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Monitoring of Construction Activity by
Change Detection on SAR Time Series

Using Coherent Scatterers
Carlos Villamil Lopez and Uwe Stilla , Senior Member, IEEE

Abstract—In this article, a novel synthetic aperture radar (SAR)
change detection method for the monitoring of man-made objects
(MMOs) is presented. Rather than looking for changes in SAR am-
plitude or the loss of coherence, changes are detected by the appear-
ance and disappearance of the strong point scatterers present in
MMOs and often denoted as coherent scatterers (CSs). This enables
the detection of changes involving MMOs while ignoring changes to
natural targets such as vegetation. These CSs are detected in each
image and compared coherently across an image pair or a time se-
ries. When using a time series, the proposed method can categorize
the changes according to their temporal behavior. An object-based
change analysis step for identifying changes significantly larger
than individual CSs is also introduced. The proposed approach is
applied for the monitoring of construction activity using a time
series of 49 TerraSAR-X images of the city of Munich.

Index Terms—Change detection (CD), coherent scatterers (CSs),
monitoring, synthetic aperture radar (SAR), time series.

I. INTRODUCTION

S PACEBORNE synthetic aperture radar (SAR) sensors are
especially well suited to monitor changes on the ground

because, unlike optical sensors, they can operate in adverse
weather conditions and independently of sunlight [1]. When
comparing two SAR images acquired with the same sensor and
imaging geometry (i.e., using a repeat-pass orbit) at different
times, any significant differences between them will be due to
changes in the imaged scene. SAR missions with mid-resolution
sensors like Sentinel-1 provide a global coverage every few days
and can be exploited to monitor changes of large or moderate
size on a regional or global scale. On the other hand, mis-
sions with high-resolution capabilities, such as TerraSAR-X or
COSMO-SkyMed, can regularly acquire much more detailed
images of specific locations, enabling the detection of smaller
changes. Change detection (CD) techniques exploiting these
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high-resolution SAR images can be applied to monitor anthro-
pogenic objects, also often called man-made objects (MMOs).
Changes caused by their appearance, disappearance, or move-
ment inside the imaged scene can be detected, as well as changes
to static objects. This enables the monitoring of different types
of human activity, such as the arrival and departure of airplanes
at airports [2] and of ships at ports [3], the construction of new
buildings [4], the movement of shipping containers and parked
cars [5], or changes in the amount of oil stored in refineries [6].

CD methods with SAR images can be classified into co-
herent and incoherent [7], [8]. Incoherent change detection
(ICD) methods detect changes by comparing the amplitude of
two coregistered SAR images, while coherent change detection
(CCD) methods detect changes by the loss of coherence. CCD
methods can detect subtle changes [7], such as those caused by
vehicles when driven over soft surfaces [9] or by objects when
displaced to a distance smaller than the pixel size. Those changes
would not typically be resolved with the amplitude of the SAR
images. However, CCD can only be applied to data acquired with
a short temporal baseline to 1) avoid decorrelation [10] and 2)
reduce false alarms caused by natural targets [11]. ICD methods
are less sensitive, but they can be applied to image pairs with
longer temporal baselines and in some cases even with slightly
different imaging geometries [12].

Traditional ICD and CCD methods cannot easily distinguish
different types of changes, such as those caused by MMOs
or seasonal changes like vegetation growth or snow. Seasonal
changes are irrelevant for many applications, but they are often
detected as they can induce significant amplitude changes and
coherence loss. For example, snow can dominate the CD results
even for short temporal baselines, making the resulting change
maps of little use [11]. Methods affected by this are not very
well suited for applications focusing only on MMOs, as seasonal
changes would result in false alarms. This also applies to modern
CD methods using time series [13], [14], [15], polarimetric SAR
data [16], [17], or deep learning approaches trained to detect
changes in SAR amplitude [18], [19], [20].

In addition, conventional CCD and ICD methods cannot un-
ambiguously distinguish changes due to the appearance and dis-
appearance of MMOs. For CCD methods, both types of changes
cause the coherence to drop significantly. ICD methods can
distinguish changes caused by an increase or decrease in the SAR
amplitude. It is often assumed that a strong increase/decrease in
the SAR amplitude indicates the appearance/disappearance of an
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object. However, this assumption is not always valid, as objects
often cast a shadow area where the amplitude decreases. This
effect has been exploited for detecting changes associated with
buildings [4].

Some recent publications have presented SAR CD methods
focused on the detection of changes caused by MMOs and not
those associated with natural targets, such as vegetation. These
methods tackle this issue in different ways, such as by imple-
menting hand-crafted detectors for specific types of MMOs [5],
by using persistent scatterer interferometry (PSI) [21] to detect
new buildings in large time series [22] or by decomposing the
images in a time series into background and strong scatterers
components and using the extracted scatterers for CD [23], [24].
While these approaches partially solve the aforementioned issue,
they also have certain limitations. The method presented in [5]
relies on hand-crafted features and needs to be tuned for differ-
ent objects. The application of PSI by Yang and Soergel [22]
requires a very long time series and can only detect very slow
or permanent changes caused by objects that remain unchanged
along many images. The method proposed in [23] also requires a
time series and can at most detect a single change event per pixel
during the time series. Finally, the approach described in [24]
detects changes by an increase or decrease in the number of
strong scatterers inside a given radius and appears unable to
detect changes where the scatterers change but their number
remains stable.

In this article, a novel CD approach is presented for the
monitoring of MMOs using pairs or series of high-resolution
single-pol SAR images. Rather than looking for changes in
the SAR amplitude or the loss of coherence, these changes
are detected by the appearance and disappearance of the strong
point scatterers present in MMOs and often denoted as coherent
scatterers (CSs) [25]. The CSs are detected in each image by
analyzing their phase over different frequency subbands [26],
[27] and then compared coherently. An object-based analysis
step is applied to extract information on an object level for
changes significantly larger than individual CSs. The proposed
approach is unsupervised, and it avoids many of the previously
mentioned limitations of other CD methods.

1) It detects only the changes associated with MMOs and
ignores the changes to natural targets.

2) It can exploit CCD even with large temporal baselines, as
CSs are mostly unaffected by temporal decorrelation.

3) It can distinguish the changes caused by an object’s ap-
pearance, disappearance, or modification.

4) It works with as few as two images, and it can detect up to
n different CSs per pixel in a time series with n images.

5) It can identify and ignore irrelevant transient changes (i.e.,
an object temporarily affected by an external factor).

6) It can target specific types of changes (e.g., by their size
and/or temporal behavior) and segment them.

The rest of this article is organized as follows. Section II
presents the proposed CD method. The data used to evaluate
the proposed method and the experiments performed to select
the method’s parameters are described in Section III. Section IV
shows the results obtained when applying the proposed approach
to a long time series for the monitoring of construction activity.

Fig. 1. Processing chain of the proposed CD approach.

Finally, a discussion is given in Section V, and future work is
outlined in Section VI.

II. METHOD

In this section, we present the proposed method, named
Change Detection by Coherent Scatterers. Initially, an overview
of existing algorithms to detect CSs in a single-look com-
plex (SLC) SAR image is provided in Section II-A. Then, in
Section II-B, we describe how different types of changes be-
tween a pair of SAR images can be detected by coherently com-
paring the CSs detected in the two images. An extension of this
method for longer time series is described in Section II-C. Here,
we introduce a new CD metric that exploits the full coherence
matrix and is able to ignore irrelevant transient changes. Because
the changes to be detected are often significantly larger than
individual CSs, the pixelwise CD using CSs is followed by an
object-based change analysis step. This consists of a clustering
step, described in Section II-D, followed by the segmentation
of the changed objects, described in Section II-E. Finally, in
Section II-F, we briefly describe how certain types of changes
can be identified by their size and/or temporal behavior. A block
diagram of the complete processing chain is shown in Fig. 1.

