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ABSTRACT Local energy markets (LEMs) are proposed in recent years as a way to enable local prosumers
and community to trade their electricity and have control over their electrical related resources by ensuring
that electricity is traded closer to where it is produced. However, literature is still scarce with themost optimal
and effective trading strategies for LEM design. In this work, we propose two reinforcement learning based
intelligent bidding strategies for prosumers and consumers trading within an LEM. Our proposed models
were evaluated of their performance by testing them in a German real case scenario. The simulation results
show that intelligent bidding strategies create additional self sufficiency and market savings to the local
community compared to the baseline strategy where the agents make their trading decision randomly without
an intelligent agent. Moreover, modelling the intelligent agents to perform towards a common goal creates
more share of individual savings for the prosumers and consumers compared to the classical intelligent
bidding strategies employed in this work.

INDEX TERMS Bidding strategy, energy community, local energy markets, Markov decision process, peer-
to-peer, reinforcement learning.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
Local energymarkets (LEMs)were introduced in recent years
as a means to curb the challenges resulting from increasing
share of variable distributed energy resources at the distribu-
tion grid level and thus creating an avenue to get small-scale
producers, prosumers and consumers involved in the elec-
tricity market [1]. By transacting electricity closer to where
it is produced, producers, prosumers and consumers create
additional benefits for each other compared to transacting
electricity to a far distance prosumers/consumers or with the
upstream grid [2]. However, residential and most commercial
prosumers/consumers are lay users and have little or no
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knowledge of the electricity markets. Therefore, they may
not be able to decide the appropriate bidding/offering price
for their energy demand/supply considering the dynamics
and complexity involved [3]. On the other hand, the local
electricity market is a time series market platform. Hence,
consumers and prosumers are required to consistently post
their bid/offer containing their desired energy quantity and
price every time slot [4]. This is inefficient and time consum-
ing and thus, the need for an intelligent bidding/offering agent
responsible for making the complex and dynamic decision
involved in LEM trading. The agent is also responsible for
selecting appropriate price for prosumers/consumers to make
benefits from their electricity assets and automatically post-
ing the bids/offers on behalf of consumer/prosumers who own
the agent [3], [4]. Consequently, researchers have proposed
different bidding strategies for LEM design [5], [6].
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B. LITERATURE REVIEW
According to Ref. [7], LEM bidding strategies can be clas-
sified either as zero-intelligence or intelligent agent bidding
strategies. Zero-intelligence agents randomly select their
bid/offer price within the limit range of the maximum selling
and minimum buying price, which is usually the upstream
grid and feed-in tariff price, respectively. Intelligent agents
bidding strategy usually derive their trading price based
on some optimization model, algorithms, game theoretic
approach and/or learning experience. The authors of [8],
proposed a linear bidding/offering strategy for LEM that
allows agents to linearly decrease/increase their bid/offer
price, respectively, in an LEM time slot. This strategy allows
prosumer agents to send multiple bids/offers in a single
time slot thereby increasing their chance of being matched
in the LEM without increasing the computational power
requirements of the agents. Ref. [9] proposed an optimization
based prediction-integration strategy called surrogate market
prediction model based on Extreme Learning Machine. The
model was used to learn the relationship between prosumer
bidding actions and market responses from historical trans-
action data and the outcome was used for bidding/offering in
a peer-to-peer(P2P) LEM.

The effective metrics and criteria for evaluating the per-
formance of an LEM bidding strategy was introduced by
Ref. [5]. Furthermore, the authors modelled the behaviors
of both risk-neutral and risk-averse agents selling energy
to the LEM taking into account the expected profit and
risk criteria to obtain an optimal multi-step energy quantity-
price bidding strategies of risk-neutral and risk-averse agents.
PV is considered a major source of energy during the day
for most intra community and inter community energy trad-
ing. Thus, considering the uncertainties in solar irradiance
and temperature can result in an optimal P2P LEM bidding
strategy [6], [10]. Ref. [6] proposed a dual bidding strategy
for multi-hierarchical P2P energy trading in an LEM con-
sidering uncertainties in solar irradiance and temperature.
By considering the uncertainty of renewable energy resources
such as solar, wind and consumer demands in an LEM, the
authors of [10] proposed a bi-level optimization model for
prosumers to appropriately take advantage of their distributed
energy resources in an LEM. The optimal bidding curve
which described the cost-minimizing buying/selling strategy
of prosumers was used to guarantee the optimality of bidding
decisions and to reduce the computation and communication
overhead of bidding agents by [11]. Ref. [12] proposed a
two-stage bidding strategy for P2P LEM design. The first
stage considered the supply-demand relationship for two-step
price predictor with the aim to promote the usage of local
renewable energy within the LEM. In the second stage, a trad-
ing preference based simultaneous game-theoretic approach
was introduced and used to optimize the market equilibrium
and social welfare of the P2P LEM. In [13], an optimal
bidding/offering strategy was proposed for prosumers in an
LEM to improve their savings and further increase the overall
social welfare of the local community.

Before the introduction of LEM in the last two-decades and
in recent years, reinforcement learning is used by electricity
producers for making decision on their offering price in a
competitive electricity market. In [14], a modified contin-
uous action reinforcement learning automata algorithm was
proposed to help power suppliers bid with the limited infor-
mation in an electricity market. Ref. [15] proposed an expe-
rience weighted attraction reinforcement learning algorithm
for bidding in an electricity markets. The authors of [16] used
a deep deterministic policy gradient reinforcement learning
algorithm to develop a bidding agent for a uniform pricing
electricity market. Ref. [17] developed a fuzzy Q-learning
method and used it to model the electricity producer strategic
bidding behavior in a competitive and computational elec-
tricity market. In [18], the deep deterministic policy gradient
method was combined with a prioritized experience replay
strategy and used to model the strategic bidding decisions in
a deregulated electricity markets. In the same way, Ref. [19]
combined reinforcement learning with belief learning that
converts experience-weighted attraction in a learning model
for describing and improving individual learning behavior for
effective bidding in a double auction electricity markets.

Similar to the main electricity markets and as a result
of its numerous advantages, reinforcement learning is cur-
rently gaining the interest of researchers on how it can be
utilized for decision making in an LEM. By solving the deep
reinforcement learning technology with experience replay
mechanism, Ref. [20] modified the deep Q-learning for local
energy trading algorithm from deep Q-network to facilitate
the decision-making process of local energy prosumers with
an intelligent system and further promote prosumers’ will-
ingness to participate in the LEM trading. Ref. [21] proposed
an intelligent bidding strategy based on an adaptive rein-
forcement learning model for prosumers within a local grid.
In Ref. [22], a deep learning based on data-driven approach
was developed and used to model the transaction behaviour
of prosumers and consumers based on public information
in a two-stage P2P local electricity market. A Q-learning
based intelligent bidding strategy was proposed by [23]
for prosumers in a competitive two-sided pay-as-bid LEM.
To further integrate electric vehicle trading in an LEM, [24]
proposed a data analytics and deep reinforcement learning
based bidding strategy for electric vehicle aggregators in
an LEM.

C. CONTRIBUTION & ORGANIZATION
Currently, the literature contains only few studies propos-
ing intelligent bidding strategies for LEM design. Moreover,
there is still a gap in literature proposing and comparing
different reinforcement learning models for LEM bidding
strategies and further suggesting the most optimal strategy
for the different local energy participants types. In this paper,
by answering the research question, which trading strate-
gies are most suitable for effective performance of local
energy markets? We propose two novel reinforcement learn-
ing based intelligent bidding strategies for prosumers and
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consumers in an LEM. The proposed models use informa-
tion/data initially acquired from the LEM and the partici-
pants to formulate the most optimal bidding/offering prices
for consumers and prosumers within an LEM for them to
make optimal benefits from their consumption’s/productions.
The models were implemented on an interface and open
source code-base of the Grid Singularity bidding application
programming interface [25]. Furthermore, we evaluate the
models using performance indicators such as self-sufficiency,
share of market savings and traded energy quantity of the
prosumers/consumers in the LEM. The main contributions of
the paper are summarized below:

• Proposing two novel reinforcement based intelligent
bidding strategies for prosumers and consumers in an
LEM.

