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Fig. 1. Example of the trial phase of the simulation. A participant, embodied by an avatar, picks an item on the shopping list. After
providing the item, the embodied agent representing the shop salesperson describes details and background information on the item,
initiating a social interaction, resulting nonverbal responses from the participant. We record these nonverbal behaviors (e.g., head
motion, eye gaze, gaze focus) and are able to classify autistic responses with high accuracy.

Abstract—Autism – also known as Autism Spectrum Disorders or Autism Spectrum Conditions – is a neurodevelopmental condition
characterized by repetitive behaviours and differences in communication and social interaction. As a consequence, many autistic
individuals may struggle in everyday life, which sometimes manifests in depression, unemployment, or addiction. One crucial problem
in patient support and treatment is the long waiting time to diagnosis, which was approximated to seven months on average. Yet, the
earlier an intervention can take place the better the patient can be supported, which was identified as a crucial factor.
We propose a system to support the screening of Autism Spectrum Disorders based on a virtual reality social interaction, namely a
shopping experience, with an embodied agent. During this everyday interaction, behavioral responses are tracked and recorded. We
analyze this behavior with machine learning approaches to classify participants from an autistic participant sample in comparison to a
typically developed individuals control sample with high accuracy, demonstrating the feasibility of the approach. We believe that such
tools can strongly impact the way mental disorders are assessed and may help to further find objective criteria and categorization.
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Autism (ICD-11 6A02) is an entity used to define a set of persistent
symptoms throughout the life cycle, characterised by (1) differences in
communication and reciprocal social interaction and (2) the presence
of repetitive behaviors and restricted interests [4, 52]. Concretely, the
nonverbal communication skills of autistic individuals are particularly
different compared to those of typically developed (TD) individuals.
Nonverbal communication includes aspects such as initiating, maintain-
ing or modulating gaze during a social interaction, modulating one’s
tone of voice when speaking or using gestures to accompany speech,
among other features. The causes of this condition remain unclear (for
a recent review, see [28]) but eye gaze patterns in autism have been
pointed out as possible biomarkers of this condition [11, 16, 18]. More
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concretely, eye-tracking has been used to investigate the gaze patterns of
autistic individuals (for a systematic review and meta-analysis see [54]).
The results of the mentioned review reveal that children with autism
spectrum disorders (ASD have significantly reduced gaze fixation to
the eye region of faces, when compared to TD individuals. Autism is
one of the most prominent and widely discussed human conditions [31].
Despite of studies showing that diagnosis can be reliably established
from the age of 2 years [43], many people with autism remain without
a diagnosis, unrecognized, until adulthood [37]. Moreover, the average
time to diagnose autism in adults has been estimated to 7 months [55],
leading to long waiting lists and time. Further, the reliability of the
common assessments for the diagnosis of autism, such as the Autism
Diagnostic Observation Schedule (ADOS-2; [42], seems to be lower in
adulthood [17, 44]. Not surprisingly, the diagnostic of autism in adult-
hood is one of the ten priority areas for autism research as published by
Autistica [14]. Thus, there is a need for an objective measure to provide
with a reliable and time economic diagnostics of ASD in adulthood.

1.1 Contribution
We present a system combining an agent-induced social virtual reality
(VR) interaction with nonverbal behavior recording and pattern classifi-
cation. We believe our approach could aid the diagnosis of autism and
argue that it could be adapted in the future to also assist the screening
of other social and communicative conditions or disorders. Our results
are promising regarding the successful classification of autism based
on a machine learning model trained and tested with the recorded data.

2 BACKGROUND AND RELATED WORK

2.1 Virtual Environments and Autism Research
The use of VR technologies in autism research and therapy has grown
in recent years, due to the strong level of experimental control. To date,
VR has often been applied to interventions for children and adolescents
on the autistic spectrum. For example, in the context of social com-
munication, interaction and skill training [47, 57, 72], the training of
emotion recognition, facial expression, as well as body gestures [22],
phobia interventions [45, 46], the practice of fine motor skills [71] and
driving exercises [66], (see [9] for a recent review). In populations
with neurodegenerative diseases [53] or attention deficit hyperactivity
disorder (ADHD) [2, 3], VR technologies have also been used as a tool
to aid the evaluation processes to diagnose these conditions. Nowadays,
the diagnosis is usually made in the clinic based on visible clinical signs
and symptoms, and patients often have to wait for years for a correct
diagnosis [53]. In the case of autism, this can be even more difficult, as
the clinical heterogeneity of this condition is well known [10, 48]. This
frequently leads to long evaluation processes including patients having
to visit different experts, misdiagnosis and improper treatment [5]. Of
course, these aspects have an impact on the patient’s mental health [38].

In terms of ASD screening, few studies focused on the use of modern
or novel technologies for ASD assessment. Koirala and colleagues [36]
were the first to explore sensory abnormalities in ASD children with
VR technology, whereas the automatic detection of ASD individuals
revealed preliminary significant results in their study. VR in particular
has shown an enormous contribution in clinical populations, in which
eye-tracking on its own was only made possible to a limited extent [13].
Compared to regular VR devices, as well as eye-tracking technologies,
immersive VR provides ecological validity in controlled environments
by enabling a natural experience for the participants and therefore more
reliable data collection [50].