A. Detection of CSs in an SLC SAR Image

The strong point scatterers typically present in MMOs are
often denoted as CSs [25]. CSs can be detected in an SLC
high-resolution SAR image by exploiting the fact that they
remain stable across multiple sublooks [25], [26], [27], [28].
Sublooks can be computed along range (i.e., different frequency
subbands) or azimuth (i.e., different subapertures), as described
in [25]. Because many CSs exhibit a nonconstant azimuth an-
gular scattering pattern [28], sublooks are typically computed
along range for CS detection.
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Different CS detection methods have been evaluated and
compared in [25]. In this work, CSs are detected by analyzing
the variation of the phase with respect to sublook frequency [26].
If a pixel contains a CS, its phase varies linearly; otherwise, it
varies randomly. The phase (given in radians) of a given pixel
at sublook i (with i = 1, . . ., n) can be denoted as φi. If this
phase varies almost linearly, the phase difference between each
two consecutive sublooks, Δφi = φi+1 − φi, will be nearly
constant and, therefore, have a low variance. Phase jumps of 2π
around ±π should be compensated when computing Δφi (e.g.,
by applying phase unwrapping). The variance σ2

φ of the n− 1
samples of Δφ can be computed for each pixel and thresholded
to detect CSs: the pixels with σ2

φ < T are considered to contain
a CS. The value of T trades off the number of false positives
and false negatives. For the CD method presented in this article,
we recommend selecting a value of T resulting in few false
positives.

The lower range resolution of the sublook images causes
strong point scatterers to spread to neighboring pixels. These
pixels often also exhibit a linear phase and can be detected when
thresholding σ2

φ. This effect can be mitigated by analyzing the
slope of the linear phase trends. This slope is proportional to
the distance in range between a pixel and the corresponding
CS [25]. A constraint on the slope can be analytically derived
and implemented: of the pixels with σ2

φ < T , only those with
φn − φi ≤ π actually contain a CS in the full resolution image.
Combining these two constraints allows detecting CSs with
virtually no resolution loss.

B. CD on an Image Pair Using CSs

CCD can be used to determine whether a CS moved or
changed between two SAR images acquired with the same
imaging geometry at different times. If a CS experiences even a
small change (e.g., a subpixel displacement), the interferometric
coherence of the corresponding pixel will drop significantly.
On the other hand, if this CS remains unchanged and static,
the coherence will have a high value, as strong point scatterers
typically have high coherence and are not significantly affected
by temporal decorrelation [21], [29].

To implement such a CD method, the two SLC SAR images
should first be coregistered with subpixel accuracy by using a
method such as the one described in [30]. Afterward, the CSs
can be detected for each image, as described in Section II-A.
The pixels of the resulting two binary images get the value 0 or
1 depending on the absence or presence of a CS. The absence of
a CS is assumed to be clutter. The CD metric is the coherence
computed with the image pair of interest. A threshold γt should
then be applied to the resulting coherence image in order to
detect which of these CSs have changed or moved during the
interval between the two image acquisitions. Finally, depending
on the results of the CS detection and the coherence thresholding,
different types of changes can be distinguished. The possible
cases are summarized in Table I and described in the following
paragraphs.

If a pixel containing a CS has a coherence below γt, it will
imply that a change involving an MMO has very likely occurred
there. Three different types of changes can then be distinguished.

TABLE I
INTERPRETATION OF THE CD RESULTS

If a CS was only detected in the first (i.e., earlier) image, it will
imply that an object left the scene, whereas if it was detected only
in the second image, it will imply that a new object appeared.
If a CS was detected in both the images, then either one object
changed or moved or it was replaced by a different object. On the
other hand, if the coherence of a pixel containing a CS is higher
than γt, it will be considered that this CS remained unchanged
and is present in both the images, even if it was only detected
in one. The reasoning behind this is that a high coherence value
should only be possible if there is no significant change, whereas
false negatives in the CS detection are much more likely to occur.

Finally, the pixels containing clutter in both the images are
ignored, independently of the change in amplitude or coherence
loss. These pixels could correspond to an environmental change,
and the focus of the proposed method is to detect only those
changes associated with MMOs. Besides, the proposed CCD
metric would not work well for these pixels, as it assumes that
unchanged pixels have high coherence values. The distributed
scatterers present in natural targets are affected by temporal
decorrelation. This is especially relevant at the X-band [10],
which is used by most high-resolution spaceborne SAR sensors.
In contrast, CCD can be robustly applied to CSs even with long
temporal baselines.

When applying this method, the computed coherence image
should have the same pixel spacing as the original SLC images,
independently of the number of looks used to estimate the
coherence and the associated resolution loss. The coherence
values are only evaluated on the pixels containing a CS in at
least one image. Because the images with the detected CSs
have the full resolution, the window size used for the coherence
estimation does not affect the spatial resolution of the results.
The effect of the window size used for the coherence estimation
is discussed later in Section III-B.

C. CD on a Time Series Using CSs

If a time series with more than two repeat-pass images is
available, the proposed CD method can be extended. Instead
of detecting changes between each of the consecutive image
pairs separately, the CD task can be formulated in a slightly
more general way. The goal is now to estimate the time interval
[tstart, tend]when each of the detected CSs is present in the imaged
scene and remains unchanged. Using CD, the exact values of tstart

and tend for a given CS cannot be determined, but these can be
narrowed down to the following intervals: tstart ∈ (ta−1, ta) and
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tend ∈ (tb, tb+1). Here, a and b are the indices of the first and
last images where that specific CS was detected, and ti denotes
the acquisition time of the ith image of the series. When using a
time series with n images, up to n different CSs can be detected
in a given pixel, each present during a different time interval.
A higher temporal resolution of the time series allows us to
detect more and faster changes and better determine the change
occurrence.

When performing CD with a time series, instead of simply
comparing each image to the next one, all the image pairs in the
series can be compared. This can be done using the coherence
matrix for each pixel. This matrix contains the coherence value
for images j and k (denoted as γj,k) at row j and column k.
The additional coherence values can be exploited to distinguish
relevant changes to an object (e.g., an object appears, leaves
the scene, moves, or is modified in a lasting manner) from
irrelevant transient changes. We define as transient changes those
situations where an object is just temporarily affected by some
external factor in one or a few outlier images and does not
actually change. Possible examples are an object temporarily
covered with snow or occluded due to the radar shadow casted
by another object. One could argue that these situations are actual
changes that should be detected, but they are typically irrelevant
for many practical applications. Therefore, the ability to dis-
tinguish transient changes (e.g., a building temporarily covered
with snow) from those where the object itself changes (e.g.,
a new building is built or an existing building is renovated or
demolished) represents a clear advantage. Later in Section III-D,
a real example of a transient change is shown and compared to
another example where an object itself actually changes. Both
are illustrated by their characteristic coherence matrices.

To determine whether a change happened to a given CS during
the time interval (ti, ti+1), we can take into account all the image
pairs with one image acquired at ti or earlier and another ac-
quired at ti+1 or later. When an MMO experiences a significant
change, the coherence should be low for all these image pairs.
On the other hand, for transient changes, the coherence is low
for the pairs containing one of the outlier images, but high for
other image pairs with longer temporal baselines. This indicates
some event briefly affected the object causing its coherence to
drop, but the object later returned to its exact previous state, and
therefore, it did not actually change.

Based on this, we can define a new CD metric fi to determine
whether a significant change happened to a given CS during the
time interval (ti, ti+1). For the case of CD with an image pair
introduced in Section II-B, this metric was simply the coherence
of the pair: fi = γi,i+1. In this case, we want the new metric
to be insensitive to transient changes. This can be achieved
by exploiting additional image pairs with different temporal
baselines, enforcing that the coherence must be low for all
of them in order to detect a change. This new metric can be
computed as follows:

fi = max
j,k
j≤i
k≥i+1

γj,k. (1)

As this metric computes the maximum of many coherence
images for each pixel, it is important to avoid noisy coherence

estimates. For this, a large window can be used during the
coherence computation. Storing the coherence matrix for every
pixel requires lots of memory, especially for long time series.
However, this is not required: it is enough to initialize n− 1
empty images to store the values of fi. After computing the
coherence for a given image pair, the values of the images for fi
that include that pair can be updated accordingly. This is more
memory efficient, but the coherence still needs to be computed
for (n2 − n)/2 image pairs. As a small subset of the coherence
matrix suffices to identify transient changes, the metric fi from
(1) can be slightly modified to reduce the computational cost

fi = max
j,k
j∈[i−r,i]
k∈[i+1,i+1+r]

γj,k (2)

where r can be used to increase the number of elements of the
coherence matrix to be taken into account. A value of r = 1
should be enough to detect transient changes affecting only one
image, whereas a value of r = 0 would reduce this metric to the
previous one used for an image pair: fi = γi,i+1.

To perform CD with a time series using this new metric, the
CS detection should be performed for all the coregistered SLC
images, as described in Section II-A. This results in a stack of
binary images Ci (with i in 1, . . . , n) with the detected CSs
for each image. In addition, the CD metric should be computed
using (2), resulting in a stack of images with the values of fi
for each pixel, with i in 1, . . . , n− 1. The remaining steps can
be performed exclusively for the list of pixels containing CSs
instead of using the full image raster. This reduces the required
memory and makes the computations faster. For this, we can
compute a binary mask showing the pixels containing a CS in
at least one image: Cmax = maxi Ci.

