Specifically, the MR-based regularization term in
MLAA is

RMR(μ) =
∑

i

βMRi

2

(

μi − μMR
i

)2
(5)

where i indexes over each voxel in the volume. μMR is deter-
mined from the mean pseudo-CT image and βMR is determined
from the variance image through the weight map transfor-
mation. The formulation in (5) is slightly different from that
in [37, Sec. 2.3.2] but has the same effect.

III. PATIENT STUDIES

The study was approved by the local Institutional Review
Board (IRB). Patients who were imaged with PSMA-11 signed
a written informed consent form while the IRB waived the
requirement for informed consent for FDG and DOTATATE
studies.

Patients with pelvic lesions were scanned using an
integrated 3 Tesla time-of-flight PET/MRI system [53]
(SIGNA PET/MR, GE Healthcare, Chicago, IL, USA). The
patient population consisted of 29 patients (Age = 58.7±13.9
years old, 16 males, 13 females): ten patients without implants
were used for model training, 16 patients without implants
were used for evaluation with a CT reference, and three
patients with implants were used for evaluation in the presence
of metal artifacts.

A. PET/MRI Acquisition.

The PET acquisition on the evaluation set was per-
formed with different radiotracers: 18F-FDG (11 patients),
68Ga-PSMA-11 (seven patients), 68Ga-DOTATATE
(one patient). The PET scan had 600-mm transaxial field-of-
view (FOV) and 25 cm axial FOV, with a time-of-flight timing
resolution of approximately 400 ps. The imaging protocol
included a six bed-position whole-body PET/MRI and a
dedicated pelvic PET/MRI acquisition. The PET data were
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acquired for 15–20 min during the dedicated pelvis acquisi-
tion, during which clinical MRI sequences and the following
magnetic resonance-based attenuation correction (MRAC)
sequences were acquired: Dixon (FOV = 500×500×312 mm,
resolution = 1.95 × 1.95 mm, slice thickness = 5.2 mm,
slice spacing = 2.6 mm, and scan time = 18 s) and ZTE MR
(cubical FOV = 340×340×340 mm, isotropic resolution =
2×2×2 mm, 1.36 ms readout duration, FA = 0.6◦, 4 μs hard
RF pulse, and scan time = 123 s).

B. CT Imaging.

Helical CT images of the patients were acquired separately
on different machines (GE Discovery STE, GE Discovery ST,
Siemens Biograph 16, Siemens Biograph 6, Philips Gemini
TF ToF 16, Philips Gemini TF ToF 64, Siemens SOMATOM
Definition AS) and were co-registered to the MR images
using the method outlined below. Multiple CT protocols
were used with varying parameter settings (110–130 kVp,
30–494 mA, rotation time = 0.5 s, pitch = 0.6–1.375,
11.5–55 mm/rotation, axial FOV = 500–700 mm, slice thick-
ness = 3–5 mm, and matrix size = 512×512).

Preprocessing consisted of filling in bowel air with soft-
tissue HU values and copying arms from the Dixon-derived
pseudo-CT due to the differences in bowel air distribution and
the CT scan being acquired with arms up, respectively [14].

MRI and CT image pairs were co-registered using the
ANTS [54] registration package and the SyN diffeomorphic
deformation model with combined mutual information and
cross-correlation metrics [14], [21], [50].

C. PET Reconstructions

In addition to UpCT-MLAA, additional PET reconstructions
were performed for comparison.

For each patient without metal implants: 1) UpCT-
MLAA was performed and TOF-OSEM [55] (transaxial
FOV = 600 mm, two iterations, 28 subsets, matrix size =
192 × 192, and 89 slices of 2.78-mm thickness) with two
μ-maps: 2) ZeDD-CTAC; 3) initial AC estimate of the BCNN
(BpCT-AC); and 4) CTAC, for comparison. BpCT-AC is a sur-
rogate for ZeDD-CTAC but without the use of a specialized
MR sequence.

For each patient with metal implants, UpCT-MLAA was
performed along with: 1) naive MLAA; 2)–4) regularized
MLAA with increasing regularization parameters (βMR =
[1 × 103, 7 × 105, 5 × 106], constant over the volume);
5) TOF-OSEM with BpCT-AC; and 6) TOF-OSEM with
CTAC for comparison.

