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ABSTRACT Cyber-Physical Production Systems (CPPS) are long-living and mechatronic systems, which
include mechanics, electrics/electronics and software. The interdisciplinary nature combined with challenges
and trends in the context of Industry 4.0 such as a high degree of customization, small lot sizes and evolution
cause a high amount of variability. Mastering the variability of functional control software, e.g., different con-
trol variants of an actuator type, is itself a challenge in developing and reusing CPPS software. This task
becomes even more complex when considering extra-functional software such as operating modes, diagnosis
and error handling. These software parts have high interdependencies with functional software, often involv-
ing the human-machine interface (HMI) to enable the intervention of operators. This paper illustrates the chal-
lenges in documenting the dependencies of these software parts including their variability using family
models. A procedural and an object-oriented concept for implementing error handling, which represents an
extra-functional task with high dependencies to functional software and the HMI, are proposed. The suitabil-
ity of both concepts to increase the software’s reusability and, thus, its flexibility in the context of Industry
4.0 is discussed. Their comparison confirms the high potential of the object-oriented extension of IEC 61131-
3 to handle planned reuse of extra-functional CPPS software successfully.

INDEX TERMS Cyber-Physical Production Systems, extra-functional software, object-oriented control
software, reuse, variability, error handling

I. INTRODUCTION AND MOTIVATION

Cyber-Physical Production Systems (CPPS) are mechatronic,
variant-rich and long-living systems connected to digital net-
works to use globally available data and services. Their devel-
opment involves different disciplines, including mechanics,
electrics/electronics and software engineering. An increasing
amount of their functionality is realized by control software
[1], which highly depends on the used automation hardware
and the CPPS layout. Thus, software variants arise due to vari-
able automation hardware, shortened production cycles and
continuously changing customer requirements [2], stressing
the need for systematic software reuse to enable flexible pro-
duction in the context of Industry 4.0. Thereby, achieving a
high degree of modularization via functionality encapsulation

is an established strategy to derive high-quality, reusable soft-
ware parts with standardizedmodule interfaces that can be flex-
ibly combined for controlling CPPS [3]. For functional
software, e.g., the control of actuators, modular software struc-
tures are successfully applied. However, extra-functional soft-
ware implementing communication tasks, diagnosis, error
handling and operating modes is an essential part of control
software: extra-functional code makes up around 50–75% of
industrial control code [4] causing complexity in the control
software [5] and thus reducing maintainability and conse-
quently impacting long-term cost and the ability to innovate.
The close dependencies between functional and extra-func-
tional code make reuse and variant management of these soft-
ware parts even more difficult. To illustrate the link of the
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human-machine interface (HMI) to (extra-)functional control
software implemented in accordance to IEC 61131-3 on a pro-
grammable logic controller (PLC), the extra-functional task
error handling is chosen. Error handling requires close connec-
tions to functional software parts, e.g., to trigger the emergency
stop of an actuator in case of an error, and might also reference
other extra-functional tasks such as operating mode change.
Further, errors are communicated from the PLC to the HMI to
enable operators to intervene and resolve an error if needed.
This interaction of a human operator with a CPPS in case of an
occurring error is explained from an application perspective in
Figure 1. Due to an error situation, the operator pushes the
emergency stop of the CPPS, e.g., a machine being part of a
CPPS (cf. Figure 1, step 1). In the PLC, the operating mode is
changed accordingly, and the machine is stopped either imme-
diately or in controlled steps (2). The HMI control panel dis-
plays the machine status and an error message to the operator
(4), which the PLC previously transmitted to the HMI control
panel (3). Depending on the operator’s reaction, e.g., removing
a jammed work piece manually (5), subsequently releasing the
actuated emergency stop switch (6) and then acknowledging
the error situation via HMI control panel (7, right fork, 8, 9) or
a decentralized operator panel (7, left fork), the PLC checks its
status (10). If necessary, the PLC allows an organized restart in
manual mode and a subsequent manual change to automatic
mode if all interlocks are correctly parameterized. Alterna-
tively, the operating mode can also be set back to automatic
mode after the operator has acknowledged the error on the
HMI panel (8), which is checked by the PLC after transmission
(9, 10).
This simple example shows that error handling, operating

modes, and HMI are strongly interlinked, but they have funda-
mentally different implementation and code structures. This
makes it difficult to manage their variability and systematic
reuse. In computer science object-oriented (OO) programming
is successfully applied to enable encapsulation, standardized
interfaces and reuse. Although the last update of the PLC

programming standard IEC 61131-3 enables OO for PLCs, it
is not yet established in industry and guidelines for its applica-
tion are rare [7]. To bridge this gap and illustrate the challenges
and potential solutions to deal with extra-functional software
parts, this paper gives an introduction to the design decisions
required to implement error handling. Further, two concepts –
a procedural and an OO one – for its reusable implementation
are presented and compared, which highlights the great poten-
tial of OO to manage extra-functional software.
The remainder of this paper is structured as follows:

Section II provides an overview of the state of the art regarding
reuse and variant management of control software, including
background information on extra-functional control software
and OO. Next, Section III presents software design decisions
related to error handling and points out means of documenting
variability as a basis for planned software reuse utilizing a lab-
sized demonstrator. Subsequently, Section IV introduces a pro-
cedural and an OO concept for error handling and closes with a
comparison of the two presented concepts. Finally, a short
summary and outlook are provided in Section V.

II. STATE OF THE ART –REUSE AND VARIANTS OF

(EXTRA-)FUNCTIONAL CONTROL SOFTWARE

First, challenges regarding the reuse of variant-rich, functional
control software, including approaches for variant manage-
ment, are presented in Section II.A. Next, extra-functional
control tasks in CPPS, which have high interdependencies
with functional software and pose an additional challenge to
software reuse, are introduced. Finally, Section II.C provides
an introduction to the OO concepts of IEC 61131-3 as a new
paradigm to ease software reuse and gives an overview of its
current application in industry.