As introduced in Section II-B, some pixels might exhibit
inconsistencies, with the CD metric indicating that no change oc-
curred between two images but the CS detection indicating that
only one contains a CS (i.e., fi ≥ γt and Ci �= Ci+1). Before,
we argued that the most likely cause for this is false negatives
in the CS detection. The proposed solution was to consider
that an unchanged CS is present in both the images, effectively
correcting the value of Ci or Ci+1. The same principle can be
applied now, but the comparison should be carried over across
the whole series (e.g., a CS detected in just one image could
be present in several images before and after). This consistency
check can be implemented with a forward pass (sequentially
comparing images i and i+ 1, with i = 1, . . . , n− 1), followed
by a backward pass (comparing images i and i− 1, with i =
n, . . . , 2). This results in corrected values for the CS detection,
denoted as C ′

i. These will have the same values as Ci except for
the likely false negatives corrected, where C ′

i = 1 and Ci = 0.
After this consistency check, the CD can finally be performed.

First, the unchanged and static CSs can be identified by finding
the pixels, where fi is always above the threshold: mini fi ≥
γt. Each of these pixels contains a single CS with tstart < t1
and tend > tn. For the remaining pixels, we need to determine
how many different CSs were present and their corresponding
time periods. For a given pixel, we can establish that a new
CS appeared at a time tstart ∈ (ti−1, ti), with i > 1, if a CS is
present in image i and a change happened in between images
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i− 1 and i (i.e., if C ′
i = 1 and fi−1 < γt). In addition, CSs

present in the first image (C ′
1 = 1) appeared before the start of

the series: tstart < t1. In a similar way, we can establish that a CS
disappeared at a time tend ∈ (ti, ti+1), with i < n, if if C ′

i = 1
and fi < γt. Also, those with C ′

n = 1 are still present at the end
of the series: tend > tn. After checking these conditions for all
the pixels and all the images, a list of detected CSs (each with
an estimated time period) is obtained for each pixel.

The proposed consistency check does not account for false
positives in the CS detection. These are unlikely and usually
have a negligible effect, resulting in a few wrongly detected
CSs that often appear isolated, spread across the imaged scene.
In contrast, the much higher number of correctly detected
CSs appears in the areas where MMOs are located. However,
false positives can pose a problem in certain areas that remain
unchanged and are unaffected by temporal decorrelation. At
these locations, the proposed consistency check would propagate
the CSs wrongly detected in each image to other images of
the series, resulting in a higher number of false positives. This
issue becomes more significant with longer time series, but it
can be mitigated by a simple postprocessing step. If the CD
determines that a given CS is present in images a through b
(both included), we can check the corresponding values of Ci

to see in how many images it was originally detected. If this
number is too low, then the corresponding CS was likely a false
positive and can be discarded

b∑

i=a

Ci < k(b− a+ 1) ⇒ discard CS, likely false positive

(3)
with k being a value between 0 and 1, which controls the
maximum fraction of false negatives to be corrected by the
consistency check.

D. Spatiotemporal Clustering of CSs

A clustering algorithm can be applied to detect objects from
a set of point scatterers, as MMOs appear in SAR images
as clusters of densely packed CSs. The density-based spatial
clustering of applications with noise (DBSCAN) algorithm [31]
seems well suited for this task. Given a set of points, DBSCAN
clusters together those closely packed in high-density regions.
Isolated points in low-density regions are marked as outliers,
which makes the algorithm robust against noise. DBSCAN can
detect clusters of arbitrary shapes and its definition of a cluster
aligns well with our particular problem and data. Its robustness
against noise can discard most of the false positives in the CS
detection. Besides, the number of clusters (unknown in our case)
does not need to be specified.

The DBSCAN algorithm has two parameters: a radius ε, and
p, the minimum number of points within this radius required
to form a cluster. The metric used to compute the distance
between points can also be specified. For our use case, we
use the distance in meters between two pixels. This makes
the selection of the radius ε more intuitive and compensates
different pixel spacings in azimuth and range. This distance is
computed by scaling the pixel coordinates of each CS by the

pixel spacing along the corresponding axes. For the range axis,
typically in slant-range projection, the equivalent pixel spacing
in ground-range is computed using the mean incidence angle.

The values of ε and p should simply control the density of CSs
required to form a cluster. Constraints related to the minimum
cluster size can be imposed later by evaluating the number of CSs
and/or the area inside the convex hull of the resulting clusters.
Otherwise, high values could be selected for both the parameters,
making it difficult to correctly cluster objects of arbitrary shapes
and increasing the probability of grouping nearby objects into
the same cluster.

So far, we have explained how spatial clustering can be
performed on a set of CSs. However, the temporal information
obtained from the CD can also be considered for the clustering.
All the CSs belonging to the same object are expected to appear
and disappear at the same time. This can be enforced by splitting
all the CSs into multiple subsets according to the different
time intervals (i.e., the combinations of tstart and tend). The
DBSCAN algorithm can then be applied separately to each of
these smaller point sets. This way, CSs closely located in an
image but belonging to different objects can be separated if they
have a different tstart or tend. Besides, it also makes the clustering
significantly faster, as most DBSCAN implementations run on
quadratic time.

E. Segmentation of the Detected Changes

The previous clustering step grouped the CSs that are likely
to belong to the same objects. However, it would be desirable to
obtain a dense change map for each object. For this, we can try
to segment each changed object using all the image pixels and
not only CSs. The segmentation is performed separately for each
cluster using all the relevant images, as tstart and tend are known.
The extent of the image patch to be processed can be obtained
by getting the rectangle enclosing the cluster’s convex hull. This
extent can be increased by some scaling factor as a safety margin,
in case the cluster is smaller than the corresponding change to
be segmented.

For objects present in more than one image, the CD metric
fi can be thresholded to obtain an accurate segmentation of the
changes. If an object was first seen at image a and last seen at
image b, its pixels must:

1) change in the interval (ta−1, ta): fa−1 < γt;
2) change in the interval (tb, tb+1): fb < γt;
3) remain unchanged in the interval [ta, tb]: mina≤i<b fi ≥

γt.
These constraints result in three binary images that can be

combined using a logical AND operation to obtain a change mask.
This mask contains all the pixels inside the cluster and near its
boundaries exhibiting the same temporal behavior. In the case
that a = 1, it will not be possible to apply the first constraint,
whereas if b = n, the same will happen to the second constraint.
However, in both the cases, the two remaining constraints are
sufficient.

For objects present in only one image (i.e., if a = b), it will
not be possible to apply the third constraint. The other two might
not suffice to segment the corresponding change, as the object
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surroundings might also have low coherence due to temporal
decorrelation. In this case, some additional constraints related
to the SAR amplitude should be added:

1) amplitude change in (ta−1, ta): |Aa −Aa−1| ≥ ΔA;
2) amplitude change in (ta, ta+1): |Aa −Aa+1| ≥ ΔA;
3) amplitude should not have low values at ta: Aa ≥ Amin.
Ai denotes the SAR amplitude in decibel (dB) scale of the

image i in the series. The parameterΔA represents the minimum
amplitude difference in dB to consider that a pixel changed. This
is equivalent to the well-known log-ratio metric for ICD [32].
While there are more advanced metrics, this fixed threshold
should already perform well, as it is only applied locally where
changes have already been detected. The second parameter Amin

represents the minimum amplitude to consider that a pixel might
belong to an MMO, as these typically exhibit high-amplitude
values. Before applying these new constraints, the speckle noise
should be reduced by applying multilooking or a more sophis-
ticated speckle filter. Some modern methods [33], [34] achieve
a very good denoising performance and preserve the full spatial
resolution. These constraints only work well if the used SAR
sensor is well calibrated, which is typically the case for modern
spaceborne SAR sensors.

Finally, the change mask obtained for each cluster is refined by
applying mathematical morphology operations. First, a closing
operation with a radius of a few pixels is used to fill small holes in
the mask without significantly changing its shape or size. Then,
the connected components that are too small or mostly outside
of the cluster’s bounds are discarded. The remaining connected
components should provide a good segmentation of the changed
object (or objects) in the cluster.