• Implementation of the proposed intelligent bidding strat-
egy models in a real case German community.

• Assessing the performance of the proposed bidding
strategies using LEM and reinforcement learning perfor-
mance indicators.

The remaining sections of this work are structured as follows.
Section II introduces reinforcement learning taxonomy and
the proposed reinforcement learning algorithms. The pro-
posed reinforcement learning bidding strategies are described
in Section III. The simulation case study, community set-up
and simulation data are presented in Section IV. Section V
presents the simulation results, while SectionVI discusses the
findings, insights and improvements of the models. Finally,
the paper is concluded in Section VII.

II. REINFORCEMENT LEARNING
A. REINFORCEMENT LEARNING TAXONOMY
Reinforcement learning (RL) is a branch of machine learn-
ing that uses trial-and-error strategy to learn from previous
actions to make future decisions [26]. The reward strategy
which gives positive reward to successful events/actions and
negative rewards to unsuccessful events/actions is used by the
agents to improve its learning and decision making [27]. The
term ‘‘value function’’ refers to prediction of future benefits
based on the present condition or state [28]. By compar-
ing the outcome of each decision made by the agents, the
agents get experience on how to perform better on future
actions of the model based on its prior experience with the
environment. In RL, this experience-based decision making
process which helps the agents to maximize their reward for
each action taken against the environment is referred to as
a policy [26]. The Markov Decision Process (MDP), is a
probabilistic model based on sequential decision making and
provides the mathematical foundation for RL process [29].
TheMDPproperty claims that ‘‘the probability of the future is
independent of the past given the present’’ [29]. However, the
optimal action of an agent is usually obtained when the agent
evaluate not just the immediate reward but also the long-term
quality of the action(s). Because of the high accuracy when
given more data, the action-value function is preferable in

the long term RL model [30]. This is why an action-value
function is more suitable for intelligent agent-based bidding
strategies for LEM.

RL algorithm can be classified based on their access to the
model as model based and model-free algorithm [31]. Model-
based RL algorithm is a type of RL in which the agent is
privileged to know all possible state transition probabilities
and rewards [32]. This type of RL is heavily influenced by
control theory, and the objective is to obtain the optimum
behaviours using a control function. The major draw back
of this RL method is that since they have access to all
potential state-actions, storing all the probabilities becomes
impractical as the number of states and actions increases
exponentially [32]. Model-free RL is a type of RL model
that develops its own optimum strategy based on its own
experience with its surroundings, state-action pairings, and
their associated rewards [33]. Model-free algorithms are clas-
sified into policy iteration and value iteration [31]. For policy
iteration model-free algorithm, the agent directly learns the
policy function that translates state to action using policy
optimization approaches [32]. Thus the policy is decided
without the use of a value function. The policies here can
be either deterministic or stochastic [32]. Value iteration
model-free RL algorithm gains knowledge of the action-value
function, calculates the expected discounted rewards received
for taking a particular action and determines how beneficial it
is to behave in a specific state [31]. Thus, a scalar value called
Q-value is assigned to an action based on its state and the ideal
results are obtained when the action with the highest Q-value
is chosen. Value iteration algorithm can be further classified
into off-policy and on-policy algorithms. Off-policy RL algo-
rithms use greedy policy and learns the best policy and acts
based on a different policy [34]. The updated policy differs
from the behaviour policy. The Q-learning algorithm is an
example of an off-policy algorithm. On the other hand, for
the on-policy strategy, the actor captures the best policy and
applies it to its actions [34]. The major difference between
off-policy and on-policy is that for on-policy, the policy for
updating and acting is the same, while it is different for off-
policy. On-policy tries to evaluate the same policy that is used
to make decisions [34]. State Action Reward State Action
(SARSA) algorithm is an example of on-policy algorithm.

B. REINFORCEMENT LEARNING ALGORITHMS
1) OFF-POLICY ALGORITHM - Q-LEARNING
In Q-learning, the ‘Q’ stands for quality which refers to the
usefulness of a certain action in obtaining a future reward
which can be determined by the Q-value. Q-learning seeks
to determine the best policy while pursuing a separate explo-
ration strategy [35]. This class of algorithms updates the state
or state-action values by calculating the difference between
current and past estimations [33]. Eq. (1) is the general
Q-learning function which states that the Q-value depends on
the state-action combination [32].

Q : S ×A→ R (1)
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where S is the state of the agent, A is the different actions
that are available for the agent to take and R is the rewards
the agents can receive for taking different actions. Eq. (2)
represent the different states of an agent.

St = {[sx11,t , s
x2
1,t , . . . , s

xm
1,t ], . . . , [s

x1
n,t , s

x2
n,t , . . . , s

xm
n,t ]} (2)

where s1 to sn are the different states and x1 to xm are the state
variables. The different state variables combine to form one
sate s. n and m are the number of states and state variables,
respectively. Therefore, at a time step t , the state of an agent
is represented in Eq. (3),

st = sx1t , s
x2
t , . . . , s

xm
t . (3)

The different actions an agent can take at any time step is
represented by (4).

A = a1,t , . . . , au,t (4)

where u is the number of actions. The available rewards for
an agent at a time step is represented in Eq. (5),

R = (−∞,∞). (5)

Initializing Q-table: A Q-table is a matrix with the
structure of [states, actions] used for Q-learning process as
represented in Eq. (6).

Qs×a,t =

q1,1,t . . . q1,u,t...
. . .

...

qn,1,t . . . qn,u,t

 ,∀t. (6)

Q-table is first initialized with either 0 or 1 and updated every
time step. It is the reference table for agents, which it uses to
determine the optimal course of action taken.

Taking action: In order to interact with the environment,
the agent needs to select an action. The agent chooses an
action based on the maximum value in the Q-table or on a
random basis [32]. The epsilon (ε) greedy approach is used
by an agent to achieve a balance between exploration (chosen
random action) or exploitation (chosen action with maximum
Q-value) and to interact with its environment in either of the
two ways throughout the experiment [36]. Eq. (7) represents
that the total experiment time step is the sum of exploration
and exploitation time represented as tε and t1−ε , respectively,

T =
∑

tε +
∑

t1−ε . (7)

Eq. (8) represents how the agents select its action during time
of exploration and exploitation. FromEq. (8), au,tε and au,t1−ε
represents actions selected by the agent during exploration
and exploitation, respectively,

au,t =
{

au,tε : ε = 1
au,t1−ε : ε = 0

}
,∀t. (8)

Eq. (9) represents that during exploration, the agent takes a
random action by randomly selecting any action from the
available actions at the time step. On the other hand, Eq. (10)

represents that during exploitation, the agent takes action by
selecting the action with the maximum Q-value,

au,tε = rand .{a1,t , . . . , au,t }, (9)

au,t1−ε = argmax
∑

Qs×a,t . (10)

Updating Q-table: Q-values of Eq. (6) are updated every
time step based on Bellman’s equation as represented in
Eq. (11) [32], [37].

Qt (st , at ) =
∑[

r(t+1) + γ max
a′

Qt
(
s(t+1), a(t+1)

)]
(11)

where, st and at are the current state and action, s(t+1) and
a(t+1) are the next state and action, respectively. rt+1 is the
expected reward. γ is the discount factor and represents
the amount of value the agent place on the future benefits. The
discount rate ranges from 0 to 1 (0 ≤ γ ≤ 1). With a higher
discount rate, the agent places a higher premium on future
returns. Bellman’s equation is used to calculate the value of
a state and to estimate how beneficial it is to be in that state.
The ideal state is the state that produces the optimal Q-value.
Q-learning algorithms are based on the Bellman’s equation
used as the basic value of iteration update, based on the
weighted average of the old and new Q-values and is defined
according to Eq. (12) [37].

