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ABSTRACT Explainable Artificial Intelligence (XAl) is an increasingly important field of research required
to bring Al to the next level in real-world applications. Global sensitivity analysis (GSA) methods play
an important role in XAI, as they can provide an understanding of which (groups of) parameters have
high influence in the predictions of machine learning models and the output of simulators and real-world
processes. In this paper, we conduct a survey into global sensitivity methods in an XAl context and present
both a qualitative and a quantitative analysis of these methods under different conditions. In addition to the
overview and comparison, we propose an open source application, GSAreport, that allows you to easily
generate extensive reports using a carefully selected set of global sensitivity analysis methods depending on
the number of dimensions and samples, to gain a deep understanding of the role of each feature for a given
model or data set. We finally present the methods discussed in a complex real-world application of genomic
prediction and draw conclusions about when to use which GSA methods.

INDEX TERMS Explainable artificial intelligence, global sensitivity analysis, machine learning, plant

breeding, genomic prediction.

I. INTRODUCTION

Sensitivity analysis (SA) methods aim to measure the uncer-
tainty in output based on the change in the input. SA methods
are a key technology in better understanding the influence
and uncertainty of features or parameters in machine learning
models, simulators and real-world applications. As SA can
potentially give a lot of insights in machine learning models
and applications, it can be considered as a model agnostic
approach to explainable Al (XAI). Explainable Al gets an
increasingly important role in Al research and applications
as simply providing inference is in most cases not sufficient
anymore. Explanations on how a machine learning model
works, what parameters play a role in the prediction and what
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uncertainties are incorporated in the data and the model are
just a few questions that domain experts and engineers want
an answer to before deploying Al methods to production.
SA plays an important role in the field of XAI as it can
answer a part of these questions without being dependent
on a certain machine learning model or even a sampling
strategy. Especially when the number of model inputs is large,
recognizing the factors on which to focus resources in data
collection and data-driven modeling efforts becomes crucial.
SA is used in many real-world applications, including but
not limited to: understanding how chemical models work [1],
measuring the influence of input parameters on biological
models [2], and understanding and analyzing factors affecting
CO2 emissions in the construction industry [3]. SA methods
can be divided into global and local SA methods. Global
approaches focus on the variation of all inputs, leading to
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an overall analysis of the importance of each feature, while
local approaches study the local variations around some local
points. Global SA (GSA) methods can account for interac-
tions between variables and do not depend on the choice
of a nominal point. Local SA (LSA) methods are typically
used to explain a particular prediction, while GSA methods
are used to explain a model in its entirety. SA approaches
can be divided into derivative-based methods, variance-based
methods, and density-based methods.

Most XAI methods such as the model agnostic LIME [4]
and Shapley values [5] fall in the local method category,
as well as many other XAl methods that are model dependent
such as Saliency Maps [6], adversarial examples [7], etc.
Shapley values and LIME and some other methods, where
sets of inputs are switched on and off in order to find which
features contribute most to a specific prediction, use the same
underlying principles as the much more established GSA
methods.

Several attempts have been made in the literature to provide
an overview of available GSA methods [8], [9], [10], but to
the authors’ knowledge they are limited to a small number of
dimensions and compare only a few methods. While many
papers suggest how to work with many samples in low
dimensions, not much has been done for the high dimen-
sional situation. However, the latter scenario is of paramount
importance today, as sensitivity analysis plays a critical role
in decision making in businesses and economies bombarded
by an ever-increasing amount and dimensionality of data.

In this paper, a wide set of popular and different GSA
methods or pseudo-GSA methods (i.e., methods that can
be used for GSA without this being their main application)
are compared both qualitatively and quantitatively by testing
their robustness to different sample sizes and their accuracy
to alarge number of randomly generated linear functions with
different dimensions. Suggestions and a real-world example
of using GSA methods on very high-dimensional data are
given to help data scientists and machine learning experts
use these GSA methods as efficiently as possible. An open
source library (GSAreport) is proposed, that allows users to
create GSA reports for any model or data set, the Figures used
in Sections III, IV, V and VI are generated by the proposed
software.

The paper is organized as follows: In Section II,
an overview of related literature is given. Afterwards, the
GSA XAI methods compared in this work are presented and
explained: Variance-based methods in Section III, Derivative-
based methods in Section IV, Density-based methods in
Section V, and Model-based methods in Section VI. Then,
in Section VII, the first quantitative experiment is intro-
duced to investigate the robustness of the different methods
under different sample sizes and number of dimensions. The
second experiment in Section VIII focuses on the accuracy
of these methods under different conditions for (relatively
simple) randomly generated linear functions. In Section IX,
we combine the two previous quantitative results with a

VOLUME 10, 2022

qualitative comparison of the different methods. In Section X,
we propose the open-source software package GSAreport,
which allows to easily use the aforementioned XAI and
GSA methods to gain a deep understanding of the feature
sensitivities of any model or process. We conclude the work
with a detailed example of a real-world application dealing
with genomic prediction in Section XI, which shows the
applicability of these methods, and a summary in Section XII.

Il. GLOBAL SENSITIVITY ANALYSIS

While there are already some excellent reviews of sensitivity
analysis methods, such as [8] and [9], none of these reviews
compare GSA methods in terms of robustness under different
sample sizes and number of dimensions and applicability to
explainable Al applications. Most related work is limited to
a small number of dimensions (typically less than five) and
compares only two or three methods. A recent work [10]
proposes a meta-function to benchmark different GSA meth-
ods in their ability to find “ground truth” sensitivity indices.
However, the “ground truth” was computed with a large
sample size and only allows comparison of specific SA meth-
ods, since not all SA methods provide similar information
(first-order sensitivity scores) as output, making it difficult
to compare these algorithms. When working with a small
sample size of high-dimensional data, a different approach
may be required than when working with many samples
of low-dimensional data. Therefore, this study presents and
compares common methods of sensitivity analysis, both qual-
itatively and quantitatively, to finally provide some rules for
which methods are better to use and when, and to extend the
analysis to the more complex case of high-dimensional data,
for which a sample set of relatively small size is available. The
review of SA methods in this paper is limited to Global Sen-
sitivity measures. Comparing LSA methods would require a
completely different approach that is beyond the scope.

For demonstration and comparison purposes, to explain the
different methods of SA, in this paper in Sections III, IV, V
and VI we use the transformed, multi-modal Rastrigin func-
tion (f3) from the Black-Box Optimization Benchmarking
(BBOB) test suite within the COCO framework [11] as the
function we want to analyze.

Figure 1 shows a surface plot of the function with n =
2 input parameters. In the examples in Sections III, IV, V
and VI, n = 5 is used.

The following sections provide a comprehensive list
of GSA methods, which are divided into four cate-
gories: variance-based, derivative-based, density-based, and
model-based GSA methods.

Ill. VARIANCE-BASED METHODS

Variance-based methods are based on the assumption that
variance is sufficient to describe the output uncertainty,
an assumption made by Andrea et al. [12]. Variance-based
methods calculate the sensitivity of the input parameters via
an ANOVA-like decomposition of the function.
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FIGURE 1. Rastrigin function of the BBOB benchmark with n = 2. The last
parameter (in this case x;) is the most influential.

A. SOBOL

A very popular and known variance-based SA method is the
Sobol method [13], also referred to as Sobol indices. The
method decomposes the variance of the output of a model or
system into fractions that can be attributed to inputs or groups
of inputs. The Sobol method can be used to calculate first
order sensitivities (the attribution of variance of the output to
the variance of a single input (feature)), but also for higher
order sensitivities. It is most commonly used for first, second
and total order sensitivity analysis.