F. Change Analysis

To detect changes corresponding to specific events, the ob-
tained results can be analyzed to identify objects with certain
temporal behaviors and of certain sizes. This is especially inter-
esting for urban areas and similarly complex scenes where many
changes occur between two consecutive image acquisitions. To
focus on objects above or below certain sizes, a threshold can
be applied to the area of the segmented changes. Changes can
also be categorized according to their duration (e.g., into fast,
long-term, and permanent changes). Also, further constraints
regarding their time of appearance and disappearance can be
imposed. In the following, we provide some examples of how
this analysis can be applied.

Newly constructed or renovated buildings and infrastructure
typically imply the appearance of new CSs, which later remain
unchanged over a long time. Such changes can be identified
by imposing the following constraints: tstart > t1, tend > tn, and
tend − tstart > ΔT . This requires at least three images: one ac-
quired before the construction work is finished, and two acquired
afterward and at least ΔT time apart. Here, ΔT is set to the
minimum amount of time that an object must remain unchanged
to be considered a new static object (e.g., a couple of months).

Moving objects (e.g., parked cars, airplanes in airports, etc.)
typically imply CSs appearing and disappearing inside short
periods: tend − tstart < ΔT . Again, at least three images are

Fig. 2. Image patch showing a building. (a) SAR amplitude. (b) Detected CSs.
The range direction is indicated with a white arrow.

required to unambiguously identify this behavior: one acquired
before the object appears, one with it present, and one after
it leaves. Here, ΔT is set to the maximum amount of time that
moving objects are expected to remain static (e.g., from multiple
days to a couple of weeks).

For this kind of temporal analysis, it is important to note
that tstart and tend (and therefore also the duration) can only be
narrowed down to some intervals, as introduced in Section II-C.
In this article, the threshold on this time length is applied to the
lower bound of this interval. However, this could be handled
differently depending on the application.

III. DATA AND EXPERIMENTS

To evaluate the CD method presented in this article, a dataset
consisting of 49 TerraSAR-X repeat-pass images of the city of
Munich was used. These images have been acquired between
March 28, 2016 and February 28, 2019; using the Staring Spot-
light imaging mode (with a resolution of 58 cm in slant range
and 23 cm in azimuth) and with an incidence angle of 37.5◦ and
in ascending orbit. The SAR images shown in this article were
rotated (so that the image’s y-axis corresponds to range) and
resized to achieve a square pixel spacing in slant range, as this
allows us to better observe the layover. However, the processing
is always performed using the original SLC images.

In the following, we use these data to illustrate different parts
of the proposed method and to select suitable values for its
parameters.

A. CS Detection

For the TerraSAR-X data with 300-MHz bandwidth used in
this article, ten equally spaced sublooks with a 75% spectral
overlap appear to be a good choice for CS detection. This
results in a sublook bandwidth of 92.30 MHz and a spacing of
23.08 MHz. Using more sublooks with less bandwidth results
in less CSs being detected in layover regions (e.g., building
façades), as neighboring CSs interfere with each other in the
sublook images due to their lower resolution. For the threshold
T , values between 0.1 and 0.125 work well for the chosen
number of sublooks. The value ofT trades off the number of false
positives and false negatives. An example of the CSs detected in
a TerraSAR-X image of a building using a threshold T = 0.125
is shown in Fig. 2. The selected parameters result in a good
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Fig. 3. Coherence of an image pair computed using two different window
sizes. (a) 3× 7 pixels. (b) 9× 23 pixels. The image patch marked in yellow
was used for estimating the coherence statistics for clutter listed in Table II.

TABLE II
COHERENCE STATISTICS FOR DIFFERENT WINDOW SIZES

detection performance. Most of the point scatterers visible in
the SAR image are correctly detected, and almost no CSs are
detected in the clutter areas. Also, the image with the detected
CSs has virtually the same resolution as the input SLC image.

B. Coherence Calculation and Thresholding

The coherence plays an important role in the proposed CD
method. The window size used for the coherence estimation
and the threshold γt are important parameters. Here, we briefly
analyze the effect of both and select suitable values for them.
Fig. 3 shows the coherence for an image pair computed using two
different window sizes. This image pair has a temporal baseline
of 22 days. The coherence map in Fig. 3(a) was computed using
a smaller window of 3× 7 pixels and is clearly noisier. The
coherence map in Fig. 3(b) was computed using a window of
9× 23 pixels and has a lower resolution, but also significantly
less noise. In both the cases, the window is bigger along azimuth,
as the data have a higher resolution along this axis. The window
sizes are chosen to achieve a similar resolution in slant range
and azimuth. Table II shows the mean and standard deviation of
the coherence for clutter and point scatterers, computed using
four different window sizes. The small homogeneous patch
highlighted in yellow in Fig. 3 was used for estimating the
clutter statistics, whereas for the point scatterers, 100 of them
were manually selected across the image. Table II shows that
for CSs, even relatively small windows result in good coherence
estimates with low bias and variance. However, for clutter and
other areas with low coherence, the coherence estimates using
small windows have a high bias and variance. Because of this,
using small window sizes can lead to problems when applying a
threshold in areas of low coherence (e.g., coherence can be over-
estimated where changes occurred). Therefore, in this article,

Fig. 4. Histogram of the coherence values for the CSs (blue line) and all pixels
(orange line) in a large image patch in the city center. These are shown for two
temporal baselines: (a) 22 days and (b) 2 years and 11 months. The histograms
are normalized so that the area under the curve integrates to 1.

we use a window of 9× 23 for the coherence estimation. This
results in coherence maps with a resolution of approximately
5.2 m in azimuth and slant range. Nevertheless, as described in
Section II-B, this does not affect the spatial resolution of the
results of the pixelwise CD using CSs.

For the coherence threshold, we select a value of γt = 0.5,
taking advantage that CSs typically have high coherence and are
not significantly affected by temporal decorrelation [21], [29].
This is illustrated in Fig. 4 with the histograms of the coherence
values for the CSs (blue line) and for all the pixels (orange line)
inside a very large image patch showing the city center. This
comparison is done for two different temporal baselines: one of
22 days, shown Fig. 4(a), and one of almost three years, shown
in Fig. 4(b). As expected, the histograms for the CSs show clear
maxima for values very close to 1. This indicates that temporal
decorrelation is not significant for CSs even after a period of
almost three years. There are a few CSs with low coherence
values, but these are most likely due to changes between the
two images and also some false positives in the CS detection.
The number of CSs with low coherence increases for the longer
temporal baseline, as many more changes occurred during this
time. When comparing the two histograms for all the image
pixels, it is clear than the temporal decorrelation is in this case
much more significant. Also, when considering all the image
pixels, the coherence values are much more evenly distributed
even for short temporal baselines. Because of all this, a fixed
coherence threshold like the one used in this article works well
for CSs, but it is unlikely to work well when applied to all the
image pixels. When considering all the image pixels, a different
CD metric such as GLRT [13] would likely perform better.

C. CD With an Image Pair Using CSs

We have claimed that the proposed method is able to detect
only those changes corresponding to MMOs, and that it is not
affected by temporal decorrelation. To illustrate this, we apply
the method described in Section II-B to an image pair acquired
over the Munich area of the “Deutsches Museum.” The first
image was acquired on March 28, 2016 and the second on March
13, 2018. The two amplitude images can be seen in Fig. 5(a)



7506 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 5. CD with CSs for an image pair acquired over the Munich area of the
“Deutsches Museum.” (a) SAR image from 2016. (b) SAR image from 2018.
(c) Detected CSs for the 2016 image. (d) Detected CSs for the 2018 image. (e)
RGB composite image with the 2018 image in red, the 2016 image in green,
and the coherence in blue. (f) CSs color coded according to the type of change;
blue: unchanged CS, green: CS only present in 2016, red: CS only present in
2018, and yellow: a different CS in each date.

and (b), and the detected CSs for each image are shown in
Fig. 5(c) and (d), respectively. The CSs are represented as large
points for better visualization, but each CS actually corresponds
to an individual pixel in the full resolution SAR images. The
region shown in these images contains several buildings and two
bridges, as well as some vegetation and a river. As expected,
the CSs are detected in the image regions where MMOs are
located, with very few CSs being detected in the areas with
water and vegetation. A multitemporal color composite image
highlighting the changes between this image pair is shown in
Fig. 5(e), with both the amplitude images in the green and red
channels, and the coherence in the blue channel. In such a com-
posite image, unchanged areas appear in blue and white, as they

exhibit low-amplitude change and high coherence. Changed ar-
eas exhibiting strong amplitude variations appear in bright green
(if the amplitude decreased) and red (if it increased). Changes
due to a loss of coherence with no significant amplitude variation
(e.g., due to temporal decorrelation) appear in brownish and
yellow colors. After applying the proposed CD method, the CSs
detected in the image pair are classified into the different types
of change listed in Table I. The results are shown in Fig. 5(f)
with the CSs color coded according to the change type. For
consistency, the colors were chosen to be similar to those in the
color composite image shown in Fig. 5(e). Unchanged CSs are
shown in blue, those that were only present on the first or second
images are shown in green and red, respectively, and pixels
containing a different CS in each image (or one that changed)
are shown in yellow.