Q(t+1) (st , at)← Qt (st , at)+ α[
rt + γ max

a
Qt
(
s(t+1), at

)
− Qt (st , at)

]
(12)

where α is the learning rate and indicates the learning
pace of the agent. This parameter gives information on
how the agents’ estimations should be updated considering
the mistakes. The learning rate ranges between 0 and 1.
A high learning rate adapts aggressively, which may result
in variable — rather than converging — training outcomes.
A low learning rate adapts slowly, which means that it will
take longer time to converge. The terms in Eq. (12) are
defined as follows:
• (1- α) Qt (st , at ) is the current Q-value weighted by the
learning rate.

• α rt is the reward obtained in state st by taking action at ,
weighted by learning rate.

αγ max
a
Qt
(
s(t+1), a

)
(13)

• Eq. (13) is the maximum reward to be obtained from the
next state s(t+1).

rt + γ max
a
Qt
(
s(t+1), a

)
(14)

• The term given in Eq. (14) which is derived from
Eq. (12) is called the temporal difference target through
which the estimated Q-value is adjusted.

The temporal difference is an estimate of the optimum
Q-value which the agent strives to get and this varies as
the agent is trained and the Q-value matrix updated. The
Q-value of the agent’s current state and action is updated by
subtracting the previous Q-value and then adding the learned
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value. The learned value is a function of the reward for taking
the current action in the current state and the discounted
maximum reward from the subsequent state in which the
present action is performed.

2) ON POLICY ALGORITHM : SARSA
SARSA is an on-policy reinforcement learning algorithm in
which an action, A, is taken in the current state, S, and the
agent receives a reward, R. The agent then moves to the next
state, S’, and performs action, A’ in S’. As a result, the name
SARSA is derived from the tuple (S, A, R, S’, A’). SARSA
is referred to as an on-policy algorithm because it adjusts
the policy in response to actions and is part of temporal
difference learning [36]. The algorithm’s learning process is
similar to Q-learning described in Section II-B1. The first
step is to initialize the Q-table. Secondly, an action similar to
that of Q-learning with its ε-greedy strategy is taken. Lastly,
the Q-table is updated and this is where there is distinction
between SARSA and Q-learning. Eq. (15) is used to update
the Q-value for SARSA.

Q(t+1) (st , at)← Qt (st , at)+ α[
r(t+1) + γQt

(
s(t+1), a(t+1)

)
− Qt (st , at)

] ]
(15)

The update equation of SARSA, Eq. (15) shows that the
goal value in this case is dependent on the action the agent
will take in the following state, st+1. Since this update is
dependent on the next action at+1, which is determined by
the current policy, this algorithm is termed on-policy [37].
While training the agent and the corresponding Q-value (and
policy) is updated, the new policy may generate a different
action for next time step a(t+1) for the same state s(t+1). It is
not possible to improve the estimations by drawing on prior
experiences. Hence, the algorithm utilizes each experience
just once to update the Q-values and then discard it [34].

III. PROPOSED REINFORCEMENT LEARNING
BIDDING STRATEGIES
In this Section, the proposed reinforcement bidding strategies
is presented. Fig. 1 and 2 represents the process diagram and
the flowchart, respectively, of the proposed bidding strate-
gies. First, the state, actions and reward function are defined.
Then, the Q-learning algorithm bidding strategy is introduced
followed by SARSA bidding strategy.

A. STATE, ACTION AND REWARD DEFINITION
1) STATE
The state of the agent at any time t , is define by Eq. (16).

St = {[st1,t , s
p
1,t , s

v
1,t , s

ρ
1,t ], . . . , [s

t
n,t , s

p
n,t , s

v
n,t , s

ρ
n,t ]} (16)

where the state variable t is the hour of the day where the
trading occurs and this is split into 24 variables .i.e t ={ 0,
1, . . . , 23}. p is the average market trade rate in cent/kWh
for the previous market time step. The average trade rate has
a range from feed-in tariff price (p⊥) to the electricity buy
price (pb) from the upstream grid. In order to reduce the size

of the Q-table for its optimal performance, the range of the
state variable p is divided into six equal buckets as presented
in Eq. (17)

p = {p⊥,
(4× p⊥ + pb)

5
, . . . , pb}. (17)

v is the average trade volume which is the average volume of
the electricity traded internally within the local community
without the help of the upstream grid in the last time step. The
average trade volume is also divided into six buckets in order
to have discrete data and to reduce the size of the Q-table as
represented in Eq. (18)

vt = {v1,t , v2,t , . . . , v6,t }. (18)

ρ is the solar irradiation which gives information on the
average solar radiation received per unit area of the simula-
tion area. This state variable is divided into nine buckets to
better refelect the different solar radiation intervals as given
in Eq. (19)

ρt = {ρ1,t , ρ2,t , . . . , ρ9,t }. (19)

Hence, at any time step t , the state of the agent is described
as a tuple containing four state variables t, p, v and ρ.

2) ACTION
This is a discrete set of potential bids/offers prices available
to a consumer or prosumer. This varies from the lowest (p⊥)
to the highest price (pb) allowed with the LEM. The range of
bid/offer price is discretize into sixteen potential actions as
represented in Eq. (20)

A = {p⊥,
(14× p⊥ + pb)

15
, . . . , pb} (20)

In RL, the agent learns what to do by itself and translate
situations to actions to maximize a numerical reward sig-
nal [26]. The agent is not instructed on which actions to take;
instead, through trial and error, it decides which action gives
the maximum reward. For our model, ε greedy policy is used
to handle the exploration/exploitation dilemma by applying
simple strategy for balancing exploration and exploitation
by randomly selecting between the two. For this, a random
number λ is selected and the value compared with the given
value of ε as represented in Eq. (21),

au,t =
{

au,tε : λ < ε

au,t1−ε : λ > ε

}
,∀t. (21)

Hence, from Eq. (21), a random action (exploration) is
selected if λ < ε, while action leading to the maximum
reward (exploitation) is selected if λ > ε. The developed RL
algorithm is a single agent RL method which contains a com-
bined and evolved policy for both consumers and producers.
Both consumers and prosumers take distinct actions as they
have a different pricing strategy. However, their states and
reward functions are identical. As a result, each actor uses a
different Q-table inside a single RL agent, where one actor is
not aware of the presence of the other actor.
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FIGURE 1. Proposed bidding strategies based on Q-learning and SARSA.

FIGURE 2. Learning process flowchart for Q-learning and SARSA.