D. Data Analysis.

Image error analysis and lesion-based analysis were per-
formed for patients without metal implants: the average (μ)
and standard deviation (σ ) of the error, mean-absolute-error
(MAE), and root-mean-squared-error (RMSE) were computed
over voxels that met a minimum signal amplitude and/or
signal-to-noise criteria [21]. Global HU and PET SUV com-
parisons were only performed in voxels with amplitudes >

−950 HU in the ground-truth CT to exclude air, and a sim-
ilar threshold of > 0.01 cm−1 attenuation in the CTAC was
used for comparison of AC maps. Bone and soft-tissue lesions
were identified by a board-certified radiologist. Bone lesions
are defined as lesions inside the bone or with lesion bound-
aries within 10 mm of bone [56]. A Wilcoxon signed-rank test
was used to compare the SUVmax biases compared to CTAC
of individual lesions.

In the cases where a metal implant was present, we qual-
itatively examined the resulting AC maps of the different
reconstructions and quantitatively compared SUVmax with
reference CTAC PET. High uptake lesions and lesion-like
objects were identified on the PET images reconstructed
with UpCT-MLAA and separated into two categories: 1) in-
plane with the metal implant and 2) out-plane of the metal
implant. A Wilcoxon signed-rank test was used to compare the
SUV and SUVmax values between the different reconstruction
methods and CTAC PET.

IV. RESULTS

A. Monte Carlo Dropout

Representative images of the output of the BCNN with the
Monte Carlo Dropout is shown in Fig. 3. The same mask
used for the weight maps was used to remove voxels out-
side the body. The pseudo-CT images visually resemble the
ground-truth CT images for patients without implants. While
in patients with implants, the metal artifact region in the
MRI was assigned air HU values. Nonetheless, the associated
standard deviation maps highlighted image structures that the
network had high predictive uncertainty. The most important of
which are air pockets and the metal implant. The BCNN high-
lighted these regions and structures in the standard deviation
image without being explicitly trained to do so.

An additional example of the uncertainty estimation is pro-
vided in Fig. 1 in the supplementary material. The input MRI
had motion artifacts due to breathing and arm truncation due
to inhomogeneity at the edge of the FOV. Like the metal
implants, the BCNN highlighted the motion artifact region and
arm truncation in the variance image without being explicitly
trained to do so.

B. Patients Without Implants

The PET reconstruction results for the patients without
implants are summarized in Fig. 4. The RMSE is reported
along with the average (μ) and standard deviation (σ) of the
error as RMSE (μ±σ). Additional results for the pseudo-CT,
AC maps, and PET data are provided in Figs. 2–5 in the
supplementary material.

1) Pseudo-CT Results: The total RMSE for the pseudo-CT
compared to gold-standard CT across all volumes were
98 HU (−13 ± 97 HU) for ZeDD-CT and 95 HU (−6.5 ±
94 HU) for BpCT. The BpCT is the same pseudo-CT image
used in UpCT-MLAA.

2) Attenuation Coefficient Map Results: The total RMSE
for the AC maps compared to gold-standard CTAC across all
volumes were 3.1×10−3cm−1(−5.0×10−4±3.1×10−3cm−1)

for ZeDD-CTAC, 3.2 × 10−3cm−1(−3.8 × 10−5 ± 3.2 ×
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Fig. 3. Representative intermediate image outputs of the BCNN with Monte Carlo Dropout compared to the reference CT images for patients without metal
implants (columns 1 and 2) and patients with metal implants (columns 3 and 4). The voxelwise standard deviation map is shown instead of variance for
better visual depiction. Regions with high standard deviation correspond to bone, bowel air, skin boundary, implants, blood vessels, and regions with likely
modeling error (e.g., around the bladder in the standard deviation map in the rightmost column.)

10−3cm−1) for BpCT-AC, and 3.5×10−3cm−1(−2.6 ×
10−5±3.5×10−3cm−1) for UpCT-MLAA-AC.

3) PET Images: The total RMSE for PET images com-
pared to gold-standard CTAC PET across all volumes
were 0.023 SUV(−0.005 ± 0.023 SUV) for ZeDD PET,
0.022 SUV (−8.1×10−5 ± 0.022 SUV) for BpCT-AC PET,
and 0.027 SUV (1.5×10−4 ± 0.027 SUV) for UpCT-
MLAA PET.

4) Lesion Uptake and SUVmax: The results for lesion anal-
ysis for patients without implants are shown in Fig. 4. There
were 30 bone lesions and 60 soft-tissue lesions across the
16 patient datasets. The RMSE w.r.t. CTAC PET SUV and
SUVmax are summarized in Table I. For SUVmax of bone
lesions, no significant difference was found for ZeDD PET
and BpCT-AC PET (p = 0.116) while PET ZeDD PET and
UpCT-MLAA PET were significantly different (p = 0.037).
For SUVmax of soft-tissue lesions, ZeDD PET and BpCT-
AC PET were significantly different (p < 0.001) while no
significant difference was found between ZeDD PET and
UpCT-MLAA PET (p = 0.16).