This example shows that the proposed CD approach can
successfully detect the changes associated with MMO (e.g., in
the “Deutsches Museum,” the large building toward the right
part of the image). Changes associated with natural targets, like
the change in water level causing a strong amplitude variation at
the river bank [signaled by a white arrow in Fig. 5(e)], are mostly
ignored. As expected, CSs are not affected by temporal decor-
relation even with a temporal baseline of approximately two
years. All the CSs in the unchanged buildings and other objects
exhibit high coherence and are correctly detected as unchanged.
Finally, a few isolated CSs that appear to be false detections
(e.g., those in the river) can also be seen. While these are very
few, they could be avoided by decreasing the threshold T of the
CS detection. However, this would result in an increased number
of false negatives (i.e., undetected CSs). Instead, these few false
detections are handled during the clustering and segmentation
steps.

D. Coherence Matrix of Transient Changes

In Section II-C, we introduced the concept of transient
changes and briefly explained how they can be identified by their
characteristic coherence matrix. To illustrate this, a real example
of a transient change due to a building’s roof temporarily covered
with snow can be seen in Fig. 6. A multitemporal color composite
image comparing the first and last images of a time series with
eight images is shown in Fig. 6(a). These two images were
acquired almost two years apart. Some changes (highlighted
in bright red and green) are visible toward the top, but the
circular building in the center remains unchanged, as shown by
its blue and white colors indicating a high coherence. However,
in the composite image comparing the second and third images
(acquired approximately one month apart) shown in Fig. 6(b),
it appears that this same circular building has changed. In this
case, the coherence of the corresponding pixels is low. The visual
interpretation of the full extent of the imaged scene for this third
image, acquired during wintertime, suggests that snow is the
reason for this low coherence. This same effect can be seen
across many other buildings over the whole city, and changes in
backscatter consistent with snow cover can also be seen at many
other locations (e.g., at the sides of the streets). Fig. 6(c) shows
the coherence matrix for one of the CSs of the building [the one
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Fig. 6. Example of a transient change: circular building covered with snow in
the third image of a time series. Color composite images comparing the (a) first
and last images and (b) the second and third images. (c) Coherence matrix with
the coherence values for all the image pairs for the highlighted pixel. The matrix
elements for the pairs in (a) and (b) are marked with “A” and “B,” respectively.

marked with a yellow cross on Fig. 6(a) and (b)]. The matrix
elements contain the coherence values for different image pairs:
the values for the pairs shown in Fig. 6(a) (images 1 and 8) and (b)
(images 2 and 3) are marked with an “A” and “B,” respectively.
For this particular example, the third image is very clearly an
outlier, as all the image pairs containing this image (i.e., third
column and third row) have very low coherence, whereas all the
other image pairs have high coherence values.

For comparison, the change caused by the construction of a
building occurring at a different location in the same time series
can be seen in Fig. 7. The visual analysis of the time series shows
that the construction work finished between the acquisition of
the fourth and fifth images. These two images are compared
in the color composite image of Fig. 7(a). Strong amplitude
changes highlighted in bright green and red colors can be seen
across the complete façade of the building at the center of this
image. Toward the top, a construction crane can also be seen in
green, indicating that it was only present in the fourth image.
After the fifth image, the newly constructed building remains
unchanged. This can be seen in Fig. 7(b): a composite image
comparing the fifth and last images. This temporal behavior can
be clearly seen in the coherence matrix, shown in Fig. 7(c) for
the pixel highlighted with a yellow cross in Fig. 7(a) and (b).
As the building construction was finished between t4 and t5, the
coherence γj,k for all the image pairs with j ≤ 4 and k ≥ 5 is
low. This behavior is clearly different from the one exhibited by
the previously shown transient change. In addition, the fact that
this building then remains unchanged after t5 can also be seen
in this matrix, as γj,k is high for all the image pairs with j ≥ 5
and k ≥ 5.

Fig. 7. Example of a change due to construction work finished between the
fourth and fifth images of a time series. Color composite images comparing the
(a) fourth and fifth images and (b) fifth and last images. (c) Coherence matrix
with the coherence values for all image pairs for the highlighted pixel. The matrix
elements for the pairs in (a) and (b) are marked with “A” and “B,” respectively.

Fig. 8. Example of the effect of r in the CD metric defined in (2) for a time
series of eight images. Metric f2 computed (a) with r = 0 and (b) with r = 2.
(c) Unchanged CSs detected using these two metrics: red CSs detected with both,
blue only with r = 2. (d) As reference, a color composite image comparing the
first and last images.

E. CD With a Time Series Using CSs

Using a time series instead of an image pair introduces two
additional parameters. The first one is r, related to the CD metric
defined in (2). The effect of r is illustrated with an example in
Fig. 8, using the same eight images as in Figs. 6 and 7. The
resulting CD metric f2 for detecting changes between images 2



7508 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

and 3 of this series is shown in Fig. 8(a) and (b) for r = 0 and r =
2, respectively. The metric computed with r = 0 has low values
(indicating change) even for unchanged buildings, whereas the
metric computed with r = 2 correctly has high values there. This
difference between both the metrics is due to the previously
described transient changes, caused by snow in this example.
To further illustrate this, Fig. 8(c) shows a comparison of the
detected CSs that remain unchanged along the complete time
series according to both the metrics (i.e., those with mini fi ≥
γt). The CSs highlighted in red are detected as unchanged using
both r = 0 and r = 2, whereas those in blue only with r = 2.
The blue CSs were, therefore, affected by a transient change
at some point during the time series. For visual verification, a
color composite image comparing the first and last images of
this series and showing the unchanged buildings in blue can
be seen in Fig. 8(d). This example shows that higher values
of r increase robustness against transient changes, as expected.
When processing the complete time series with 49 images, we
set r = 5 for even more robustness against transient changes, at
the cost of slightly increased computation time.

The second parameter is k, related to the postprocessing step
for discarding CSs that are likely false positives. Our experi-
ments with TerraSAR-X data showed that a value of k = 0.1
appears to work well for time series of different lengths. Higher
values of k result in more CSs being discarded.

F. Spatiotemporal Clustering of CSs

The values for the parameters of the clustering step depend
on the amount and density of CSs in the objects to be detected.
These two factors mainly depend on the resolution of the input
SLC images and the object size. Higher resolution typically
results in an increased number of detected CSs. As mentioned in
Section II-A, the image with the detected CSs has virtually the
same resolution as the input image. The lower resolution of the
coherence images used for the CD should not play a significant
role for the clustering, as it does not affect the number of detected
CSs.

For all the examples shown in this article, the following
parameters were used for the DBSCAN algorithm: ε = 15 m
and p = 20. In this article, to filter out changes too small to
be of interest, clusters containing less than 30 CSs or with a
convex hull area smaller than 20 m2 are discarded. As described
in Section II-D, distances and areas are computed in meters
for the clustering, to compensate the different pixel spacings
along range and azimuth. For the data used in this article, a pixel
represents a ground area of around 75× 17 cm.

An example of the application of this clustering step can be
seen in Fig. 9. Three small SAR image patches [see Fig. 9(a)–(c)]
show the construction of a building from start to finish. These
are part of a time series with eight images, which were processed
as described in Section II-C. As the goal of this example is to
illustrate the clustering step in a simple way, only a subset of the
detected changing CSs is shown: those appearing in the sixth
image and still present in the last image. Fig. 9(d) shows these
CSs highlighted in red over the last SAR image of the series.
Most of these correspond to the newly constructed building,

Fig. 9. Example of object-based CD. (a)–(c) Three of the SAR images in a
time series with eight images showing the construction of a building. (d) CSs
in the last image, which first appeared in the sixth image. (e) Resulting cluster
delimited by its convex hull. (f) Segmented change.

which was finished sometime in between the acquisition of the
fifth and sixth images. The clustering results obtained with the
parameters listed above can be seen in Fig. 9(e). This exam-
ple illustrates how the proposed spatiotemporal clustering can
successfully group together all the CSs belonging to a changed
object.

