
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

A review of data redistribution algorithms
using block-cyclic distributions

Leonard Evers

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

A review of data redistribution algorithms
using block-cyclic distributions

Ein Überblick über
Datenumverteilungsalgorithmen unter

Verwendung blockzyklischer Verteilungen

Author: Leonard Evers
Supervisor: Prof. Dr. Hans-Joachim Bungartz
Advisor: Santiago Narvaez
Submission Date: 13.02.2025

I confirm that this bachelor’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 13.02.2025

Abstract

Load balancing is a topic highly relevant to parallel computing. Distributing arrays across
processors in a block-cyclic manner is one way to achieve it in a distributed memory frame-
work. The ability to redistribute between different block-cyclic distributions allows for a more
optimal load balancing that minimizes processor communication. This thesis presents several
algorithms from the related literature for efficiently performing such redistributions. In doing
so, we consider the optimization of both the computation of the message contents and the
scheduling of communication between processors. Methods for handling multi-dimensional
arrays as well as different source and target processor sets are also discussed. Furthermore,
the results of the papers are used to compare the performance of the algorithms. We conclude
that some algorithms can result in a several fold reduction in redistribution time.

iii

Kurzfassung

Lastausgleich ist ein hoch relevantes Thema im Bereich des Parallelrechnens. Die Verteilung
von Arrays über Prozessoren in block-zyklischer Weise ist eine Möglichkeit, dies in einem ver-
teilten Speicher Modell zu erreichen. Die Fähigkeit, zwischen verschiedenen block-zyklischen
Verteilungen umzuverteilen, ermöglicht einen optimierten Lastausgleich, der die Prozessor-
Kommunikation möglichst gering hält. Diese Abschlussarbeit stellt mehrere Algorithmen
aus der Literatur vor, die eine effiziente Umverteilung ermöglichen. Dabei betrachten wir
sowohl die Optimierung der Berechnung der Nachrichteninhalte als auch das Scheduling
der Kommunikation zwischen den Prozessoren. Zudem werden Methoden zur Verarbeitung
mehrdimensionaler Arrays sowie verschiedene Quell- und Zielprozessor-Sets diskutiert. Dar-
über hinaus werden die Ergebnisse der betrachteten Arbeiten genutzt, um die Leistung der
Algorithmen zu vergleichen. Wir kommen zu dem Schluss, dass einige Algorithmen die
Umverteilungszeit um ein Vielfaches reduzieren können.

iv

Contents

Abstract iii

Kurzfassung iv

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

2 Definitions and Notations 3
2.1 Basic terminology . 3
2.2 Extension to the multi-dimensional . 4
2.3 Types of block-cyclic redistribution . 5

2.3.1 Source and distribution factor . 5
2.3.2 Shape retaining vs shape changing redistributions 6

3 Index Computation 7
3.1 Definition and Notation . 7
3.2 Algorithm Analysis . 8

3.2.1 1994: Runtime Array Redistribution in HPF Programs 8
3.2.2 1995: Automatic Generation of Efficient Array Redistribution Routines 12
3.2.3 1996: Optimizations for efficient Array Redistribution on Distributed

Memory Multicomputers . 15
3.2.4 1996: Efficient Algorithms for Array Redistribution 16
3.2.5 1997: Fast Runtime Data Redistribution - Indexing 17
3.2.6 1998: A Basic-Cycle Calculation Technique For Efficient Dynamic Data

Redistribution . 17
3.2.7 1998: Efficient Methods for Multidimensional Array Redistribution . . 20
3.2.8 2000: A Generalized Basic-Cycle Calculation Method for Efficient Array

Redistribution . 22
3.3 Performance Comparison . 24

3.3.1 The general case . 24
3.3.2 The one-divides-the-other case . 26
3.3.3 The block-to-cyclic case . 26

v

Contents

4 Communication 27
4.1 Definition and Notation . 27

4.1.1 Synchronous Communication . 27
4.1.2 Asynchronous Communication . 28

4.2 Algorithm Analysis . 29
4.2.1 1994: An Approach to Communication Efficient Data Redistribution . . 29
4.2.2 1995: Multiphase Array Redistribution - Modeling and Evaluation . . . 33
4.2.3 1996: Redistribution of Block-cyclic Data Distributions using MPI . . . 37
4.2.4 1997: Fast Runtime Data Redistribution - Communication 43
4.2.5 1998: Scheduling Block-Cyclic Array Redistribution 45
4.2.6 1999: Efficient Algorithms for Block-Cyclic Array Redistribution Be-

tween Processor Sets . 51
4.3 Performance Comparison . 56

4.3.1 Scheduled vs non-scheduled . 56
4.3.2 Schedule time comparison . 58
4.3.3 Single-phase vs multi-phase . 61

5 Discussion 63
5.1 Conclusion . 63
5.2 Future work . 64

List of Figures 65

List of Tables 66

Acronyms 67

Bibliography 68

vi

1 Introduction

1.1 Motivation

In high-performance computing, where efficiency, scalability, and performance are key,
parallelism is of utmost importance. It allows for the simultaneous execution of multiple
computations and the maximization of resource utilization, thereby reducing execution time.
Using multiple processors yields the best results, but necessitates use of distributed memory
at large numbers due to hardware limitations. Within such a distributed memory framework,
splitting the data among the processors is necessary, so that each processor working on
a different section of the data can efficiently access its part. Given this fact, the choice
of how to distribute the data becomes important. Block-cyclic distributions are a popular
choice because, given the correct block-size, they are able to achieve good load balancing
and computational efficiency [1]. However, the correct block size is not fixed and changes
depending on the operations being performed on the array elements. As such, the optimal
block-cyclic distribution can change from one step of a data processing algorithm to the next.

