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Abstract— Building footprint generation is a vital task in a
wide range of applications, including, to name a few, land use
management, urban planning and monitoring, and geographical
database updating. Most existing approaches addressing this
problem fall back on convolutional neural networks (CNNs)
to learn semantic masks of buildings. However, one limitation
of their results is blurred building boundaries. To address
this, we propose to learn attraction field representation for
building boundaries, which is capable of providing an enhanced
representation power. Our method comprises two elemental
modules: an Img2AFM module and an AFM2Mask module.
More specifically, the former aims at learning an attraction
field representation conditioned on an input image, which is
capable of enhancing building boundaries and suppressing the
background. The latter module predicts segmentation masks of
buildings using the learned attraction field map. The proposed
method is evaluated on three datasets with different spatial
resolutions: the ISPRS dataset, the INRIA dataset, and the Planet
dataset. From experimental results, we find that the proposed
framework can well preserve geometric shapes and sharp bound-
aries of buildings, which brings significant improvements over
other competitors. The trained model and code are available at
https://github.com/lqycrystal/AFM_building.

Index Terms— Attraction field map (AFM), building footprint,
convolutional neural network (CNN), semantic segmentation.
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I. INTRODUCTION

AUTOMATIC building footprint generation from remote
sensing data has been of great interest in the community

for a range of applications, such as land use management,
urban planning and monitoring, and disaster management.
However, accurate and reliable building footprint generation
remains particularly challenging due to two reasons. On the
one hand, different materials and structures lead to large vari-
ations of buildings in terms of color, shape, size, and texture.
On the other hand, buildings and other man-made objects (e.g.,
roads and sidewalks) share similar spectral signatures, which
can result in a low between-class variability.

Early efforts have been gone into seeking out hand-crafted
features of being to effectively exploit spectral, structural,
and context information. For example, Huang et al. [1] pro-
pose a framework for automatic building extraction, which
utilizes spectral, geometrical, and contextual features extracted
from imagery. Nonetheless, these methods still fail to satisfy
accuracy requirements because they rely on a heuristic fea-
ture design procedure and usually have poor generalization
capabilities.

More recently, convolutional neural networks (CNNs)
have surpassed traditional methods in many remote sensing
tasks [2]–[10]. CNNs can directly learn feature representations
from the raw data; thus, they provide an end-to-end solution
to generate building footprints from remote sensing data. Most
of the studies in this field assign a label “building” or “non-
building” to every pixel in the image, thus yielding semantic
masks of buildings. The existing CNNs seem to be able to
deliver very promising segmentation results for the purpose
of building footprint generation at a large scale (cf. Fig. 1).
However, when we zoom in on some segmentation masks (see
results from U-Net [11] in Fig. 1), it can be clearly seen that
such results are not that perfect, and the boundaries of some
buildings are blurred.

We have observed that buildings usually have clear patterns
(e.g., corners and straight lines). Therefore, geometric primi-
tives of buildings can be exploited as the most distinguishable
features for extraction purposes. There have been several
works based on this idea [12]–[15]. In this work, we want to
exploit building boundaries as a primary visual cue to achieve
our task.
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Fig. 1. Building footprints generated by U-Net [11] and our proposed method
(U-Net with attraction field representation) at large scale and two zoomed in
areas.

Fig. 2. (a) Satellite imagery, and the AFMs in both (b) x- and (c) y-directions
estimated by our method.

Recently, attraction field representation is used for the task
of line segment detection in computer vision [16], which seeks
the most attractive line segment for each pixel. Our observation
is that, when building boundaries in remote sensing images
are represented by the attraction field, they can be greatly
enhanced, while background clutters (e.g., car, courtyard, and
road) are suppressed. Fig. 2 shows an example. Motivated by
this observation, in this work, we want to make use of the
attraction field to represent buildings and propose an end-to-
end trainable network for automatic building footprint gener-
ation. This network consists of two modules: Img2AFM and
AFM2Mask. The former takes as input an image and is respon-
sible for learning a corresponding attraction field map (AFM)
using a CNN. By doing so, fine-grained building boundaries
can be preserved, and the impact of background clutters can
be alleviated. The latter module learns another subnetwork to
obtain semantic masks of buildings from augmented building
edges in the learned AFM. Note that both these two modules
are jointly optimized. In addition, the AFM2Mask module
is flexible enough to use different semantic segmentation
network architectures.

This work’s contributions are threefold.
1) We propose to use the boundary-aware attraction field to

represent building footprints in remote sensing images.
This helps to enhance building boundaries while sup-
pressing the impact of background clutters. To the best
of our knowledge, it is the first work that utilizes
the attraction field for the task of building footprint
generation.

2) We propose a novel network that first learns an AFM
by a subnetwork, termed Img2AFM, and then uses
another subnetwork called AFM2Mask to reconstruct

segmentation masks of buildings. These two modules
are trained in an end-to-end fashion.

3) The proposed framework obtains satisfactory perfor-
mance on three datasets with different spatial resolu-
tions, including ISPRS, INRIA, and Planet datasets.
Compared with naive semantic segmentation networks
and networks with other visual cues (e.g., building
boundary maps), our method can significantly improve
accuracies in terms of both semantic mask and boundary.

The remainder of this article is organized as follows. Related
work is reviewed in Section II. Section III details the proposed
framework for building footprint generation. The experiments
are described in Section IV. Results and discussion are pro-
vided in Section V. Eventually, Section VI summarizes this
work.

II. RELATED WORK

There are a significant number of studies working on
building footprint generation from remote sensing imagery.
According to used visual cues, they can be categorized into
three classes: semantic mask, corner, and boundary of the
building.