C. Patients With Metal Implants

Figs. 5 and 6 show the different AC maps generated with the
different reconstruction processes and associated PET image
reconstructions on two different radiotracers (18F-FDG and
68Ga-PSMA) and Fig. 7 shows the summary of the SUVmax

TABLE I
LESION SUV ERRORS OVER THE VOLUME COMPARED TO CTAC IN

PATIENTS WITHOUT IMPLANTS

results. Additional results for pseudo-CT, AC maps, and PET
images are provided in Figs. 6–11 in the supplementary
material.
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Fig. 4. (a) Representative images of bone and soft-tissue lesions for patients
without implants [reproduced from (20)]. (b) Scatter plots of SUV in every
lesion voxel. (c) Box plots of the SUVmax in each lesion. This shows that
BpCT-AC and UpCT-MLAA-AC is near equivalent to ZeDD-CTAC in patients
without implants when comparing to CTAC.

1) Metal Implant Recovery: Figs. 5(b) (1st and 2nd
columns) and 6(b) (1st and 2nd columns) show the AC map
estimation results.

Fig. 5. Representative images from metal implant patient #3 imaged with
18F-FDG. (a) CT, Dixon in-phase, and NAC PET images. (b, first and sec-
ond column) AC maps and (b, third column) associated PET reconstructions.
The AC maps are shown in two different window levels to highlight (b, first
column) bone and soft tissue and (b, second column) the metal implant.

BpCT-AC filled in the metal implant region with air since
the metal artifact in MRI appears as a signal void. Although
reconstructing using naive MLAA recovers the metal implant,
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Fig. 6. Representative images from metal implant patient #1 imaged with
68Ga-PSMA. (a) CT, Dixon in-phase, and NAC PET images. (b, first and sec-
ond column) AC maps and (b, third column) associated PET reconstructions.
The AC maps are shown in two different window levels to highlight (b, first
column) bone and soft tissue and (b, second column) the metal implant.

the AC map was noisy and anatomical structures were dif-
ficult to depict. The addition of regularization (increasing
βMR) reduces the noise, however over-regularization eliminates

Fig. 7. Box plot summarizing the results comparing to CTAC PET for
patients with implants. The red crosses denote outliers.

the presence of the metal implant. The use of a different
radiotracer also influenced reconstruction performance: the
MLAA-based methods performed worse when the tracer was
68Ga-PSMA compared to 18F-FDG with low regularization.
In contrast, UpCT-MLAA-AC recovered the metal implant
while maintaining high SNR depiction of anatomical struc-
tures outside the implant region for both radiotracers. The high
attenuation coefficients were constrained in the regions where
high variance was measured (or where the metal artifact was
present on the BpCT AC maps).

2) PET Image Reconstruction: Figs. 5(b) (3rd column)
and 6(b) (3rd column) show the PET image reconstruction
results.

Qualitatively, the MLAA-based methods (UpCT-MLAA and
Standard MLAA) show uptake around the implant, whereas
BpCT-AC PET and CTAC PET show the implant region
without any uptake. When compared to the NAC PET, the
MLAA-based methods better match what is depicted within
the implant region. Quantitatively, Table I summarizes the
SUV results for voxels in-plane of the metal implant and
out-plane of the metal implant.

3) SUVmax Quantification: Fig. 7 shows the comparisons
of SUVmax of lesions in-plane and out-plane of the metal
implant and Tables II and III list the RMSE values for SUV
and SUVmax. There were six lesions in-plane and 15 lesions
out-plane with the metal implants across the three patients with
implants. Only UpCT-MLAA provided relatively low SUVmax
quantification errors on lesions both in-plane and out-plane of
the metal implant.

For lesions in-plane of the metal implant, BpCT-AC PET
had large underestimation of SUVmax, naive MLAA PET
had better mean estimation of SUVmax but had a large
standard deviation. The addition of light regularization to
MLAA improves the RMSE by decreasing the standard devia-
tion at the cost of increased mean error. Increasing regulariza-
tion increases RMSE but reduces the bias error with increased
standard deviation. UpCT-MLAA PET had the best agreement
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TABLE II
SUV ERRORS OVER THE VOLUME COMPARED TO CTAC

with CTAC PET. Only Naive MLAA and UpCT-MLAA had
results where a significant difference could not be found when
compared to CTAC (p > 0.05).