Examples for algorithms that benefit from redistribution include the Alternating-direction
Implicit (ADI) algorithms used to iteratively solve Slyvester matrix equations, which have
the form A ⇥ X + B ⇥ X = C, with X being unknown. Because this method involves
switching between updating the solution based on row-wise and column-wise calculations,
redistributing the array accordingly is sensible. Not doing so would result in a large amount of
communication overhead for at least half of the steps. This also applies to the two-dimensional
Fast-Fourier Transform (FFT), which involves performing FFT on each dimension individually,
e.g. row-wise and column-wise, when interpreting the data set as a matrix [2].

It is also possible that the amount of processors available for any given step of an algorithm
changes: in this case too, the previous distribution would no longer be optimal. These cases
represent a problem when attempting to achieve efficient computation at every point in an
algorithm.

One possible solution for these problems is redistribution: changing the block-cyclic dis-
tribution across the processor sets. That means changing the block-size or adjusting the
distribution for a different number of available processors. In some cases, both is necessary.
In the case of the ADI method or the two-dimensional FFT this could involve switching from
a row-wise to a column-wise distribution of the two-dimensional array. This process can be
roughly divided into two steps: first, the computation of the processor number each block
in the current distribution has to be sent to. Then secondly, the communication of this data:

1

1 Introduction

from the message creation (packing) to the communication scheduling and the storage of the
new blocks (unpacking). Both of these steps must be efficient: in order to make use of the
improved data layout, the overhead of redistribution must be minimized as much as possible.

1.2 Contributions

This paper aims to explore the evolution of block-cyclic redistribution over time. In doing so,
the primary focus will be on the aforementioned index computation and communication. In
the respective sections, this thesis will explain and compare the different algorithms proposed
in different papers with regards to functionality, general applicability and performance.
Chapter 2 explains how we define block-cyclic distributions for different cases and what
notations we use to describe them. Chapter 3 will discuss the process of index computation
and how to perform it most efficiently. Chapter 4 will do the same for the scheduling of
the inter-processor communication. Finally, chapter 5 will discuss the ramifications of this
work, its limits as well as future work that can build on the results presented in this thesis.
All algorithms and methods presented in this thesis stem from the papers the respective
subsection of the thesis is named after.

2

2 Definitions and Notations

This section will define the redistribution problem more formally and introduce the notation
to be used in the rest of the paper.

2.1 Basic terminology

We define the to be redistributed one-dimensional array as A, with size N and indexes 0
through N � 1. We define the source processor set as P with size PN and the destination
processor set as Q with size QN . These sets are one-dimensional. Whenever we speak of a
single processor set not in the context of source or destination distribution, we use P. pi, then,
describes the processor with rank i in the processor set P and takes the value of said rank
when used in a mathematical context. In other words, pi = i. In all cases, 0  i < PN . qi is
defined analogously for the destination processor set Q.

We describe a given processor pi’s local array that contains the elements belonging to it in the
distribution as that processors Source Local Array or Destination Local Array (SLAi/DLAi)
depending on whether we are pre or post-redistribution [3].

Regular data distributions take one of three forms: cyclic, block, or block-cyclic. Cyclic and
block distributions are defined as follows:

• Cyclic: Each array element is assigned to each processor in a round robin fashion

• Block: The array is split into PN blocks of consecutive elements and each processor
receives one in order of its rank

Block-cyclic distributions are a generalized form of cyclic and block distributions that are
much more powerful. We can define all regular, one-dimensional distributions in the following
manner: cyclic(x). This is defined as a block-cyclic distribution with block-size x. Then, in
turn, a block-cyclic distribution of block size x given an Array A of size N with PN processors
can be defined as a mapping of global index n of array A to index tuple (p, b, i), where p
is an element of the processor set P, b is the block number and i is the index that specifies
the array elements storage location in the processors block described by b. This mapping is
described by Equation 2.1 [4].

n �! (b(n mod (PN ⇥ x))÷ xc, bn ÷ (PN ⇥ x)c, n mod x) (2.1)

3

2 Definitions and Notations

Colloquially, this translates to the following: blocks of x elements of array A are assigned
in a round robin fashion to each processor in P, looping around back to the start once the
final one is reached. This is done until all elements are distributed. Both the block and cyclic
distributions we mentioned earlier can be expressed using this definition: a cyclic distribution
is equivalent to cyclic(1) and a block distribution is equivalent to cyclic(d N

PN
e).

Let us consider a situation where N = 18 and PN = 3. Figure 2.1 shows the array first in a
cyclic distribution, then in a block distribution and finally, in a block-cyclic(3) distribution.

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2

0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2

Figure 2.1: An array of size 18 in a cyclic, block and block-cyclic(3) distribution

In this case, each box stands for an array element and the number inside describes the
processor it is assigned to.