A. Building Footprint Generation Based on the Semantic
Mask

Most methods for building footprint generation involve
learning semantic masks of buildings from remote sensing
imagery. Early efforts include segmentation-, classification-,
and index-based methods. The segmentation-based methods
extract buildings using image segmentation algorithms. For
example, based on a two-level graph theory, Ok [17] proposes
a segmentation approach to identify building regions. For
classification-based methods, building masks are extracted by
machine-learning classifiers which take spectral information
and/or spatial features as input to make a prediction for each
pixel. For instance, Turker and Koc-San [18] utilize a support
vector machine (SVM) to identify building regions based
on spectral bands and the normalized difference vegetation
index (NDVI). The objective of index-based approaches is
to design a feature index that can be directly applied to
obtain building regions without any classification or segmen-
tation process. Morphological building index (MBI) [19] is
a widely used one, and this index integrates multiscale and
multidirectional morphological operators. However, a general
limitation of these early works is the use of handcrafted fea-
tures and complex feature engineering, which leads to a poor
generalization.

Instead of the heuristic design of features, CNNs can
offer a better generalization capability. Driven by recent
advances in semantic segmentation networks, results of build-
ing footprint generation have been significantly improved.
These networks are usually fully convolutional network
(FCN) [20] and encoder–decoder architecture, such as
U-Net [11], SegNet [21], and FC-DenseNet [22]. In [23],
FCN has been demonstrated to be effective in processing
large amounts of remote sensing data and providing reliable
building segmentation results. SegNet is used in [24] to
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generate the first seamless building footprint map for the
United States. In order to improve the accuracy of segmenting
large buildings, a U-Net-based architecture is proposed in [25],
where original images and their downsampled counterparts are
taken as inputs of two branches sharing the same weights.
In [26], an adversarial training strategy is proposed for build-
ing extraction from remote sensing imagery, and FC-DenseNet
is exploited as a base semantic segmentation network to
generate accurate building footprints.

However, many experiments show that predicted semantic
masks of buildings from CNNs are still not that satisfactory,
where building boundaries are blurred. In this regard, signed-
distance transform (SDT) [27] is proposed to represent build-
ing footprints. The signed-distance function value is derived
as the distance from a pixel to its closest point on a building
boundary; positive values indicate the interior of a building
and negative values otherwise. Then, the learning problem of
the SDT representation can be regarded as a multiclass clas-
sification problem, which categorizes signed-distance values
into a certain number of classes [24]. Compared to the widely
used binary building mask, SDT can encode more fine-grained
information for network learning.

B. Building Footprint Generation Based on the Corner

Some algorithms generate building footprints based on
geometrical primitives, such as building corners. In these
methods, geometric primitives are first detected and then
grouped together to reconstruct individual building hypotheses.
A building corner refers to a point with its local neighborhoods
in two varying line segment directions and is invariant to trans-
lation, rotation, and illumination [28]. Early studies extract
building corners with the help of some point feature opera-
tors, such as Harris corner detector [29] and scale-invariant
feature transform (SIFT) operator [30]. Cote and Saeedi [12]
and Zangrandi et al. [31] employ a Harris corner detector to
extract corner points of buildings. Afterward, these detected
corner points are connected in the order of their polar angles
with respect to building central markers. By doing so, polyg-
onal representations of buildings can be constructed. In [32],
SIFT is exploited to extract corners that are regarded as seed
points to estimate rectangle shapes of buildings with a region
growing method.

With the development of keypoint detection networks,
several novel studies propose to delineate building footprints
by detecting corner points using CNNs. PolyMapper [33]
extracts corner points with a CNN in the first stage and
then connects them by a recurrent neural network (RNN)
to realize closed polygon representations of individual build-
ings. The other research [34] utilizes the same pipeline as
PolyMapper [33], and various blocks are integrated to enhance
the feature extraction and object detection modules. Another
method [13] also exploits a CNN to detect corners but adopts
a fully geometric-based grouping strategy without any deep
feature learning. Recently, Girard’s method [35] proposes to
learn a frame field output instead of building corners. The
frame field is regarded as a geometric feature that can help to
improve the segmentation of buildings.

C. Building Footprint Generation Based on the Boundary

Building boundary is another commonly used geometric
primitive and can be taken as a primary visual cue to generate
building footprints. Early works extract building boundaries
from remote sensing data in two steps. Given that lines
are strongly relevant to building boundaries, the first step is
to detect line segments. Afterward, the extracted lines are
grouped to form closed boundaries for individual buildings.
A commonly used line detection algorithm is the Hough
transformation [36] that utilizes a voting procedure to find
straight lines in parameter space. Compared with the Hough
transformation, the Burns algorithm [37] only uses gradient
orientations and, therefore, requires a relatively lower compu-
tation cost. In [14] and [38], line segment sets are extracted
with the Hough transformation and the Burns algorithm. Then,
intersection nodes of the two line segment sets are employed
to build a structural graph. Finally, building boundaries are
identified with a graph search algorithm. However, both Hough
transformation and Burns algorithm highly depend on para-
meter settings and have a very high false alarm rate. In this
regard, EDLines [39] are proposed to avoid parameter tuning.
Moreover, it has a faster computation speed and a lower false
alarm rate. In [40] and [41], EDLines are, therefore, adopted
for the automatic extraction of line segments, but they make
use of different strategies to group these line segments.