For lesions out-plane of the metal implant, the trend is
reverse for BpCT-AC PET and the MLAA methods. BpCT-
AC PET had the best agreement with CTAC PET and the
MLAA methods showed decreasing RMSE with increasing
regularization. UpCT-MLAA had the second-best agreement
with CTAC PET. No significant difference could be found for
all methods when compared to CTAC (p > 0.05).

V. DISCUSSION

This article presents the use of a Bayesian deep convo-
lutional neural network to enhance MLAA by providing an
accurate pseudo-CT prior alongside predictive uncertainty esti-
mates that automatically modulate the strength of the priors
(UpCT-MLAA). The method was evaluated in patients with-
out and with implants with pelvic lesions. The performance
for metal implant recovery and uptake estimation in pelvic
lesions in patients with metal implants was characterized.
This is the first work that demonstrated an MLAA algorithm
for PET/MRI that was able to recover metal implants while
also accurately depicting detailed anatomic structures in the
pelvis. This is also the first work to synergistically combine
supervised Bayesian deep learning and MLAA in a coherent
framework for simultaneous PET/MRI reconstruction in the

TABLE III
LESION SUVmax PERCENT ERRORS

pelvis. The UpCT-MLAA method demonstrated similar quan-
titative uptake estimation of pelvic lesions to a state-of-the-art
attenuation correction method (ZeDD-CT) while additionally
providing the capability to perform reasonable PET recon-
struction in the presence of metal implants and removing the
need of a specialized MR pulse sequence.

One of the major advantages of using MLAA is that it uses
the PET emission data to estimate the attenuation coefficients
alongside the emission activity. This gives MLAA the capabil-
ity to truly capture the underlying imaging conditions that the
PET photons undergo. This is especially important in simul-
taneous PET/MRI where true ground-truth attenuation maps
cannot be derived. Currently, the most successful methods for
obtaining attenuation maps are through deep learning-based
methods [20]–[28]. However, these methods are inherently
supervised model-based techniques and have limited capac-
ity to capture imaging conditions that were not present in
the training set nor conditions that cannot be reliably mod-
eled, such as the movement and mismatch of bowel air and
the presence of metal artifacts. Since MLAA derives the
attenuation maps from the PET emission data, MLAA can
derive actual imaging conditions that supervised model-based
techniques are unable to capture. Furthermore, this elimi-
nates the need for specialized MR pulse sequence (such as
ZTE for bone) since the bone AC would be estimated by
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MLAA instead. This would allow for more accurate and
precise uptake quantification in simultaneous PET/MRI.

To the best of our knowledge, only a few other methods
combines MLAA with deep learning [39]–[42]. Their meth-
ods apply deep learning to denoise an MLAA reconstruction
by training a deep convolutional neural network to produce an
equivalent CTAC from MLAA estimates of activity and atten-
uation maps. This method inherently requires ground-truth
CTAC maps to train the deep convolutional neural network
and, thus, is affected by the same limitations that supervised
deep learning and model-based methods have. Unlike their
method, our method (UpCT-MLAA) preserves the underlying
MLAA reconstruction while still providing the same reduction
of crosstalk artifacts and noise.

Our approach is different from all other approaches because
we leverage supervised Bayesian deep learning uncertainty
estimation to detect rare and previously unseen structures in
pseudo-CT estimation. There are only a few previous works
that estimate uncertainty on pseudo-CT generation [57], [58].
Klages et al. [57] utilized a standard deep learning approach
and extracted patch uncertainty but did not assess their method
on cases with artifacts or implants. Hemsley et al. [58] uti-
lized a Bayesian deep learning approach to estimate total
predictive uncertainty and similarly demonstrated high uncer-
tainty on metal artifacts. Both approaches were intended for
radiotherapy planning and our work is the first to apply uncer-
tainty estimation toward PET/MRI attenuation correction. We
demonstrated how likely μ-map errors can be detected and
resolved with the use of PET emission data through MLAA.

High uncertainty was present in many different regions.
Metal artifact regions had high uncertainty because they
were explicitly excluded in the training process—i.e., an
out-of-distribution structure. Air pockets had high uncer-
tainty likely because of the inconsistent correspondence of
air between MRI and CT—i.e., intrinsic dataset errors. Other
image artifacts (such as motion due to breathing) have high
uncertainty likely due to the rare occurrence of these features
in the training dataset and its inconsistency with the corre-
sponding CT images. Bone had high uncertainty since there
is practically no bone signal in the Dixon MRI. Thus, the
CNN likely learned to derive the bone value based on the sur-
rounding structure and the variance image shows the intrinsic
uncertainty and limitations of estimating bone HU values from
Dixon MRI. Again, these regions were highlighted by being
assigned high uncertainty without the network being explicitly
trained to identify these regions.