The Sobol indices are calculated by Equation 1, where
Var(Y) denotes the output variance and the right side of the
equation are variance terms decomposed with respect to sets
of the input X;. Since Sobol works with sets of the input, it can
handle either all individual inputs or groups of inputs.

n n
Var(Y) =Y "Vi+ > Vi+ ...+ Vizn, (1
i=1 i<j
where
Vi = Vary,(Ex_,(Y X)), 2
Vyj = Varx, (Ex_;(Y|X;, X)) = Vi =V}, 3

and X~; denotes the set of all input variables except X; etc.
An example of the output of the Sobol method is shown in
Figures 2 and 3. Sobol can calculate the first, second and total
order sensitivity of the parameters. With a graph based plot
we can bundle this information in one intuitive visualisation.

B. FAST

Fourier Amplitude Sensitivity Test (FAST) [14] and extended
FAST (eFAST) [15] are two well established and popular
SA methods. The sensitivity value in FAST is defined based
on conditional variances which indicate the individual or
joint effects of the uncertain inputs on the output. FAST
computes the “main effect” contribution of each input factor
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to the variance of the output (the first order and total order
sensitivity). To calculate the sensitivity FAST uses a specific
periodic sampling scheme where the number of harmonics to
sum in the Fourier series decomposition has to be provided
by the user.

For a formal definition of how FAST calculates the sensi-
tivity we refer to [16].

C. RBD-FAST
Random Balance Designs Fourier Amplitude Sensitivity Test
(RBD-FAST) [17] does not depend on a specific sampling
scheme and works well with a basic Latin Hypercube Sam-
pling (LHS) scheme. The hybrid RBD-FAST method is com-
putationally much more efficient than classical FAST and
gives similar performance according to [17].

An example of the first order (S1) sensitivity calculated by
using RBD-FAST for f3 is given in Figure 4.

IV. DERIVATIVE-BASED METHODS

A. MORRIS

Morris method [18] is a qualitative measure that shows sev-
eral advantages compared to other SA strategies. First of all,
it can work directly on discrete domains. Then, it includes
multi-dimensional averaging (i.e., the evaluation of the effect
of a factor while the others are also varying) and allows
grouping of factors, which makes it particularly suitable to
work with very large data sets. Finally, the modified version
considering absolute means of the distribution of elementary
effects is robust with respect to type II errors.

1) STANDARD MORRIS METHOD

Given a random sampling of a vector X = (X1, Xz, .., Xp)
from an input space €2, which is a n—dimensional p—level
grid, Morris method generates a distribution F; of elementary
effects for every i input. If we consider r randomly sampled
inputs, and build a trajectory on the input space by changing
one parameter at a time by summing or subtracting a noise
term A, the elementary effect for the i factor on the ;7
trajectory is defined as

[Y(X’,...',XLI,X.{j:A',Xi’H,...,X',’,)
. Y, X XL X XD
EE,'(X/) — ( thl i’ 4l n) . (@)

Based on this definition, two sensitivity indices are computed
for each factor: the mean of the absolute value of the elemen-
tary effects

r

* 1 . j
wi ==Y IEEX), )

j=1

and the standard deviation of the elementary effects

2
r

1 L1 :
o = ; Z EEZ'(XJ) - ; Z(EE,(X/)) . (6)

J=1 J=1

VOLUME 10, 2022



B. V. Stein et al.: Comparison of GSA Methods for Explainable Al With an Application in Genomic Prediction

IEEE Access

Sobol first order and total sensitivities

0.9
0.1

0.01

ks \gb‘

0.0

ST
— ST Conf
. S
— 81 Conf

*\ & .'/’ \‘ / *ﬁ’

—_—

x
N

Sobol second order sensitivities

£ e $ & ¥
X3
X1
X0
X2
X4

FIGURE 2. Sobol sensitivity indices, on the left, a stacked bar plot of the first (S1) and total sensitivity (ST) for each parameter with the
95% confidence interval for the first (S1 Conf) and total order (ST Conf) respectively as dark blue error bars. On the right the second
order sensitivities between two parameters (dark blue is high, white is 0).
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FIGURE 3. Sobol network plot. Each node is a parameter, the size of the
node is the total sensitivity index of the parameter, the blue halo around
the node is the confidence. The thickness of each edge denotes the
secondary interactions.

The first measures the influence of the i feature on the
output: the larger, the more it contributes to the output vari-
ance. The second is a measure of nonlinear and/or inter-
action effects of the i feature: a high standard deviation
calculated over different trajectories means that the linearity
hypothesis between input and output is unlikely. Rather,
it indicates non-linear effects on the output due to the i
feature and/or the presence of interactions with other factors.
This represents one drawback of Morris method, i.e., it is not
possible to distinguish nonlinearity from interaction effects.
Results are usually visualized on a o vs u* plot, as in
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FIGURE 4. RDB Fast first order (S1) sensitivity indices with their
confidence as error bars.

Figure 5. It should be noted that the sensitivity index w*
belongs to the revised version of the Morris method presented
by Campolongo et al. [19], which differs from the original
definition of w only in that it presents absolute values. This
is to solve the problem that elementary effects of opposite
sign cancel each other, which occurs when the model is
non-monotonic.

2) MORRIS METHOD WITH GROUPING

Sometimes it is useful to perform sensitivity analysis on
groups of input variables to reduce the number of model
runs required if the variables belong to the same component
of a model or there is reason to believe that they should
behave similarly. Morris with groups [19] works similarly
to the standard version, with the only difference that all fea-
tures belonging to the same group are varied simultaneously
along a trajectory, and therefore the elementary effects and
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Morris Covariance plot

350

—o/u*=1.0
300 o/ =05
: —o/p* =01
250-_
200
150
100

50

L I o e o B
100 150 200 250 300 350

u
FIGURE 5. Morris o vs u* plane. Plot for sensitivity analysis on five
factors for f5, where two factors seem to be influential, with eventual
interaction effects. This plot allows for distinguishing three main
categories of factors: non influential (small values of both x* and o), with
linear and/or additive effects (relatively large p* and relatively small o),

and with nonlinear and/or interaction effects (relatively small x* and
relatively large o).

sensitivity measures are calculated for each group instead of
for each factor:

j j j j
[YX], ... X £A X, £A, XD
—Y(X], ..., XD]

EEy (X)) = X

., (D

where the features X;,, X;,, and X;, belong to the same group
U = X;, X;,, Xj;), and X/ is the random sample generated
to initiate the j—th trajectory. Hence, the idea is to move all
factors of the same group simultaneously and produce an
overall sensitivity measure relative to a group, rather than to
a single factor.

B. DGSM

Derivative-based Global Sensitivity Measures (DGSM) [20],
[21] can be seen as a the generalization of the Morris method.
By averaging local derivatives using Monte Carlo or Quasi
Monte Carlo sampling methods, DGSM can be more accu-
rate than the Morris method because the elementary effects
are evaluated as strict local derivatives with much smaller
increments compared to the A term in Morris. In addition, the
local derivatives are evaluated at selected points throughout
the uncertainty range rather than at points belonging to a
fixed grid. Compared to Sobol’s sensitivity indices, DGSM
is computationally less expensive. Let f be a differential
function defined in the unit hypercube H*. Local sensitivity
measures are defined as the limit version of the elementary
effects in Morris when A — 0:

of (X/)

E(X)) = =~
1

®

103368

DGSM vi

Iikﬁa

FIGURE 6. DGSM sensitivity analysis on five factors for f5, where two
factors are identified to be the most influential.
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If of /0x; € Lp, meaning that it is a a square-integrable
function, the most used DGSM measure is defined as the
mean value of (3f /0x;)?:

2
by = f (af (X)> dx. ©)
Hk 8xl~

The higher the measure v;, the more influential the i—th
factor. DGSM also support grouping of factors. For further
details, the reader is referred to [21].