A. CHALLENGES IN REUSING VARIANT-RICH,

FUNCTIONAL CONTROL SOFTWARE FROM CPPS

Most CPPS are controlled by real-time capable PLCs pro-
grammed with textual and graphical languages defined in

FIGURE 1. Relationship between opertors interacting via HMI and PLC in case of an error (emergency stop actuation by operator, CPPS

reaction until return to automatic mode) in accordance to [6].
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IEC 61131-3. A PLC software project contains global varia-
bles and Program Organization Units (POUs) encapsulating
functionality as reusable software modules. Each POU con-
sists of a declaration and an implementation part. Its function-
ality can be enclosed even more fine-grained within Actions
that represent sub-functionalities of a POU. Three POU types,
i.e., Programs, Function Blocks (FBs) and Functions, are dis-
tinguished, with FBs containing a simple class concept and
maintaining an internal state [8]. During software design, gen-
eral quality requirements, e.g., reliability, performance effi-
ciency, compatibility, portability and maintainability should
be considered [9]. Further, control software highly depends
on the used automation hardware including its variability and
on the desired functionality or customer-specific process
logic. For example, a sorting conveyor with separators to sort
work pieces can implement different sorting algorithms with
the same automation hardware. Concluding, the variability of
CPPS needs to be considered from different views, e.g., cus-
tomer, mechanical and software view, which are linked and
contain partially overlapping information.
In the software engineering domain, Software Product Line

Engineering (SPLE) is a well-established approach for
planned reuse of variant-rich software systems, where artifacts
common to all variants are ideally implemented only once
[10]. For representing an SPL as 150%-model including all
implementation artifacts, Family Models can be used. They
depict the software artifacts hierarchically and grouped into
variability categories, i.e., mandatory (present in all variants),
alternative (can be used interchangeably) and optional (pres-
ent in only some variants). Figure 2 shows an example of two
family models, which document the variability of a mono-
and a bistable pneumatic cylinder typically used in assembly
machines from hard- and software perspective. While both
cylinders have the action ACT_Extend to extend (mandatory)
via Valve 1 and the corresponding variable DO_Extend, the
monostable cylinder retracts mechanically with a spring in

contrast to the bistable cylinder, which requires an additional
action ACT_Retract to control its second valve (optional).
Thereby, the interdependencies between hard- and software
pose additional challenges on variant management, since the
different views and stakeholders, including their perception of
the system’s variability, have to be considered. Further, the
variability in the control hardware influences the variability in
the software regarding functional hardware control.
Available SPLE approaches for PLC software apply reverse

engineering to document the variability and enable planned
reuse of legacy software, e.g., Hinterreiter et al. [11], Schlie
et al. with a metric-based approach [12], or ECCO aiming at
the support of an enhanced application of copy, paste and
modify for development and maintenance [13]. However, in
CPPS the hardware highly influences the software’s variabil-
ity. Thus, documenting software variants only is not suffi-
cient, as the variability’s cause is missing. SPLE approaches,
which target the interdisciplinary character of CPPS, are in
theory available, such as [14]–[16]. However, they are not yet
applicable in the industry due to challenges introduced by
varying control logic and the dependencies to extra-functional
aspects such as error-handling, which is additionally highly
dependent on factors like the customer premises.

B. REUSE OF EXTRA-FUNCTIONAL CPPS SOFTWARE

Functional software for implementing the CPPS behavior in
automatic mode is only a small part of the control logic com-
pared to the extra-functional software, which is with 50–75%
the much larger part [4]. Accordingly, G€uttel et al. highlight
that well-defined control software suitable for reuse, e.g., a
POU for hardware control, includes standardized POU inter-
faces to HMI, various operating modes and diagnostic options
[17]. Further, error detection, diagnosis and operating modes
are implemented in about 50% of all software modules
intended for planned reuse [18]. Thus, the following subsec-
tions present reuse approaches targeting different extra-func-
tional aspects of CPPS software, which are also often referred
to as software infrastructure.

1) REUSE OF HMI CODE

With regard to HMI, [19] emphasize its importance as a com-
ponent of control software and its reuse; however, the pro-
posed implementation of an exemplary development process
does not include variability. Besides, [20] introduce a method
for automatically generating HMIs from a process industry
model, i.e., piping and instrumentation diagrams, allowing
reuse through abstraction.

2) REUSE OF OPERATING MODES IN CONTROLCODE

The technical standard OMAC PackML [21], which is pre-
dominantly applied in the field of packaging machines, com-
plies with the levels of the physical model of ISA-88 and
enables a condition-based realization of operating modes to
connect machines from different manufacturers. The stan-
dard defines a set of machine states, which can be combined
by transitions and arranged to state machines representing

FIGURE 2. Excerpt of Hardware and Software Family Models

depicting the variability of mono- and bistable cylinders, adpoted

from [6].
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operation modes for controlling the desired machine behavior.
Operationmodes can be switched via amachinemodemanager
usually located at the highest level of the software architecture,
which specifies in which states and by which transitions the
change is triggered. In case of an error, different states are avail-
able to stop the machine, e.g., aborting for an immediate stand-
still or stopping for a controlled shut-down. Generally, the
OMAC pattern supports the flexible control of CPPS as it ena-
bles the separation of the customer- or operation mode-specific
process logic from the pure hardware control.
Based on PackML, [22] presents a modular software con-

cept in which operating modes are implemented as automata.
Thereby, the control code of a machine responds to a change
of state, but HMI software is not targeted. Ladiges et al. [23]
present the DIMA concept also using PackML for handling
operating modes in modular process plants and include HMI
functionality. Concepts for alarming and diagnosis are not
yet included. With a focus on reengineering, [24] follow the
approach of automatically converting control software into
UML class and state diagrams. For documentation, the for-
malization also enables investigation of the software avail-
ability and performance. However, no special focus is laid
on extra-functional software.