2.2 Machine Learning-Based Autism Investigations
In medical context, machine learning (ML) has successfully been ap-
plied to objectively diagnose many different kinds of diseases and
disorders, skin cancer [20] and heart diseases [56] being only two
examples. In recent years, there has been a growing development of
computer-aided investigations of ASD through ML on the basis of static
images (e.g., [21, 32, 40, 41, 70]). Further, interpersonal synchronic-
ity [23] has been investigated and classified with real-world motion data
using motion energy analysis with a classification accuracy of 75.9%.
Drimalla and colleagues [18] demonstated that a classification of facial

behavior recorded from a video-based simulated dialogue study led to
73% accuracy in detecting ASD. Similarly, Yaneva and colleagues [69]
could also detect autism automatically with around 74% accuracy. How-
ever, their approaches were based on a simulated interaction with a
pre-recorded video [18] and in web page searches [69], which may not
be fully capable to account for the full dynamics of social interactions.

In this regard, previous works presented potential methods and con-
cepts to assess ASD using virtual characters [24, 61]. Further, specific
study platforms for a potential behavior investigation have been devel-
oped [23, 59, 63]. In a recent study, Roth and colleagues [58] could
automatically classify autistic individuals from a sample of ASD indi-
viduals and TD participants with up to 92.9% accuracy using a neural
network trained from nonverbal cues from eye gaze and head move-
ments recorded from avatar-mediated, dyadic social interactions in a
desktop environment. While Georgescu and colleagues used motion
analysis technologies to classify behaviors of real interactions [23],
Roth and colleagues tracked the behavior of interactions that happened
between two real people that were remotely tracked and represented
to each other as avatars on desktop screens [58]. In contrast to these
works, our goal was to implement a single user VR scenario that could
allow to collect nonverbal data automatically, replicable, with high
validity and experimental control.

3 APPROACH AND IMPLEMENTATION

3.1 Virtual Environments and Scenarios
In order to create a virtual environment suitable for ASD assessment in
VR, we identified different social settings that could be used for stan-
dardized social interactions. We used Autodesk 3ds Max1, Blender2,
and the native tools in Unity 3D3 to create our virtual environment.
Some of the 3D models were acquired from Sketchfab4.

Following a design discussion with clinical partners, we decided to
implement a everyday life situation and standardized tasks in a virtual
supermarket. For individuals with autism, shopping is a challenging
daily living skill. When faced with an unfamiliar environment, such
as at the supermarket, it was shown that diagnosed individuals show
altered behaviors and affect [1]. Therefore, we anticipated different
behavior from individuals with ASD while engaging in this simulation.
Fig. 3 shows the final version of the shop used in our user study.

A social setting was considered essential for eliciting authentic
nonverbal responses from participants during the simulation. Therefore,
we created a virtual agent to act as the social partner in the role of the
shop seller. As part of the simulation, the participants were instructed
to purchase items shown on a shopping list (see Fig. 6). Purchasing
the item required asking the seller to deliver it by ray-cast pointing
and selection using the HTC Vive Controller. In the case of a correct
selection, the shop seller agent would pick up the selected product and
put it into the shopping basket. Following this action, the agent was
designed to initialize a social interaction by narrating a short story or
facts about the sold item accompanied by nonverbal behaviors. The
narratives were co-designed with the clinical partners to match the right
level between factual information and social engagement.

Taking into account the fact that different users may have varying
levels of experience with VR, we created an introductory level within
our simulation (see Fig. 2). Participants were presented with series
of tutorials which covered the interaction with virtual objects, and
how to adjust the volume of their headphones, etc. After finishing the
tutorials, participants could see a start button on display, which could
take them to the next phase of the simulation (see Fig. 2). Several
studies have utilized virtual mirrors in order to increase the perception
of embodiment toward a user’s avatar [25, 60]. As a second part of
the tutorial phase, the participants were therefore exposed to a virtual
mirror to increase their awareness toward their presence and avatar
within the simulation and to understand that their body behaviors are
replicated and thus foster natural responses.

1Autodesk, 2020, San Rafael, USA. autodesk.com/products/3ds-max/
2Blender foundation, 2020. blender.org
3Unity Technologies, 2020, San Francisco, USA. unity.com
4Sketchfab, 2020, New York, USA. sketchfab.com
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Fig. 2. Tutorial Phase of the experiment. Left: Tutorial environment. Center: Controller instructions. Right: Exposure to the virtual mirror.

Fig. 3. Virtual shop environment. The final design of virtual supermar-
ket and surrounding scenario used in the study.

3.2 Avatar and Agent

Previous work reported that the perception of and interaction with vir-
tual characters can be similar to a face-to-face interaction [15]. There-
fore, it was argued that virtual characters, used as avatars (i.e., con-
trolled by human behavior [6]) and agents (i.e., controlled by computer
algorithms [6]) may act as a method to investigate social interactions in
experimentally controlled fashion [24].

We used male and female virtual characters to represent the par-
ticipants in the simulation accordingly. The avatar’s height could be
adjusted based on the participant’s height. An HTC VIVE Pro head
mounted display (HMD) with HTC VIVE controllers and HTC VIVE
trackers (see Fig.6) in combination with SteamVR and the Unity Vive
Input Utility allowed for the rendering as well as inverse kinematic
tracking [62] in order to replicate the user behaviors to the avatar. There-
fore, the participant’s avatar’s body movements corresponded to the
participant’s movements.

Similarly, we used a male virtual character as representation for
the embodied agent (see Fig. 4). All characters were created using
Autodesk Character Generator5. For the agent’s motion and behavior,
we integrated an animation state machine to drive the agent’s action
according to the current simulation status. We used both, Unity’s
internal animation system with customized keyframe animations (e.g.,
grabbing the products from the shelves, controlled arm rotations) as
well as third party animation clips from the Unity Asset Store6 and
Mixamo7 in order to construct all varieties of the agent’s behavior.
Each animation served as a state within the state machine, and various
events could trigger the transition between these states. We took into
account several factors such as velocity, and range of movement, to
ensure smooth transitions.