2.2 Extension to the multi-dimensional

The extension to the multi-dimensional is fairly trivial: instead of having a block-cyclic(x)
distribution we now have a block-cyclic(x0, x1, . . . , xm�1) distribution, one parameter for each
dimension and an array that is N0 ⇥ N1 ⇥ . . . ⇥ Nm�1. Typically, this is also accompanied
by a processor grid that is P0 ⇥ P1 ⇥ . . . ⇥ Pm�1. In such a grid a given processor can be
described in one of two ways: pd0,d1,...,dm�1 with 0  di  Pi or, alternatively, via pi, defined by
Equation 2.2 [5]. We make use of both notations depending on the context.

i =
m�1

Â
k=0

(dk ⇥
m�1

’
l=k+1

Pl) (2.2)

Then, each array block of the distribution Bv0,v1,...,vm�1 with vh = dNh
xh
e, 0  h < m � 1 is

distributed to p(v0 mod P0),(v1 mod P1),...,(vm�1 mod Pm�1). This is inferred from the definitions and
examples shown in the Scalapack pages [6]. In the common two-dimensional case, a simple
example could be an 8 ⇥ 8 array A and a distribution of block-cyclic(2, 2) with PN = 4 in a
2 ⇥ 2 grid. Using this example, we would see the distribution shown in Figure 2.2.

4

2 Definitions and Notations

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

2 2 3 3 2 2 3 3

2 2 3 3 2 2 3 3

0 0 1 1 0 0 1 1

0 0 1 1 0 0 1 1

2 2 3 3 2 2 3 3

2 2 3 3 2 2 3 3

Figure 2.2: An array of size 8 ⇥ 8 distributed in block-cyclic(2, 2)

As we can see, the 2 ⇥ 2 blocks Bij are distributed to processor p(i mod 2),(j mod 2), i.e pi⇥2+j.
Incidentally, the processors of P are distributed as shown in Figure 2.3.

p0 p1

p2 p3

Figure 2.3: A 2 ⇥ 2 grid of processors

2.3 Types of block-cyclic redistribution

2.3.1 Source and distribution factor

There are generally three types of block-cyclic redistribution most commonly discussed
in the literature. The general case, a redistribution from block-cyclic(x) to block-cyclic(y)
where x and y are arbitrary and not assumed to have any particular relation. Then, the
one-divides-the-other case, wherein a redistribution from cyclic(x) to cyclic(kx) occurs, or
vice-versa. Finally, there is the block-to-cyclic case, which constitutes a redistribution from
cyclic(d N

PN
e) to cyclic(1) or vice versa (cyclic-to-block), for a processor set P and array A. In

every case, the first distribution is referred to as the source distribution and the second one as
the destination distribution. Furthermore, the size of the blocks of the respective distributions
are described as source and destination distribution factors. Henceforth, these names will be
used when talking about the above cases.

5

2 Definitions and Notations

2.3.2 Shape retaining vs shape changing redistributions

Furthermore, it is important to differentiate between different types of redistributions not only
regarding the source and target distribution but also the "shape" of the resulting distribution.

A shape retaining redistribution is one in which all dimensions of the array remain intact and
do not change. Furthermore, the processor set is also fixed, so P = Q. All that changes is the
distributions along one or more of the dimensions, e.g. going from cyclic(2, 2) to cyclic(3, 2),
or any other arbitrary change within the parameter of a normal two-dimensional block-cyclic
redistribution. This change can also be one-dimensional, such as going from cyclic(1, 2) to
cyclic(1, 1) which is essentially the same as a one-dimensional redistribution [7].

A shape changing redistribution, on the contrary, implies a change in the shape of either the
array or the processor set. A change in the shape of a processor set means a change in terms
of size or topology, such as an increase or decrease in the number of processors or a change
in the structure of a processor grid[8]. For example, changing a layout in the form of 2 ⇥ 2
such as the one shown in Figure 2.3 to one in the form of 1 ⇥ 4, shown in Figure 2.4. This
type of change can result in a significantly different array distribution since the distribution
of the array blocks are dependent on the row and column sizes of the processor grid.

p0 p1 p3 p4

Figure 2.4: A 1 ⇥ 4 grid of processors

This thesis deals with redistributions that are either shape retaining, or only change the shape
of the processor set. Redistributions that involve changing the shape of the array require
specialized algorithms for individual cases [7].

6

3 Index Computation

3.1 Definition and Notation

For a general redistribution from cyclic(x) to cyclic(y), we define index computation as the
following problem: For every element in the source local array of processor ps in the source
processor set P, determine the destination processor qd of the destination processor set Q as
well as its location in the destination local array. It is important to note that often, not all of
this is done at once. In other words, it could be the case that initially, before communication,
only the destination processor qs is determined and the destination local address is only
computed after communication. This depends on the algorithm in question. For almost all of
these algorithms, the computation on the destination and source processor is almost identical.
This section will focus heavily on the sending as opposed to the receiving, bearing in mind
that the corresponding algorithm is essentially the same, only in reverse.

Important to note is also the concept of packing and unpacking. While this is not directly
relevant to index computation, it occurs extremely close to it and is also distinctly different
from communication scheduling. This means it is often mentioned and analyzed alongside
indexing in the papers we cover.