An example of v; indices found by DGSM is given in
Figure 6.

V. DENSITY-BASED METHODS

Density-based SA methods consider the entire Probability
Density Function (PDF) of the model output in order to
calculate the sensitivity of the inputs and their interactions.
Density-based SA methods are popular for their ability to
overcome certain limitations associated with the interpreta-
tion of variance-based measures in the presence of dependen-
cies among the model inputs. However, their estimation runs
the risk of becoming infeasible when the number of model
inputs is large (high dimensionality) or when the computing
time of the model or function takes longer than a few minutes.
Below we discuss two of the most popular density-based SA
methods, DELTA and PAWN.

A. DELTA

The DELTA (8) [22] method is a Densitity based SA method
that is independent of the sampling generation method. The
method provides both the first order sensitivity and the §
(similar to the total sensitivity) for each input parameter.
DELTA aims at assessing the influence of the entire input
distribution on the entire output distribution without reference
to a particular moment of the output. The moment indepen-
dent sensitivity indicator § for a factor X; is calculated using
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FIGURE 7. § sensitivities plot, indicating X, as most influential.

Equation 10.

1
5= f Fio () [ / o) —fY|Xi_x<y>|dy} dr,  (10)

where
o X s a vector of input factors and x € X;
o X; is a fixed input variable;
o fx;(x) is the marginal probability density function of the
input factor X;;
« fy(y) the cumulative probability density function of the
model output ¥;
e frix;=x(y) is the conditional density of ¥ given that one
of the parameters, X;, assumes a fixed value.
An example of the calculated § values for the BBOB
/3 function is presented in Figure 7.

B. PAWN

PAWN [23] is a density-based GSA method (named after
the authors) that aims to provide Density-based SA metrics
in a more efficient way. The key idea is to characterise out-
put distributions by their Cumulative Distribution Functions
(CDF), which are easier to derive than PDFs. An advantage
of PAWN is that sensitivity indices can be computed not just
over the entire range of variation of the output, but also over
a sub-range. This can be useful in applications where one
is interested in a specific region of the output distribution.
The PAWN method provides not only the mean sensitivity
of each parameter but also the minimum, median, maximum
and standard deviation of the sensitivity. In Figure 8 the
minimum, median and maximum sensitivity index for each
parameter of the f3 function are shown.

VI. MODEL-BASED METHODS

Machine learning models, such as decision trees and linear
models can also provide insights in the importance of input
features. The most commonly used machine learning models
for this purpose are linear models and Random Forests [24],
[25]. Note that providing these insights is not the main
purpose of these techniques and comes as a convenient by-
product. Each of these ML models also come with a set of
assumptions that the data needs to fit to, for example it would
not make much sense to use Linear Regression on highly
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FIGURE 8. PAWN minimum, median and maximum sensitivity index on f5.

non-linear functions in order to estimate sensitivity of the
input features.

A. LINEAR MODELS
Linear regression is a linear approach for modeling the rela-
tionship between the input features and the output. Using
multiple linear regression (more than one variable), a set
of coefficients of the linear function are fit to the data by
minimizing the residual sum of squares between the observed
targets and the predicted targets. The learned coefficients
immediately represent the relative importances of the input
variables. In the experiments in this work we scale the coef-
ficients between 0 and 1 to resemble feature importance
indices.

In general the linear regression model fits a function in the
form of Equation 11.

n
y=B+>_ BXi+e, (11)
i=1
where y is the dependent variable, 8, is the intercept of the
model, X; corresponds to the i’ explanatory variable of the
model, and € is the random error with expectation 0 and
variance o 2.
In Equation 12 the function fitted on a Latin Hypercube
design of experiments with 512 samples of f3 is given, show-
ing the largest (negative) coefficient for x4.

y=—1424+43X,—7.9X; — 113X, — 0.1 X3 — 38.9 X4
(12)

B. RANDOM FOREST

Random Forest [26] is a very popular Machine Learning tech-
nique that learns multiple decision trees on random subsets
of input features. The method is quite robust, needs little
to no hyper-parameter tuning and can handle mixed-integer
data, making it a very flexible and powerful model. As a
bonus, using Random Forests one can calculate the variable
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importance. The importance of an input feature is computed
as the normalized total reduction of the criterion brought by
that feature and it is also known as the Gini importance.
This importance however is known to be misleading for very
high cardinality features (inputs with many unique values).
It is also important to note that the Random Forest is not
an interpretable model such as decision trees, as looking at
individual trees inside a forest can be highly misleading due
to the random feature subsets.

C. SHAPLEY AND SHAP

Shapley values is a cooperative game theoretic approach to
explain the output of any machine learning model. It connects
optimal credit allocation with local explanations. The idea is
that the input parameters are different “players” in a game
(the real function that we are interested in). One of the funda-
mental properties of Shapley values is that they always sum
up to the difference between the game outcome (prediction
of a model, output of a function) when all players are present
and the game outcome when no players are present.

While Shapley values, and specifically SHapley Additive
exPlanations (SHAP) [5] are mostly used to explain single
predictions (local SA), they can also be used to generate
global SA by averaging the Shapley values over all instances
of the data set the model was trained on. Calculating the
exact solution of Shapley values is usually infeasible as the
computation cost is exponential with the number of features.
The approximation of Shapley features by taking a subset of
random samples is much faster (though still computationally
expensive with many features). The advantage of using SHAP
for global feature analysis is that the method not only provides
an importance but also the direction of the change that the fea-
ture has on the target variable. Unfortunately, SHAP requires
both a model of the data and the complete training data set to
calculate the Shapley values, making it impractical for large
data sets or to analyse a fixed design of experiments (such as
in our experimental setup). Due to these limitations we do not
include the SHAP method in our experimental comparison.
However, when performing the feature analysis of a machine
learning model, and especially a tree based model, we can
use the TreeSHAP [27] method that exploits the informa-
tion present in the trees and gives a deep understanding of
the features and the features in respect with the training
data.

In Figure 9 a summary of the Shapley values for all features
over all instances in the data (Latin Hypercube Design of
Experiments with 512 samples) is visualised for the f3 func-
tion. This plot immediately makes it clear that x4 is again
the most influential parameter, but also that low values of
X4 seem to contribute towards high values in the function, and
the other way around (negative correlation as also detected by
the Linear Regression).

Vil. COMPARISON IN ROBUSTNESS
In the first quantitative experiment, we conduct a large set
of experiments to access the robustness of the different SA

103370

High

X4 b— see gseam | ces  commmms 0o o adeafunab oo s ee oamma)

X2 |I-o-| S
©
>

X3 |- o

y 2

X1 | ki

X0 l

Low
-100 =50 0 50 100 150 200 250

SHAP value (impact on model output)

FIGURE 9. SHAP summary plot of feature importances of f5. Red values
correspond to high feature values and blue to low feature values. Each
dot shows the SHAP values for an instance in the training data set. In this
case it is clear that X, has the highest influence on the model outcome.

methods with regards to their primary parameter, namely
the sample size. Especially when working with expensive
black box optimization or learning feature interactions on
expensive real-world problems (expensive in terms of com-
putational power or license costs etc.), a small sample size is
preferred. However, not all methods work equally well with
a small number of samples, of course also depending on the
characteristics of the function and the dimensionality of the
problem. Due to different required sampling techniques for
each method it is impossible to use exactly the same sample
sizes for comparison. We therefore work with the following
base sample sizes (B,) (from 27 to 215 samples) and the
number of dimensions 2, 4, 8, 16, 32 and 64. Morris, Sobol
(without second order indices) and DGSM requires x - (d 4 1)
samples (where d is the number of dimensions and x a user
defined number), and FAST requires x - d samples. All other
methods can be set to a Latin Hypercube sampling with any
number of samples n. In order to make a fair comparison
between the methods the number of samples should differ as
little as possible. We therefore use the following real sample
sizes N for each method using the base sample sizes (b € B,)
mentioned before.

e Morris: N =b/d - (d + 1)

e Sobol: N =b/d-(d+1)

e« DGSM: N =b/d-(d+1)

e Fastt N =b/d -d
Where d is the number of dimensions. All other methods use
exactly b samples. This means that only Morris, Sobol and
DGSM have d more samples, but since the number of samples
is much larger than the dimensionality in this experiment the
effect of this can be neglected.