3) REUSE OF DIAGNOSIS AND ERROR HANDLING

For error handling, [25] and [26] work on a framework to
investigate reliability in early development phases. Papkon-
stantinou et al. use feature models for functional aspects and
integrate fail-safe (extra-functional) aspects to find valid com-
binations of configuration options [26]. Both integrate func-
tional and extra-functional aspects at a high conceptual level in
the process industry but do not consider concrete control engi-
neering aspects. G€uttel et al. [17] point out that there is still a
gap to bridge regarding the automatic generation of extra-func-
tional control software, including, e.g., communicating alarms
to the user or diagnosis functionalities, and covering trouble-
shooting and displaying diagnosis results to the user.
Detailed code analyses of industrial PLC software examine

the significance and strategies for implementing extra-func-
tional control software and identified five hierarchy levels,
which correspond to the ISA 88 levels [27]. Recent analyses

show so-called design patterns in control software and
experts from industry confirm their application for specific,
extra-functional aspects [5]. Vogel-Heuser et al. analyzed
common error handling strategies in industrial PLC code and
developed performance metrics to evaluate real-time error
detection and error coverage for the CPPS domain [28].
Besides, [29] developed a concept for reconfiguration in case
of a PLC error and distinguished different methods of error
reaction depending on error severity and system state. Simi-
larly, [30] use a model-based approach to define restart
points after a control error.
In classical control code, approaches with a designated

error variable are used, whereby the error variable is checked
and updated in every POU controlling an actuator of the
machine, e.g., drives or cylinders (cf. variable bStop in
Figure 3). Errors are looped through the entire code: if a POU
on the lowest level (e.g., FB_Drive for controlling a drive of
the machine) sets its error variable, the error is reported to the
higher levels (PRG orOB1).
In summary, various approaches target extra-functional

control software and its reuse. However, up to now, no
approach has focused on a comprehensive variability analy-
sis in both, extra- and functional PLC software, to support
systematic reuse.

C. OBJECT-ORIENTED IEC 61131-3 CONCEPTS FOR

PLANNED REUSE AND QUESTIONNAIRE-BASED

RESULTS ON ITS APPLICATION IN INDUSTRY

For enhanced reuse of control software, the OO extension of
IEC 61131-3 (OO IEC) introduces three new language ele-
ments, methods, inheritance and interface abstraction [8].
Thereby, methods enable the separation of an FB’s tasks, e.g.,
initialization or error handling, in sub-routines. Further, inher-
itance supports the reuse of common code parts to ease build-
ing new variants with the keyword EXTENDS. Interfaces
serve to improve the cooperation of developers in an IEC
61131-3 project by defining templates, which can be adopted
and filled by FBs with the keyword IMPLEMENTS. While an
FB can only inherit from one other FB, it may implement vari-
ous interfaces [8]. Some PLC development environments also
support the use of properties, which specify a defined access
to a value and possess a pair of methods for reading (Get
method) and writing (Set method) the respective value. This
enables verifying data consistency and value adjustments.
According to [31], using OO enables “a more efficient code
reuse and increased safety and stability of software”. To sum-
marize, OO IEC provides a variety of rewarding solutions to
improve reuse and quality of CPPS control software [6].
Although many platform providers meanwhile support the

OO IEC concepts, a conservative, procedural programming
approach is still predominant in most companies, which was
confirmed by a recent survey: only 10% of the participating
companies use OO IEC by default, 48% apply it partially
and 42% do not use it at all [18]. Another recent question-
naire study confirmed this low usage rate of OO IEC with
around 40% for machine and plant manufacturers [6], [7]. Out

FIGURE 3. Error handling (emergency stop) with a global variable

accessed in all POUs responsible for actuator control (FBs pro-

grammed in ladder diagram) [6].
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of 61 participants, only 24 companies indicate to use interfa-
ces/properties and OO IEC. It was further analyzed which
extra-functional aspects their software modules include as
standard. Ten out of ten companies include error handling and
diagnosis as standard, nine operating modes, seven HMI and
six include all three. A deeper analysis of category combina-
tions like PLC type, interfaces, functionalities included within
modules, checklists, version tracking and reuse strategy with
its sub-categories universal module and libraries showed that
participants answered unexpectedly: usage of interfaces/prop-
erties (without the limitation to IEC OO) reduces the usage of
data exchange via global variables significantly. However,
use of interfaces/properties would require the usage of OO
IEC as a prerequisite. Companies answering the questionnaire
neglected this prerequisite and must hence refer to other
mechanisms. In summary, we can assume that the OO con-
cepts are not widely used yet.
Overall, the high variability in CPPS and its efficient

management still pose a challenge for the reuse of functional
software. Further, extra-functional software and its strong
dependencies on functional software make planned reuse of
control software even more difficult. Although means for vari-
ant management and reuse exist, e.g., SPLE & OO IEC, they
are not yet common in industry. To support planned reuse of
variant-rich, (extra-)functional software, this paper presents
two concepts in Section IV.

III. BACKGROUND ON ERROR HANDLING AND USE

CASE HIGHLIGHTING CHALLENGES IN EXTRA-

FUNCTIONAL TASKS

First, an overview of typical steps and corresponding soft-
ware design decisions in error handling is given (Section III.
A). Second, challenges of reusing extra-functional tasks for
actuators are outlined using a lab-sized demonstrator.

A. STEPS IN ERROR HANDLING

Experience from more than ten industrial case studies and
three in-depth interviews in companies of different industrial
sectors confirms that the implementation of error handling as
an extra-functional task is one of the key challenges in the
design of control software architecture. More precisely,
designing well-defined module or POU interfaces between
the error handling software parts across modules and the
functional software is a major challenge.
In an interview study with three companies from the pack-

aging machinery sector, we investigated how the implementa-
tion of (extra-)functional tasks differs. For this purpose, we
conducted separate, guided interviews with PLC software
experts from each company, each lasting three hours. In these
guided interviews, questions on the companies’ design deci-
sions regarding selected (extra-)functional tasks were targeted.
After summarizing the findings, we verified the accuracy of
the results in separate follow-up meetings with the experts
from the individual companies. Regarding the implementation
of error handling, commonalities could be observed despite
different modularization strategies and boundary conditions.

Based on those interviews, supplemented with the analysis of
industrial code examples and large-scale questionnaire studies,
four steps addressing different aspects in error handling have
been identified that are necessary for most control software
projects (cf. Figure 4).
The first step is error identification, in which, e.g., a spe-

cific part of the software or the operator himself identifies a
deviation from the intended behavior. It needs to be consid-
ered at which structural levels an error can occur (e.g., hard-
ware misbehavior on actuator level or deviations in the
process on higher levels) and whether these differences affect
the implementation of the error identification.
Next, the error is communicated to other software parts

during the error reporting. While there are often similarities
in the implementation of error identification, error reporting
shows a significant variability across companies, sometimes
even across different machine types of the same company.
Design decisions in this phase comprise, e.g., the type and
amount of data exchange from the software module reporting
an error to the software instance communicating the error
information to the operator. Depending on the boundary con-
dition or error type, the error can either be reported directly
to the HMI, or collection points are implemented that can,
e.g., trigger and pass on group alarms.