G. Segmentation of the Detected Changes

The proposed method for change segmentation has a few
parameters only. The first parameter is a scaling factor, used to
compute the extent of the image patches to be considered for the
segmentation. In this article, we set this factor to 50%, meaning
that these patches are 50% larger than the rectangles enclosing
the corresponding clusters. Another parameter is the radius for
the closing operation performed during the postprocessing of the
obtained segmentation mask. We set this to 5 pixels. The selected
values seem to work well for the applications considered in this
article. An example of the segmentation results obtained for
a change due to the construction of a new building is shown
in Fig. 9. The cluster with the change to be segmented and the
resulting segmentation are highlighted in red in Fig. 9(e) and (f),
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respectively. Using the temporal information obtained from the
CD and the clustering results as a starting point, the proposed
method achieved a rather accurate segmentation of the newly
constructed building.

Additional parameters are needed for the segmentation of
objects present in only one image, as the SAR amplitude must
also be considered for this. The first one is a threshold ΔA,
applied to the amplitude difference in dB scale. We set this
threshold to ΔA = 3 dB. The second one is a threshold Amin

related to the minimum amplitude value for pixels corresponding
to MMOs, as these tend to exhibit relatively high-amplitude
values. This one is set to Amin = −15 dB. Before applying
these thresholds, the speckle noise should be reduced. In this
article, we apply a custom speckle filter that preserves the full
resolution. Multilooking is applied to the despeckled image to
further reduce speckle, resulting in a 1-m resolution in slant
range and azimuth, but keeping the original pixel spacing. We
do not describe this speckle filter in detail as this is out of the
scope of this article. However, modern despeckling algorithms,
such as [33] and [34], would very likely result in a better speckle
reduction. Our experiments show that these two fixed thresholds
work quite well for our data, as they are only applied locally
where changes have already been detected for many CSs. Some
example results can be seen later in Section IV-B.

IV. RESULTS

The CD method proposed in this article was applied to the
complete time series of the city of Munich introduced in the
previous section. The processing chain was applied as described
in Section II and illustrated in Fig. 1. The different parameters
were set to the values suggested in Section III. These values were
empirically chosen and have been shown to work well in a variety
of settings. Many different types of changes can be seen in the
imaged scene during this period of almost three years. In this
article, we focus on the changes due to construction activity, such
as newly constructed or renovated buildings and infrastructure,
the build-up for festivals, etc. To illustrate the capabilities of the
proposed method to categorize the detected changes, we show
how it can be applied to specifically detect some of these types
of changes.

A. Detection of New and Renovated Buildings

The detection of changes due to the construction of new
buildings and infrastructure or renovations to existing ones is
of interest for many applications. Often, there are many differ-
ent changes continuously occurring across the whole imaged
scene, and most general CD methods simply result in a binary
change map highlighting all the changes. In contrast, the method
proposed in this article can identify these changes by their
characteristic temporal behavior, as described in Section II-F.
This approach identifies the final change to a given building and
the date when it happened, which should correspond to time
when the construction work was finished. For this example, ΔT
was set to two months.

The obtained results for an area around the city campus
of the Technical University of Munich (TUM) are shown in

Fig. 10(a). This image shows the latest SAR image in the series
(acquired on February 28, 2019), with the segmented changes
highlighted in different colors according to the date when the
construction work finished. The visual inspection of the SAR
time series allows us to validate the obtained results, as it can
be seen that renovation works have actually taken place at
all the highlighted locations. In some cases, these renovations
resulted in visible alterations to the corresponding buildings,
while in others they could only be identified by the temporary
presence of scaffolds. Many other changes occurred in this area
and were also detected by the proposed method, but all those
not fitting the desired temporal pattern were discarded. This
successfully discarded changes corresponding to moving objects
and other activity. However, it also discarded two changes due
to the construction of two new buildings, which were still
not completely finished by the acquisition time of the last
image.

Further verification using optical images has been performed
for the museum “Alte Pinakothek” and for one side of the TUM
building, both areas enclosed in Fig. 10(a) by white rectangles.
The renovation process of the “Alte Pinakothek” can be seen
in three optical images at the bottom of Fig. 10(l) and (m) and
the five SAR images in the second row of Fig. 10(b)–(f), each
with their corresponding acquisition date. In the same way, the
changes at the TUM building can be seen in an optical image and
a street level photography in Fig. 10(o) and (p), respectively, as
well as in the five SAR images in the third row of Fig. 10(g)–(k).
In both the cases, the results shown in Fig. 10(a) agree with the
sequence of the renovation process depicted in both the optical
and SAR images, where proof of these changes was manually
outlined using the same colors. The optical images show all
the renovation works at both buildings, except for the one
highlighted in green on the university building in Fig. 10(a), as no
optical images acquired at that time could be found. The SAR
image sequences do, however, show all the detected changes,
including that one: the scaffold can be seen in Fig. 10(g) and
no longer in Fig. 10(h) (in both the cases highlighted in green).
In some cases, the segmented changes shown in Fig. 10(a) are
smaller than the manually outlined areas in the SAR and optical
images. The reason for this is that the results shown in this figure
only highlight the parts of the final building structures that were
modified, and not all the image pixels which changed at some
point throughout the time series (e.g., those temporarily covered
by scaffolds). Also, the renovation of the building on the right
side of the street in Fig. 10(p) could not be detected, as this
façade is not visible to the SAR sensor and appears as a shadow
area in the SAR images. This change could also be detected by
applying the proposed method to a time series acquired with
descending orbit.

In addition to the results shown for the TUM area, many more
changes due to the construction or renovation of buildings were
detected at different locations across the city. Fig. 11 shows
four of the detected changes, each displayed in a different row
[rows (a)–(d)]. Each change is illustrated by three SAR image
chips acquired before (column A), during (column B), and after
(column C) the construction work. The detected changes are
highlighted in the final images (i.e., column C in Fig. 11),
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Fig. 10. Results for the detection of changes due to the construction and renovation of buildings in an area around the city campus of the TUM. For visual
verification, some optical images and a few of the SAR images in the series are shown for two buildings: the museum “Alte Pinakothek” and a side of the university
building. (a) Segmented changes drawn over the last SAR image of the series, with the color denoting the date at which the construction work was finished. (b)–(f)
Sequence of SAR images for the museum. (g)–(k) Sequence of SAR images for the university. (l)–(n) Optical images for the museum. (o) and (p) Optical images
for the university. The optical satellite images were obtained from Google Earth (l–n) and Apple Maps (o), and the street level photography from Mapillary (p).
The acquisition date of the optical image in (o) was not listed in Apple Maps, but it appears to have been acquired in mid-2018.

with the colors corresponding to the date on which the con-
struction work finished, using the same legend from Fig. 10(a).
Fig. 11(a) and (b) shows changes due to the construction of new
buildings, whereas Fig. 11(c) and (d) shows examples due to
renovations. Some of these changes appear in multiple colors,
meaning that different structures were finished at different times
[like in Fig. 11(b)], or that different sections of the scaffold

were gradually removed [like in Fig. 11(d)]. Again, the visual
inspection of the SAR images in the time series allowed to
validate the accuracy of the obtained results. For the two new
buildings, the image sequence shows an empty lot, followed by
the construction progressing and finally the finished building. On
the other hand, for the renovations, the first and final states are
very similar, with the presence of a scaffold during the renovation
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Fig. 11. Four examples [rows (a)–(d)] of detected changes to buildings. (A)
Images acquired before the construction work. (B) Images acquired during the
construction work. (C) Final images with the detected new and/or modified
structures highlighted.

being the main change. Even if these two types of changes are
different, the proposed method cannot distinguish them as they
exhibit similar temporal patterns (i.e., the appearance of new
CSs that later remain static).

One possible way to distinguish changes due to the construc-
tion of new buildings and the renovation of existing ones would
be to evaluate the number of CSs over time inside the segmented
changes. It has been shown that a significant increase in the
number of CS indicates an increase in the amount of built-up
structures [35]. This information is plotted in Fig. 12 for the
four changes shown in Fig. 11(a)–(d). As expected, for the
examples corresponding to the construction of new buildings
[see Fig. 11(a) and (b)], the number of CSs increases by a
significant amount as the construction progresses and remains
constant after it finishes. For the renovations [see Fig. 11(c)
and (d)], there is only a small variation in the number of CSs
between the prior and final states, with a larger variation during
the time where the scaffold is present. This kind of analysis
could potentially be used to achieve a finer classification of the
detected changes. However, this task is out of the scope of this
article.