To realize a more realistic gaze interaction, the virtual agent (seller)
was capable of maintaining eye contact with the participant. Gaze
shifting toward the participant involves eyes, head, and upper body
movements, and eye, eyelid, blinking, as well as head animations and

5https://charactergenerator.autodesk.com/
6www.assetstore.unity.com
7www.mixamo.com

Fig. 4. Virtual characters.The virtual characters used for female partici-
pants (left), male participants (center) and the shop seller agent (right) in
the study.

realistic lip-synced mouth movements were realized using a natural
motion plugin (SALSA LipSync Suite Version 2.5.0.).

For the agents verbal discourse, a natural human voice was recorded
for the verbal interaction. In order to have a voice that conveyed
realistic emotions, the performer adapted his speech in accordance with
the narrative.

3.3 Scenario and Logic
The agent’s actions are triggered when the user selects an item with
HTC VIVE handheld controller. Fig. 5 shows the flowchart of the
avatar’s actions in relation to the task procedure and status. If the
participant selects an item that is not on the shopping list, the agent
will ask them to try again. In the case that participants select an item
on the list, the agent would bring the products to them. Following this,
the agent will narrate a short story or fact about the sold item for the
purpose of initiating social interaction. The participant could not select
any other item while the agent is narrating the story. Once the final
product is delivered, the agent will request payment. For payment, the
participant has to drag a pack of cash visible on the counter towards the
cash register and drop it there. After successful payment, the game will
end with the agent saying goodbye to the participant.

3.4 Data Acquisition and Logging
Our system is designed to collect and log data during the social setting
of the shopping scenario, which is the period in which the seller agent
narrates a story for the participant. Since our research focused mainly
on gaze, head, and body motion comparison between individuals with
ASD and TD controls, we collect the body movements and eye gaze
data of the participants. The body movement data include the position
and rotation of head and hands. The gaze data was collected logging
the gaze focus point along each axis (i.e., the gaze focus point in the 3D
world) as well as the dwell time the participants focused on dynamic
AOIs, virtually attached to landmarks of the agents face and hands, see
Fig. 7. Once the raycast hits one of the colliders, the AOI, which was
looked at by the participant, is detected. To prevent repetition, once
a collision with an inner AOI (such as the eyes) is logged, the larger
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Fig. 5. Scenario procedure. The flowchart describes the simulation
logic and user actions/agent reactions.

area (such as the whole face) is ignored. During the virtual reality
scenario a total of 27 features, including hand, head, and gaze behavior,
were recorded using the HTC VIVE Pro Eye VR System and the Tobii
XR SDK, respectively. We exported the acquired data into a CSV
file format for analysis and further processing with Python and using
Scikit-learn and tensorflow as machine learning libraries.

4 EVALUATION

Based on previous research findings regarding the gaze pattern as a
valid predictor for ASD [54] and based on our previous work from [58],
it was suggested that H1: there is a difference in mean fixation times on
the eyes area, mouth area and the background during social interaction
with a virtual character between ASD and TD individuals. Our main
research question was, in consequence, RQ1: Can we classify ASD
on the basis of the expressed nonverbal behavior (gaze, voice, head
motion) acquired through an patient-agent system?

4.1 Design and Task
For the data acquisition, we employed a between-group design and
tested individuals with ASD vs. TD control participants. We used the
virtual environment to simulate a social situation in which the nonverbal
data from participants can be acquired and recorded to provide reliable
data set for machine learning algorithms. As part of the simulation,
the participants were instructed to purchase items shown on a list
in the virtual environment representing a supermarket by pointing
to and selecting the product in the shop using HTC VIVE handheld
controllers via the controller’s trigger button. This was available with
both controllers accounting for different handedness of the participants.
In the case that participants made the correct selection, the agent would
bring the products to them and narrate about the sold item. An example
would read as follows:

“Oh, these bananas are great. Did you know that bananas are rich in
minerals such as magnesium, potassium and folic acid? Also, bananas
are rich in vitamins B and C. And I tell you something: These bananas
come from Ecuador. Ecuador has the perfect climate for its cultivation

Fig. 6. Embodiment method. HTC VIVE Pro Eye and HTC VIVE
trackers that allow for the embodiment of the user in the simulation by
using inverse kinematics and body pose solving.

Fig. 7. Dynamic areas of interest. Dynamic head, eyes, and mouth
AOIs assigned to the agent in order to acquire the focus dwell times.

and exports every year more than six million bananas to all countries
of the world.”

During this time, the integrated eye-tracking system would gather
data of the participant’s eye gaze, and the transformation data from the
head mounted display and controllers was recorded. The participants
had to buy five items, which were presented in the same order for
all participants. The narratives about the items were neutral facts
and had a duration of about 90 seconds on average. Each data file
collected during the scenario would then contain approximately 1850
measurement rows containing position, rotation and gaze values as well
as the corresponding area of interest at the given moment during the
simulation.