Packing and unpacking describes the process of "packing" the data from memory into a
message that can be sent to another processor and then, once the message arrives, taking that
data and "unpacking" it back into local memory. In other words, how to efficiently transfer
all the local data that needs to be sent to one processor into a message and vice versa [3].
Packing something into a message often refers to what is essentially a send buffer. This
can be done either synchronously or asynchronously. Synchronous unpacking is when each
destination processor waits to unpack until it has received all messages from its corresponding
source processors. This is highly memory intensive, as all messages must be buffered in
the meantime and also inefficient, as the processor remains idle during the communication.
Because of these problems, which are exacerbated with a greater amount of processors, it is
common to use asynchronous unpacking. This is when unpacking occurs immediately after a
message has been received from a given processor, thereby overlapping communication time
and computation and reducing processor idle time in the process [7].

7

3 Index Computation

3.2 Algorithm Analysis

Index computation is the most fundamental part of redistribution, without which the whole
process is impossible. Hence, the very earliest papers addressing the topic of array redistribu-
tion primarily deal with this topic.

3.2.1 1994: Runtime Array Redistribution in HPF Programs

The first paper of note is called "Runtime Array Redistribution in HPF Programs" published in
May of 1994[7]. This paper considers specific cases of redistribution, namely the one-divides-
the-other case and the block-to-cyclic case. However it also formulates a general algorithm for
cyclic(x) to cyclic(y) with arbitrary x and y. In doing so, it considers redistribution between a
fixed set of processors and primarily deals with the case of one-dimensional arrays, though
an extension to the multi-dimensional case is described. As the processor set is fixed, there is
no need to differentiate between source and destination processor sets and the paper simply
considers processor set P with size PN . The formulas used in this paper assume all arrays are
indexed starting from 1 as opposed to the usual 0. Processors are still indexed from 0.

To begin with, it is important to mention that this paper assumes any data sent from processor
ps to processor pd is first collected in a packet, so it can be sent in one operation. This is done
in order to not unnecessarily incur communication startup cost multiple times.

The idea for the block-to-cyclic case presented in the paper is very simple: knowing that
cyclic(1) means that every element is distributed in a round robin fashion, each processor
need only calculate the destination processor of the first element in its source local array.
From there on, it is trivial to distribute the others in a round robin fashion.

The calculation of the destination processor is similarly trivial: given ps is equal to rank of
source processor and m is equal to size of block, simply calculate the formula ps ⇥ m mod PN .
The part ps ⇥ m calculates the global index of the first element of the source local array of
the processor, as each previous processor also owns m array elements. Then, calculating the
modulo with PN ensures we arrive at the correct destination processor since our destination
distribution is cyclic(1). The receiving side is also trivial, as the data is ordered already by
order of the processor indexes, making the unpacking logic simple.

The other way around, so cyclic-to-block, is slightly more complicated. To illustrate this
redistribution process, consider the following example. A cyclic-to-block redistribution on
an array of size 20 with 5 processors. In other words, a cyclic(1) to cyclic(20

4) = cyclic(5)
redistribution, i.e m = 4. The source and destination distribution of the array can be seen in
Figure 3.1.

Similarly to earlier, we once again calculate the destination processor pd of the first element
for each source processor. We do this using the formula shown in Equation 3.2, computing the
ceiling division CD (Equation 3.1) of (ps + 1) and m, then subtracting 1, which is equivalent to
ps
m . This is done because the paper uses CD(g, m)� 1 to transform a given global array index

8

3 Index Computation

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

Figure 3.1: An array of size 16 distributed in cyclic(1), then cyclic(4)

g to the respective processor number p on a block distribution. That equation determines the
processor the gth element of the array is assigned to in the source distribution. Since this paper
indexes arrays starting from 1 and we have a cyclic(1) distribution, ps + 1 = g for the given
array element. Here, consider source processor ps = p3 of our example. 3 ÷ 5 = 0, hence,
obviously, processor p3 sends its first element to processor p0, which our figure confirms.

CD(j, k) =
j + k � 1

k
(3.1)

pd = CD(ps + 1, m) = (((ps + 1) + m � 1)÷ m)� 1
= ((ps + m)÷ m)� 1
= ps ÷ m

(3.2)

This time, we also make sure to calculate the destination local address ld. This is calculated
using the formula shown in Equation 3.4, the ceiling remainder CR (Equation 3.3) of ps + 1
and m added to m. Similarly, this uses the papers formula for converting a global array
index to a local array index on a block distribution: m + CR(g, m). This is equivalent to
1 + ps mod m on account of division in this paper being equivalent to floor division, i.e
cutting of any decimals and array indexes starting from 1. ps + 1 = g as explained earlier.
This is trivially correct as we can see from our example that processor p3’s 1st element is
stored in index 4 of the array, if we start from 1 and using the formula 3 mod 5 + 1 = 4, this
is corroborated.