FIGURE 4. Error handling steps and corresponding design deci-

sions in control software.
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After reporting the error, the error reaction determines
how the entire system or parts of the machine should react to
a particular error. The reaction usually depends on the sever-
ity of an error. Categories differ between companies and
machine types. A distinction between less critical (message,
warning) and more critical categories (malfunction, error)
can be found at almost every machine manufacturing com-
pany. Some companies even distinguish up to 70 error types
leading to different machine reactions.
The last step of the error handling, i.e., the error recovery,

covers the type of recovery process (e.g., automatically by
the machine itself or via manual intervention by the operator)
and the possibilities for the operator to interact with the sys-
tem, e.g., via specific operation modes, such as a jog mode,
or via the HMI.

B. CHALLENGES IN DOCUMENTING THE

DEPENDENCIES OF VARIABLE, (EXTRA-)

FUNCTIONAL SOFTWARE PARTS UTILIZING A

LAB-SIZED DEMONSTRATOR

In the following, a lab-size pick-and-place unit (xPPU) is
introduced, which serves as a demonstrator for different
ways of implementing (extra-)functional control software
parts. The xPPU’s main functionality is to sort work pieces
(WPs) of different colors and materials. Using different types
of sensors, the xPPU distinguishes the WP types and per-
forms different intralogistic operations, such as separating,
transporting or sorting WPs, with its actuators.
The mechatronic layout of the xPPU comprises different

modules, each fulfilling a specific functionality of the WP
handling process. Initially, the WPs are stored at the stack.
Depending on the material, the crane transports the WPs to
different end positions: metallic WPs require an additional
processing step and are moved to the stamp, plastic WPs are
placed directly on the sorting unit, which consists of a con-
veyor belt with several separators that push the WPs into dif-
ferent ramps depending on their type.
The xPPU’s software is written in IEC 61131-3 languages

and the architecture complies with the levels of ISA-88: the
highest level, i.e., the xPPU module, refers to the Unit, while
the modules, i.e., stack, crane, stamp, and sorting unit, are
controlled by corresponding Equipment Modules (EM).
Finally, Control Modules on the lowest level read sensor val-
ues and control actuators, e.g., cylinders. In the xPPU, cylin-
ders are used in several EMs, e.g., at the stack to push out the
WPs, at the crane to lift WPs, or at the conveyor belt to sort
the WPs into ramps.

1) EXTRA-FUNCTIONALTASKS IN CYLINDERS AS

SIMPLE VARIANT-RICH STANDARD COMPONENTS

Cylinders represent a simple type of actuator in CPPS, which
frequently occur in different module types. However, in
industrial CPPS, even the control of such a simple component
can get very complex and extensive. The following compari-
son of two FBs for cylinder control, one provided by a
machine manufacturing company and one from the academic

xPPU demonstrator, illustrates this: while the industrial cylin-
der FB provides a connection to the HMI, multiple error mes-
sages and different operating and testing modes, the academic
implementation excludes these extra-functional aspects. The
increased functionality of the industrial FB is reflected by the
scope of its implementation, which is written in the language
Ladder Diagram (cf. Figure 3) and comprises 33 networks.
On the other hand, the academic implementation comprises
an FB with two actions in Sequential Function Chart with
only three steps each. A comparison of defined variables illus-
trates the difference even clearer: while the academic FB uses
only six variables, the industrial FB controls 150 variables,
partly organized into User-Defined Types and Structures.
In both the academic and the industrial software, different

types of cylinders occur, e.g., mono- and bistable cylinders
(cf. Figure 2), leading to variability in functional software
and in the related HMI software, which directly accesses var-
iables from the functional software part to illustrate the
CPPS’s status to the operator or maintenance staff. For vari-
ability management as a prerequisite to reuse, we propose to
combine the family model of functional control software
with the HMI family model via extra-functional control soft-
ware, e.g., operating modes or error handling and diagnosis,
being orthogonal to both (cf. Figure 5).
A PLC family model (Figure 5, left part), containing manda-

tory and optional parts to represent the mono- and the bistable
cylinder, depicts variables, actions and OMAC actions (modes
of operation). Thereby, OMAC actions use the cylinder actions
for control, which in turn set the actuators (digital outputs
DO_Extend and DO_Retract) and read the sensor signals. The
HMI visualizes the cylinder (either with one or two valves) and
its position (requiring recent sensor values) and displays general
information about the cylinder status for the operator. Thus, it
receives data from the PLC (variables Status, DI_Extended,
DI_Retracted). In case of an error, the HMI control panel dis-
plays an error message, which is also read from the Status vari-
able. In contrast, if the operating mode is set to manual (either
by the PLC in case of an error or via HMI), the actuator

FIGURE 5. Combining functional PLC code and HMI code via extra-

functional tasks (operatingmodes, diagnosis and error handling).
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variables are set from the HMI (mandatory DO_Extend and
optionally DO_Retract, depending on the cylinder type). This
example illustrates the close interdependencies between PLC
andHMI for extra-functional aspects.