In the following experiment we run seven SA meth-
ods (DGSM, Delta, FAST, Morrris, RDB-FAST, Sobol and
PAWN), the simple statistical method Pearson correlations
and two model-based methods (linear regression and random
forest). We test these methods over a wide range of sample
sizes (from 27 to 215 samples) for the 24 different noiseless
BBOB functions [11]. Each method that requires a specific
sampling scheme uses this specified scheme, while other
methods such as Pearson, RDB-FAST, random forest and
linear regression use Latin Hypercube sampling. We repeat
these experiments 10 times with different random seeds and
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FIGURE 10. Sensitivity analysis on f5 in 2, 4 and 8 dimensions. Each plot shows the results using a different algorithm. The sample size is on the x-axis
and the scaled sensitivity on the y-axis. The shaded area denotes the standard deviation from the 10 runs with different random seed.

report back on the average and standard deviation of the S1 scores, the first order sensitivity indices. The experiment

results. To compare the different methods we scale the sen- is repeated for different dimensions to investigate whether the
sitivity indices for methods that do not give a sensitivity different dimensionality requires more samples and whether
between 0 and 1 by dividing the sensitivities by the sum of all certain methods perform better in high dimensions than
variable sensitivities. For the SA methods we only look at the others.
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FIGURE 11. Sensitivity analysis on f;; (n = 4), showing the mean and standard deviation over 10 runs for all different methods and sample sizes.
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FIGURE 12. Sensitivity analysis on f5; (n = 4), showing the mean and standard deviation over 10 runs for all different methods and sample sizes.

A. ROBUSTNESS: RESULTS

Figure 10 shows the mean sensitivity of each parameter
for different sample sizes and methods. From these plots,
it is immediately apparent that some algorithms do not
perform well for a relatively small sample size (below
210" = 1024 samples). The robustness of the results under
different random seeds is also interesting to notice for the
model-based approaches, which have much larger variance
than, for example Sobol.

To compare the methods in terms of robustness (rather than
validity, since we do not know the ground truth sensitivities
of all BBOB functions), we compute the mean squared error
between the sensitivities of each sample size (for each func-
tion) and the largest sample size. In doing so, we assume
that the method with the largest sample size should be the
most stable (and accurate). In this way, we can summa-
rize the stability of the algorithms across all functions and
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sample sizes. Table 1 shows the results of this experiment.
In bold is the algorithm per number of dimensions that per-
forms most robust. Note that this experiment does not identify
the “best performing” SA method, as an algorithm that would
always output a constant value would be very robust but not
correct.

B. ROBUSTNESS TO DIFFERENT SAMPLE SIZES

From the results in Table 1 it is easy to see that Morris is
the most stable method over all different sample sizes and
benchmark functions. The model-based methods are also sur-
prisingly robust, as well as DGSM. However, it is important
to note that this does not mean that the Morris method is
better overall. Most methods show significant convergence
when larger sample sizes are used. It is also clear that for most
methods the number of samples needed scales exponentially
with the dimensionality of the problem, Morris and Linear
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TABLE 1. Mean square error over all functions and sample sizes per method, algorithm and dimensionality. The MSE is calculated by using the largest
sample size as the ground truth. Bold values indicate the most stable method in the given dimensionality.

Method 2d 4d 8d 16d 32d 64d
Morris 0.151E—3 0.272E—3 0.275E~3 0.186E—3 0.095E—3 0.040E—3
Sobol 1.317E—3 2.266E3 2.464E—3 6.215E3 7.403E—3  37.974E~3
Fast 55.629E—3  26.276E~3 T7.1T4AE—3 T4.949E—3 84.465E~3 82.204E—3
RDB-Fast 0.758 E—3 0.814E—3 0.719E—3 0.618E—3 0.544E—3 0.513E3
Delta 4.781E—3 1.681E—3 0.738E—3 0.333E3 0.246E—3 0.213E3
DGSM 2.921E—3 4.169E3 0.932E—3 0.549E 3 0.338E3 0.177E—3
Pawn 2.973E3 4.239F 3 5.515E3 6.242E—3 6.958 3 7.582E 3
Pearson 1.030E—3 1.277E~3 1.414E—3 1.464E~3 1.504E—3 1.513E—3
RF 1.984E—3 1.152E—3 0.835E—3 0477E—3 0.292E—3 0.114E-3
Linear 6.419E3 4.783E3 1.917E—3 0.557E~3 0.189E~3 0.071E—3

being exceptions. When we look at a highly multi-modal
function f1; in Figure 11 and function f>; in Figure 12,
we see that more variance occurs in the results and that for
very complex functions the sensitivities collapse and little
differences per variable are observed.

VIil. COMPARISON OF ACCURACY

The second experiment uses a linear function generator
to benchmark the above algorithms. In this experiment,
we know the ground truth sensitivity indices because we
know the coefficients of the linear function. We sample the
coefficients of the “effective dimensions”, the influential
parameters, uniformly randomly between 0 and 100 and take
samples between 0 and 1. Moreover, we define problems with
total dimension higher than the number of important variables
to simulate variables that have no influence. Since the ground
truth is known, we use the Kendall’s tau metric for the highest
ranked features by taking the top “effective dimensions” to
verify that the methods can correctly predict which variables
are important and in the right order. Kendall’s tau is a measure
of the correspondence between two rankings. Values close
to 1 indicate strong agreement, values close to —1 indicate
strong disagreement. We used the tau-b version of Kendall’s
tau, which accounts for ties.

Note that in this experiment we use only linear functions,
so the Linear Regression method has a clear advantage.
The goal of this experiment is twofold: first, we want to
check which algorithms perform best in low and extremely
high dimensions with relatively small sample sizes. Second,
we want to see the performance when the number of effec-
tive dimensions is relatively small but the actual number
of parameters is large. We also track the computation time
for each algorithm (only the sensitivity analysis part, not
sampling) to get a good overview of the average runtime per
algorithm for different sample sizes and number of dimen-
sions.

We consider the following tuples of effective dimensions
and total dimensions respectively: (2,2), (6,8), (8, 16),
(16, 32), (32,128), (64,128), (64,1024), (256, 1024),
(128, 8192), (4048, 8192). The sample sizes considered are
(128,256,512, 1024, 2048, 4096, 8192, 16384, 32768). Each
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experiment is repeated 10 times with different random seeds.
The values given are the averages of these runs. We did
not include TreeSHAP because it is model dependent and
computationally more expensive.

A. ACCURACY: RESULTS

From Figure 13 and Figure 14, it can be seen that most
methods require many more samples as the number of total
dimensions increases. In Figure 14, one can see that FAST
in particular requires a minimum number of samples, which
depends on the number of features to be analyzed (the gray
areas did not have enough samples to execute the algorithm).
Two clear winners emerge from the tau statistics, namely
the linear model and the Morris method, both of which
perform very well even when the number of dimensions is
high and the sample size is low. Note that the linear model
has an advantage in this setup since only linear functions
are considered. In real-world applications, this is unlikely
to be the case and therefore the linear model would be less
useful. Sobol and FAST perform well when the sample size
is sufficiently large. In terms of efficiency, the Delta and RF
methods require the most computational effort and Pearson
the least (although it is less effective and also relies heavily
on the linearity assumption).