Taking into account the fact that different users might have varying
levels of experience with VR, we created an introductory level within
our simulation. To accomplish this, we designed a virtual space similar
to an entrance to a market, to provide participants with the opportu-
nity to become familiar with virtual technologies and understand how
controllers work. An additional goal of the introductory level was to
increase participants’ sense of embodiment. During the simulation, par-
ticipants were able to control an avatar representation of themselves. A
study by Slater and Steed [64] showed that participants who interacted
with virtual objects via a virtual body had a higher sense of presence in
comparison to those using a traditional interface (like pressing a button)
as a means of interaction. Virtual embodiment can lead to psychologi-
cal effects such as increased social presence in users that control the
avatar [60, 65]. In an attempt to evoke virtual embodiment, we consid-
ered the virtual mirror metaphor in our design. In this metaphor, users
can see a simulated mirror reflection of their avatar. Several studies
have used and tested virtual mirrors. A study by González-Franco and
colleagues [25] concluded that seeing the avatar reflection of oneself in
a virtual mirror, while the movements are synchronous with the user,
would result in a higher subjective sense of embodiment. Assuming
that a greater perception embodiment would also result in more natural
behavioral responses, we implemented a mirror in the introductory part
of the virtual simulation.
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Fig. 8. Experimental procedure.

4.2 Procedure
The experimental session can be roughly divided into three phases.
First, the participants answered a batch of psychological and optical
questionnaires and tests, to confirm the inclusion criteria of the partic-
ipants (including a Landolt C-test, Ishihara Color test, and Steropsis
test). Then, an eye calibration was performed and the VR simulation
was conducted. We informed participants about potential cybersickness
and that asked them to immediately notify investigators. The VR task
lasted about 20-30 minutes. After the participants completed the task,
they completed further questionnaires related to the VR task as well as
psychological questionnaires. The session lasted for approximately 90
to 120 minutes. The participants were each compensated financially
for taking part in the study. All participants gave written informed con-
sent before study participation. The study was approved by the ethics
committee of the Ludwig-Maximilians University Munich Hospital, in
agreement with the Declaration of Helsinki [68]. The full procedure is
depicted in Fig. 8.

4.3 Measures
The German versions of the following questionnaires where adminis-
trated: a demographic questionnaire, to collect biographical data and
previous VR experience; the Multiple Choice Vocabulary Intelligence
Test (verbal intelligence; MWT-B; [39]) and the Basic Intelligence
Scale Scale 2 - Revision (non-verbal intelligence; CFT-20-R; [67]) to
corroborate inclusion criteria of the participants’ IQ; the Landolt C test,
the Stereo Optical test [51] and the Ishihara colour-blindness test [12]
for ocular and colour deficiencies. In phase three, after the VR task,
participants were asked to answer a rapport questionnaire to assess the
quality of the interaction with the avatar [35]; the autism-spectrum-
quotient (measuring extent of autistic traits; AQ, [8]) and the empathy
quotient (to assess empathy; EQ, [7]). In addition, we measured motor
difficulties with the Adult Dyspraxia Checklist (ADC) [33] and depres-
sive symptoms with the Beck Depression Inventary (BDI-II) [27]. We
will not go into detail of this reporting due to the fact that the underlying
research questions are not in the focus of the present study.

4.4 Participants
A total of 28 participants took part in the study. Twenty TD participants
were recruited via social networks and acquaintances. Eight individuals
with a clinically confirmed diagnosis of ASD were recruited through
the specialised autism outpatient clinic of the University Hospital of
Munich. We excluded participants who stated or reported being very
tired since their gaze paths are likely to be altered, as well as participants

ASD Matched Random

Age 28.8 (8.9) 23.16 (2.0) 23.5 (2.5)
Verbal IQ 110.0 (5.0) 108.0 (14.2) 104.16 (10.6)
Non-verbal IQ 110.66 (16.45) 114.1 (14.5) 114.1 (13.7)

Table 1. Descriptive statistics: M (SD) of participants data of the matched
control and the random control data sets compared to the ASD set.

95% CI
t d f p Cohen′s d Lower U pper

Gender 0.00 10.00 1.00 0.00 -1.132 1.132
Age 1.508 10.00 0.163 0.871 -0.341 2.044
Verbal IQ 0.324 10.00 0.753 0.187 -0.952 1.317
Non-verbal IQ -0.390 10.00 0.705 -0.225 -1.356 0.916

Table 2. T-test results (matched set).

who were distracted or did not follow the task instructions, leading to 6
TD control and 2 ASD participants data sets being excluded from the
dataset. In addition, one male TD participant had to be excluded as
technical issues led to data distortion. Therefore, the final sample was
composed by 13 TD (9 female, 4 male, age M = 23.31, SD = 2.39)
and 6 ASD (3 female, 3 male, age M = 28.83, SD = 8.98) participants
(N = 19). Descriptive statistics can be found in Table 1.

5 RESULTS

5.1 Analysis Strategy
To analyse collected data for a balanced group comparison that is
better applicable to machine learning classification approaches, six TD
participants (3 female, 3 male, age M = 23.16, SD = 2.0) were case-
wise matched to ASD participants based on age, IQ, and gender, see
Table 1. T-test results showed that participants could be matched on the
basis of gender and IQ scores, see Table 2). For the age, Levene’s test
was significant (p < .05) suggesting a violation of the equal variance
assumption.

Additionally, a separate analysis based on matching the 6 ASD
participants with 6 randomly chosen TD participants was conducted
(see Table 1). Table 3 shows that the gender and IQ scores in random
selection matched between the two groups, but the age did not. In the
following we report both, the ASD vs. matched TD control comparison
as well as ASD vs. random TD control comparison.