2) EXTRA-FUNCTIONALTASKS IN SERVO ACTUATORS

AS COMPLEX VARIANT-RICH STANDARD

COMPONENTS

The concept for a more complex component, i.e., a servo
actuator, will be introduced in the following. It exhibits more
variations and is consequently more difficult but still aims at
hiding variability behind generalized POU interfaces. It
needs to be decided which variations need to be exhibited to
the functional code, which can be hidden, and where: on the
sub-component (servo drive) or component level (crane).
Typical variations in servo actuators are, e.g.,:

� Rotary vs. linear movement of the mechanics
� Rotary vs. linear design of motor
� Limited vs. unlimited movement range
� Feedback via potentiometer, incremental encoders or

absolute encoders
Variability to be handled at the level of a servo drive is,

e.g., whether an incremental or an absolute encoder is used
to detect the position of a motor or mechanic or even a poten-
tiometer as used for the crane (cf. Figure 6). For the (extra-)
functional PLC code, these details can be hidden, e.g., by
representing a servo actuator as an axis that only has a refer-
ence position and an actual position.
Limited or unlimited movement range, in turn, is an exam-

ple of variability to be dealt with on higher levels. Vendors
typically provide FBs for controlling axes, e.g., in the form
of library POUs, such as the FB AxisModule in Figure 6. The
AxisModule controlling the crane base can be configured
according to the possible movement range of the crane (e.g.,
CraneBase.config.PositiveLimit: ¼ 360, CraneBase.config.
NegativeLimit: ¼ 0). Through configuration, the AxisModule
solves the problem of variability in the movement range and
avoids sharing the compressed airlines of the vertical crane
axis. Further, the HMI can read the AxisModule configuration

(rotary/linear limited/unlimited movement) to automatically
select the corresponding icon to visualize the current axis
position (cf. Figure 6).
Further, the variability of available operation modes needs

to be considered: for the belt, e.g., an operation mode for
endless moving would be suitable until the transported WPs
reach the end position. For the crane, on the other hand, a
positioning mode is required to move to specified positions
according to user input.
Regarding error handling, the AxisModule provided by the

vendor can identify standard errors, such as jamming of the
motor or drag errors, i.e., a deviation between the reference
and the actual position. In addition, other errors can be defined
in the user-specific code depending on the type of controlled
mechanics. For the belt, e.g., a module-specific error could be
set if a WP is expected but not registered on the belt because,
e.g., it has fallen off. This can be displayed to the user as a
warning in the HMI. A more critical module-specific error
could occur in the crane in case the product sensor of the grip-
per is not triggered after the WP has been gripped, e.g.,
because the sensor is defective or no product has been caught.
This would result not only in a warning in the HMI but also in
the standstill of the plant. In both cases, PLC and HMI need to
consider the module-specific variability of potential errors.

IV. PROCEDURAL AND OO CONCEPT TO EASE REUSE

OF ERROR HANDLING

This section proposes two concepts representing implemen-
tation patterns for error handling in the software architecture,
i.e., a procedural concept (Section IV.A) and a concept utiliz-
ing OO IEC (Section IV.B). The section closes with a com-
parison of both concepts in Section IV.C.

A. PROCEDURAL CONCEPT FOR ERROR HANDLING

Software architecture and design play a key role in reusing con-
trol software, especially considering variant-rich and extra-
functional parts. The following two subsections introduce a
procedural concept for reusing (extra-)functional control soft-
ware and a concept tailored to error handling.

FIGURE 6. Connection of the motor of the mechanical belt, servo drive, and functional PLC software, up to HMI.
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1) PROCEDURALCONCEPT TO ENABLE REUSE OF

FUNCTIONAL AND EXTRA-FUNCTIONALCONTROL

SOFTWARE

To support the development of high-quality software for this
programming style, some platform suppliers provide tem-
plates that their customers can use as patterns for modulariz-
ing their control software. Next, the template of a renowned
platform supplier is introduced as an example for such a pro-
cedural concept, which is primarily designed for packaging
machines and is compliant to OMAC and to the Weihenste-
phan guidelines for machine standardization.
The template represents a universal control software project,

which can be copied and adapted by the users to integrate cus-
tomer-specific software components. Basic extra-functional
tasks, such as OMAC-compliant operation modes, diagnostic
mechanisms and error handling, are already included and can
be configured for user-specific applications. The template fol-
lows a modularization approach oriented towards the func-
tional structure of the machine, which is usually also reflected
by the physical machine layout.
Functional units are controlled by Equipment Modules

(EMs) comparable to the EMs defined by ISA-88 and represent
reusable software units to enable a scalable, modular project
architecture. An EM comprises one or more Application Func-
tion Blocks (AFB), which refer to common automation tasks
and machine functionalities and are usually parameterizable
for different machine or task variants. Beyond the pure func-
tionality defined within AFBs, EMs include a standardized
module interface as well as extra-functional tasks on module
level, such as switching of operating modes, error handling,
and diagnostic functions, which makes them ideal basic com-
ponents to create a well-defined software architecture. By

structuring the software project into EMs and providing flexi-
ble mechanisms to link them via standardized module interfa-
ces, the template enables users to encapsulate and reuse entire
machine functions. Users can individually integrate new EMs,
e.g., by copying and modifying the provided EMs from the
template, encapsulating and using provided EMs as aggrega-
tion modules or writing new EMs from scratch and linking
them to the provided template infrastructure.
Commonly used software functionalities and extra-func-

tional tasks are provided as reusable AFBs or EMs in the
form of application-specific libraries containing most of the
functionalities required for different aspects of packaging,
e.g., forming, filling, cartoning, labeling, or pick-and-place
applications. Additionally, the libraries provide mechatronic
functions typically used in production machinery and in han-
dling, assembly, and sorting systems. The library POUs have
been tried and tested in practical use, which also eases certi-
fying machines and software.
Additionally, the template architecture includes communi-

cation with the HMI, machine level command processing,
operation mode management, as well as a machine-wide
error handling and logging. In summary, the template pro-
vides a basic module structure that enables the reuse of func-
tionality within a project and across projects or machines. In
addition, clearly defined module interfaces between func-
tional and extra-functional software enable to flexibly adapt
and extend the modules for different types of application
projects. The function-oriented structure supports the devel-
opment of transparent and easy-to-use programs.
Although the template is primarily designed for a procedural

programming style, the programming environment supports
OO-IEC and some customers extend the provided library mod-
ules using inheritance.

2) PROCEDURALCONCEPT TO IMPLEMENT ERROR

HANDLING

The following section outlines the required characteristics
and the design of the error handling concept in the procedural
template (cf. Figure 7) introduced in Section IV.A.1, which
provides the following functions:

� Error Identification: Identification is possible on any
architectural level (in this case ISA-88) by setting a
Boolean variable.

� Error reporting: Error information is forwarded and
summarized for the HMI using a method that reads this
variable and writes the error information (e.g., error mes-
sage and number) to a central location, e.g., a global
error list connected to the HMI.