3) REWARD FUNCTION
The reward function is used to compare the value of actions
taken by the agent at different states. To encourage prosumer
behaviour that results in greater consistency with their trading
goals the reward function of our model is a mix of the
monetary value of the bid/offer and how early trade occurs
in a market time step. For this, the market model based on the
work of Ref. [8] which allow prosumers and consumers to
submit multiple bids and offers at a time step. Hence, each
market time step is further divided into market ticks t∗t as
represented in Eq. (22).

t∗t = {t
∗

1,t , t
∗

2,t , . . . , t
∗
k,t }, (22)

where k is the number of ticks in a time step t . The trade
rate of prosumer agent i, at a time step is compared with the
markets median trade rate at the same time step to obtain the
monetary value of reward function. The median is used to

prevent outliers from having impact if the mean was used as
the measure. The monetary reward function of consumers is
represented in Eq. (23).

rb,$t =


0.7× (̂pt − pbi,t )/(p

b
− p̂t ): pbi,t > p̂t

0: pbi,t = p̂t
0.7× (̂pt − pbi,t )/(̂pt − p

⊥): pbi,t < p̂t

 ,∀t,
(23)

where p̂t is the median trade rate at time step t and pbi,t is
the trade rate of consumer agent i, at the same time step.
Eq. (23) shows that if a consumer’s trade rate is lower than the
community’s median rate p̂t , the consumer’s agent receives
a positive reward since he/she (the consumer) paid less than
the other members of the community and outperformed them.
When a consumer’s trade rate exceeds the market’s median
rate, the consumer’s agent earns a negative reward. Eq. (24)
represents the prosumer (producing) reward function.

rs,$t =


0.7× (psj,t − p̂t )/(p

b
− p̂t ): psj,t > p̂t

0: psj,t = p̂t
0.7× (psj,t − p̂t )/(̂pt − p

⊥): psj,t < p̂t

 ,∀t,
(24)

where psi,t is the trade rate of prosumer (producing) agent j,
at time step t . Eq. (24) shows that if a prosumer’s trade rate
while producing is lower than the community’s median rate
p̂t , the prosumer agent receives a negative reward since he/she
(the prosumer) get less money compared to the other mem-
bers of the community. When a prosumer’s trade rate while
producing exceeds the market’s median rate, the agent earns
a positive reward because the prosumer gets more money
compared to other community members. The tick at which
the trade takes place is compared to the total number of ticks
per time slot to get the accuracy reward function. This is used
to know how accurate and efficient the agent is in making
their bids/offers at a time step. The degree of accuracy reward
function is represented in Eq. (25).

rµt = 0.3× (t∗k,t − t
∗

K,t ), (25)
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whereK is the time tick at which trade took place. This means
that the greater the disparity from the total number of ticks
per time step, the greater the reward. This parameter does
not result in a negative reward; rather, it results in a positive
reward that is either increased or decreased. Eqs. (24) and (25)
shows that the model places 70% value on monetary reward
while the remaining 30% is on accuracy. The general reward
function is the sum of the monetary and accuracy reward
function. Eqs. (26) and (27) represent the total reward func-
tion for a consumer and prosumer (producing), respectively,

rbt = rb,$t + r
µ
t , (26)

rst = rs,$t + r
µ
t . (27)

B. Q-LEARNING STRATEGY
1) STAGE I: INITIALIZE ALGORITHM
a: STEP I: INITIALIZE Q-TABLE
For the Q-learning algorithm, the defined state and actions
acts as inputs to the Q-table. The defined state contains four
state variablesmade of 24 time variables, 6 average trade vari-
ables, 6 average trade volume variable, and 9 solar irradiation
variable. Consequently, we have a total of 7776 (24 × 6 ×
6 × 9) defined states for the Q-table. Eq. (28) represents the
initialization of Q-table with ones for the 7776 defined states
and 16 available action according to Eq. (20) at time step t .
The Q-table is defined separately for consumers and produc-
ing prosumers because of their different trading interests,

Qs×a,t =

 11,1,t . . . 11,16,t
...

. . .
...

17776,1,t . . . 17776,16,t

 ,∀t. (28)

b: STEP II: SELECT INITIAL ACTION
At the first time step t = 0, a random action is selected by the
agent from Eq. (20) at tick t∗k∗,t . The action is a bid or offer
price (pbi,t,k∗ or p

s
j,t,k∗ ) depending on if the agent is a consumer

or producer agent, respectively and p⊥ < pbi,t,k∗ , p
s
j,t,k∗ <

pb. If the agent was unable to make a trade at time tick k∗,
another action is selected by the agent in the next time tick
(k∗+1), following Eq. (29) or (30) for a buyer or seller agent,
respectively.

abu,tε =
{
pbi,t,(k∗+1): k∗ + 1 < k

pb: k∗ + 1 = k

}
,∀t, (29)

Subject to:
pbi,t,(k∗) < pbi,t,(k∗+1) < pb

asu,tε =
{
psj,t,(k∗+1): k∗ + 1 < k

p⊥: k∗ + 1 = k

}
,∀t, (30)

Subject to:
psj,t,k∗ > psj,t,(k∗+1) > p⊥.

Here, abu,tε and asu,tε are the random actions taken by a
buyer and seller agents, respectively. Eqs. (29) and (30) show
that the agents buy/sell from/to the upstream grid at the last
market tick k using the upstream grid buying/selling price

pb/p⊥ if they are unable to buy from the local community.
Assuming that trade took place at K time tick, then, pbi,t,K
and psj,t,K are the trade price for buyer and seller agents, i
and j, respectively. Since this is the first market time step,
there is no previous market results to define the current state,
therefore, there is no need calculating the reward and updating
the Q-table. However, the process of calculating reward and
updating the Q-table after every action is done every time step
except the first time step which is the initialization time step.

2) STAGE II: REWARD CALCULATION, TAKING ACTION, AND
Q-TABLE UPDATE
a: STEP I: REWARD CALCULATION
At the next time step, t + 1, the result of the previous
market time step containing the average market trade rate
p, average trade volume v, the median trade rate p̂t and the
agent trade price is used to calculate the reward functions
as represented in Eqs. (31) and (32) for the buyer and seller
agents, respectively.

rb
′,$

t =


0.7× (̂pt − pbi,t,K)/(p

b
− p̂t ): pbi,t,K > p̂t

0: pbi,t,K = p̂t
0.7× (̂pt − pbi,t,K)/(̂pt − p

⊥): pbi,t,K < p̂t

,∀t,
(31)

rs
′,$
t =


0.7× (psj,t,K − p̂t )/(p

b
− p̂t ): psj,t,K > p̂t

0: psj,t,K = p̂t
0.7× (psj,t,K − p̂t )/(̂pt − p

⊥): psj,t,K < p̂t

 ,∀t,
(32)

Consequently, Eqs.(26) and (27) is updated as Eqs. (33)
and (34), respectively.

rb
′

t = rb
′,$

t + rµt , (33)

rs
′

t = rs
′,$
t + rµt . (34)

b: STEP II: TAKING ACTION
In order to balance the exploration/exploitation challenges,
the ε greedy strategy is used for taking action. Eq. (35) is
used to select an action by first selecting a random number λ,

au,t+1 =
{

au,(t+1)ε : λ < ε

au,(t+1)1−ε : λ > ε

}
,∀t. (35)

If λ < ε, a random (exploration) action is taken by applying
Eq. (29) or (30) for a buyer or seller agent, respectively.
On the other hand, if λ > ε, the action with the maximum
Q-value is selected by applying Eq. (36).

au,(t+1)1−ε = argmax
∑

Qs×a,t . (36)

c: STEP III: UPDATING Q-TABLE
In the same way, the Q-value is updated for both buyers
and sellers agents as represented in Eqs. (37) and (38),
respectively.

Q(t+1)

(
st , abu,tε

)
← Qt

(
st , abu,tε

)
+ α
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FIGURE 3. Flowchart for Q-learning algorithm.

[
rb
′

t + γ max
a
Qt
(
s(t+1), abu,tε

)
− Qt

(
st , abu,tε

)]
,

(37)

Q(t+1)
(
st , asu,tε

)
← Qt

(
st , asu,tε

)
+ α[

rs
′

t + γ max
a
Qt
(
s(t+1), asu,tε

)
− Qt

(
st , asu,tε

)]
,

(38)

Here, abu,tε and a
s
u,tε are the actions for the previous time step,

t for buyer and seller agent, respectively and does not mean
that the initial action is used for all time steps. Eqs. (37)
and (38) are used to update the Q-table as represented in
Eq. (39).

Qs×a,t =

 q1,1,t . . . q1,16,t
...