These early works still encounter issues when dealing with
more complex building shapes and large-scale applications.
Considering that, nowadays, CNNs are the de facto lead-
ing approach for building footprint generation tasks, two
novel works, [15] and [42], propose to learn building bound-
aries in their end-to-end CNNs. Marcos et al. [15] present
a method termed deep structured active contours (DSACs),
which learns active contour model (ACM) [43] parameteriza-
tions per instance using a CNN. Although DSAC improves
geometric correctness, results are still not that satisfactory,
e.g., there exist blob-like shapes and some self-intersections
of building. Besides, the representation of boundary points
in DSAC adopts Euclidean coordinates, which leads to extra
computational overheads during energy minimization. On this
point, another research [42] proposes to use polar coordinates,
as this can not only simplify the energy function but also
prevent self-intersection. However, these two methods still
have two limitations. On the one hand, the initialization of
them relies on external methods that are not included in an
end-to-end learning process. On the other hand, their results
are promising only in very high-resolution remote sensing
images where strong geometric priors exist.

III. METHODOLOGY

In this work, we explicitly take building boundaries as a
primary visual cue. By doing so, building footprint generation
tasks can be benefited from the precise delineation of building
boundaries. In this section, an overview of the proposed
approach is first presented. Then, two key modules, Img2AFM
and AFM2Mask, are introduced in detail, respectively. Finally,
the method of integrating and jointly optimizing the two
modules in an end-to-end architecture is described.
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Fig. 3. Overview of the proposed framework. The Img2AFM module takes an image as input and outputs two AFMs in x- and y-directions. Afterward,
the output is then fed into the AFM2Mask module along with the input image to generate a building mask. Notable that these two modules are trained in an
end-to-end fashion.

A. Overview

As shown in Fig. 3, the proposed method consists of two
modules. The Img2AFM module exploits a U-Net architec-
ture to learn the attraction field representation, which can
enhance building boundaries and suppress background clut-
ters. It takes an image as input and outputs two AFMs in
x- and y-directions. Afterward, the output is then fed into the
AFM2Mask module along with the input image to generate
a building mask. Moreover, the AFM2Mask module is very
flexible to utilize different semantic segmentation networks.
Note that these two modules can be integrated into an end-to-
end framework and optimized jointly. In this way, the optimal
output can be obtained by the coadaptation of these two
modules.

B. Img2AFM Module

1) Definition of Attraction Field Map: An image I can be
regarded a lattice. Let E = {e1, e2, . . . , en} be the set of
building line segments in the image lattice with n being the
number of building line segments. A building line segment
ei is represented by two end points pa

i and pb
i . For the sake

of simplicity, the set E is named boundary map in our case.
The boundary map characterizing all building boundaries in
the ground reference is shown in Fig. 4(c).

For each pixel, we try to find its most “attractive” building
line segment that is the closest to it. Following this criterion,
a region partition map R is formed by partitioning all pixels
into n regions and assigning each pixel x ∈ I to its closest
building line segment. Ri denotes a region for the building line
segment ei in E . Specifically, in order to derive the distance
between a pixel x and a building line segment ei , the pixel x
is first projected to the straight line passing through ei . If the
projection point is not on ei , the nearest endpoint is utilized as
the projection point. The definition of the projection point p� is

p� = pa
i + cx · (pb

i − pa
i

)
. (1)

When cx ∈ (0, 1), p� belongs to the original point-to-line
projection, and if cx = 0 or 1, p� is its nearest endpoint of ei .

Then, the distance d(x, ei) between x and ei can be defined
as the Euclidean distance between the pixel and the projection
point. Then, Ri in the image lattice for ei can be defined as

Ri = {
x | x ∈ I ; d(x, ei) < d

(
x, e j

)∀ j �= i, e j ∈ E
}
. (2)

It should be noted that Ri ∩ R j = ∅ and ∪n
i=1 Ri = R. Fig. 4

shows an example that, for the green building line segment,
its corresponding region partition map is highlighted in green.

Afterward, the geometric property of a building line seg-
ment can be characterized by a 2-D attraction of all individual
pixels in Ri . For instance, the attraction function of the pixel x
in Ri is defined as

ai(x) = p� − x. (3)

When cx ∈ (0, 1), the attraction vector is perpendicular to
the line segment. Fig. 4(d) shows the attraction vectors of the
green line segment.

Finally, by enumerating (3) over all pixels in I , the AFM A
with respect to E can be obtained as follows:

A = {a(x) | x ∈ I }. (4)

The superiority of AFM lies in two aspects compared with
the boundary map used in previous studies (see [15] and [42]).
One is that the geometry of boundaries can be depicted
more precisely by the AFM, while the boundary map is only
characterized by few pixels. Thus, directly learning boundary
maps can lead to a zig-zag effect that results from the extreme
imbalance between the number of boundary pixels and that
of nonboundary pixels. The other benefit is that the AFM
associates each line segment with a support region, which
avoids the blurring effect.

2) Learning Attraction Field Map: Each pixel in the
attraction field representation has two components (x- and
y-directions) that are represented by attraction vectors from
it to its projection point. In this respect, an attraction field
representation can be regarded as a 2-D feature map, which
is feasible to be learned by a network. Hence, in this article,
we view the learning of the AFM as a dense prediction prob-
lem and solve it using a semantic segmentation network archi-
tecture. Among all semantic segmentation networks, U-Net
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Fig. 4. (a) and (b) Semantic masks and boundaries of buildings in an image. (c) and (d) Region partition map and attraction vectors of the green building
line segmentaccording to the method in [16]. (e) Recovered boundary map obtained by the heuristic algorithm in [16].

is more favorable than others for this task. Because learning
the attraction field representation relies heavily on low-level
visual cues (e.g., object edges) that exist in lower layers, and
multiscale skip connections of U-Net are able to effectively use
such information. In fact, in our experiments, we found that
taking other network architectures as the Img2AFM module
fails.