Communication of the error reaction from the HMI to the
lowest levels of the software architecture is the most compre-
hensive part of the concept and includes the following aspects:

� (1) Possible reactions: Standard reactions for all axes are
provided (ranging from an immediate asynchronous pro-
cess stop to a controlled stop at the end of a process cycle).
Additionally, application-specific reactions can be added.

FIGURE 7. Reaction matrix to broadcast a reaction (e.g., reaction

2) only to a specific sub-module by writing the reaction to one of

the in-effective lines for the module (e.g., 32 for slave 1, which

only reacts to 1-5).
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� (2) Broadcast to sub-modules:According to the operator’s
chosen reaction (HMI), a central POU on the highest level
of the software architecture reads all stored errors in the
error list and broadcasts the reaction to all underlying
EMs, which then spread the reaction to their axis modules.

� (3) Reaction specification for individual sub-modules:
In case, e.g., modules must continue to run even in cer-
tain error states, this is achieved via so-called reaction
matrices (Figure 7). These matrices can contain more
entries than potentially possible error reactions in the
machine, which means that not all entries cause a reac-
tion. This can be used to trigger reactions specifically
for individual modules

Finally, the concept also defines the operation mode switch
to resolve the error:

� Error recovery: If an error reaction is triggered, a corre-
sponding bit is set at machine level, e.g., to terminate
the automatic mode and to switch to another operating
mode (e.g., jog mode).

This template-based, procedural concept is used by two of
the packaging machine manufacturing companies, which
took part in the interview study introduced in Section III.A.
Both companies implement their error handling using the
template provided by the platform supplier and enlarge it
according to their needs. Thereby, the companies need to
consider specific boundary conditions, e.g., requirements for
sterility (cf. [6] for additional details).

B. USING OO IEC 61131-3 CONCEPTS

Despite challenges and obstacles to use OO in machine and
plant manufacturing companies [18], the concept is beneficial
for variant-rich and extra-functional software tasks, as intro-
duced below in Section IV.B.1. A callback facilitating the stan-
dardization of error handling is presented in Section IV.D.2.

1) OO IEC TO EASE REUSE OF VARIANT-RICH OR

EXTRA-FUNCTIONAL CONTROL SOFTWARE

As highlighted by [6] and [8], the usage of OO IEC should
tremendously ease modularity, reuse and managing variants
and versions. The OO IEC concepts provide the means to
design a well-defined software architecture, which supports

the reuse of common parts, prevents code clones and enables
standardized interfaces. At the example of the cylinder var-
iants from Section II.A, we illustrate the use of OO IEC and
its benefits (cf. Figure 8). Additional theoretical background
on the OO IEC concepts can be found in [6].
Concerning variability within the software, the cylinder

family model (cf. Figure 2) illustrates common and variable
parts. The OO IEC concept Inheritance supports the reuse of
common parts used by several modules (e.g., METH_Extract
used by both cylinder variants). They are defined once in the
base class and then inherited by the specific module variants
(cf. Figure 8, Method A defined in the base and inherited by
FB_BistableCylinder, which defines an additional Method B
for retracting). This reuse reduces the programming effort
and facilitates module maintenance, e.g., in case of errors,
when a correction of the inherited parts is necessary and can
be performed once in the base class.
For information hiding (to transfer or query values to/from

an FB from outside), the OO IEC concept Properties enables
the access of defined variables. If values that are available in
each module need to be obtained, e.g., the current state of the
cylinders, these values can be accessed externally using
properties. To avoid creating properties required by various
modules multiple times, they are defined in a base module
(cf. Figure 8, FB_Base, Property State). The FBs of different
modules can then use these properties via inheritance, e.g., in
FB_BistableCylinder.
In some cases, inheritance is insufficient as an FB can only

inherit from one Base-FB but not frommultiple bases. OO IEC
Interfaces address this challenge: an OO interface has only dec-
laration parts, in which methods and properties are defined. If
an FB implements an interface, it must adopt all methods and
properties contained therein (cf. Figure 8, FB_BistableCylinder
inherits the Methods from Interface IUnit) and implements
them. For switching between different operating modes in vari-
ous modules of a CPPS, interfaces can be used. The operating
modes are defined asmethods in an interface and then individu-
ally implemented for all module FBs. With a generated module
list, the methods of all modules are called in a for-loop,
enabling an efficient operating mode change.

2) OO CONCEPT WITH CALLBACK PATTERN TO

COMMUNICATE AN ERROR AND ITS SEVERITY

The idea behind a callback or “function-as-parameter” [32] is
to hand over an executable software part as a parameter to
another software part, which is expected to execute (call
back) the passed software at a given time. An application
example for error handling is introduced to demonstrate an
implementation of a callback in OO IEC.
As described in Section IV.A.2, standard error handling

and application should be separated. A standardized library
FB for error handling cannot call a POU of the application-
specific software part or access global variables. For this pur-
pose, the concept of an abstract OO interface can be used to
interact with a standardized software part. Below, details of
this concept with callback pattern are illustrated.

FIGURE 8. Using OO IEC for eased reuse of (extra-)functional

software via inheritance and interface [6].
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The first part is an OO interface containing a method (cf.
Figure 9 top, interface ITF_ExtFunc with Method_A). An FB
dedicated to addressing extra-functional tasks, in the example
FB_ExtraFunctional, implements this interface and programs
the functionality ofMethod_A, e.g., a standardized format for
collecting and forwarding information regarding an error.
Thereby, Method_A represents functionality that needs to
be passed to all actuators to enable a standardized way of
implementing error handling. For this purpose, in the applica-
tion-specific part, the main program declares an instance of
FB_ExtraFunctional, i.e., FB1 in Figure 9. As an example for
the control of a standardized hardware component, FB_Bista-
bleCylinder, which controls bistable cylinders, is used. For
passing the implementation of Method_A to FB_BiCyl, an
instance of FB_BistableCylinder, the abstract interface is
used. More precisely, the FB has a variable var and a property
Itf, both of the type ITF_ExtFunc. In the implementation of
the main program, via the Set()-method of property Itf the
instance FB1 of FB_ExtraFunctional is passed to the variable
var of FB_BiCyl. Since FB_ExtraFunctional and, thus, its
instance FB1 implements Method_A, the Cylinder-FB
instance can now access the implemented Method_A via its
variable var (cf. implementation of FB_BistableCylinder call-
ingMethod_A via its variable var in Figure 9). Thus, the hand-
over of an interface’s method (i.e., Method_A of
ITF_ExtFunc), which is programmed within an FB imple-
menting the interface (i.e., FB_ExtraFunctional), is enabled
via a property (i.e., Itf of FB_BistableCylinder) initializing a
variable of the type of the respective interface (i.e., var in
FB_BistableCylinder) with an instance of the implementing
FB (i.e., FB1). In short, this interface concept allows to hand
over pointers to implemented methods via a parameter, i.e., a
callback. Thereby, the passed method is implemented only
once and every callback triggers the execution of the single
method implementation (cf. Figure 9 top right, storage area of