IX. A QUALITATIVE COMPARISON OF SA METHODS

In this paper, we present methods that are global and model-
free, i.e., they are independent of assumptions about the
model, such as linearity, additivity, etc. Although the main
goal is to provide model-based analytical tools to study how
uncertainties in model output are related to uncertainties in
input, quantitative methods are useful whenever the goal
is to understand the extent to which a particular factor is
more important than another. Variance-based measures are
an example of quantitative methods. The choice between
quantitative and qualitative methods usually depends on the
costs and characteristics of the case study under investigation.
Relatedly, there are several desirable characteristics for GSA

methods:
« Computation of first, second, and total order sensitivi-

ties. Based on the study purposes, a GSA method should
be able to compute different sensitivity indexes: the
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FIGURE 13. On top a visualisation of the Kendall's tau (averaged over all
sample sizes and random seeds) per algorithm (y-axis) against the
number of effective dimensions and real dimensions (x-axis). A tau value
of 1 represents total agreement with the ground truth ranking and -1 a
total disagreement. Below the logarithmic execution time for the same
combinations.

first-order index, also called main effect index, which
measures the effect on the output variance of varying
a factor alone, the second-order index, which measures
the fractional contribution of factor interactions to the
output variance, and the total sensitivity index, which
measures the influence of a variable jointly with all its
interactions;

o Estimation of the direction of the effect. The method is
able to forecast not only the importance of a factor, but
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also provides the direction of the change that a factor has
on the target variable;

« Providing a confidence indication. A GSA method can
also provide information about the variation in the esti-
mate of the measure predicted to state the importance of
a factor;

« Being able to treat grouped factors. When the dimen-
sionality of the problem is high and some insight about
similarities between factors is available, this property is
essential to perform GSA while keeping the number of
model runs low;

« Being model independent. The method should be able
to work on non-linear, non-additive models, and to esti-
mate interaction effects between different factors;

« Being independent of the sampling scheme. Regard-
less of the sampling on which the GSA is performed,
it should be able to produce consistent results;

¢ Including multidimensional averaging. A global SA
method should be able to evaluate the effect of a fac-
tor while the others are varying from their nominal
value.

In addition to this set of characteristics that a GSA method
can support, the results of the first and second quantita-
tive experiments are included in Table 2 to provide a com-
plete comparative overview of the different GSA methods.
This overview allows a researcher to select the appropriate
methods under different circumstances and requirements. For
example, if we have a fixed design of experiments that is gen-
erated by an unknown sampling process with 10 dimensions,
the DELTA or PAWN methods seem to be a good choice.
However, if we have an expensive simulator, no design of
experiments yet, and a large number of dimensions, then the
Morris method would probably be a better choice.

X. OPEN SOURCE GSA REPORTING SOFTWARE

In order to make Global Sensitivity Analysis methods and to
combine the information that can be extracted with this large
variety of methods and automatically select the right meth-
ods, we propose the GSAreport application. With GSAreport
one can create a detailed and interactive HTML report for
a specific dataset, machine learning model or real-world
process. The application selects the best GSA methods to
use based on the number of dimensions and samples per
dimension. If the number of dimensions is over 64, Sobol and
PAWN are omitted. If the number of samples per dimension
is less than 50, Sobol, Delta, and PAWN are not applied.
These rules follow the observations from Table 2. FAST
and DGSM are not included in the application due to their
relatively low performance. The GSAreport application can
be easily installed by either downloading the executable,
using the provided Docker image, or setting up the Python
dependencies. No programming skills are required to use the
package. The software generally works with two different
steps, the sampling step and the analysis and report generation
step. In the sampling step, the software can generate different
designs of experiments required for the application of all
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applicable global SA methods. These designs of experiments
are stored as csv files and can be used as input for real-world
or model evaluations. The evaluations should be stored in
the same order and format. Alternatively, an existing data set
with input and output samples can be provided. In this case,
a surrogate model (Random Forest) is built to allow for meth-
ods that require a specific sampling scheme. In the second
step, the data is loaded and the various global SA methods
are executed. The resulting sensitivity indices are displayed
interactively in a concise reporting template with references
and tips for each method. The software is freely available on
GitHub.! The GitHub repository contains a readme and a link
to the documentation page explaining all the details needed

1https://github.com/Basvanstein/GSAreport
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for installation and usage of the reporting tool (e.g., format
of raw data, parameter setting, problem definition).

XI. REAL-WORLD USE CASE: IDENTIFYING IMPORTANT
SNPs IN DNA DATA

The Morris method is here applied to provide an exam-
ple of GSA on a specific real-world scenario dealing with
genomic prediction, i.e., prediction of phenotype (output)
based on genomic data (input). The target of the application
is to understand which parts of the genome, i.e., Single
Nucleotide Polymorphisms (SNPs), have a major role in the
predicted outcome. Among the other GSA techniques, the
Morris method was chosen for this particular application
because it can handle the very large number of discrete
variables characterizing this application study and includes
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TABLE 2. Comparison of different GSA and XAl methods based on different aspects and support. A + indicates that the feature is present for a method.
For the performance in accuracy and time a distinction is made between the best methods (++), good methods (+), worse methods (—) and the worst
method for a given situation (- -). *The TreeSHAP method is model dependent, however classical Shapley values are model independent. ** The linear
model has an advantage due to the experimental setup and is therefore not included in this overview regarding accuracy performance. *** The TreeSHAP

method was not included.

Variance-based Derivative-based Density-based Model-based

Sobol [ Fast [ RBD-FAST [ Morris | DGSM | DELTA | PAWN [ Linear [ RF TreeSHAP
First order sens. + + + + + + +
Second order sens. + +
Total order sens. + + + + + + + +
Direction of effect + +
Confidence indication + + + + + + +
Grouping support + + +
Model independence + + + + + + + *
Sampling scheme independence + + + + + +
No min. sample size required + + + +
Multidimensional averaging + + + + + + + + + +
Performance in low dim. + - + ++ -- + + ok + otk
Performance in high dim. - -- + ++ - + - *E + ok
Performance with small sample sizes. - -- + ++ - - - ** - Hk
Computational efficiency. + - + + + -- - ++ - Hokok

multi-dimensional averaging, i.e., is able to account for inter-
action effects when ranking factors. It also allows for working
with groups of factors, which is advantageous when dealing
with large data sets.

A. BACKGROUND

Plant breeding is the science-driven creative process that
uses principles from a variety of sciences to develop new
plant varieties and improve the genetic potential of plants.
The process involves combining parental plants to obtain
the next generation with the best characteristics. Selection
of genetically superior genotypes among a huge amount
of recombinant and segregating progenies is an essential
but complex procedure in plant breeding [28]. Advances
in computer modeling and simulation have provided many
advantages compared to conventional plant breeding and
have been essential for breeders to make critical decisions
in the design of their breeding programs [29]. However,
to determine the genetic potential of individuals or fami-
lies in the field and choose the best genotypes that exhibit
desirable traits, cyclic crossing and selection procedures are
required, which involve extensive field experiments and com-
putational resources. As a consequence of the limit in avail-
able resources, plant breeders are often forced to reduce the
number of plants that can be fully grown. It is in this context
that GSA can play a relevant role, trying to select the plants
that contain SNPs in the state that contributes most to the
phenotype.