C. AFM2Mask Module

By learning the AFM, a representation encoding build-
ing boundaries can be obtained. Then, we need to remap
the learned AFM into building masks. In [16], a heuristic
algorithm has been proposed to recover line segments from
the AFM. In this heuristic algorithm, attraction vectors are
rearranged mathematically to generate a proposal map of line
segments, and final line segments are then extracted with a
greedy grouping strategy. However, we found that, in our
building footprint generation task, the recovered boundary
map from this algorithm is not satisfactory [cf. Fig. 4(e)]
since there is a relatively high false alarm rate [see short line
segments in Fig. 4(e)]. The reason is that predicted attraction
vectors from CNNs are not mathematically precise enough.
In this case, some potential outliers have been included in
the following heuristic method, which leads to inaccurate
line segment detections. Another reason is that this heuristic
algorithm is not robust to imprecise estimates of the AFM.
Furthermore, it requires a set of heuristics and makes the

whole process inefficient. Therefore, in this work, we propose
to learn this process, i.e., recovering building masks from the
learned AFM, using a network. By doing so, the whole process
can be trained in an end-to-end manner, which makes it more
efficient and robust.

In the AFM2Mask module, the input image and learned
attraction field representation from the previous module are
concatenated as the input to this module. Afterward, the net-
work can directly generate building masks without using math
heuristics (that do not work well in our case). It is noteworthy
that different semantic segmentation network architectures are
quite flexible to be utilized in this module, which makes
full use of the power of state-of-the-art networks to generate
building footprint maps.

D. End-to-End Network Learning

We propose an end-to-end training pipeline for the
supervised learning of our network. More specifically,
the Img2AFM module is appended before the AFM2Mask
module, and the two modules are jointly trained by minimizing
a global loss function. The global loss function L is defined
as follows:

L = L Img2AFM + λ · LAFM2Mask (5)

where L Img2AFM and LAFM2Mask are two loss functions for opti-
mizing the Img2AFM and AFM2Mask modules, respectively.
λ is a hyperparameter to introduce a weight on the second loss
and can model the relative importance of two modules.
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For the first term, an L1 loss function is utilized, and it is
defined as follows:

L Img2AFM =
∑

x∈I

||â(x) − a(x)||1 (6)

where â(x) is the predicted AFM and a(x) is ground reference
AFM for the input image.

For the AFM2Mask module, we make use of a cross entropy
loss function to guide the learning. LAFM2Mask is defined as

LAFM2Mask =
∑
x∈I

{
−log( f (x)) if y = 1

−log(1 − f (x)) if y = 0
(7)

where y is the ground truth of pixel x , y = 1 denotes building,
and y = 0 represents non-building. f (x) ∈ [0, 1] is the output
probability value of x .

In the backward propagation, LAFM2Mask is first backprop-
agated through the AFM2Mask module and then together
with λ · L Img2AFM propagated backward through the Img2AFM
module.

IV. EXPERIMENTS

A. Dataset

We validate the proposed method on three datasets with
different spatial resolutions, i.e., the ISPRS dataset, the INRIA
dataset, and the Planet dataset.

1) ISPRS Dataset: The ISPRS dataset [44] is a benchmark
dataset consisting of 38 tiles of aerial imagery over the city of
Potsdam [cf. Fig. 5(a)]. Each aerial imagery includes 6000 ×
6000 pixels at a spatial resolution of 5 cm/pixel. The provided
ground reference has six land cover classes. In this work,
we only use RGB bands of aerial images, and for the ground
reference, the class of building is a positive class, while the
other five categories are viewed as the class of non-building.
Following the training/validation/test split in [45], 20 tiles
(tile id: 2-10, 2-12, 3-10, 3-11, 3-12, 4-11, 4-12, 5-10, 5-11,
6-7, 6-8, 6-9, 6-10, 6-11, 6-12, 7-7, 7-9, 7-10, 7-11, and 7-12)
are used for training, four tiles (tile id: 7-8, 4-10, 2-11, and
5-11) are for validation, and the remaining 14 tiles are used
to test models.

2) INRIA Dataset: The INRIA dataset [46] is composed
of 360 large-scale aerial images that are collected over ten
different cities. The size of each imagery is 5000 × 5000,
and each image consists of three bands (RGB) at a spatial
resolution of 30 cm/pixel. A sample aerial image is showed
in Fig. 5(b). The ground reference data of this dataset provide
building masks but are only publicly available for five cities
(Austin, Chicago, Kitsap County, Western Tyrol, and Vienna).
In this article, data are split into training and test sets according
to the setup in [46] and [47]. For each city, images with ids 1–5
are used for validation, and the remaining 31 images are for
training. The statistics are derived from the validation set.

3) Planet Dataset: In addition to the aforementioned two
public datasets, we create a Planet dataset by collecting
PlanetScope satellite images and their corresponding building
footprints from OpenStreetMap. The PlanetScope satellite
images are gathered from eight European cities (Munich,
Berlin, Amsterdam, Paris, Cologne, Milan, Rome, and Zurich)

Fig. 5. (a) Aerial imagery in the ISPRS dataset (spatial resolu-
tion: 5 cm/pixel). (b) Aerial image in the INRIA dataset (spatial reso-
lution: 30 cm/pixel). (c) Satellite imagery in the Planet dataset (spatial
resolution: 3 m/pixel).

with three bands (RGB) at 3-m spatial resolution. Compared to
the former two datasets, the Planet dataset is more challenging
due to its coarser spatial resolution. Fig. 5(c) shows an
example of Munich. In our experiment, the image of Munich is
used as the test set to evaluate the performance of models. The
remaining seven cities are utilized as training and validation
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sets. Specifically, for each city, 80% of samples are used for
training, while 20% of samples are for validation purposes.