CR(j, k) = j � k ⇥ CD(j, k) (3.3)

ld = m + CR(ps + 1, m) = m + (ps + 1)� m ⇥ (((ps + 1) + m � 1)÷ m)

= m + (ps + 1)� m ⇥ ((ps + m)÷ m)

= m + (ps + 1)� m ⇥ ((ps ÷ m) + 1)
= m + (ps + 1)� (ps + m � ps mod m)

= 1 + ps mod m

(3.4)

9

3 Index Computation

From there, we have to send m�ld
PN

+ 1 elements to the destination processor. The logic
employed here is that the local destination address tells us how many elements out of m
possible ones are already occupied, meaning (m � ld) remain. Using our example, ld = 4.
This means the first element belonging to processor p3 in the source distribution is placed
into the 4th slot of the 5 = m available on p0 in the destination distribution. Then, logically,
there is one slot left unfilled. Then we must divide by PN as any given processor only sends
one in PN elements given the round robin nature of the cyclic(1) source distribution. In our
example, before p3 sends its next local block, p0, p1, p2 all need to go next. And since there
is only one element remaining for p0 in the destination distribution it is obvious this has to
come from p0, not p3. At the end we add 1 to account for the fact that ld is calculating the
address of the 1st element. Using our example, obviously p3 still does need to send the first
element which we computed the destination processor p0 and local address 4 for.

We must then perform similar calculations for address ((m� ld)⇥ PN)+ 2 the starting address
of the first block not belonging to the initial destination processor. In the case of our example
array and processor p3, we can see this would be sent to p1 at ld = 3. This is repeated until
the end of the source local array is reached. On the receiving end, it is important to take
into account that all data received from any processor must be stored with stride PN as the
source distribution is cyclic(1). For efficiency reasons, it is smart to use an asynchronous
communication scheme here.

The other big case covered by this paper is the one-divides-the-other case, so cyclic(x) to
cyclic(kx) and vice versa. We will only be covering the latter here (cyclic(kx) to cyclic(x)) as
the two are very similar with the send and receive phases only switching around, essentially.
In the send phase, we once again calculate the destination processor pd of the first element
belonging to the processor ps using the formula k ⇥ ps mod PN . This works simply because
the k segments of size x per processor with a lower index than s are allocated in a round robin
manner before the first element belonging to the current processor, i.e. it is the (k ⇥ ps)th
segment to be allocated in a round robin manner. From there we send the first x elements to
pd, the next x to pd + 1 mod PN and so on, until we have sent k segments, at which point we
reset the destination processor back to pd, as the sending order repeats itself. This means we
essentially only need one proper destination processor calculation per sending processor. The
receiving phase is a little more complicated, and gets split up into two cases depending on k:
if k  PN and PN mod k = 0, we follow case 1, otherwise case 2.

Case 1: We calculate the source processor ps of first block of size x received using pd ÷ k,
where pd is the rank of the receiving processor. After that, the next k blocks are received from
the source processor pnext described by Equation 3.5 with i being the index of current block
being received. The concept is that, since the destination distribution is cyclic(x), the PN other
processors must receive the next blocks before it is the turn of the current processor again.
This receive set then repeats for each k blocks until the redistribution is complete.

pnext = (ps + i ⇥ PN

k
) mod PN i 2 {0, ..., k � 1} (3.5)

10

3 Index Computation

Case 2: Here we must explicitly calculate the source processor ps for each block i as shown
in Equation 3.6, as PN is no longer a multiple of k, meaning the previous properties do not
apply. Also, the sequence of processors does not follow a clearly identifiable pattern as it did
in case 1.

ps =
i ⇥ PN + pd

k
mod PN (3.6)

Let us use the following two distributions of an array shown in Figure 3.2 with N = 20 and
PN = 3 as an example, the first being cyclic(4), the second cyclic(2). Meaning, k = 2 and
PN mod k 6= 0.

0 0 0 0 1 1 1 1 2 2 2 2 0 0 0 0 1 1 1 1

0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2 0 0

Figure 3.2: An array of size 20 distributed in cyclic(4), then cyclic(2)

Now, we will take pd = 2 as an example. Using the formulas described above we calculate the
first element in its local array is received from ((i⇥ PN + ps)÷ k) mod PN) = (0⇥ 3+ 2)÷ 2 =
1. And when we look into the first element owned by 2 in the destination distribution we
indeed see that in the source distribution, it was owned by 1. Moving on, we then apply the
formula again: ((i ⇥ PN + ps)÷ k) mod PN = (1 ⇥ 3 + 2)÷ 2 = 2. It is like a counter starting
from 0 counting the amount of distributions of block size x that have happened, which then
must be divided by k because each block in the source distribution consists of k blocks of x.

Finally, the method for the general case of cyclic(x) to cyclic(y) where x is not a multiple of
y and vice versa. Here, this paper proposes what is more or less a brute force algorithm
which calculates the send and destination processor individually for each element for each
source and destination local array in each processor using longer formulas for each individual
calculation. This kind of runtime resolution is obviously inefficient.

In terms of extending any of this to a multi-dimensional case, the paper suggests a simple
tactic. The recommended approach is simply to apply the aforementioned algorithms
dimension by dimension. So, if you want to redistribute an array from (block, block) to (cyclic,
cyclic), first go to to (block, cyclic). Naturally these approaches only work for shape retaining
redistributions. Shape changing ones require a separate approach not discussed in this paper
at all.

In summary, it can be concluded that this paper represents a good start. It presents important
formulas for conversion from processor local to global indexes of distributed arrays, as well
as how to convert these into calculations for destination and source processors within a
given redistribution context. Especially noteworthy are the algorithms regarding conversion

11

3 Index Computation

between cyclic(1) and block(m) distributions as well as from cyclic(x) to cyclic(kx) and
vice versa, that attempt to minimize unnecessary address calculation by making use of the
characteristics of these distributions.