In studies focused on single nucleotide polymorphisms
(SNPs), which are not limited to the field of plant breed-
ing, scientists use genotyping analysis to try to untangle the
complex relationships between genotype and phenotype [30].
When genetic variation occurs, meaning that the value of
one or more SNPs in a sequence varies, SNP contributions
can be independent or influence/modulate the effect of each
other.
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B. METHODOLOGY

The GSA methodology based on the Morris method
comprises several building blocks, which are illustrated
in Figure 15. Using a breeding simulation platform, several
generations of random mating are simulated to create a pop-
ulation of 1000 plants. In this simulation the genotype of a
plant is represented using 27205 SNPs, split over 5 chro-
mosomes. The exact location of a SNP on a chromosome
is sampled uniformly at random. To calculate the trait value
(phenotype) of a plant we assume an epistatic trait model
based on 20 SNPs, listed in Table 4. In an epistatic trait model
the contribution of a SNP to the trait is based on both the
states of that SNP as well as the state of (some) other SNPs
through interactions. This population is split randomly, 80%
for training and 20% for testing. A Convolutional Neural
Network model (CNN) is trained on this data set. In accord
with the literature [31] and in order to be able to draw sound
statistics on the results, the training is repeated 10 times by
initializing with different random seeds. Once the models are
trained, a Morris statistical analysis is performed for each of
them, by following the steps described in Section IV-A: a
sample matrix is generated by considering 10 initial random
designs and varying one SNP at a time on a k-dimensional
3-level (0,1,2) grid, where k = 27205 is the number of SNPs,
and, as a consequence, the number of factors of our sensitivity
analysis. Once the Morris sample matrix is generated, the
phenotype associated to each genotype, meaning the trait
value associated to each sequence of SNPs, is evaluated on
the CNN prediction models. Finally, the GSA is performed,
by considering both the standard and the grouping version of
the Morris method.

C. ANALYSIS SETUP

We make use of the Python packages of tensorflow
2.6.0 and keras 2.6.0 to train the CNN model. Here, we use
conic convolutions, meaning that the number of filters get
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learning model (CNN) predictions.

TABLE 3. Overview of the hyperparameters used to train the machine learning (CNN) model used for the Morris GSA. The CNN is initialized with a
maximum number of 1000 epochs, patience 20, and batchsize 64.

CNN hyperparameter overview

UnitNumber The number of nodes in the first dense layer. 64
FilterNumber The number of filters in the first convolutional layer. 64
KernelSize The size of the filters in the convolutional layers. 9
PoolStride The stride between regions that are pooled together in the max pooling layers, after each convolutional layer. 5
DropRate The ratio of nodes that are randomly set to zero during training. A form of regularization. 0.4
ConvolutionShape The relative sizes of consecutive convolutional layers. "Conic", consecutive layers have double the number of ~ conic
filters.
LearningRate The initial step size of weight updates during training. 0.0001
ConvolutionNumber The number of consecutive convolutional layers. 2
EmbeddingDimension  The number of nodes of the embedding layer that represents the input data. 10
DenseNumber The number of dense layers. 1
LambdaRegularization The strength of L2 weight regularization during training. The value is scaled by the batch size. 2.5

doubled for every consecutive layer, for example 32-64-128.
For embedding we just use a (learnable) lookup matrix to
turn the SNP values (0,1,2) into vectors of size Embed-
dingDimension = 10. We do not make use of any special
embedding technique designed for NLP/words. An overview
of the hyperparameters that have been used in this work are
presented in Table 3. Once the CNN models are trained, these
are used to evaluate the samples composing the trajectories
generated by the Morris GSA method. We apply the Morris
method in different configurations:

o Standard Morris: Sensitivity indices are
calculated for each SNP (feature), as shown in the
Equations (5) and (6);

o Morris in groups: The features are divided into groups
of 200 SNPs, giving a total of 136 groups. The last
group contains five additional SNPs to cover the whole
set of features, as we have a total of 27205 SNPs.
The sensitivity indices are calculated for each group for
which the elementary effect is defined as in Eq. (7);

o Morris in groups based on correlations: The indices are
calculated for groups of SNPs that do not have the same
cardinality. They are indeed consecutive SNPs, but the
groups are distinguished based on drops in pairwise

VOLUME 10, 2022

correlation between consecutive SNPs. Different corre-

lation biases are taken into account.
The extremely high dimensionality of the problem would
benefit from a larger sample matrix. However, this would dra-
matically increase the computational costs, given that r(k+1)
samples, and hence model evaluations, are needed to compute
the sensitivity indices. Therefore, in all cases, we compute a
sampling matrix consisting of r = 10 trajectories, in agree-
ment with other examples from the literature.

D. RESULTS

In our first experiment using the standard version of the Mor-
ris method, the values of the sensitivity measures are obtained
by performing 272060 model evaluations (k = 27205 and
r = 10), where each factor can vary among three levels (0, 1,
2). The ground truth of the simulated data evidences 20 SNPs
(features) contributing to the final value, given in the Table 4.
The ground truth contains a dense range of features between
25500 and 26800. Let us take a look at Figure 16, which pro-
vides an example of (u*, o) distribution for the 27205 SNPs
under analysis. Although we obtained different points dis-
tributions over the (u*, o) plane for different CNN training
random seeds, all of them present on the top right corner SNPs
belonging to the same range. Moreover, if features belonging
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TABLE 4. Ground truth of simulated data. 20 features are assumed to
have a large effect on the variance of the target value. Their indices are
listed.

Indices

408 7233 20639 25522
2501 10967 21595 25814
3813 13324 22115 26534
5545 14388 24665 26552
6654 16895 25519 26781

to other ranges are denoted as influential ones, such features
(or some highly correlated close neighbors) always belong to
the ground truth list. Although the graphical representation on
the (u*, o) plane allows for considering together the values of
both the sensitivity indices and hence appreciate the relative
influence of the inputs, it becomes rather impracticable in
the case of many (hundreds or thousands) factors. Moreover,
it is not possible to show averaged results in our case, where
we perform GSA on 10 different CNN model predictions.

Hence, to draw sound conclusions, we present the two line-
plots in Figure 17, which depict the trend of the u* sensitivity
index calculated according to the standard Morris method and
Morris with groups, respectively. The index p* allows for the
detection of the most important factors without necessarily
inspecting the o index. Using the Morris method with groups,
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a total of k = 138 groups are defined and r = 10 trajectories
are generated, resulting in a total of 1390 model evaluations.
Thus, grouping factors into subgroups allows us to run a much
cheaper GSA while providing results that are easily readable
and consistent with the full SA for all factors. From the plots,
it can be observed that all the major peaks detect some SNPs
belonging to the ground truth, but not the other way around,
meaning that some ground truth features are located in ranges
with low p* according to Morris analysis. However, the
highest peaks are located in correspondence to the neighbours
with the highest density of features belonging to the ground
truth, highlighting space for further investigation in localized
portions of the factor domain. In addition, the most impor-
tant features/groups seem to influence the importance of the
neighbouring features/group, hence suggesting a correlated
behaviour between them. This is because neighboring SNPs
on the same chromosome are very likely to be inherited
together.