B. Experiment Setup

Our proposed model consists of two modules in an
end-to-end framework, where the Img2AFM module utilizes a
U-Net to learn the attraction field representation of an image
with respect to building edges, and the AFM2Mask module
can learn building masks from the representation using differ-
ent semantic segmentation networks. To explore the flexibility
of the AFM2Mask module, we select four state-of-the-art
semantic segmentation networks: FCN-8s [20], SegNet [21],
U-Net [11], and FC-DenseNet [22]. The attraction field rep-
resentation encodes the geometric relation between pixels and
building boundaries in an image, and it can be considered
as a variant of distance transform, such as SDT [27] that
measures the distance from the pixel to the boundary. Hence,
we compare our model with existing works [24], [27] learning
SDT representations of buildings. On the other hand, it is
clearly seen that the learned AFMs from the Img2AFM
module can well enhance building boundaries. In this aspect,
the function of the attraction field representation seems to
be similar to other visual cues, such as building boundaries
and SDT masks. Thus, we also compare our network with
two methods, SDT-recursive and boundary-recursive, where,
basically, we incorporate SDT/edge learning into the proposed
framework (cf. Fig. 3). Comparing the proposed approach
and the two models can verify whether the attraction field
representation is effective. Besides, the sensitivity of the hyper-
parameter λ, being the coefficient of loss of the AFM2Mask
module, is investigated.

C. Training Details

Our experiments are conducted within a Pytorch framework
on an NVIDIA Tesla P100 GPU with 16 GB of memory.
For the model training, remote sensing images and their
corresponding ground reference building masks are cropped
into small patches with a size of 256 × 256 pixels. After-
ward, the boundaries, SDT, and AFMs are generated from
the ground-truth building masks for further experiments as a
ground reference in the training set. All models are trained
for 100 epochs, and the optimizer is stochastic gradient
descent (SGD) with a learning rate of 0.00001. The training
batch size of all models is set as 4. The cross-entropy function
is used as the loss function for other competitors.

The configurations of competitors included in experiments
are listed as follows.

1) FCN-8s adopts a VGG16 architecture [48] as the back-
bone.

2) The encoder in SegNet is based on VGG16, and the
decoder utilizes a reversed VGG16 architecture.

3) U-Net is composed of five blocks in both the encoder
and the decoder. Each block in the encoder has two con-
volution layers, and in the decoder, it has one transposed
convolution layer.

4) Both the encoder and the decoder in FC-DenseNet
consist of five dense blocks, and each dense block has
five convolutional layers.

5) For the SDT-based network that directly learns the SDT
representations of buildings, they utilize the aforemen-
tioned four semantic segmentation networks and, finally,
convert the learned SDT representations of buildings to
semantic masks by definition [24], [27].

6) The SDT-recursive model or boundary-recursive model
first utilizes a U-Net to learn the SDT representation or
boundaries of buildings. Afterward, they also utilize the
aforementioned four semantic segmentation networks to
reconstruct semantic masks of building. It should be
noted that the whole method is trained in an end-to-end
fashion.

D. Evaluation Metrics

The performance of models is evaluated from two aspects.
Mask metrics are focused on building masks, while boundary
metrics are exploited to measure the quality of boundaries of
the predicted building masks.

1) Mask Metrics: In our experiments, F1 score and inter-
section over union (IoU) are selected as two mask metrics.
They can be computed as follows:

F1 score = 2 × precision × recall

precision + recall
(8)

IoU = TP

TP + FP + FN
(9)

precision = TP

TP + FP
(10)

recall = TP

TP + FN
(11)

where TP indicates the number of true positives, FN is the
number of false negatives, and FP is the number of false
positives. Notable that these metrics are calculated based on
building pixels rather than building objects. F1 score realizes
a harmonic between precision and recall.

2) Boundary Metrics: In order to assess building
boundaries, structural similarity index (SSIM) [49] and
F-measure [50] are exploited as two evaluation criteria.
SSIM is a measure to calculate the similarity between two
images, which can be used for the quality assessment of
boundaries [51]. Before the calculation of F-measure, building
boundaries are extracted first from predicted semantic masks
by the Sobel edge operator [52]. F-measure is used to score
the boundary and is defined as the geometric mean of the
precision and recall

precision� = TP�

TP� + FP� (12)

recall� = TP�

TP� + FN� (13)

F-measure = 2 × precision� × recall�

precision� + recall�
(14)

where TP� is the number of correctly identified boundary
pixels, FN� is the number of boundary pixels in the ground
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Fig. 6. Predicted results obtained from (a) FCN-8s, (b) FCN-8s-SDT, (c) FCN-8s-SDT-recursive, (d) FCN-8s-boundary-recursive, (e) proposed FCN-8s-AFM,
(f) SegNet, (g) SegNet-SDT, (h) SegNet-SDT-recursive, (i) SegNet-boundary-recursive, (j) proposed SegNet-AFM, (k) U-Net, (l) U-Net-SDT, (m) U-Net-
SDT-recursive, (n) U-Net-boundary-recursive, (o) proposed U-Net-AFM, (p) FC-DenseNet, (q) FC-DenseNet-SDT, (r) FC-DenseNet-SDT-recursive, (s) FC-
DenseNet-boundary-recursive, and (t) proposed FC-DenseNet-AFM. Pixel-based true positives, false positives, and false negatives are marked in white, green,
and red, respectively. (u) and (v) Aerial imagery and ground reference from the ISPRS dataset (spatial resolution: 5 cm/pixel).

reference but being failed to be detected, and FP� is the number
of nonboundary pixels mislabeled as “boundary.”