the PLC containing the only available implementation of
Method_A). Please note, due to simplicity reasons, the exam-
ple contains only one interface with one method. Actually, an
FB, e.g., FB_ExtraFunctional, can implement more than one
interface with more than one method each.
With an exemplary use case of the described callback pat-

tern, its benefits are illustrated: the passed method Method_A
could be used to process analog values of an FB for hardware
control from outside. In this scenario, the hardware module
FB supplies the analog value, which is converted via external
access, with the method implementing the desired conversion.
In this way, not only can data be processed, but also functional
behavior can be passed to an FB from the outside retrospec-
tively, whereby the exact behavior may not yet exist when the
FB for module control is developed or may have to be adapted
for the desired, application-specific behavior. Thus, a behav-
ior can be foreseen during the module FB implementation
without knowing the exact characteristics of this behavior and
the possibility of changing or adapting this behavior to evolv-
ing or application-specific boundary conditions.
According to this principle, an OO interface can be used as an

error manager to collect various information from different mod-
ules, which can be treated as black boxes. When using an OO
interface as an error manager, the error reporting is integrated
into all actuator FBs, e.g., the cylinder FB. For this purpose,
each cylinder FB instance gets an abstract interface of the error
manager in the initialization step of the main program, similar to
Figure 9 (code line FB_BiCyl.Itf: ¼ FB1;). This OO interface
can be used to report errors. The diagnosis of the errors happens
in the cyclic call of the cylinder FB. This procedure provides
detailed error messages – there is no handling of errors outside
the call – and it allows the additional output of detailed informa-
tion, including severity. Furthermore, to ease reuse, independent
of the callback pattern, the automatic sequence is separated from
the organizational sequence. More precisely, the advantage is
that the automatic sequence, i.e., the process logic, which is
made anew for each plant, does not contain any error handling.
The callback pattern is commonly applied in high pro-

gramming languages and has a great potential for easing the
reuse of extra-functional control software parts. It is already
used for programming CPPS in two different ways. First, the
pattern is contained in libraries provided by platform suppli-
ers. Thus, customers using these libraries use the callback
pattern without noticing it. Second, although OO IEC is not
yet widely spread in CPPS programming, according to a plat-
form supplier, a handful of its customers have converted their
control software completely to OO IEC and thereby use the
callback pattern multiple times. These customers report that
they highly appreciate the benefits of OO IEC.

C. COMPARISON OF THE CONVENTIONAL AND OO

CONCEPTS REGARDING THEIR SUITABILITY FOR

IMPLEMENTING EXTRA-FUNCTIONAL ASPECTS

After introducing two error handling concepts, their advan-
tages and disadvantages are evaluated (cf. Table 1). Both are

FIGURE 9. Fault handling with the Callback pattern using OO IEC

(brown: application FB; grey: Standard FB for extra-functional,

blue: OO interface to provide standardized module interfaces).
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illustrated abstractly and mapped and related to the hierarchy
levels of [27] in Figure 10.
Generally, the procedural concept described in Section IV.

A.2 is considered easy to understand with basic IEC 61131-3
programming knowledge. Further, when dealing with legacy
software systems that do not yet (fully) support OO IEC, it is
beneficial for introducing a well-structured and reusable error
handling strategy, which includes, e.g., location and severity
of an error, e.g., in the monostable cylinder (cf. Figure 10).
Further, the template allows enlarging standard module
errors with customer- or application-specific errors in
the Central Exception List and the Reaction Matrix (cf.
Figure 10).
Despite these advantages, the conventional concept holds

some drawbacks, e.g., the dependability on a global structure
(cf. Central Exception List in Figure 10, which must be

passed by the caller with each call of FC_SetException by
accessing a global variable). In the case of running the con-
trol programs of independent machines on one PLC to save
costs by reducing the automation hardware, the error han-
dling or other extra-functional aspects of these machines can-
not be kept separate due to the global structure (cf. matrix
and central exception list in Figure 10). Moreover, when
using this template, the implementation of error handling and
the actual module control, i.e., extra-functional and func-
tional aspects, are mixed. Additionally, the framework pro-
vides other functionalities apart from error handling,
resulting in a high amount of information to be exchanged
between framework and modules. Due to the mixture of
(extra-)functional aspects and the tight coupling between
framework and modules, module reuse is strongly bound to
the template and cannot be used easily in a different frame-
work or for testing purposes, e.g., unit tests. Another disad-
vantage results from the lack of encapsulation, which allows
modules to access internal execution details, utility functions
or temporary storage data of the framework. More precisely,
a module, e.g., Crane in Figure 10, has complete access to
the contents of the global exception list. Only by convention
should it neither read nor write the contents of the list, but
instead should only call FC_SetException and pass the Cen-
tral Exception List (cf. Figure 10). Finally, there is no check
if all necessary information in the reaction matrix is filled in
completely or correctly, which may result in a field not being
filled in or in an incorrect assignment of (only weakly type-
tested) pointers. Despite numerous integrated protective
measures, it is not possible to mitigate all these risks
completely.
In the OO concept, similar to the conventional concept, errors

are also gathered on top-level in a central error list (cf. Figure 10,
right). If an error occurs, the affected module calls themethod of
the central error management FB (cf. FB_ErrorManager) to
add the error to the list, including severity, origin and cause, for
visualization at the HMI. Since the modules are updated every
cycle and report the error independently, no cyclical query is
necessary. Once an error is detected, the module’s property
hasError is set to true to report the error. Via a further interface,

TABLE 1. Comparison of conventional and OO pattern regarding their suitability for implementing extra-functional aspects.