. . .
...

q7776,1,t . . . q7776,16,t

 ,∀t. (39)

Stage II is repeated every time step until end of
the experiment. The pseudocode and flowchart of the
proposed Q-learning bidding strategy is represented in
Algorithm 1 -Appendix A and Fig. 3, respectively.

C. SARSA STRATEGY
The methodology for the SARSA bidding/offering strategy is
similar to the Q-learning strategy. The discrepancy between
the two models is that in the SARSA strategy the Q-value
is updated based on the temporal difference using SARSA
update equation as represented in Eqs. (40) and (41) for
buyer and seller agent, respectively. This is equally reflected
on the flowchart of Fig. 3. The pseudocode of the pro-
posed SARSA bidding strategy is represented in Algorithm 2

in Appendix A.

Q(t+1)

(
st , abu,tε

)
← Qt

(
st , abu,tε

)
+ α[

rb
′

t + γ max
a
Qt
(
s(t+1), au,(t+1)

)
− Qt

(
st , abu,tε

)]
,

(40)

Q(t+1)
(
st , asu,tε

)
← Qt

(
st , asu,tε

)
+ α[

rs
′

t + γ max
a
Qt
(
s(t+1), au,(t+1)

)
− Qt

(
st , asu,tε

)]
,

(41)

IV. SIMULATION CASE STUDY
A. SIMULATION FRAMEWORK AND DATA
The proposed LEM reinforcement bidding strategy model
was developed as a Python code and implemented in the
bidding agent application programming interface (API) of
the open-source Grid Singularity Exchange (GSy-E) [8],
[38]. The bidding agent API is used for creating the bids
and offers and posting them to the exchange engine. The
exchange matches the bids and offers using a two-sided pay-
as-bid clearing mechanism and send the results with market
information back to the bidding agents [38]. Bids and offers
not matched at the local community are traded with the
upstream grid. In our simulation model, each prosumer agent
communicates its bids or offers individually to the exchange
engine every 15 minute time slot before the energy exchange
time. Each 15-minute time slot has 4 ticks, therefore, pro-
sumer agents are able to update their bids/offers three times
within a market slot. At the fourth market tick, the agent
bids/offers the upstream grid price/feed-in tariff price for PV,
respectively. The model is verified in a simulation case study
of a community with 43 participants consisting of 26 house-
holds with only consumption devices and 17 households
with consumption and production devices. Load profiles used
are taken from [39]. Moreover, the PV production profiles
are generation data from Renewables Ninja [40], [41] using
Stuttgart region as a community and scaled down from hourly
resolution to 15-minutes slot. To ensure that all PV of the
same capacity do not produce exactly the same quantity
of electricity, the PV system losses are varied between 5%
and 15% with a constant tilt angle of 35◦. Because of the
cost of household electricity in Germany, the cost of buying
electricity from the upstream grid is capped at 31.5 ct/kWh
while the sell price to upstream grid is 11.00 ct/kWh which
is the PV feed-in tariff price [42].

B. ASSUMPTIONS AND SIMULATION METHODS
In order to analyze the behaviour of the individual agents and
to verify the implication of the agents working towards the
same goal or benefits, the developed Q-learning and SARSA
algorithms are verified in three different forms namely ‘‘clas-
sical’’, ‘‘standalone actor’’ and ‘‘shared rewards algorithms’’
The performance of the different reinforcement learning algo-
rithms are compared to the baseline to establish a lower
limit on the performance and complexity of the subsequent
models. A random bidding agent is used as a baseline model
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TABLE 1. Simulation parameters.

TABLE 2. Parameter for classical Q-learning and SARSA algorithms.

TABLE 3. Parameter details for the Q-learning and SARSA standalone
actor algorithms in training environment.

in this research to compare it with the intelligent agent mod-
els. The agent randomly makes bids or offers based on the
amount of energy required or available. The random strategy
for generation (producer) begins with an arbitrary price and
steadily decreases as the number of ticks increase. However,
the consumer agent strategy steadily increases until a match is
discovered. For a classical Q-learning and SARSA algorithm,
the model is the traditional Q-learning and SARSA algorithm
described in Section III. Table 1 displays the simulation
parameters for training and testing of the simulations. T is the
total simulation 15-minutes time steps and Epi. is the number
of episodes.

Table 2 shows the simulation parameters for the classical
Q-learning and SARSA algorithms for training and testing
of the simulations. The standalone actor algorithm is used
to get a better understanding of individual prosumers and
consumers agents. Hence, for this algorithm, consumers trade
using the intelligent bidding strategy while the prosumers use
the baseline strategy and vice versa. This algorithm helps iso-
late each actor’s policy and get a more refined knowledge into
single actor’s profits. Furthermore, it is evident that when two
intelligent agents trade as a single entity, a difference between
each of their profits is anticipated, unlike when just a single
agent trades with an unintelligent agent. It is expected that
in the first case that the model strikes a balance between the
two, but in the latter, the model considers the relevance of just
one actor. Here, the purpose is to experiment and analyse both
scenarios. Table 3 shows the parameter details for training of
Q-learning and SARSA standalone actor algorithms.

The goal of the shared reward case is to develop a
model that will simultaneously benefit both prosumers and

TABLE 4. Parameter details for the Q-learning and SARSA shared rewards
algorithm.

consumers since using the classical SARSA and Q-learning
algorithms was unable to do that. Additionally, for our model,
the consumer and prosumer actors do not communicate
with one another and are unaware of each other’s existence.
To solve this, we define an element of cooperation between
the actors for them to communicate information not directly
but by working towards a certain goal. Consequently, the
classical algorithms are modified to develop a shared-reward
concept that allows agents to learn dynamically and coor-
dinate with one another to motivate them to cooperate on
the global reward aim, that is, to benefit the entire local
community. Thus, the global reward is the sum of the indi-
vidual prosumers and consumers agents rewards within the
community. All agents now work towards maximizing this
global reward. Table 4 shows the parameter details for shared
reward algorithm.

C. PARAMETER TUNING
After development of the SARSA and Q-learning model,
parameter tuning was performed to determine the value of
the input parameters that leads to optimal rewards. The three
parameters used for the SARSA and Q-learning model are
the learning rate (α), exploration/exploitation rate (ε) and dis-
count factor (γ ). The value of each of these parameters range
from 0 to 1. The parameter tuning procedure is divided into
3 stages. First, sensitivity analysis was used to analyze the
entire range of values of the parameters to determine the few
optimal values of the parameters. In the second stage, the ini-
tial parameter tuning is carried out by using the optimal values
selected from sensitivity analysis to repeat the simulations
and the results compared to determine the parameters that
outperforms the other. The optimal values from the second
stage are then used to perform the final tuning simulations
and the results compared. The best results are then determined
as the optimal parameters of the model. As Q-learning and
SARSA showed similar features, the parameter tuning was
performed only for the SARSA algorithm.

V. RESULTS
In this Section, the simulation results are presented and
discussed briefly. The first paragraph presents the general
simulation analysis, afterwards, the results are analysed based
on LEM performance indicators. Lastly, the simulations is
analysed to determine the optimal parameters for the bidding
agents.
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FIGURE 4. Selected consumers internal traded energy for (a) baseline, (b) classical Q-learning and (c) classical SARSA strategies.

FIGURE 5. Selected prosumers internal traded energy for (a) baseline, (b) classical q-learning and (c) classical SARSA strategy.