On the other hand, it is noticeable that there is a lack of efficiency related to the more general
cases. The algorithm for redistributing between arbitrary cyclic distributions is tantamount
to a brute force algorithm that simply individually calculates every address for each local
element of a processor, making it inefficient. The extension of the multidimensional case is
also lackluster, as no new algorithms are provided that address the needs of the case and only
the consecutive use of the original algorithm for one-dimensional cases is recommended.

3.2.2 1995: Automatic Generation of Efficient Array Redistribution Routines

This paper [9] addresses the same index computation problem, but by different means. By
creating a new representation for regular distributions called Processor Index Tagged Family
of Line Segments (PITFALLS), it presents algorithms for redistribution that apply to regular
distributions in general. In other words, covering the case of cyclic(x) to cyclic(y) with no
restraints on x or y. PITFALLS is designed to be a method that easily determines which
processors communicate which data with each other.

The basic concept behind PITFALLS is that of the Line Segments (LS). These are represented
by a pair (l, r) which stands for a block of elements within an array starting at l and ending at
r. Finding the intersection of a pair of such Line Segments L1: (l1, r1) and L2: (l2, r2) is easily
achieved using another line segment: (max(l1, l2), min(r1, r2)) where max(l1, l2)  min(r1, r2),
otherwise the intersection is an empty set.

This concept is then extended to a 4-tuple (l, r, s, n) called Family of Line Segments (FALLS).
Similarly to the Line Segments, the first block starts at l and ends at r. s then measures the
stride between l and the start of the next block and the n describes the total number of blocks.
Individual members i of the FALLS are described by the following LS (l + i ⇥ s, r + i ⇥ s).
Now, to represent a given regular distribution, no more than two FALLS are necessary for each
processor and in many cases, one is enough [10]. This is because the FALLS structure precisely
imitates that of a block-cyclic distribution. By definition, a block-cyclic(x) distribution on PN
processors for a given processor i assigns every PNth block of x elements to a given processor
from the given starting point i ⇥ x. The amount of blocks bn is described by Equation 3.7.
So, the FALLS (i ⇥ x, (i + 1) ⇥ x � 1, PN ⇥ x, bn) necessarily describes the distribution for
that processor. However, in some cases, it may not represent all of it: if N mod x 6= 0 some
processor will necessarily end up with an incomplete block at the end. This then needs to be
described with another FALLS. Hence, the necessity for two FALLS sometimes arises.

bn =

(
d N

PN⇥xe, if N mod (PN ⇥ x) > (i + 1)⇥ x
b N

PN⇥xc, otherwise
(3.7)

12

3 Index Computation

An example of a case in which one FALLS suffices is a simple cyclic(2) distribution across 3
processors on an array of size 16. Given processor p1, this results in the FALLS (2, 3, 6, 3).
Visually, this is represented by Figure 3.3. The underlined elements are the ones distributed
onto p1. Each line represents a block.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.3: A visual representation of a FALLS (2, 3, 6, 3), each line representing a block

Then, an example in which one FALLS does not suffice is given by a cyclic(3) distribution
on 2 processors for an array of size 17. Given processor p1 we must use the following two
FALLS to represent the distribution: (3, 5, 6, 2) and (15, 16, 0, 1). These FALLS can be seen in
Figure 3.4, the first one in black above the second one in red.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 3.4: A visual representation of a FALLS (3, 5, 6, 2), followed by another FALLS (15, 16,
0, 1) each line representing a block

It now becomes interesting to develop an efficient intersection algorithm for FALLS, as it
translates to an efficient way to determine which data must be sent from one processor
to the other to get from a source to a target distribution. The best idea involves testing
if 2 given members i1 and i2 of two different FALLS F1, (l1, r1, s1, n1), and F2, (l2, r2, s2, n2)
intersect. This can be done by simply testing if the 2 conditions described in equations 3.8
and 3.9 are met, which are simply extensions of the intersection conditions for Line Segments,
taking into account the number of the respective members and the strides s1 and s2 of the
two FALLS. Member i1 of F1 is given by (l1 + i1 ⇥ s1, r1 + i1 ⇥ s1) and member i2 of F2 is
given by (l2 + i2 ⇥ s2, r2 + i2 ⇥ s2). According to the intersection criteria for Line Segments
defined earlier, these two arbitrary members intersect only if max(l1 + i1 ⇥ s1, l2 + i2 ⇥ s2) 
min(r1 + i1 ⇥ s1, r2 + i2 ⇥ s2). This is equivalent to Equation 3.8 ^ Equation 3.9. Equation 3.8
ensure that i2 ends after i1 begins and Equation 3.8 ensures that i2 begins before i1 ends.
Self-evidently, this is equivalent to intersection knowing that li  ri.

i2 � i1 ⇥
s1

s2
+

l1 � r2

s2
(3.8)

i2  i1 ⇥
s1

s2
+

r1 � l2
s2

(3.9)

The intersection itself can then be calculated using the algorithm for Line Segments. These
two conditions also do not need to be evaluated for all possible combinations of pairs of the

13

3 Index Computation

two FALLS: it is enough to do so for one intersection period, defined as the Least Common
Multiple (LCM) of s1 and s2. This is because within 2 FALLS that intersect, the intersecting
members have a periodical relationship.