To take advantage of the biological reality for SNP
interaction, a different logic for grouping factors based on
neighbouring is used. We base the splitting of factors into
different groups based on pairwise correlation between con-
sequent SNPs, computed on the training data. In particular,
we evaluate correlations based on Pearson product-moment
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FIGURE 17. p* lineplot according to Morris sensitivity analysis standard (top) and for groups of 200 input variables (bottom). The
absolute mean against feature/group number is plotted. The black line is the median over 10 random seeds for the CNN training. The
dark blue area corresponds to lower-upper quartile range and the light blue one to the whole min-max range of the computed values
for 1*. Red vertical lines correspond to the features belonging to the ground truth in the first subplot, and to groups containing the

relevant features according to the ground truth in the second one.
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FIGURE 18. p* line plot from the Morris sensitivity analysis with groups
defined according to drops in pairwise correlation between SNPs. The
absolute mean against group number is plotted. The black line is the
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blue areas correspond to lower-upper quartile range and to the min-max
range of the computed values for n*, respectively. Red vertical lines
indicate the groups containing the ground truth relevant features. Top:

R = 0.90 case. Center: R = 0.98 case. Bottom: R = 0.99 case.

correlation coefficients R;; = Cov(X;, X;)/(0;0}), where Cov
is the covariance function and o; is the standard deviation
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of a random variable X;. Given three thresholds for this
coefficient, namely R = 0.90, 0.98, 0.99, we split the factors
sequence to different groups when the pairwise correlation
of one factor with one of its two neighbours falls below this
threshold. Hence, we obtain 5, 11, and 38 different groups
for the three thresholds, respectively. Figure 18 shows the
averaged lineplots representing the values calculated for the
w* sensitivity measure for all feature groups.

It is evident that by choosing R = 0.90 we have SNPs
from the ground truth following into each group. In this case,
the 5 groups are most likely exactly the 5 chromosomes
we used for simulating the data. According to our SA, high
values of u* correspond to high number of relevant SNPs
belonging to a group. In fact, the fifth group, which is the
one with the highest u* value, is composed of the SNPs
ranging from index 20886 and 27205, hence it also contains
the highest number of features listed in Table 4. By choosing
R = 0.98 some groups do not contain SNPs from the ground
truth (G2 and G8). These groups are irrelevant according
to the Morris SA. On the other hand, G6, ranging from
feature 14564 to 16757 does not contain any ground truth
SNP either, but has some relevance according to the results
of the SA. In any case, according to the data from the ground
truth, G11 = [23665, 27205] is the more dense group, and it
has a sufficiently high value for u* to attract our attention
and be worth further and more focused SA. By choosing
R = 0.99 we have even higher agreement between experi-
mental results and ground truth. In fact, all the groups that
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are considered relevant according to our SA also contain
some SNPs in Table 4. However, it has to be stressed that the
Morris method defining groups based on pairwise correlation
between SNPs creates factors groups of different cardinalities
and hence tends to favour bigger groups. Except for the first
subplot in Figure 18 where all groups have similar cardinality,
bigger groups are assigned bigger values of ©*, which makes
sense as we vary more factors at a time in the definition of
the Morris elementary effect, and hence we have a higher
probability of impacting the variance of the output. However,
larger groups also imply a higher probability of containing
relevant features, which would support the results of the
sensitivity analysis. In any case, the results confirm that the
modeler can easily select a subset of factors that play a minor
role in the model, i.e., that are responsible for only a small
percentage of the total output variance, thus preparing the
ground for model simplification. For example, the sensitivity
analysis shows that there are groups of factors that have
almost no influence despite their size.

Xil. SUMMARY AND OUTLOOK

A thorough comparison of Global Sensitivity Analysis (GSA)
methods and similar working XAI methods that can be used
for the same purpose of identifying important variables is
presented. Two quantitative experiments are conducted to
determine the robustness and accuracy of the different meth-
ods under different circumstances. A qualitative evaluation of
the different methods is made, distinguishing which methods
should be used and when. In addition to the overview and
comparison, an open-source software package is proposed
that allows experts and non-experts to easily work with a
wide range of GSA methods to gain a better understanding
of their machine learning models, simulators, and real-world
processes. From our experiments, we can conclude that:

e Morris is one of the most robust GSA methods that
performs well even with a high number of dimensions
and a small sample size.

« Density-based methods such as DELTA perform well
when the sample size is sufficiently large, and have the
advantage of not depending on a sampling scheme or
model.

Given the promising performance of the Morris method
based on our comparisons, we select it to present a GSA use
case study for genomic prediction. The high dimensionality,
discrete nature of the factors, and small amount of training
data make it a challenging problem to address with GSA.
Morris’ sensitivity analysis is performed for all factors, for
groups of factors of equal cardinality, and for unequal groups
defined by splitting the factors according to their correlation.
Although further developments and more in-depth analyses
are possible (e.g., optimized techniques for generating tra-
jectories, nested sensitivity analyses in promising groups,
dynamic sensitivity analyses by reducing group ranges), our
preliminary study shows good agreement between model
results and actual ground truth data.
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For future research, new methods could be incorporated
into the experiments and a methodology to test accuracy for
more complex functions could be explored. This work was
limited to the comparison of global SA methods, while there
are also many local SA methods that would require different
experimental setups for comparison.

REFERENCES

[1] A. Saltelli, M. Ratto, S. Tarantola, and F. Campolongo, ‘“Sensitivity anal-
ysis for chemical models,” Chem. Rev., vol. 105, no. 7, pp. 2811-2828,
May 2005.

[2] Z.Zi, “Sensitivity analysis approaches applied to systems biology mod-
els,” IET Syst. Biol., vol. 5, no. 6, pp. 336-346, 2011.

[3] J. Chen, Q. Shi, and W. Zhang, ““Structural path and sensitivity analysis
of the CO;, emissions in the construction industry,” Environ. Impact
Assessment Rev., vol. 92, Jan. 2022, Art. no. 106679.

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?’:
Explaining the predictions of any classifier,” in Proc. 22nd ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, San Francisco, CA, USA,
Aug. 2016, pp. 1135-1144.

[5] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting

model predictions,” in Proc. Adv. Neural Inf. Process. Syst., 1. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2017,

pp. 4765-4774. [Online]. Available: http://papers.nips.cc/paper/7062-a-

unified-approach-to-interpreting-model-predictions.pdf

K. Simonyan, A. Vedaldi, and A. Zisserman, ‘“‘Deep inside convolutional

networks: Visualising image classification models and saliency maps,”

2013, arXiv:1312.6034.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, 1. Goodfellow,

and R. Fergus, “Intriguing properties of neural networks,” 2013,

arXiv:1312.6199.

[8] B. Iooss and P. Lemaitre, “A review on global sensitivity analysis meth-

ods,” in Uncertainty Management in Simulation-Optimization of Complex

Systems. Boston, MA, USA: Springer, 2015, pp. 101-122.

K. Cheng, Z. Lu, C. Ling, and S. Zhou, ‘“‘Surrogate-assisted global sen-

sitivity analysis: An overview,” Struct. Multidisciplinary Optim., vol. 61,

no. 3, pp. 1187-1213, 2020.

[10] W.Becker, “Metafunctions for benchmarking in sensitivity analysis,” Rel.
Eng. Syst. Saf., vol. 204, Dec. 2020, Art. no. 107189. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0951832020306906

[11] N. Hansen, A. Auger, R. Ros, O. Mersmann, T. Tusar, and D. Brockhoff,
“COCO: A platform for comparing continuous optimizers in a black-box
setting,” Optim. Methods Softw., vol. 36, pp. 114-144, Jan. 2021.

[12] S. Andrea, R. Marco, A. Terry, C. Francesca, C. Jessica, G. Debora,
S. Michaela, and T. Stefano, Global Sensitivity Analysis: The Primer, 1st
ed. Hoboken, NJ, USA: Wiley, 2008.

[13] M. Sobol, “Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates,” Math. Comput. Simul., vol. 55, nos. 1-3,
pp. 271-280, 2001.

[14] R.I. Cukier, C. M. Fortuin, K. E. Shuler, A. G. Petschek, and J. H. Schaibly,
“Study of the sensitivity of coupled reaction systems to uncertainties in
rate coefficients. I theory,” J. Chem. Phys., vol. 59, no. 8, pp. 3873-3878,
1973.

[15] A. Saltelli, S. Tarantola, and K. P.-S. Chan, “A quantitative model-
independent method for global sensitivity analysis of model output,”
Technometrics, vol. 41, no. 1, pp. 39-56, 1999.