5.2 Descriptive Analysis and Comparisons
As expected, both groups showed differences in the AQ and EQ tests:
the autistic individuals and the TD individuals in the matched data
set comparison did defer in autistic traits (AQ: t(10) = 2.09, p =
.064, Cohen′s d = 1.204, 95% CI from 0.066 to 2.425) but not to
a significant level, however did significantly differ in empathy skills
(EQ: t(10) = −2.48, p = .033, d = −1.429, 95% CI from −2.692
to −0.113). In the random data set comparison, the groups deferred
significantly in both constructs (AQ: t(10) = 2.70, p = .022, d =
1.557, 95% CI from 0.212 to 2.846; EQ: t(10) = −2.43 p = .035, d
= −1.404, 95% CI from −2.661 to −0.093). Analysis of nonverbal
behavior data collected during the monologues of the VR simulation
was compared in between the two groups for both the matched and the
random data set. As expected, the differences in gaze behavior were
significant regarding the average dwell time on the eyes (matched group

95% CI
t d f p Cohen′s d Lower U pper

Gender 0.542 10.00 0.599 0.313 -0.834 1.445
Age 1.398 10.00 0.192 0.807 -0.395 1.973
Verbal IQ 1.210 10.00 0.254 0.699 -0.489 1.854
Non-verbal IQ -0.400 10.00 0.698 -0.231 -1.361 0.911

Table 3. T-test results (random set).
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Fig. 9. AOI dwell times. The average dwell time on AOIs of the matched
and the random set of participants. Note: Graphs denote M±SE. Aster-
isks denote significant differences resulting from Student independent
t-tests. * indicate p− value < .05, ** indicate p− value < .01, *** indicate
p− value < .001

comparison: t(10) = −3.64, p = .005, d = −2.103, 95% CI from -
3.523 to -0.620; random group comparison: t(10) =−4.17, p = .002,
d = −2.405, 95% CI from −3.909 to −0.837) and the background
(matched group comparison: t(10) = 4.32, p = .002, d = 2.494, 95%
CI from 0.900 to 4.025; random group comparison: t(10) = 5.19,
p < .001, d = 2.997, 95% CI from 1.246 to 4.685), see Fig. 9. Results
suggest a gaze shift towards the background for the ASD participants,
whereas their focus on the eye region is reduced. However, we did
not find the expected longer focus on the mouth region (p > .05). The
differences in gaze shifts of the focus point in head-relative 3D space
were not significant regarding X-axis (matched group comparison:
t(10) = 0.46, p = .657, d = 0.265, 95% CI from −0.879 to 1.395;
random group comparison: t(10) = 1.53, p = .157, d = 0.883, 95%
CI from −0.331 to 2.057), Y-axis for the matched group comparison
(t(10) = 1.71, p = .118, d = 0.987, 95% CI from −0.244 to 2.175) but
significant for the random group comparison (t(10) = 2.612, p = .026,
d = 1.508, 95% CI from 0.174 to 2.786), and again, non-significant
for Z-axis (matched group comparison: t(10) = 1.13, p = .286, d
= 0.650, 95% CI from −0.531 to 1.801; random group comparison:
t(10) = 2.18, p = .054, d = 1.259, 95% CI from −0.022 to 2.490), see
Fig. 10. Finally, the differences in head rotation were not significant
regarding X-axis for the matched group comparison (t(10) = 1.08,
p = .305, d = 0.625, 95% CI from −0.553 to 1.774), but significant
for the random group comparison (t(10) = 2.32, p = .043, d = 1.342,
95% CI from 0.044 to 2.587) and non-significant for Y-axis (matched
group comparison: t(10) = 0.76, p = .468, d = 0.436, 95% CI from
−0.722 to 1.573; random group comparison: t(10) = 1.84, p = .096,
d = 1.062, 95% CI from −0.182 to 2.260, and Z-axis (matched group
comparison: t(10) = 0.17, p = .871, d = 0.096, 95% CI from −1.038
to 1.226; random group comparison: t(10)= 0.69, p= .509, d = 0.396,
95% CI from −0.758 to 1.531), see Fig. 11.

5.3 Preprocessing

Data files collected during the experiment were preprocessed. Foremost,
we removed any invalid data due to tracking (system) errors. Invalid
data for example arises when the tracker can not detect eye movement.
The average amount of invalid data detected during the testing phase of
the simulation and also the user study is less than 10% of the collected
data frames per simulation (ASD: 6.7%, matched controls: 8.87%,
random controls: 6.76%). We removed this data from the dataset. To
validate approaches of previous works [23, 58], we transformed gaze
vectors to present the gaze shift in local coordinate space and calculated

Fig. 10. Gaze shifts. The averages of the absolutes of the sum of gaze
shifts of the focus point in 3D space relative to the head orientation
(i.e., local translation) of the matched and the random set of participants.
Note: Graphs denote M±SE. Values represent vector values not axis
rotations. Z equals to the view direction, Y is the up axis. Asterisks
denote significant differences resulting from Student independent t-tests.
* indicate p− value < .05, ** indicate p− value < .01, *** indicate p−
value < .001

gaze averages and further calculated averages for all features.
A similar approach was followed for the time series (i.e., individual

monologue) based data set that were analyzed using a LSTM classifica-
tion approach. We separated each monologue during the simulation and
calculated the averages. An overview of the preprocessing is provided
in Fig. 12. Most machine learning algorithms have difficulty handling
largely varying scales of input features. Therefore, we scaled the data
for all features in a limited range by min-max scaling, as it transforms
all values to the range [0,1], which is the expected input for most neural
network algorithms [26].