Given our earlier FALLS (2, 3, 6, 3), which we will call F1 and a new FALLS F2 (0, 2, 4, 3) on
the same array of size 16, Figure 3.5 will demonstrate the intersection. The first FALLS in red
is F1, the second in blue is F2 and the third in black is the intersection of the two F1\2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.5: A visual representation of two FALLS and their intersection

This representation is then further extended to PITFALLS, a six-tuple (l, r, s, n, d, p). It stands
for a set of evenly spaced FALLS across a set of p processors. The spacing between the
successive l’s of different processors is d. The ith processors FALLS then takes the following
form: (l + i ⇥ d, r + i ⇥ d, s, n). Given a source and a target distribution, then, it is possible
to check if any FALLS members intersect by iterating through their intersection periods and
checking their member pairs for the 2 conditions above. If there is an intersection, we can
construct the respective LS and FALLS immediately. If we do this for all PITFALLS of the
source and target distributions, so usually just one but up to 3 depending on the distribution
we have completed the index computation.

For the multi-dimensional case, the extension works similarly to the one used in the previous
paper. Simply compute the FALLS and their intersection for each dimension and then combine
the results to figure out the final results for sending and receiving sets.

Using the algorithms constructed from the PITFALLS representation, the paper shows a
significant speed-up (2-3x) over brute-force runtime resolution methods, such as the one
presented for the general cyclic(x) to cyclic(y) redistribution problem in the previous paper.
When it comes to the multi-dimensional case, there is also a large difference. Unlike the
previous papers suggestion which results in a non-linear increase of redistribution time,
PITFALLS allows for only a linear increase when applying the technique to each dimension
in succession.

All-in-all it can be observed that this paper improves upon the results of the work of Thakur
et al. [7] (subsection 3.2.1) when it comes to performance in the general case, if not the
one-divides-the-other or the block-to-cyclic case. Furthermore, it also works for different
processor subsets, and so has the added advantage of versatility.

Nevertheless, there are some weaknesses to be found in the PITFALLS algorithm as well.
Noteworthy is that performance depends heavily on the number of processors involved in
the redistribution, as you may have to compute the intersection between every single pair.

14

3 Index Computation

This means that when we have large processor sets, the performance of PITFALLS declines
drastically. This lines up with the runtime complexity of the algorithm: O(PN ⇥ |x�y|

gcd(x,y)) [3].
Furthermore, the paper does not take explicitly into account anything regarding shape
changing redistributions, although this is a trivial extension with regards to processor
structure.

3.2.3 1996: Optimizations for efficient Array Redistribution on Distributed
Memory Multicomputers

This paper [11] is the follow-up work to the one covered in the previous section, again
covering the FALLS algorithm, with several extensions:

1. Generation of local addresses for the elements of distributed arrays as opposed to global
ones

2. Integration of the library with MPI

3. Exploitation of memory locality during packing/unpacking

4. Use of a communication scheduling scheme

For the purposes of this section particularly points one and three are of interest as they
provide benefits not having to do with communication scheduling and potentially change the
algorithm itself.

The paper demonstrates a simple formula for generating the local addresses to save any single
element of a member of a local FALLS, given by Equation 3.10. In this case, l and r have their
typical meanings as in FALLS/PITFALLS, j is the global address of the element being saved
and i is the number of the member of the FALLS the element is a part of. This generation
of address assures that all elements are saved consecutively and by simply switching the i,
r and l depending on whether we are considering the source or destination FALLS we can
adjust to be correct for both the sending and receiving processor.

l(address) = i ⇥ (r � l + 1) + j mod (r � l + 1) (3.10)

The paper makes use of a figure to represent this, which we will replicate using our original
FALLS F1 = (2, 3, 6, 3) over an array with N = 16 from section 3.2.2, as shown in Figure 3.6.

Improving memory locality is also important as it allows for better performance since modern
computers are typically optimized for accessing memory in contiguous blocks. Here, this
can be achieved by generating the minimum amount of different FALLS possible for a given
intersection between two FALLS. Since all elements of each generated FALLS are packed into
a continuous buffer for transport purposes, a small set of FALLS means a greater amount of
consecutive accesses (as opposed to strided), which is, per definition, better memory locality.
The paper does not specify further on how to achieve this algorithmically, however.

15

3 Index Computation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.6: A visual representation of the translation into a local address

All-in-all, the actual indexing algorithm does not significantly change. However, the im-
provements made with regards to memory access and local memory address computation
guarantees increased efficiency, nonetheless.

3.2.4 1996: Efficient Algorithms for Array Redistribution

This paper[12] serves as an extension and an update to [7], which is covered in subsection 3.2.1.
Primarily, it adds two new methods to perform a general redistribution from cyclic(x) to
cyclic(y) that are more efficient than the one discussed in the original paper, which requires
the explicit calculation of the destination location for every single array element. Instead,
here, the methods make use of the highly efficient technique developed for the cases that y is
a multiple of x or vice versa. This technique is often called the multi-phase method by other
works.

The first method is called the GCD method, as it makes use of the greatest common divisor.
The idea behind this method is that two consecutive redistributions using the specialized
technique for the one-divides-the-other can be better than a direct brute force redistribu-
tion. It is important to take into acccount, however, that this constitutes a trade-off: the
improved indexing time must offset the greater communication time resulting from the two
redistributions. This is generally the case for larger arrays where the indexing time dominates.