[16] C. Xu and G. Gertner, “Understanding and comparisons of different
sampling approaches for the Fourier amplitudes sensitivity test (FAST),”
Comput. Statist. Data Anal., vol. 55, no. 1, pp. 184-198, Jan. 2011.

[17] S. Tarantola, D. Gatelli, and T. A. Mara, “Random balance designs for the
estimation of first order global sensitivity indices,” Rel. Eng. Syst. Saf.,
vol. 91, no. 6, pp. 717-727, 2006.

[18] M. D. Morris, “Factorial sampling plans for preliminary computational
experiments,” Technometrics, vol. 33, no. 2, pp. 161-174, 1991.

[19] FE Campolongo,J. Cariboni, and A. Saltelli, “An effective screening design
for sensitivity analysis of large models,” Environ. Modell. Softw., vol. 22,
no. 10, pp. 1509-1518, 2007.

[20] 1. Sobol and S. Kucherenko, “Derivative based global sensitivity mea-
sures,” Proc.-Social Behav. Sci., vol. 2, no. 6, pp. 7745-7746, 2010.

[6

—

[7

—

9

—

VOLUME 10, 2022



B. V. Stein et al.: Comparison of GSA Methods for Explainable Al With an Application in Genomic Prediction

IEEE Access

[21] S. Kucherenko and B. Iooss, “Derivative based global sensitivity mea-
sures,” in Handbook Uncertainty Quantification, D. H. R. Ghanem and
H. Owhadi, Eds. Berlin, Germany: Springer, 2017.

[22] E. Plischke, E. Borgonovo, and C. L. Smith, “Global sensitivity
measures from given data,” Eur J. Oper Res., vol. 226,
no. 3, pp. 536-550, May 2013. [Online]. Available: https://EconPapers.
repec.org/RePEc:eee:ejores:v:226:y:2013:i:3:p:536-550

[23] F. Pianosi and T. Wagener, “A simple and efficient method for global
sensitivity analysis based on cumulative distribution functions,” Envi-
ron. Model. Softw., vol. 67, pp. 1-11, May 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364815215000237

[24] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, “Con-
ditional variable importance for random forests,” BMC Bioinform., vol. 9,
no. 307, pp. 1-11, 2008.

[25] A. Antoniadis, S. Lambert-Lacroix, and J.-M. Poggi, ‘“‘Random forests
for global sensitivity analysis: A selective review,” Rel. Eng. Syst. Saf.,
vol. 206, Feb. 2021, Art. no. 107312.

[26] L. Breiman, ‘“Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
2001.

[27] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair,
R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “‘From local explanations
to global understanding with explainable AI for trees,” Nature Mach.
Intell., vol. 2, no. 1, pp. 2522-5839, 2020.

[28] M. Ali, L. Zhang, I. DeLacy, V. Arief, M. Dieters, W. H. Pfeiffer, J. Wang,
and H. Li, “Modeling and simulation of recurrent phenotypic and genomic
selections in plant breeding under the presence of epistasis,” Crop J., vol. 8,
no. 5, pp. 866-877, Oct. 2020.

[29] J. Wang, H. Eagles, R. Trethowan, and M. Van Ginkel, “Using computer
simulation of the selection process and known gene information to assist
in parental selection in wheat quality breeding,” Austral. J. Agricult. Res.,
vol. 56, pp. 465-473, May 2005.

[30] B. L. Fridley and J. M. Biernacka, “Gene set analysis of SNP data:
Benefits, challenges, and future directions,” Eur. J. Human Genet., vol. 19,
no. 8, pp. 837-843, Aug. 2011.

[31] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli,
M. Saisana, and S. Tarantola, Elementary Effects Method. Hoboken,
NJ, USA: Wiley, 2007, ch. 3, pp.109-154. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470725184.ch3

BAS VAN STEIN (Member, IEEE) received the
Ph.D. degree in computer science from the Leiden
Institute of Advanced Computer Science (LIACS),
Leiden University, The Netherlands, in 2018.

From 2018 to 2021, he was a Postdoctoral
Researcher with LIACS, Leiden University, where
he is currently an Assistant Professor. His research
interests include surrogate assisted optimiza-
tion, surrogate assisted neural architecture search,
and explainable Al techniques for industrial
applications.

ELENA RAPONI received the Ph.D. degree in
sciences and technology and mathematics from the
University of Camerino, Italy, in May 2021.

She was a Postdoctoral Researcher with the
Natural Computing Research Group, Leiden Insti-
tute of Advanced Computer Science (LIACS). She
is currently a Postdoctoral Researcher with the
Technical University of Munich (TUM) and the
Chair of computational mechanics. Financed by a
DAAD Prime Postdoctoral Fellowship, her post-
doctoral position is joint between TUM and LIP6 Department, Sorbonne
University, with hosts Fabian Duddeck and Carola Doerr, respectively. She
has particular expertise in surrogate-based and high-dimensional (Bayesian)
optimization in continuous domains. Her research interest includes develop-
ment of analytical and numerical modeling techniques for the optimization
of geometries and materials in structural mechanics.

VOLUME 10, 2022

ZAHRA SADEGHI received the Ph.D. degree in
computer engineering majored in artificial intelli-
gence and robotics from the Department of Elec-
trical and Computer Engineering, University of
Tehran. She has extensive experience of doing
research and working in the field of artificial intel-
ligence, machine learning, cognitive science, and
computer vision in top universities and industry.
She has published in peer-reviewed articles and

A pook chapters. Her research interests include inter-
section of artificial intelligence and cognitive science. She was a recipient of
prestigious awards such as the Marie Sktodowska-Curie Fellowship and the
David Rumelhart Travel Award.

NIEK BOUMAN received the Ph.D. degree in
applied mathematics from the Eindhoven Univer-
sity of Technology, The Netherlands, in 2013.

After obtaining his Ph.D., he joined as a Data
Scientist with Agro-Biotech Company Keygene
N.V. where he is also involved in the design and
application of computational methods for acceler-
ated crop improvement.

ROELAND C. H. J. VAN HAM received the Ph.D.

degree in molecular evolutionary biology from

Utrecht University, The Netherlands, in 1994.
= Since 2011, he has been the Vice-President of
bioinformatics and modeling with Agro-Biotech
Company KeyGene N.V., where he leads the
Research and Development Department in the
development and application of computational
methods for accelerated crop improvement. Since
2015, he combines his work at KeyGene with an
appointment as a Professor in plant computational biology with Technical
University Delft and as the Scientific Director of the TU Delft AgTech
Institute. His research interest includes unraveling genotype-phenotype
relationships in biological organisms.

THOMAS BACK (Fellow, IEEE) received the
Diploma and Ph.D. degrees in computer science
from the University of Dortmund, Germany, in
1990 and 1994, respectively.

Since 2002, he has been a Full Professor of
computer science with the Leiden Institute of
Advanced Computer Science (LIACS), Leiden
3 University, The Netherlands. He is the author of

)

the Evolutionary Algorithms in Theory and Prac-
tice (OUP, 1996) and the co-editor of the Hand-
book of Evolutionary Computation (CRC Press, 1997) and the Handbook
of Natural Computing (Springer, 2012). His research interests include evo-
lutionary computation, machine learning, and their real-world applications,
especially in sustainable smart industry and health.

Prof. Bick received awards and honors include membership in the
Royal Netherlands Academy of Arts and Sciences (KNAW), in 2021; the
IEEE Computational Intelligence Society Evolutionary Computation Pio-
neer Award, in 2015; the Fellow of the International Society of Genetic and
Evolutionary Computation, in 2003; and the Best Ph.D. Thesis Award of the
German Society of Computer Science (GI), in 1995.

103381