5.4 Classification
We used similar parameters for the logistic regression, support vector
machine, and neural network than previous work. We further imple-
mented an LSTM based on the data of the individual monologues. We
chose a sigmoid activation function and binary cross entropy as loss
function, and a stochastic gradient descent (SGD) as optimizer. The
training set consisted of 80% of the available data while the test set eval-
uated for validation contains the remaining 20%. Both sets contained
an equal amount of TD control and ASD sample data. The machine
learning pipeline is depicted in Fig. 13.

5.4.1 Validation of Previous Findings
In order to quantify results of previous work and compare results of
this thesis, previously implemented algorithms of a similar setting are
tested on the new data [58]. In named study, autism is classified through
application of three different types of machine learning algorithms,
including logistic regression, a support vector machine and a neural
network.

Each algorithm was evaluated applying 5-fold cross validation.
The logistic regression model was trained on all extracted features.

Results from training the model on data collected during the user
study, reveal an average accuracy of 80% (SD = 0.4), sensitivity of
80% (SD = 0.4) and specificity of 80% (SD = 0.4), with C = 0.5 and
a maximum of 5000 iterations for the matched data set as well as the
random data set.

Training the support vector machine on data from the user study
achieves an average accuracy of 63.3% (SD = 0.306), sensitivity of
80% (SD = 0.4) and specificity of 60% (SD = 0.49) for the matched
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Fig. 11. Head motion. Sum of the total head rotation averages per group
for each axis. Z equals to the view direction, Y is the up axis (i.e., captures
the horizontal head rotation). Note: Graphs denote M ±SE. Asterisks
denote significant differences resulting from Student independent t-tests.
* indicate p− value < .05, ** indicate p− value < .01, *** indicate p−
value < .001

data set and an accuracy of 80% (SD = 0.4), sensitivity of 80%
(SD = 0.4) and specificity of 80% (SD = 0.4) for the random data set.
Parameters for the matched set were γ = 0.001, C = 9.9 and γ = 0.009,
C = 9.9 for the random set.

An neural network consisting of one hidden layer achieved an
accuracy of 76.7% (SD = 0.29), sensitivity of 80% (SD = 0.40)
and specificity of 70% (SD = 0.40) for the matched data set with
hidden layer size = 5. An accuracy of 93.30% (SD = 0.13), sen-
sitivity of 80% (SD = 0.40) and specificity of 1.0 (SD = 0.00) for
the random data set is achieved with hidden layer size = 6. On the
other hand, an average accuracy of 86.70% (SD = 0.16), sensitivity
of 70% (SD = 0.40) and specificity of 100% (SD = 0.00) is achieved
with hidden layer size = (6,21) for user study data matched set is
achieved by an ANN consisting of two hidden layers and an accuracy
of 93.30% (SD = 0.13), sensitivity of 80% (SD = 0.40), specificity of
100% (SD = 0.00) and hidden layer size = (7,23) is achieved for the
random set. Accuracy results are compared in Table 4

Testing previous algorithms on a data set not consisting of averages
of the full conversation but by evaluating each conversation of the
simulation separately reveals a more defined accuracy (see Table 5).
The new data consists of a total of 60 sets instead of 12 as the simulation
consists of five monologues.

5.4.2 Classification Using a LSTM

An LSTM network consisting of a single hidden layer was implemented.
The best parameters for learning rate (0.1) and epochs (250) were
chosen by test and evaluation. The LSTM achieved an accuracy of
100%, sensistivity of 83.0% and a specificity of 99.1% and 98.9% on
all features, equally for the matched and random data set.

ASD vs. Matched TD ASD vs. Random TD

Logistic Regr. 0.80 (0.40) 0.80 (0.40)
SVM 0.80 (0.31) 0.80 (0.40)
MLP 1 Layer 0.77 (0.29) 0.93 (0.13)
MLP 2 Layer 0.87 (0.17) 0.93 (0.13)

Table 4. Accuracy M (SD) for each approach based on the evaluation of
the averages of the full data set.

Fig. 12. Preprocessing. Overview of the data preprocessing including
exclusion of invalid data and average calculation.

Feature Analysis In order to reduce computing time and increase
accuracy, it is beneficial to look at different smaller feature combina-
tions separately instead of evaluating the LSTM on all features at once.
Some features might be stronger indicators for autism than others and
some might not show a significant difference between the two groups.
Those could in turn be left out of the calculation, saving computing
time in the process. Accuracy is calculated for all possible two and
three feature combinations of the 27 features of the collected data. The
accuracy the algorithm can achieve is calculated for each single feature
as well. In Table 6 and Table 7 some examples of feature combinations
of two and three for the matched data set can be seen. Evaluation on
the random data set shows similar results, see Table 8 and Table 9.
Combinations of features that include one of the AOIs in general per-
form better than combinations of features only consisting of position
or rotation features. However, there is no clear combination winner in
the two evaluations taking into account two features. Evaluation of one
single feature achieved the highest accuracy for Background and Eye
(see Table 10) for the matched data set and for only Background for the
random data set.