B. Detection of Other Changes

In addition to the construction and renovation of buildings and
infrastructure, the proposed method also detects other changes
like the build-up for festivals and/or any events taking place, the

Fig. 12. Evolution of the number of CSs over time for the four changes in
Fig. 11, with those corresponding to the construction of new buildings [see
Fig. 11(a) and (b)] and renovations [see Fig. 11(c) and (d)] showing distinct
patterns.

movement of objects, etc. As mentioned in Section II-F, such
changes typically involve CSs both appearing and disappearing
inside relatively short periods. To show this, the proposed ap-
proach was applied to detect only changed objects that remain
unchanged and static for less than an interval ΔT of four
months. Some of the results are shown in Fig. 13 for a small
area around the park “Theresienwiese,” where different festivals
take place throughout the year. Fig. 13(a)–(c) shows this area at
three different times along with the corresponding changes. The
detected changes were highlighted in a color ranging from red to
yellow (with the hue component varying linearly from 0 to 60)
according to the length of time that each object is present and
remains unchanged. Most of these changes appear in dark red
(hue value of 0), meaning that the corresponding objects were
only present during one image. A few objects are highlighted in
orange, such as the roofs of some of the large festival tents in
Fig. 13(c), showing that these structures were built before and/or
stayed longer in the scene than the other objects.

In addition to the changes due to the festivals in this park,
changes were also detected for some buildings where construc-
tion work is taking place. The analysis described in the previous
subsection allowed to detect the final change to buildings and
estimate when the construction or renovation finished. However,
during the construction phase, the buildings change continu-
ously, and all these fast changes are also detected. Once the final
change to a building is detected, all the previous changes in the
same overlapping area could be identified as the corresponding
construction work.
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Fig. 13. Detected changes at the park “Theresienwiese” due to objects both
appearing and disappearing within a time period of less than four months,
highlighted in a color according to the length of time that each object is present.
(a)–(c) show this park at three different dates, with different events taking place,
which cause the majority of the detected changes.

C. Detection of Unchanged and Static Objects

The proposed method also detects the MMOs that remain
static and unchanged throughout the time series. For an urban
scene like the one in our dataset, these correspond to the existing
buildings and infrastructure where no renovations took place.
Fig. 14 shows an example of the obtained results for an area close
to the Munich city center. The unchanged CSs are highlighted in
blue over the first and last images of the time series in Fig. 14(a)
and (b), respectively. These CSs are similar to the persistent
scatterers of PSI methods [21], but can be obtained with as
few as two images. However, especially in layover areas (e.g.,
the building façades), the resolution loss in range due to the
sublooking required for the CS detection results in less point
scatterers being detected than when using PSI. The proposed
object-based analysis method was also applied to segment the
unchanged objects. The segmentation results can be seen in
Fig. 14(c) and (d), again highlighted over the first and last images

Fig. 14. Objects that remained unchanged throughout the time series. Top:
detected unchanged CSs highlighted in blue over (a) the first image and (b) the
last image. Bottom: segmentation results for the unchanged objects highlighted
in blue over (c) the first image and (d) the last image.

of the series, respectively. The comparison of the left and right
columns (corresponding to the first and last images) of Fig. 14
show how the proposed method correctly identifies unchanged
objects, consisting mostly on buildings, but also street lamps, etc.
For some of the buildings that are not highlighted, the changes
can be clearly seen (e.g., one building toward the top, and another
one toward the bottom left). For others, no changes can be seen
between the first and last images, but the visual inspection of the
complete time series revealed that renovations took place.

V. DISCUSSION

We introduced a novel method for the detection of changes
associated with MMO using pairs or series of SAR images. This
method was applied to a time series of 49 TerraSAR-X images
for the monitoring of construction activity. The analysis of the
results shows that the method performs well and can accurately
detect these changes. Seasonal changes (e.g., snow, changes in
water level, vegetation, etc.) are ignored and do not result in
false alarms.

When applying the method for detecting changes due to the
renovation of existing buildings, the combined use of multiple
time series acquired with different imaging geometries (e.g., dif-
ferent orbit or look direction) should be considered. Otherwise,
some changes cannot be detected, as all the building façades
cannot be imaged with a single imaging geometry.
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For the build-up of festivals and similar events involving
many small objects close together and constantly changing,
the proposed method is not able to separate individual objects
using neither spatial nor temporal information. In such cases,
closely packed objects are grouped together when performing
the object-based analysis. Other than that, the change segmen-
tation works fairly well.

The proposed CD method was evaluated in a rather qualitative
way, as quantitatively evaluating its performance and comparing
it to other CD methods would require a dataset with ground truth.
To the best of our knowledge, these is no such publicly avail-
able dataset, and generating one is not an easy task. Acquiring
ground truth or manually labeling the data for such a CD task
is very challenging and time consuming. Besides, time series of
spaceborne SAR data with such a high resolution are typically
not freely available. Also, the generation of realistic synthetic
data does not seem feasible, as the proposed method uses SLC
SAR images and exploits their phase.

The presented method was developed for a specific task: de-
tecting changes associated with MMOs. For this task, we expect
it to perform better than general-purpose CD methods. However,
this specificity limits its applicability: it is not well suited for
applications where changes to natural targets are relevant. Also,
it will perform badly when applied to low-resolution data (e.g.,
Sentinel-1), as the CS detection requires a large bandwidth to
work properly. On the other hand, better performance can be
expected when using data with even higher resolution. The
proposed method can work with long temporal baselines, but
the potential of the applied temporal analysis increases with
the temporal resolution of the used time series. This makes it
especially interesting for SAR missions involving large constel-
lations with very high revisit, like those currently being built by
New Space companies [36].

VI. FUTURE WORK

Further work will involve applying the proposed method to
datasets with different scenes to detect other kinds of changes,
such as the arrival and departure of airplanes at airports and
ships at ports. In addition, we will also explore the possibility
of exploiting multiple images jointly for CS detection, instead
of performing the detection separately in each image and then
applying a consistency check as a postprocessing step. The
segmentation of objects present in a single image of the series
could also potentially be improved by using a more modern
amplitude CD metric and/or a more advanced segmentation
method. Finally, a more sophisticated analysis of the segmented
objects could be implemented to better distinguish different
kinds of changes. For example, changes due to new buildings
could potentially be distinguished from those due to renovations
by analyzing the evolution over time of the number of CSs, as
we have briefly shown in this article.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive comments and recommendations.

REFERENCES

[1] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek,
and K. P. Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE
Geosci. Remote Sens. Mag., vol. 1, no. 1, pp. 6–43, Mar. 2013.

[2] C. V. Lopez and U. Stilla, “Object-based SAR change detection for security
and surveillance applications using density based clustering,” in Proc. 12th
Eur. Conf. Synthetic Aperture Radar, 2018, pp. 1–6.

[3] C. V. Lopez, T. Kempf, R. Speck, H. Anglberger, and U. Stilla, “Automatic
change detection using very high-resolution SAR images and prior knowl-
edge about the scene,” Proc. SPIE, vol. 10188, 2017, Art. no. 1018805.

[4] C. Marin, F. Bovolo, and L. Bruzzone, “Building change detection in
multitemporal very high resolution SAR images,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 5, pp. 2664–2682, May 2015.

[5] F. Bovolo, C. Marin, and L. Bruzzone, “A hierarchical approach to change
detection in very high resolution SAR images for surveillance applica-
tions,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2042–2054,
Apr. 2013.

[6] C. V. Lopez and U. Stilla, “Monitoring of oil tank filling with spaceborne
SAR using coherent scatterers,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 14, pp. 5638–5655, 2021.

[7] M. Preiss, D. A. Gray, and N. J. S. Stacy, “Detecting scene changes using
synthetic aperture radar interferometry,” IEEE Trans. Geosci. Remote
Sens., vol. 44, no. 8, pp. 2041–2054, Aug. 2006.

[8] E. J. M. Rignot and J. J. van Zyl, “Change detection techniques for ERS-1
SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 31, no. 4, pp. 896–906,
Jul. 1993.

[9] M. Cha, R. D. Phillips, P. J. Wolfe, and C. D. Richmond, “Two-stage change
detection for synthetic aperture radar,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no. 12, pp. 6547–6560, Dec. 2015.

[10] A. Parizzi, X. Cong, and M. Eineder, “First results from multifre-
quency interferometry. A comparison of different decorrelation time
constants at L, C, and X Band,” in Proc. ESA Fringe Workshop, 2009,
pp. 1–5.

[11] A. Reigber, M. Jager, and E. Krogager, “Polarimetric SAR change de-
tection in multiple frequency bands for environmental monitoring in
arctic regions,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2016,
pp. 5702–5705.