A. GENERAL SIMULATION ANALYSIS
The results of the simulation are analyzed based on the
quantity of energy traded between the prosumers and con-
sumers, energy imported from the upstream grid to the com-
munity and energy exported from the local community to the
upstream grid. Fig. 4 displays the internal traded energy of
five selected consumers for the (4a) baseline, (4b) classical
q-learning and (4c) classical SARSA strategies of a selected
day with the training environment. The internal traded energy
of the consumers is the energy bought by the consumers
from prosumers within the local community. From Fig. 4,
for all the scenarios, energy is traded majorly during the day.
This is evident because the major source of energy within
the community is PV and therefore, energy is generated
and traded within the community mainly during the day.
Furthermore, for the five selected consumers, the consumers
trade more energy within the local community in the classical
Q-learning and SARSA strategy compared to the baseline
strategy. It is evident that the intelligent strategies (Q-learning
and SARSA) provide opportunity for consumers to trade
more energy within the local community compared to the
baseline strategy.

Fig. 5 displays the internal traded energy of five selected
prosumers for the (5a) baseline, (5b) classical q-learning
and (5c) classical SARSA strategies of a selected day with
the training environment. The internal traded energy of the
prosumers is the energy sold/bought by the prosumers to/from
consumers/prosumers within the local community. Similar to
the consumers, as shown in Fig. 5, for all the scenarios, energy
is traded majorly during the day because, the major source

of energy within the community is PV. Therefore, energy is
generated and traded within the community mainly during
the day. Furthermore, for the five selected prosumers, the
prosumers trade more energy within the local community
in the classical Q-learning and SARSA strategy compared
to the baseline strategy. This provides further evidence to
support that the intelligent strategies create more opportunity
for prosumers to trade energy within the local community
compared to the baseline strategy.

Fig. 6 displays the community (6a) traded energy, (6b)
energy import from the upstream grid and (6c) energy export
to the upstream grid using the baseline, classical SARSA,
shared Q-learning, shared SARSA, standalone Q-learning,
and standalone SARSA strategies for a single day in the train-
ing environment. From Fig. 6a, the prosumers and consumers
trade less energy using the baseline strategy compared to
other strategies. This is because the internal traded energy
of the baseline strategy is less compared to other strategies.
Also, using the baseline strategy, the consumers and pro-
sumers import more energy from the upstream grid compared
to other strategies as shown in Fig. 6b. Furthermore, the pro-
sumers export more energy to the upstream grid while using
the baseline strategy compared to other strategy - Fig 6c.

B. ANALYSIS OF SIMULATION BASED ON
PERFORMANCE INDICATORS
Fig. 7 and 8 display the average and cumulative reward,
respectively, of consumers and prosumers actors for the clas-
sical, standalone and shared reward strategies for the entire
training period. Fig. 7 displays the average reward over the
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FIGURE 6. Community (a) traded energy (b) energy import and (c) export from/to the upstream grid.

FIGURE 7. Average reward for (a) classical (b) standalone and (c) shared reward strategy.

FIGURE 8. Cumulative average reward for (a) classical (b) standalone and (c) shared reward strategy.

entire episodes while Fig. 8 displays the cumulative reward
over the entire 15-mins time step. The higher the average
reward, the better the algorithm. Fig. 7a and Fig. 8b show that
for the classical strategies, prosumers gather more rewards
compared to the prosumers. At the same time, SARSA
strategy gather more rewards compared to the Q-learning
strategy. This shows that SARSA strategy has the capabil-
ity of producing more benefits to the LEM compared to
the Q-learning strategy while using the classical algorithm.
Also, the classical algorithms has the capability of yielding
more benefits for the prosumers compared to the consumers.
From Fig. 7b and 8b, similar to the classical algorithms
(Fig. 7a), the prosumers gather more rewards compared to
consumers for the standalone strategies. However, the con-
sumers gather more rewards using the Q-learning algorithm
compared to the SARSA algorithm. On the other hand,
prosumers gather more reward using the SARSA algorithm

compared to the Q-learning algorithm. For the shared reward,
the prosumers and consumers agents work towards a common
goal of increasing their global reward. Therefore, the rewards
of Fig. 7c and 8c are the global average and cumulative
rewards, respectively. The Q-learning algorithm gathers more
rewards compared to the SARSA algorithm. It is evident that
Q-learning can provide more benefits to both consumers and
prosumers while helping them to achieve a common goal.
Generally comparing the classical, standalone, and shared
reward strategies rewards show that the agents gathers most
rewards with the standalone strategy and least reward with the
shared reward strategy.

Table 5 presents the varied bidding strategies verified
using the LEM performance indicators and their accompa-
nying symbols. The performance indicators used are self
sufficiency, market revenue, individual average consumer
savings, individual average prosumer savings and average
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TABLE 5. Varied strategies.

FIGURE 9. Performance indicators ((a) Self-sufficiency, (b) share of
market savings, (c) share of consumer savings, and (d) share of prosumer
savings) for varying scenarios in training environment.

trade rate. Fig. 9 and 10 display the self-sufficiency (SS),
share of market savings (SMS), share of consumers sav-
ings (SCS), and share of prosumers savings for the differ-
ent strategies L0 to L9, in training and testing environment,
respectively. SMS is the percentage of savings made by
the prosumers and consumers for trading within the LEM
compared to without LEM. In the same way, the share
of consumer/prosumer savings is the percentage of savings
made by the consumer/prosumer for trading within the LEM
compared to without LEM. The standalone strategies are
not experimented with the testing environment because it
is not obtainable in practice to keep some group of agents
intelligent in a community while others are not. Therefore,
the standalone strategies is used to verify the individual capa-
bilities of the agents. For the training environment (Fig. 9),
the community SS is higher with the classical and standalone
strategies. This can be explained as consequent upon the
rewards gathered by the classical and standalone strategy
during trainingwhich is higher compared to the shared reward
strategy. The maximum SS is obtained with the L4 strategy.
For this strategy, the prosumers use intelligent strategy based
on SARSA while the consumers use the baseline strategy.
Since trading energy within the community is more beneficial
compared to the upstream grid, this strategy ensures that
the prosumers trade all their energy within the community
thereby making the community to be sufficient. This further
results in higher SMS of the local community and share of
prosumer savings. The baseline strategy (L0) shows the least
SS, SMS, SCS as well as share of prosumer savings. This
is because the agents are not intelligent and do not bid/offer
strategically to make the optimum benefit from the LEM. The

FIGURE 10. Performance indicators ((a) Self-sufficiency, (b) share of
market savings, (c) share of consumer savings, and (d) share of prosumer
savings) for varying scenarios in testing environment.

shared reward strategies (L7 to L9) have the least value of SS,
SMS, SCS and share of prosumer savings compared to other
intelligent strategies. This is highlighted by the least rewards
collected by the shared reward strategies during training.

From Fig. 10, the SS and SMS of the shared reward
strategies (L7 to L9) is higher compared to other strategies.
It is evident that the shared strategy require more training
time for the prosumers and consumers agents to determine
their optimal trading strategy. Furthermore, trading towards
a common community goal (global reward) results in higher
SS and SMS of the community. However, the SCS of L7 to
L9 is lower compared to other intelligent strategies. On the
other hand, the share of prosumer savings is higher with L7 to
L9 compared to the other strategies. Since the consumers and
prosumers agents of the L7 to L9 strategies work towards a
common goal of increasing the global reward, however, the
offering/bidding strategy that results in more global reward
benefits the prosumers compared to the consumers. This
is because the prosumers own the PV’s and batteries and
thereby invested into the market, therefore, trading more of
the energy from the PV in the LEM creates more benefits to
the prosumers.

Fig. 11 shows the comparison of the different LEM
strategies using LEM performance indicator in the training
environment. At this stage, a new strategy termed the hybrid
(H1) strategy is introduced. The Hybrid strategy is similar
to the classical strategies. Hence, it is a combination of the
Q-learning and SARSA classical algorithm strategies. For
the hybrid strategy, the prosumers agents are modelled using
the classical SARSA strategy while the consumers are mod-
elled using the classical Q-learning strategy. From Fig. 11,
the H1 strategy shows better SMS and SS compared to other
strategies. However, the SCS of the H1 strategy is lower
compared to the L1 and L2 strategies. By integrating the
features of the SARSA and Q-learning strategies, the H1
strategy was able to leverage the features of the two strategies
to create technical and economic benefits for the LEM.