Multilayer LSTM A multilayer neural network is expected to im-
prove accuracy compared to a single layer network for large amounts
of data and may reduce over-fitting. As the amount of data in this
study is limited, the outcome may not pose a significant difference.
Including a second layer in the model resulted in an accuracy of
100%, a sensitivity of 82.9% and a specificity of 98.7% for classi-
fying autism correctly on the matched and an accuracy of 100%, a
sensitivity of 81.4% and a specificity of 93.1% for the random data set,
with learning rate = 0.1 and number o f epochs = 250 for both sets
and thus even under-performed the single layer approach regarding the

ASD vs. Matched TD ASD vs. Random TD

Logistic Regr. 0.93 (0.10) 0.93 (0.10)
SVM 0.93 (0.10) 0.95 (0.10)
MLP 1 Layer 0.97 (0.04) 0.97 (0.04)
MLP 2 Layer 0.98 (0.03) 0.98 (0.03)

Table 5. Accuracy M (SD) for each approach based on the evaluation of
the averages of each monologue.
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Fig. 13. Classification procedure. Representation of the machine
learning pipeline depicting data preparation and evaluation of applied
algorithms.

Features Accuracy

(Background, Eye) 1.0
(Head, Gaze Vector Y) 1.0
(Mouth, Gaze Vector Y) 0.93
(Head Position Z, Left Hand Position Z) 0.87

Table 6. Accuracy of classification evaluating on possible two feature
combinations for matched data set.

key performance indicators. However, we expect this approach to be
more beneficial with larger data sets and the performance achieved can
be considered sufficient for an assistive tool.

6 DISCUSSION

In this paper, we present a VR-based system that could act as an
assistive screening tool in objectively supporting the diagnosis of ASD
and report on its evaluation. The simulation exposes the user to a
social situation with an embodied virtual agent. We record resulting
nonverbal behavior parameters of the user and use those to perform a
classification judgement. With different approaches, we could reach
accuracies up to 100% with our (limited) samples. While the sample
size limits the generalizability of the approach due to the lack of a large
general population representation, we interpret these results as very
promising. Our procedure is not invasive, and we assume that, when
put into practice, a screening test with this procedure would not take
more than approximately 45 minutes till a result could be obtained.

Our subjacent research goal was to investigate whether and to what
degree VR technology can support the ASD detection process by au-
tomatically distinguishing behavior and gaze characteristics between
TD individuals and individuals with autism through VR and nonverbal
pattern analysis/pattern classification techniques. In this regard, we
are the first to show the successful implementation of a VR driven

Features Accuracy

(Background, Mouth, Head Position X) 1.0
(Background, Eye, Gaze Vector Y) 1.0
(Left Hand, Mouth, Eye) 1.0
(Head Position Z, Gaze Vector Z, Right Hand Position X) 0.87

Table 7. Accuracy of classification evaluating on possible three feature
combinations for matched data set.

Features Accuracy

(Background, Head) 1.0
(Eye, Gaze Vector Y) 1.0
(Gaze Vector Y, Right Hand Rotation X) 0.93
(Head Position Z, Left Hand Rotation X) 0.87

Table 8. Accuracy of classification evaluating on possible two feature
combinations for random data set.

Features Accuracy

(Background, Left Hand, Mouth) 1.0
(Background, Head, Gaze Vector Y) 1.0
(Background, Head, Eye) 1.0
(Head Position Y, Left Hand Rotation Y, Left Hand Rotation Z) 0.87

Table 9. Accuracy of classification evaluating on possible three feature
combinations for random data set.

screening tool and thus argue that found supporting results indicating
a positive answer to our RQ 1: Can we classify ASD on the basis of
the expressed nonverbal behavior (gaze, voice, headmotion) acquired
through an patient-agent system?, although not without limitations.

Our results show strong differences in the mean fixation times in the
eye region of the virtual agent and the background region of the grocery
shop can be observed between participants with autism and TD indi-
viduals. Contrary to previous studies [49, 58] that showed differences
in focus times of the mouth area, we did not observe a significant dif-
ference in this measure. One interpretation may be that in relation, the
overall focus of ASD participants was mainly the background area such
that the head and head area generally did not receive much attention at
all, because sufficient context cues where available to avoid this area
completely. We can thus only partially support H1: there is a difference
in mean fixation times on the eyes area, mouth area and the background
during social interaction with a virtual character between ASD and TD
individuals. However, we implemented and confirmed other indicators
that can contribute to the screening, such as the head position and the
gaze vector in 3D space, that confirms the results found in a previous
study [58]. To this end, non-verbal gaze behavior has been shown
to be a notable factor in the recognition of autistic features and has
been investigated for many years [19, 34]. Previous works investigated
a desktop-based virtual environment prototype that classifies autism
and thus revealed significant results in distinguishing between the two
groups of adult subjects with respect to their gaze pattern, with high
categorisation accuracies (up to 92.9%) [58]. Yet, previous works have
been using either a a) a still picture based assessment or b) a dyadic
interaction assessment, which may a) not account for the full and subtle
dynamics of social interaction or b) require two participants or one
participant and a therapist to be part of the procedure. With the present
system and study we could substitute one participant posed by an avatar
with an embodied virtual agent and minimise the setting requirements
to a one person configuration, maintaining and confirming the previous
works’ performance and increase the level of accuracy and other key
performance indicators. In comparison to previous work, we could
also use a large percentage of the data collected without invalid data
points, since the tracker is fixed to the head and integrated in the HMD,
accounting for changes in head orientation that would lead to errors
with regular desktop trackers.