On evaluation with patients without implants, we demon-
strated that BpCT was a sufficient surrogate of ZeDD-CT for
attenuation correction across all lesion types: BpCT provided
comparable SUV estimation on bone lesions and improved
SUV estimation on soft-tissue lesions. However, the BpCT
images lacked accurate estimation of bone HU values that
resulted in average underestimation of bone lesion SUV val-
ues (−0.9%). The average underestimation was reduced with
UpCT-MLAA (−0.3%). Although the mean underestimation
values improved, the RMSE of UpCT-MLAA was higher than
BpCT-AC (3.6% versus 3.2%, respectively) due to the increase
in standard deviation (3.6% versus 3.1%, respectively). This

trend was more apparent for soft-tissue lesions. The RMSE,
mean error, and standard deviation were worse for UpCT-
MLAA versus BpCT. Since the PET/MRI and CT were
acquired in separate sessions, possibly months apart, there may
be significant changes in tissue distribution. This could explain
the increase in errors of BpCT-AC under UpCT-MLAA.

On the patients with metal implants, UpCT-MLAA was the
most comparable to CTAC across all lesion types. Notably,
there was an opposing trend in the PET SUVmax results for
lesions in/out-plane of the metal implant between BpCT-AC
and the MLAA methods. These were likely due to the
sources of data for reconstruction. BpCT-AC has attenua-
tion coefficients estimated only from the MRI, whereas Naïve
MLAA has attenuation coefficients estimated only from the
PET emission data. The input MRI was affected by large metal
artifacts due to the metal implants that make the regions appear
to be large pockets of air. Thus, in BpCT-AC, the attenuation
coefficients of air were assigned to the metal artifact region.
For lesions in-plane of the implant, this led to a large bias
due to the bulk error in attenuation coefficients and a large
variance due to the large range of attenuation coefficients with
BpCT-AC, while this is resolved with MLAA. For lesions out-
plane of the implant, the opposite trend arises. For MLAA the
variance is large due to the noise in the attenuation coefficient
estimates. This is resolved in BpCT-AC since the attenuation
coefficients are learned for normal anatomical structures that
are unaffected by metal artifacts. The combination of BpCT
with MLAA through UpCT-MLAA resolved these disparities.

A major challenge to evaluate PET reconstructions in the
presence of metal implants is that typical CT protocols for
CTAC produce metal implant artifacts that may cause overes-
timation of uptake and, thus, does not serve as a true reference.
Since our method relies on time-of-flight MLAA, we believe
that our method would produce a more accurate AC map and,
therefore, a more accurate SUV map. This is demonstrated
by the lower SUVmax estimates of UpCT-MLAA compared to
CTAC PET. However, to have precise evaluation, a potential
approach to evaluate UpCT-MLAA is to use metal arti-
fact reduction techniques on the CT acquisition [43] or by
acquiring transmission PET images [59].

Accurate co-registration of CT and MRI with metal implant
artifacts was a limitation since the artifacts present them-
selves differently. Furthermore, the CT and MRI images were
acquired in separate sessions. These can be mitigated by
acquiring images sequentially in a trimodality system [60].

Another limitation of this study was the small study pop-
ulation. Having a larger population would allow evaluation
with a larger variety of implant configurations and radiotracers
and validation of the robustness of the attenuation correction
strategy.

Finally, the performance of the algorithm can be further
improved. In this study, we only sought to demonstrate the
utility of uncertainty estimation with a Bayesian deep learn-
ing regime for the attenuation correction in the presence of
metal implants: that the structure of the anatomy is preserved
and implants can be recovered while still providing similar
PET uptake estimation performance in pelvic lesions. Our
proposed UpCT-MLAA was based on MLAA regularized
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with MR-based priors [27], which can be viewed as uni-
modal Gaussian priors. We speculate that this could be further
improved by using Gaussian mixture priors for MLAA as
in [36]. The major task to combine these methods would be
to learn the Gaussian mixture model parameters from patients
with implants. With additional tuning of the algorithm and
optimization of the BCNN, UpCT-MLAA can potentially pro-
duce the most accurate and precise attenuation coefficients in
all tissues and in any imaging conditions.

VI. CONCLUSION

We have developed and evaluated an algorithm that uti-
lizes a Bayesian deep convolutional neural network that
provides accurate pseudo-CT priors with uncertainty estima-
tion to enhance MLAA PET reconstruction. The uncertainty
estimation allows for the detection of “out-of-distribution”
pseudo-CT estimates that MLAA can subsequently correct.
We demonstrated quantitative accuracy in pelvic lesions and
recovery of metal implants in pelvis PET/MRI.
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