Conventional Concept OO Concept

Comprehensibility (with classical IEC
61131-3 background)

þ (basic knowledge sufficient) o (basic knowledge not sufficient)

Legacy system support þ (supported, no OO IEC required) � (OO IEC not supported by all systems)
Customer- / application-specific errors þ (template can be enlarged) þ (enlargement through inheritance)
Error severity & location þ (uniform, structured information) þ (uniform, structured information)
Reuse in different context � (modules highly depend on framework) þ (template-independent)
Modularization � (no clear separation of extra- and functional

aspects; no separation of extra-functional aspects
with several PRGs in one PLC)

þ (interface serves as link between error handler
(extra-functional) & module control; exchange
of error handler possible)

Encapsulation of extra-functional aspects � (implementation of extra-functional aspects
can be manipulated from the module)

þ (modules cannot manipulate extra-functional
implementations)

Usability o (risk for incomplete or incorrect use) þ (low risk for incomplete or incorrect use)

(þ advantageous, o: medium, �: disadvantegeous).

FIGURE 10. Comparison of the error identification and reporting.
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a module can query the status of the neighboring modules and,
depending on their status, determine a suitable error reac-
tion, e.g., immediate standstill or stop after the next cycle.
Regarding comprehensibility, the OO concept might ini-

tially be hard to understand for programmers with little or no
background in OO programming principles. Due to the
higher amount of required elements, i.e., the definition and
declaration of an error handling FB with a method, an inter-
face and a property (cf. Figures 9 and 10), and their intercon-
nection via a callback, the concept may initially appear more
complex than the conventional concept. Further, to use the
concept, the respective system needs to support the OO
extensions of IEC 61131-3, which might not always be the
case when dealing with legacy systems.
Like the conventional concept, the OO concept has a central

method for adding an error, which enables a uniform structure
of the error information, including severity and location.
However, in contrast to the conventional concept, using
FB_ErrorManager does not require accessing global varia-
bles as each module has access to the Central Exception List
via the interface reference to FB_ErrorManager and its
method (cf. Figure 9). Especially regarding extra-functional
aspects and their reuse, the OO concept shows several advan-
tages: the OO interface links the extra-functional aspects, i.e.,
the error handing implementation (cf. FB_ErrorManager
with Method AddError in Figure 10), and the functional
aspects, i.e., the module control (cf. Figure 10, application
module Crane and basic moduleMonostable Cylinder), while
it allows to implement them separately. This clear separation
of concerns enables to exchange the error handler if required.
At the same time, the extra-functional implementation within
the method is only used by the modules, e.g., theMonostable
Cylinder, but cannot be modified. Further, the modules are
usable within a different context since the OO concept, unlike
the conventional approach, is independent of the template.
Another benefit of the OO concept is that the central error
manager (cf. FB_ErrorManager and its method in Figure 10)
can be extended by additional functionalities through inheri-
tance. In this case, the current error manager serves as the base
class for a new, extended one. This allows legacy modules
and new modules to be used in combination, whereby the leg-
acy modules only use a limited functionality of the new error
manager. Moreover, CPPS- or application-specific errors
can be included. Further, the usability of the OO concept is
better than the conventional concept as it can be used less
incorrectly. On the one hand, the implementation with interfa-
ces and methods prevents forgetting to fill in the required
information, e.g., data regarding severity, origin and cause of
an error when calling AddError. On the other hand, the risks
of wrong assignments are reduced.
In summary, the OO concept is both, template-indepen-

dent and easy to use due to the low risk of errors caused by
improper use. It enables a clear separation of concerns, which
allows to enlarge or even exchange extra-functional imple-
mentations, e.g., error handling.

A first evaluation with 131 bachelor students from TUM’s
mechanical engineering faculty confirmed that the use of OO
IEC is initially challenging. Students solved two small OO
IEC programming tasks on paper in the exam: first, using an
interface and methods. Of the 131, 123 tried to solve the
task; of these, 60% gave wrong or incomplete answers for
the interface use and 28% had difficulties in the program-
ming of methods. The second task targeted inheritance from
an FB, including a call of the inherited method and its exten-
sion. 115 students answered, of these 10% made mistakes
regarding inheritance, 24% used the SUPER-call to execute
the method wrong or left it out and, surprisingly, 37% had
problems in defining methods. Generally, students found it
challenging to distinguish between interfaces and inheri-
tance. However, for a reliable evaluation in a future step, the
stakeholders module and application developers will be
asked to solve tasks targeting characteristics such as flexibil-
ity, evolvability and maintainability of the control software
and the related CPPSs.

V. CONCLUSION AND FUTUREWORK

This paper introduced the challenge of handling variability
in CPPS, which is included in multiple, partially overlap-
ping views, spanning across functional and extra-func-
tional PLC software, which additionally has high
interdependencies to HMI software. Up to now, research
has focused on either functional or selected aspects of
extra-functional code. Considering the variant management
as a prerequisite to planned reuse of both, we introduced
the challenge to connect family models of functional code
and HMI code related to the orthogonal extra-functional
code.
Additionally, we proposed two approaches for implement-

ing the extra-functional task error reporting as a central task
linking variable functional hardware control with other extra-
functional aspects like operation mode change and interac-
tion of operators via HMI. The comparison of the proposed
procedural and OO-based concepts for error reporting illus-
trated the advantages of OO IEC when implementing extra-
functional tasks. Further, OO simplifies the separation
between functional and extra-functional code and enables
different developers to program the two parts independently.
This software architecture also supports the flexible adaption
of extra-functional aspects and the flexible integration of dif-
ferent variants of functional control based on standardized
interfaces. In future work, approaches for implementing other
extra-functional tasks with OO IEC will be developed and
analyzed.
Of course, the introduced two concepts are already used in

the design of control software of machine and plant
manufacturing companies, but not as widespread as possible
and expected. Consequently, obstacles in usage would need
to be revealed in future work using interviews on the one
hand and training sessions on the other.
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