V. RESULTS AND DISCUSSION

A. Comparison With Other Competitors

The comparisons among the proposed method, naive seman-
tic segmentation networks, SDT-based networks, SDT-learning

methods, and boundary-learning methods are presented in this
section. Their respective performance is evaluated according
to both quantitative (cf. Tables I–III) and qualitative results
(see Figs. 6–8) on three datasets.

Naive semantic segmentation networks that are regarded
as baseline methods are first compared with the proposed
framework. Specifically, we implement four baseline models,
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Fig. 7. Predicted results obtained from (a) FCN-8s, (b) FCN-8s-SDT, (c) FCN-8s-SDT-recursive, (d) FCN-8s-boundary-recursive, (e) proposed
FCN-8s-AFM, (f) SegNet, (g) SegNet-SDT, (h) SegNet-SDT-recursive, (i) SegNet-boundary-recursive, (j) proposed SegNet-AFM, (k) U-Net, (l) U-Net-SDT,
(m) U-Net-SDT-recursive, (n) U-Net-boundary-recursive, (o) proposed U-Net-AFM, (p) FC-DenseNet, (q) FC-DenseNet-SDT, (r) FC-DenseNet-SDT-recursive,
(s) FC-DenseNet-boundary-recursive, and (t) proposed FC-DenseNet-AFM. Pixel-based true positives, false positives, and false negatives are marked in white,
green, and red, respectively. (u) and (v) Aerial imagery and ground reference from the INRIA dataset (spatial resolution: 30 cm/pixel).

i.e., FCN-8s, SegNet, U-Net, and FC-DenseNet. For a fair
comparison, the AFM2Mask module is instantiated with these
four networks separately. It can be seen from the statistics
of three datasets that the proposed approach significantly

boosts performance in both mask and boundary metrics com-
pared with baseline networks. This indicates that the inte-
gration of learning attraction field representation is effective,
and our framework can offer more robust results for the
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Fig. 8. Predicted results obtained from (a) FCN-8s, (b) FCN-8s-SDT, (c) FCN-8s-SDT-recursive, (d) FCN-8s-boundary-recursive, (e) proposed
FCN-8s-AFM, (f) SegNet, (g) SegNet-SDT, (h) SegNet-SDT-recursive, (i) SegNet-boundary-recursive, (j) proposed SegNet-AFM, (k) U-Net, (l) U-Net-SDT,
(m) U-Net-SDT-recursive, (n) U-Net-boundary-recursive, (o) proposed U-Net-AFM, (p) FC-DenseNet, (q) FC-DenseNet-SDT, (r) FC-DenseNet-SDT-recursive,
(s) FC-DenseNet-boundary-recursive, and (t) proposed FC-DenseNet-AFM. Pixel-based true positives, false positives, and false negatives are marked in white,
green, and red, respectively. (u) and (v) Satellite imagery and ground reference from the Planet dataset (spatial resolution: 3 m/pixel).

task of building footprint generation. For the ISPRS dataset
(cf. Table I), our proposed FCN-8s-AFM obtains increments
of 6.65% and 10.1% in F1 score and IoU, respectively.
Moreover, the proposed U-Net-AFM reaches improvements

of 4.65% and 4.18% in SSIM and F-measure, respectively.
The increases in boundary metrics suggest that our method
can better preserve geometric details. The spatial resolution
and image quality of the Planet dataset are much lower
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TABLE I

ACCURACIES (%) OF DIFFERENT NETWORKS FOR BUILDING FOOTPRINT GENERATION IN THE ISPRS DATASET (SPATIAL RESOLUTION: 5 cm/pixel)

TABLE II

ACCURACIES (%) OF DIFFERENT NETWORKS FOR BUILDING FOOTPRINT GENERATION IN THE INRIA DATASET (SPATIAL RESOLUTION: 30 cm/pixel)

than the other two datasets, which may lead to a negative
effect on accurately extracting buildings. In this case, although
improvements in both mask and boundary metrics on the
Planet dataset are less significant than those on the other two
datasets, the nearly 1% gain is still not trivial.

From qualitative results, we can observe that building
boundaries obtained from naive semantic segmentation net-
works are blurred, which is also pointed out in [53]–[55].
The visual comparisons (cf. Figs. 6–8) demonstrate the effec-
tiveness of the proposed method. As illustrated in Fig. 7,
semantic masks provided by naive networks have blob-like
shapes. Even with skip connections that help compensate
spatial details in networks, U-Net and FC-DenseNet fail to

achieve accurate building boundaries. Moreover, this scene
is a residential area, and some consecutive buildings are
identified as a large building by most of the baseline models.
Note that building boundaries produced by our algorithm are
more rectilinear and precise. Even for buildings with complex
structures (cf. Fig. 6 and 8), building footprints generated from
our framework are more adherent to the ground reference.
These observations suggest that our model really benefits from
learning attraction field representation, enabling us to gain
more geometric details of buildings.