[12] J. Tao and S. Auer, “Simulation-based building change detection from
multiangle SAR images and digital surface models,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3777–3791, Aug. 2016.

[13] A. V. Monti-Guarnieri, M. A. Brovelli, M. Manzoni, M. M. d’Alessandro,
M. E. Molinari, and D. Oxoli, “Coherent change detection for multipass
SAR,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 11, pp. 6811–6822,
Nov. 2018.

[14] E. C. Koeniguer and J.-M. Nicolas, “Change detection based on the
coefficient of variation in SAR time-series of urban areas,” Remote Sens.,
vol. 12, no. 13, 2020, Art. no. 2089.

[15] G. Quin, B. Pinel-Puyssegur, J.-M. Nicolas, and P. Loreaux, “MIMOSA:
An automatic change detection method for SAR time series,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 9, pp. 5349–5363, Sep. 2014.

[16] K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver, “A test statistic in
the complex Wishart distribution and its application to change detection in
polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 41, no. 1,
pp. 4–19, Jan. 2003.

[17] M. J. Canty, A. A. Nielsen, K. Conradsen, and H. Skriver, “Statistical
analysis of changes in Sentinel-1 time series on the Google earth engine,”
Remote Sens., vol. 12, no. 1, 2020, Art. no. 46.

[18] Y. Li, C. Peng, Y. Chen, L. Jiao, L. Zhou, and R. Shang, “A deep
learning method for change detection in synthetic aperture radar im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 8, pp. 5751–5763,
Aug. 2019.

[19] M. Li, M. Li, P. Zhang, Y. Wu, W. Song, and L. An, “SAR image change
detection using PCANet guided by saliency detection,” IEEE Geosci.
Remote Sens. Lett., vol. 16, no. 3, pp. 402–406, Mar. 2019.

[20] J. Geng, X. Ma, X. Zhou, and H. Wang, “Saliency-guided deep neural
networks for SAR image change detection,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 10, pp. 7365–7377, Oct. 2019.

[21] A. Ferretti, C. Prati, and F. Rocca, “Permanent scatterers in SAR inter-
ferometry,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 1, pp. 8–20,
Jan. 2001.

[22] C.-H. Yang and U. Soergel, “Adaptive 4D change detection based on PSI,”
in Proc. IEEE 12th Eur. Conf. Synthetic Aperture Radar, 2018, pp. 1–5.

[23] S. Lobry, F. Tupin, and L. Denis, “A decomposition model for scatterers
change detection in multi-temporal series of SAR images,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp., 2016, pp. 3362–3365.



7514 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

[24] S. Lobry, L. Denis, and F. Tupin, “Multitemporal SAR image decom-
position into strong scatterers, background, and speckle,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3419–3429,
Aug. 2016.

[25] M. J. Sanjuan-Ferrer, I. Hajnsek, K. P. Papathanassiou, and A. Mor-
eira, “A new detection algorithm for coherent scatterers in SAR data,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 11, pp. 6293–6307,
Nov. 2015.

[26] R. Z. Schneider and K. Papathanassiou, “Estimation and correction
of ionospheric induced phase errors in SAR images using coherent
scatterers,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2009,
pp. IV-165–IV-168. [Online]. Available: https://ieeexplore.ieee.org/
document/5417348

[27] V. M. Giacovazzo, A. Refice, F. Bovenga, and N. Veneziani, “Identi-
fication of coherent scatterers: Spectral correlation vs. multi-chromatic
phase analysis,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2008,
pp. IV-411–IV-414. [Online]. Available: https://ieeexplore.ieee.org/
document/4779745

[28] R. Z. Schneider, K. P. Papathanassiou, I. Hajnsek, and A. Moreira, “Polari-
metric and interferometric characterization of coherent scatterers in urban
areas,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 4, pp. 971–984,
Apr. 2006.

[29] M. Eineder, N. Adam, R. Bamler, N. Yague-Martinez, and H.
Breit, “Spaceborne spotlight SAR interferometry with TerraSAR-X,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 5, pp. 1524–1535,
May 2009.

[30] E. Sansosti, P. Berardino, M. Manunta, F. Serafino, and G. Fornaro,
“Geometrical SAR image registration,” IEEE Trans. Geosci. Remote Sens.,
vol. 44, no. 10, pp. 2861–2870, Oct. 2006.

[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “Density-based spatial
clustering of applications with noise,” in Proc. Int. Conf. Knowl. Discov.
Data Mining, 1996, vol. 240, p. 6.

[32] Y. Bazi, L. Bruzzone, and F. Melgani, “Automatic identification of the
number and values of decision thresholds in the log-ratio image for change
detection in SAR images,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 3,
pp. 349–353, Jul. 2006.

[33] C.-A. Deledalle, L. Denis, F. Tupin, A. Reigber, and M. Jager, “NL-SAR:
A unified nonlocal framework for resolution-preserving (Pol)(In)SAR de-
noising,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 4, pp. 2021–2038,
Apr. 2015.

[34] E. Dalsasso, L. Denis, and F. Tupin, “As if by magic: Self-supervised train-
ing of deep despeckling networks with MERLIN,” IEEE Trans. Geosci.
Remote Sens., vol. 60, pp. 1–13, 2022.

[35] C. V. Lopez and U. Stilla, “Using coherent scatterers in time series of
high resolution SAR images for the monitoring of construction activity,”
ISPRS Ann. Photogrammetry Remote Sens. Spatial Inf. Sci., vol. IV-2/W7,
pp. 183–187, 2019.

[36] D. Muff et al., “The ICEYE constellation—Some new achievements,” in
Proc. IEEE Radar Conf., 2022, pp. 1–4.

Carlos Villamil Lopez was born in Cervo, Spain, in
1989. He received the M.Sc. degree in telecommu-
nications engineering from the University of Oviedo,
Gijón, Spain, in 2013. He is currently working toward
the Ph.D. degree with the Unit “Photogrammetry and
Remote Sensing,” Technical University of Munich,
Munich, Germany. His Ph.D. study concerns change
detection with time series of high-resolution SAR
images.

In 2012, he was a Visiting Student with Virginia
Tech, Blacksburg, VA, USA. Since 2013, he has

been a Research Scientist with the Microwaves and Radar Institute, German
Aerospace Center, Wessling, Germany. His main research interests include
synthetic aperture radar (SAR) image processing and SAR change detection.

Uwe Stilla (Senior Member, IEEE) was born in
Cologne, Germany, in 1957. He received the Dipl.-
Ing. degree in communications engineering from
the University of Paderborn, Paderborn, Germany,
in 1980, and the Dipl.-Ing. degree in electrical en-
gineering and the Ph.D. degree in electrical engi-
neering (pattern recognition) from the University of
Karlsruhe, Karlsruhe, Germany, in 1987 and 1993,
respectively.

From 1987 to 1990, he was with the Institute
of Biomedical Engineering, University of Karlsruhe.

From 1990 to 2004, he was with the FGAN-FOM Institute of Optronics and
Pattern Recognition (now Fraunhofer IOSB, Ettlingen, Germany). Since 2004,
he has been a Professor with the Technical University of Munich (TUM),
Munich, Germany. He is the Head of the Unit “Photogrammetry and Remote
Sensing” with the TUM Department of Aerospace and Geodesy and was the
Dean of Studies (from 2005 to 2016) and Vice-Dean (from 2008 to 2013) of
the TUM Department of Civil Engineering and Geodesy. He organized and
co-organized many conferences and workshops of the International Society
for Photogrammetry and Remote Sensing, the IEEE, and the International
Association for Pattern Recognition, and authored or coauthored more than 500
scientific contributions. His research interests include image analysis in the field
of photogrammetry and remote sensing.

Dr. Stilla is a Member of the Scientific Board of the German Commission of
Geodesy and the Vice-Chairman of the Commission for Geodesy and Glaciology
of the Bavarian Academy of Science and Humanities. He was the Vice-President
(from 2012 to 2016) and the President (from 2016 to 2020) of the German
Society for Photogrammetry, Remote Sensing and Geoinformation. Since 2004,
he has been a Chair of multiple working groups of the International Society of
Photogrammetry and Remote Sensing (last: Intercommission Working Group
ICWG II/III “Pattern Analysis in Remote Sensing”).

https://ieeexplore.ieee.org/document/5417348
https://ieeexplore.ieee.org/document/5417348
https://ieeexplore.ieee.org/document/4779745
https://ieeexplore.ieee.org/document/4779745


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