Fig. 12 shows the comparison of the different LEM strate-
gies using LEM performance indicator in the testing environ-
ment. Unlike the training environment, the L7 to L9 strategies
show better SS, SMS and SCS compared to the L1 and
L2 strategies. However, the H1 strategy still shows higher
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FIGURE 11. Comparison of performance indicators for varying simulation
scenarios in training environment.

FIGURE 12. Comparison of performance indicators for varying simulation
scenarios in testing environment.

SS and SMS compared to the L7 to L9. This is evident
that utilizing SARSA strategy with prosumer agents while
using Q-learning strategy for consumer agents creates more
benefits to the local community compared to other strategies
tested in this work.

C. PARAMETER TUNING
Appendix B-A (Table. 6, Fig. 13, and Fig. 14) contains the
results of the sensitivity analysis of α, ε and γ parameter
tuning. Four optimal values of α, ε and γ were selected
from the sensitivity analysis and used for initial parameter
tuning. The results of the initial parameter tuning is presented
in Appendix B-B (Table. 7, Fig. 15, and Fig. 16). After
the initial parameter tuning, two best values of α, ε and γ
are then selected and used for the final parameter tuning.
The results of the final parameter tuning are presented in
Appendix B-C (Table. 8, Fig. 17, Table. 9, and Fig. 18) and
a detailed discussion of the parameter tuning is presented in
Section VI-D.

VI. DISCUSSION
The Section presents discussion about findings, insights and
improvements of the model.

A. CLASSICAL MODELS COMPARISON
Firstly, the baseline model is used as a reference to assess
the LEM performance indicators such as self sufficiency(SS),
share of market savings (SMS), share of consumer savings
(SCS), and share of prosumers savings. The baseline model
and reinforcement learning (RL) algorithms are trained and
compared, followed by testing of the RL algorithms. In gen-
eral, the baseline model has satisfactory results of the LEM
performance indicators with a SS of 44.75%, SMS of 56.99%
and average trade rate of 23.63 ct./kWh. The SS and SMS
increase significantly while the average trade rate decreased
by deploying RL algorithm bidding strategy in the local
community. The RL agent learns to bid/offer according to
the current state which completely describes the observation
needed to bid/offer. In the training environment, in compar-
ison to the baseline model, average SS and SMS of the RL
models increased from 44.75% to 61.20% and 56.99% to
156.65%, respectively, while the average trade rate of elec-
tricity is lowered from 23.63 ct./kWh to 22.01 ct./kWh. The
SS and SMS in a testing environment compared to the training
environment increase from 61.20% to 62.0% and 156.65%
to 161.61%, respectively. However, the major changes is
witnessed with the average trade rate which reduced from
22.01 ct./kWh to 19.75 ct./kWh. A lower community aver-
age trade rate is beneficial to the consumers and provides
opportunity for them to buy locally produced electricity. This
further results in additional technical and economic benefits
of the community witnessed with the increase in SS and SMS,
respectively. Comparing the increase in the share of savings
of prosumers and consumers from baseline model to intelli-
gent agents models reveals that the share of prosumers sav-
ings increase significantly higher than the consumers share
of savings. Thus, the prosumers are the major contributors of
the community SMS. This can be attributed to the investment
made by the prosumers to the market by providing the PV and
battery which are the source of power in the local community.

The RL rewards are the second criteria used for anal-
ysis and comparison of the model performance. However,
throughout the comparison and evaluation, it is observed that
the change in the RL rewards is higher compared to the
changes in LEM performance indicators and so RL rewards
are used as the deciding factors in most cases. Here, the ZI
model is out of comparison because of lack of an agent.
The consumers and prosumers act as a separate entity in a
single agent model and so it is necessary to analyse their
rewards differently. The average and cumulative rewards are
negative in the training environment and can be attributed to
be resulting from the high exploration rate (ε) used during
the simulation. As the agent tries to explore new actions,
it is possible that there are very few actions that result in
positive rewards and so the agent is not able to compensate
for the wrong actions received during the training process.
This changes in the testing environment where no explo-
ration is used, and the agent only chooses the action that
leads to higher and positive rewards. Another observation to
note is that the average reward per episode for consumer is
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higher than the average reward for the prosumer. This could
be because the trades (demand) needed for the consumers
are higher than the trades (supply) of the prosumers. In the
training environment, the rewards collected by the SARSA
algorithm is higher than Q-learning for both consumers and
prosumers. In the testing environment, this is not the case.
SARSA algorithm collects higher rewards for the consumer
actor whereas Q-learning algorithm gains higher rewards for
the prosumer. This means that one single-agent model does
not work equally for both actors.

B. STANDALONE ACTORS
The standalone actor models are developed to isolate the
behaviour of each actor and analyse their behaviour sepa-
rately as the only intelligent agent in the system. Four models
are developed in the training environment for this purpose.
The two prosumer models have higher SS and SMS com-
pared to the two consumer models. The average trade rate is
higher for the prosumer models and lower for the consumer
models showing the presence of only a single actor rather
than two. The results of SS, average trade rate and SMS for
the consumer models are close to the classical SARSA and
Q-learningmodels, whichmeans that the classical RLmodels
are more influenced by the consumers rather than prosumers.
The prosumer models are beneficial for the welfare of the
community as it results in higher SS and SMS compared
to the consumer models. The standalone consumer model
is responsible for the lower average trade rate whereas the
standalone prosumer model helps to increase the economic
benefits.

The rewards gathered by the consumer and prosumer actors
in the training environment are negative. The Q-learning
algorithm provides opportunity to collect higher rewards
compared to SARSA for the consumer models. However, for
the prosumer models, the SARSA algorithm collect higher
rewards compared to Q-learning model. It is important to
note that the standalone actor models converged faster over
time than the classical RL models. The average rewards
gained by the prosumer models for the standalone algorithms
are also comparatively higher than the prosumer rewards in
classical RL models. This suggests that the standalone pro-
sumer model performs better than the classical single-agent
RL models in some criteria. This is because two entities in
a single agent model might hinder each other’s progress and
can perform better as a standalone actor.

C. SHARED REWARDS CONCEPT
Shared rewards concept is implemented in SARSA and
Q-learning models to analyze the possibility of prosumers
and consumers to pursue the same goal in a single experi-
ment. Two SARSA models with different learning rate and
one Q-learning model are developed to analyse the shared
rewards concept. The values of LEM performance indicators
are lower in the training environment than the testing envi-
ronment. The training was done for one year of simulation
that includes both winter and summer season. That is one of

the reasons why the SS and SMS is lower, as there is less
solar production. The values of the LEM KPIs are higher in
the SARSA algorithm rather than Q-learning algorithm with
hardly noticeable difference which can results in the observed
lower performance indicators. On the other hand, the RL
rewards have a different outcome. For both the training and
testing environment, Q-learning has constantly gained higher
rewards than the SARSAmodels. Thus, there is no consistent
model outperforming the other in both criteria. The graph of
the global average rewards in the training environment is still
increasing by the end of the training period which suggests
that the algorithm might not have converged yet and would
perform better if the training time was increased. However,
because of the huge training time and lack of data, the training
is only performed for 1 year. The lack of convergence can
also be seen from the global average rewards in the testing
environment which are negative. The LEM performance indi-
cators in the testing environment show better performance
compared to the testing environment of the classical RL
models. The individual share of savings of both consumers
and prosumers are substantially increased. The higher values
of the LEM performance indicators of the shared reward
models is evident that the shared reward models outperforms
the classical models. However, the performance in the RL
rewards is not as expected because of the insufficient training
time. If the model was given enough training time for it to
learn the cooperation between the agents, the shared reward
model will outperform the classical RL models in terms of
the obtained rewards.