A recent review suggest that receiving an autism diagnosis has a sig-
nificant emotional impact on adults and that accessibility and processes
are inconsistent [30]. Moreover, earlier diagnosis could prevent sec-
ondary mental health problems in this population [29]. We believe that
the present study could assist this processes and improve non-objective
and time consuming standard assessments. This study also contributes
to the field of diagnosis research evidences, one of the ten priority
areas for autism research [14]. We believe that a tool, such as ours,
could not only be extended to include a broader population, but also
to distinguish and identify other social and communicative disorders,
such as Borderline or Schizophrenia, that manifest in differences and
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Feature Accuracy Accuracy
Matched TD controls Random TD controls

Background 1.00 1.00
Eye 1.00 0.73
Head 0.53 0.33
Mouth 0.33 0.33
Left Hand 0.33 0.33
Right Hand 0.33 0.33
Head Position X 0.33 0.33
Head Position Y 0.40 0.40
Head Position Z 0.86 0.33
Head Rotation X 0.33 0.33
Head Rotation Y 0.33 0.33
Head Rotation Z 0.33 0.33
Gaze Vector X 0.33 0.60
Gaze Vector Y 0.93 0.73
Gaze Vector Z 0.80 0.33
Left Hand Position X 0.46 0.46
Left Hand Position Y 0.33 0.33
Left Hand Position Z 0.93 0.66
Left Hand Rotation X 0.33 0.93
Left Hand Rotation Y 0.80 0.46
Left Hand Rotation Z 0.33 0.59
Right Hand Position X 0.33 0.33
Right Hand Position Y 0.60 0.33
Right Hand Position Z 0.33 0.33
Right Hand Rotation X 0.33 0.33
Right Hand Rotation Y 0.33 0.33
Right Hand Rotation Z 0.33 0.33

Table 10. Accuracy of classification evaluating on single feature for the
matched TD control and the random TD control data set.

altered patterns of social and nonverbal behavior in everyday life.
In particular, we believe that including a tool such as the proposed

one in a screening procedure could substantially i) reduce the waiting
time by speeding up the initial procedure and pathway decision process,
ii) reduce the patient and medical system costs, and iii) provide addi-
tional certainty and assurance to the therapist and is superior to other
subjective questionnaire assessments.

6.1 Limitations
Of course, our study and results cannot be blindly generalized and
are not without limitations. We recognise that the sample size of the
present study is an obvious limitation, that keeps from generalizing the
findings to be applicable to diverse screening populations. In addition,
the limited sample size poses the risk of introducing overfitting in the
neural network. Therefore, the results presented should be interpreted
with caution and future research should be conducted to significantly
increase the sample size to support and corroborate the results shown.
Future recruitment may also consider the diversity of the population
included, including patients with disorders that are related in the behav-
ior manifestations. In addition, our TD sample was not screened and
therefore we cannot exclude that participant with mental disorders are
present in the sample (above or below the average percentage in the
general population). However, all TD participants stated that there is
no presence of any disorders.

Further, in the present study we only included adult participants
with no intellectual impairments. Thereby, future research should both
include a wider age range and individuals with different cognitive styles.
In this regard however, it is necessary to change and redesign the 3D
environment and simulation accordingly. Yet, our scenario and simu-
lation principle offers dynamics to simplify the task or environment
to a degree understandable for people with intellectual deficits and
children in developing ages. Finally, our agent is not yet capable of
initiating and maintaining bidirectional, i.e., interactive, social commu-
nication. Future work may include such interaction either by a screen
based dialogue and answer selection or by simplified yes and no an-
swers recognized with speech recognition. However, from the current
data, we do see that differences can be shown even with the simplified
interaction type we implemented.

Fig. 14. Future work. Left: current environment. Right: Prototype of a
potential adaptation of the scenario to younger samples.

6.2 Future Work
In future works, we aim to mitigate our limitations, to increase the
sample size and include other disorders that manifest in behavioral
differences. In that regard, our goal is to look for deep ML methods
to be applied, such as by including the whole time series of the data
collections. That would potentially enable another dimension, i.e.
frame dependent measures, and may allow distinguishing between
subtle differences in disorder types, or classify the severity within one
neurodevelopmental disorder. Furthermore, we aim at adjusting our
simulation characteristics for other populations, such as children, since
it is especially important to have a diagnosis as soon as possible in order
to establish interventions. Figure 14 presents a first impression on how
style and simulation could be adapted for younger aged populations.
The impact of the level of fidelty and naturalness of the communication
behavior of the virtual agent leaves room for future endeavors. While
our interaction was simplistic, it may be the target of future research to
investigate more natural interactions, potentially allowing for a more
realistic bidirectional communication and interaction. A more natural
communication using a wizard of oz paradigm or a more intelligent
agent may even improve the present results and system’s performance.
To this regard, future work may also consider to vary the number
of agents and their proxemics, which was not subject of the current
investigation. Rather, the interpersonal distance was chosen by an
estimate of what would feel natural and physically sound. Finally,
future research should also aim to clinically validate the presented
screening tool, pursuing to classify the severity of the disorder.

7 CONCLUSION

Our proposed VR system for autism classifcation and the presented
evaluation results showed that the system is capable of a nonverbal
behavior pattern classification between autistic and typically developed
individuals with a high accuracy, sensitivity, and specificity. Confirm-
ing previous studies, focus behavior as well as gaze movement were
strong features. Our system could not only assist diagnostic procedures
of autism but be extended and used for the assessment of other com-
municative and social disorders. We are convinced that our system
could be successfully deployed as an assistive tool in the screening and
diagnosis procedures to reduce waiting times and costs, as well as to
provide an objective method of assessment.
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[25] M. González-Franco, D. Pérez-Marcos, B. Spanlang, and M. Slater. The
contribution of real-time mirror reflections of motor actions on virtual body
ownership in an immersive virtual environment. In 2010 IEEE Virtual
Reality Conference (VR), pp. 111–114, Mar. 2010. ISSN: 2375-5334. doi:
10.1109/VR.2010.5444805
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