The attraction field representation can be considered as a
type of distance transform, which represents the relationship
between the pixel and the boundary. Therefore, we also
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TABLE III

ACCURACIES (%) OF DIFFERENT NETWORKS FOR BUILDING FOOTPRINT GENERATION IN THE PLANET DATASET (SPATIAL RESOLUTION: 3 m/pixel)

take another type of distance transform: SDT as competitors.
One competitor is an SDT-based network that utilizes variant
backbones to learn the SDT representation of buildings and
then convert this representation to semantic masks by defini-
tion [24], [27]. Compared to baseline networks, the SDT-based
network can contribute to the F-measure only on the ISPRS
dataset. However, there are even decreases in mask metrics.
This suggests that directly learning SDT labels as final output
have the potential for the improvement of geometric details
only in remote sensing data with very high resolution (e.g.,
5 cm/pixel). The other competitor is the SDT-recursive model,
which first learns the SDT representation of buildings with
a U-Net and then reconstructs semantic masks by different
backbones. Notable that the whole method is trained in an end-
to-end fashion. The SDT-recursive model that feeds the learned
SDT representations into semantic segmentation networks is
much superior to the SDT-based network, as we can see gains
in both mask and boundary metrics. This may be because the
SDT representation learned from the remote sensing imagery
carries useful information to capture the global semantic
context in semantic segmentation networks, which indicates
the potential of SDT in a recursive learning way for building
footprint generation. It is worthy to note that the performances
of both SDT-based network and SDT-recursive model are more
sensitive to the backbone semantic segmentation networks.
For the ISPRS dataset (see Table III), when the backbone is
FCN-8s, both SDT-based network and SDT-recursive model
can boost the performance. However, the performance of
SegNet-SDT and SegNet-SDT-recursive is worse than that of
SegNet.

The geometric property of building boundaries can be sig-
nificantly enhanced by AFMs (see Fig. 2). From Tables I–III,
it can be observed that our framework can improve results in
terms of both mask and boundary metrics, which confirms that

explicitly encoding geometric information is essential to build-
ing footprint generation tasks. In this regard, we investigate
another competitor, the boundary-recursive model, to further
validate the effectiveness of the attraction field representation.
This method first learns building boundaries from remote
sensing images with a U-Net and then uses them as auxiliary
information to extract building masks by variant semantic
segmentation networks. Notable that these two subnetworks
are jointly optimized. Experimental results show that this
model does not bring this task any benefits in terms of
building boundary quality, and we can see decreases in bound-
ary metrics and more blurred boundaries compared to the
naive semantic segmentation network. This may be because
building boundaries are characterized with very few pixels,
and this class imbalance leads to ambiguity in the network
learning.

By contrast, our method can always provide significant
gains, regardless of which semantic segmentation network
architecture is chosen as the AFM2Mask module, and the
proposed approach outperforms other competitors in most
of the statistical metrics for three datasets. This is due to
two facts. One is that the attraction field representation can
encode geometric properties in 2-D (x- and y-directions),
but SDT only relies on the Euclidean distance and, thus,
characterizes the information in 1-D. This indicates that the
use of the information in different dimensions is more reliable
and accurate. Fig. 9(a) and (b) presents the AFM learned by
the proposed U-Net-AFM, and Fig. 9(c) shows the SDT repre-
sentation learned by U-Net-SDT-recursive. It can be observed
that attraction field representation can better delineate sharp
building boundaries. The other factor is that the attraction
field representation takes the nonboundary pixels into account,
which have addressed the challenges of class imbalance in
boundary-learning methods.
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Fig. 9. (a) AFM (x-axis) and (b) AFM (y-axis) are learned by the proposed method (U-Net-AFM). (c) SDT representation learned by the U-Net-SDT-recursive.
(d) and (e) Aerial imagery and ground reference from the INRIA dataset (spatial resolution: 0.3 m/pixel).

TABLE IV

ACCURACIES (%) OF DIFFERENT COEFFICIENTS OF AFM2MASK LOSS

(λ) FOR BUILDING FOOTPRINT GENERATION IN THE INRIA

DATASET (SPATIAL RESOLUTION: 30 cm/pixel)

B. Analysis of Hyperparameter Tuning

As shown in the results on three datasets, taking U-Net
as the AFM2Mask module can deliver relatively satisfactory
results on all three datasets. Therefore, in this section, we use
U-Net-AFM for further studies. Moreover, the INRIA dataset
is selected as an example dataset to carry out the following
experiments.

In the proposed framework, the global loss function is
utilized to guide the end-to-end learning of building masks
from remote sensing data. This function is a sum of losses
from two separate modules, where the hyperparameter λ is
the coefficient of the AFM2Mask module. Here, λ is set as
three different numbers, i.e., 0.1, 1, and 10, to investigate its
impact on final results.

The statistical results with different values of λ are shown
in Table IV. We can see that our model is insensitive to this
parameter, and networks with all different λ values outperform
the naive U-Net. Furthermore, increasing the value of λ will
lead to a slight reduction in both mask and boundary metrics.
The best result is obtained when λ = 0.1. A small value of
λ indicates more significance of the Img2AFM module than
the AFM2Mask module, which places an emphasis on the
attraction field representation learning in the whole framework.
It can be clearly seen from the Fig. 10 that gradually lowering
λ can reduce false detections. This is mainly because the
attraction field representation can alleviate the impact of
background clutters.