D. PARAMETER TUNING
The three steps used are sensitivity analysis, initial parameter
tuning and then, final parameter tuning. Starting with the
sensitivity analysis, the change in the learning rate (α) does
not result in significant change of the performance indicators.
The lower values of α such as 0.1, 0.2, and 0.3 along with
some higher values such as 0.7, result in comparatively higher
LEM performance indicators. However, the RL reward crite-
rion shows values of the learning rate such as 0.4 and 0.9 can
help the algorithm collect more rewards compared to other
values. Therefore, one optimum value from each criterion and
one default and also most common learning rate are selected
for the initial parameter tuning. The only parameter that has a
linear relationship with the LEM performance indicator is the
exploration rate (ε). The lower the values, the better the result.
However, there are some outliers to this relationship in the RL
rewards criteria. For example, ε equal to 0.6 and 0.7 collects
higher rewards than 0.5 which is true for the consumer and
prosumer rewards because of the exploration vs exploitation
trade-off. Thus, the equal probability for both exploitation
and exploration is not beneficial for the algorithm. To verify
this anomaly further, ε equal to 0.2, 0.5 and 0.9 were chosen
to compare further. The discount factor (γ ) shows the most
non-linear behaviour out of the three parameters. There is no
rule of thumb on choosing γ , on the other hand, the value of
0.9 or 0.99 helps the algorithm converge faster. Considering
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FIGURE 13. Sensitivity analysis of consumers rewards for (a) α, (b) ε and (c) γ .

FIGURE 14. Sensitivity analysis of prosumers rewards for (a) α, (b) ε and (c) γ .

FIGURE 15. Initial parameter tuning of consumers rewards for (a) α, (b) ε and (c) γ .

FIGURE 16. Initial parameter tuning of prosumers rewards for (a) α, (b) ε and (c) γ .

the LEM performance indicators, comparatively lower values
of γ such as 0.1, 0.3 and 0.4 are better whereas for the
RL rewards, higher values of gamma such as 0.5, 0.7 and
0.9 shows better performance. The value of the discount
factor is usually higher compared to the learning rate and so

three values, 0.3, 0.4 and 0.9 are used to further provide the
comparison in the next step.

From the result of the initial parameter tuning for α, the
default rate of 0.1 lead to the worst performance in the
RL rewards criteria. Nevertheless, the LEM performance
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FIGURE 17. Final parameter tuning of rewards for (a) consumers and
(b) prosumers in training environment.

FIGURE 18. Final parameter tuning of rewards for (a) consumers and
(b) prosumers in testing environment.

indicators for α equal to 0.1 and 0.4 were almost comparable.
The initial parameter tuning of ε has the similar outcomes to
its sensitivity analysis. ε = 0.5 has lower rewards compared
to ε = 0.9. Given that the relationship of epsilon is quite
straightforward with the evaluation criteria, only one value
of epsilon 0.6 is used for the final comparison. The initial
parameter tuning of gamma showed that there is no corre-
lation between gamma and any of the KPIs. The two best
values of 0.4 and 0.9 are selected from the criteria for the final

Algorithm 1 Q-Learning Algorithm Bidding/Offering Strat-
egy
Require: St , α, ε, γ . F Initialize parameters and states
Initialize:Qs×a,t according to Eq. (28)
Initial action: according to Eq. 29 & 30

while (Epi > 0) do
Calculate reward: according to Eq. (34) | 33
Take action: according to Eq. 36 & 35
Update Q-table: Q(t+1)

(
st , abu,tε

)
← Qt

(
st , abu,tε

)
+α

[
rb
′

t + γ maxa Qt
(
s(t+1), abu,tε

)
−Qt

(
st , abu,tε

)] ]
F For buyers

Q(t+1)
(
st , asu,tε

)
← Qt

(
st , asu,tε

)
+α

[
rs
′

t + γ maxaQt
(
s(t+1), asu,tε

)
−Qt

(
st , asu,tε

)] ]
F For sellers

Update Eq. 39
end while

tuning. Hence, it is certain from here, that, the values of α, ε,
and γ do not follow the common and default values used for
them. Therefore, the behaviour of each value and parameter
to the algorithm is challenging to interpret. Another important
and common observation is that the best values of α, ε, and
γ for the consumer and prosumer models are in most cases
different from each other which also explains the reason for
the development of standalone actor algorithms.

The final parameter tuning consists of two α and γ values
and one ε value to determine the final optimal values. The
results obtained from the training and testing environment
are different from each other. Learning rate (α) of 0.7 and
γ of 0.4 has the highest value in terms of LEM performance
indicators and the RL rewards in the training environment.
However, for the testing environment, the model with the
best LEM performance indicators has α = 0.4 and γ =
0.9. However, this is not the same for rewards collected by
consumers. The model with the best rewards collected by
consumer has α= 0.7 and γ = 0.4. Therefore, the model with
the most optimal bidding/offering strategy is the single-agent
SARSA model with α = 0.4, ε = 0.6, and γ = 0.9.

VII. CONCLUSION
In this paper, two novel reinforcement learning based intel-
ligent bidding strategies, Q-learning and SARSA, were pro-
posed for effective trading of distributed energy resources for
prosumers and consumers in an LEM. The proposed models
were tested in a German real case scenario and simulated
for 45 German households. The simulations results show that
the intelligent bidding strategies create additional technical
and economic benefits to the local consumers and prosumers
compared to the baseline strategy. Furthermore, the proposed
models reveal that when the intelligent agents within the local
community work towards a common goal, in this case shared
reward strategy, the model create additional benefits for the
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TABLE 6. Comparison of participant revenue for sensitivity analysis.

Algorithm 2 SARSA Algorithm Bidding/Offering Strategy
Require: St , α, ε, γ . F Initialize parameters and states
Initialize:Qs×a,t according to Eq. (28)
Initial action: according to Eq. 29 & 30

while (Epi > 0) do
Calculate reward: according to Eq. (34) | 33
Take action: according to Eq. 36 & 35
Update Q-table: Q(t+1)

(
st , abu,tε

)
← Qt

(
st , abu,tε

)
+α

[
rb
′

t + γ maxa Qt
(
s(t+1), au,(t+1)

)
−Qt

(
st , abu,tε

)] ]
F For buyers

Q(t+1)
(
st , asu,tε

)
← Qt

(
st , asu,tε

)
+α

[
rs
′

t + γ maxa Qt
(
s(t+1), au,(t+1)

)
−Qt

(
st , asu,tε

)] ]
F For sellers

Update Eq. 39
end while

TABLE 7. Comparison of participant revenue for initial parameter tuning.

community compared to the classical strategies. The most
optimal strategy is the hybrid strategy which is a combination
of the classical Q-learning and SARSA strategies. In future
work, we will investigate other artificial intelligent models
such as deep learning and how they can be modelled for LEM
trading and how the model will be implemented in a dis-
tributed blockchain platform to ensure efficient preservation
of prosumers’ privacy and conformation to data protection
laws.

APPENDIX A ALGORITHMS PSEUODO CODES
See Algorithm 1 and Algorithm 2.

APPENDIX B FURTHER SIMULATION RESULTS
A. TABLES AND FIGURES FOR SENSITIVITY ANALYSIS
See Table 6, Figures 13 and 14.

TABLE 8. Comparison of participant revenue for final parameter tuning
(training env).

TABLE 9. Comparison of participant revenue for final parameter tuning
(testing env).

B. TABLES AND FIGURES FOR INITIAL
PARAMETER TUNING
See Table 7, and Figures 15 and 16.

C. TABLES AND FIGURES FOR FINAL PARAMETER TUNING
See Tables 8 - 9 and Figures 17 - 18.
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