C. Different Methods to Incorporate Attraction Field
Representation

It is worth noting that building boundaries leaned by the pro-
posed method are significantly improved due to the exploita-
tion of attraction field representation. In order to further
explore how to well leverage attraction field representation,

Fig. 10. Results obtained by the proposed method (U-Net-AFM) with
coefficient λ = (a) 0.1, (b) 1, and (c) 10. (d) Result obtained by the naive
U-Net. Pixel-based true positives, false positives, and false negatives are
marked in white, green, and red, respectively. (e) and (f) Corresponding aerial
imagery and ground reference from the INRIA dataset (spatial resolution:
30 cm/pixel).

we investigate another three designs to incorporate this useful
representation in network learning.

1) Srivastava et al. [56]: It uses a U-Net architecture
followed by two separate fully connected layers to
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TABLE V

ACCURACIES (%) OF DIFFERENT DESIGNS FOR THE INCORPORATION OF

ATTRACTION FIELD REPRESENTATION IN THE INRIA DATASET

(SPATIAL RESOLUTION: 30 cm/pixel)

TABLE VI

ACCURACIES (%) OF DIFFERENT METHODS FOR BUILDING

FOOTPRINT GENERATION IN THE ISPRS DATASET

(SPATIAL RESOLUTION: 5 cm/pixel)

learn semantic masks and attraction field representation,
respectively.

2) Bischke et al. [47]: It takes a U-Net as the backbone
and first adds one convolutional layer after the decoder
to learn the attraction field representation. Afterward,
this learned attraction field representation and feature
maps produced by the decoder are concatenated and fed
into another convolutional layer to learn final segmen-
tation masks.

3) Mou and Zhu [57]: It utilizes an encoder and two
separate decoders to jointly optimize two complemen-
tary tasks, namely, building semantic segmentation and
attraction field representation learning. Note that the
architecture of encoder and decoders in this design is
the same as those in U-Net.

The statistical and visual results are reported in Table V and
Fig. 11, respectively. From both mask and boundary metrics
in Table V, all methods have shown superior results than naive
U-Net, which again confirms the significance of attraction
field representation in our task. Among all design options,
the proposed framework has achieved the best performance.
In particular, the F-measure achieved by our approach is
increased by more than 3% when compared to the other
methods. Besides, it can be seen that the building boundaries
and corners learned by the proposed framework are more
accurate than its competitors. This suggests that our approach
is able to effectively leverage information of attraction field
representation, which is attributed to our recursive learning
strategy.

D. Comparison With State-of-the-Art Methods

To verify the superiority of our approach on datasets with
different spatial resolutions, we make a comparison with other

Fig. 11. Results obtained by (a) proposed U-Net-AFM,
(b) Srivastava et al. [56], (c) Bischke et al. [47], and (d) Mou and Zhu [57].
Pixel-based true positives, false positives, and false negatives are marked
in white, green, and red, respectively. (e) and (f) Corresponding aerial
imagery and ground reference from the INRIA dataset (spatial resolution:
30 cm/pixel).

state-of-the-art methods on the ISPRS, INRIA, and Planet
datasets. The statistical results of different algorithms on three
datasets are shown in Tables VI–VIII, respectively. On both
ISPRS and Planet datasets, the proposed method surpasses
all other models in both mask and boundary metrics. For
the INRIA dataset, our approach achieves the highest scores
in boundary metrics and comparative performance in mask
prediction. Compared to our methods, Girard’s method [35]
gains a marginal improvement in mask metrics at the cost
of additional ground-truth annotations (i.e., vector format of
building footprints). For an intuitive comparison, the visual
results of our method and Girard’s method [35] are illustrated
in Fig. 12. As we can see, Girard’s method [35] fails to recover
detailed structures of complicated buildings. On the contrary,
our approach can accurately capture more geometric details,
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TABLE VII

ACCURACIES (%) OF DIFFERENT METHODS FOR BUILDING FOOTPRINT

GENERATION IN THE INRIA DATASET (SPATIAL

RESOLUTION: 30 cm/pixel)

TABLE VIII

ACCURACIES (%) OF DIFFERENT METHODS FOR BUILDING FOOTPRINT

GENERATION IN THE PLANET DATASET (SPATIAL

RESOLUTION: 3 m/pixel)

Fig. 12. Results obtained by (a) proposed U-Net-AFM and
(b) Girard et al. [35]. Pixel-based true positives, false positives, and false
negatives are marked in white, green, and red, respectively. (c) and
(d) Corresponding aerial imagery and ground reference from the INRIA
dataset (spatial resolution: 30 cm/pixel).

which again demonstrates the strength of the AFM for the task
of building footprint generation.

VI. CONCLUSION

Considering that building boundaries are easily blurred
when using semantic segmentation networks to directly

learn building footprints, a new end-to-end building footprint
generation method through learning the attraction field repre-
sentation is proposed in this article. The proposed model com-
prises two modules: an Img2AFM module and an AFM2Mask
module. More specifically, the former is designed to learn
the attraction field representation, which enables not only the
enhancement of building boundaries but also the suppression
of background clutters. Afterward, the latter exploits the input
remote sensing image and learned AFM to reconstruct building
masks. The performance of the proposed end-to-end network is
assessed on three datasets with different spatial resolutions: the
ISPRS dataset (5 cm/pixel), the INRIA dataset (30 cm/pixel),
and the Planet dataset (3 m/pixel). Experimental results sug-
gest that the incorporation of the attraction field representation
in our framework can offer more satisfactory building footprint
maps. On the one hand, sharp boundaries and geometric details
of buildings can be better preserved. On the other hand, non-
building objects that are wrongly detected as buildings can be
avoided to a large extent. Thus, we believe that our method
has the potential to be a robust solution for building footprint
generation at a large scale. Looking into the future, we intend
to investigate the potential of the attraction field representation
in other tasks, e.g., road extraction and vehicle detection.
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