Given this, the tactic is to redistribute from cyclic(x) to cyclic(g), where g = gcd(x, y) and then
from there to cyclic(y). However, doing it this way comes with a major disadvantage: the block
size in the intermediate distribution is smaller than both pre and post-redistribution. Smaller
blocks require more calculations as we can see looking back at the algorithm description of
the one-divides-the-other-case in the 1994 paper. In the worst case scenario, gcd(x, y) is equal
to 1 and we revert back to the brute force case where we must calculate everything.

An alternative is to use the LCM method instead, which makes use of the least common mul-
tiple instead of the greatest common denominator, guaranteeing the intermediate distribution
uses a larger block size than both source and target distribution. This way, we bypass the
aforementioned problem.

Due to this, the LCM method also outperforms the GCD method in all cases, unsurprisingly.
In comparison to the general, brute-force method, it does better for large array sizes where

16

3 Index Computation

the indexing-communication trade-off becomes worthwhile.

This kind of redistribution, which is done in multiple phases shows demonstrable improve-
ments over the original in some cases, although it is unclear whether it can outperform a
technique like PITFALLS even for large array sizes.

3.2.5 1997: Fast Runtime Data Redistribution - Indexing

This paper[13] presents a redistribution algorithm implemented for the ScaLAPACK library
and the High-Performance Fortran (HPF) language. Henceforth it is also referred to as
the "ScaLAPACK method" or "Pyrill’s algorithm". This method deals with the general
redistribution problem, allowing for different source and destination processor sets. It can
be easily extended to multidimensional arrays and processor grids in turn, a process also
described in the paper.

The indexing algorithm introduced in this paper is very similar to PITFALLS, as it also uses
intervals to describe the overlap between the elements of a processor in the source distribution
and a processor in the target distribution. It also notes the same periodicity as PITFALLS,
the least common multiple of the strides between the respective blocks of the two processors.
The only noticeable difference is the lack of use of a compact notation like FALLS. The list of
intervals of overlap is not summarized into anything and is simply used as is.

This paper also has a segment on communication in which it makes use of a caterpillar
algorithm, a popular communication algorithm for this type of work which we will revisit in
subsection 4.2.4. This is noteworthy here only in so far as it could affect any comparisons
with other algorithms here that focus more exclusively on indexing.

This paper is primarily discussed here because it is often used as a point of comparison and
is cited often by others.

3.2.6 1998: A Basic-Cycle Calculation Technique For Efficient Dynamic Data
Redistribution

This paper [3] presents a more efficient method for the general redistribution problem of
cyclic(x) to cyclic(y) redistribution, the Basic-Cycle Calculation (BCC) technique. In doing
so, it limits itself to primarily the one-dimensional case and makes the assumption that the
source and target processor sets are the same. The primary idea of the paper is to develop
methods for computing the source and destination processors of certain array elements in a
so-called "basic-cycle". These can then be used to easily compute the source and destination
processors of the other array elements, making for an efficient redistribution.

A basic-cycle is defined as the least common multiple of the two redistribution parameters
divided by their greatest common divisor. So, for a general redistribution from cyclic(x) to
cyclic(y), the basic-cycle BC would be calculated using Equation 3.11.

17

3 Index Computation

BC(x, y) =
lcm(x, y)
gcd(x, y)

(3.11)

The concept behind the BCC technique is that the communication pattern of the first basic-
cycle of a given processors Source Local Array (SLA) is the same as any other. However, this
is only the case if gcd(x, y) = 1 and otherwise requires transforming the to be distributed
array in such a way that this is effectively the case. This works by transforming array A with
size N into array B with size N ÷ gcd(x, y). Each entry of B then consists of a sub-array of
gcd(x, y) consecutive elements of A. Each entry c of B is given by Equation 3.12 .

B[c] = {A[(c � 1)⇥ gcd(x, y) + 1, . . . , A[(c)⇥ gcd(x, y)]} (3.12)

Within this new array B, the communication once again repeats every basic-cycle, e.g. all
elements in the sub-array B[c] are sent to the same processor as all elements of the sub-array
B[c + BC(x, y)].

To simplify, from here on, the paper assumes gcd(x, y) = 1. Otherwise, we must use
x ÷ gcd(x, y) and y ÷ gcd(x, y) as the source and destination distribution factor instead, which
results in a Greatest Common Divisor (GCD) of 1.

Explaining the BCC technique requires the introduction of two new terms: the Source
Distribution Pattern Position (SDPP) and the Destination Distribution Pattern Position (DDPP)
(of an element, respectively). They are defined by Equation 3.13 and Equation 3.14.

SDPP(A[c]) =
✓⇠

c
gcd(x, y)

⇡
� 1

◆
mod

PN ⇥ x
gcd(x, y)

(3.13)

DDPP(A[c]) =
✓⇠

c
gcd(x, y)

⇡
� 1

◆
mod

PN ⇥ t
gcd(x, y)

(3.14)

These terms define the position of a given array element over one iteration through the
processors, so y ⇥ PN elements for the destination distribution. Given an array with N = 10
and a redistribution of cyclic(2) to cyclic(1) with PN = 2, we would see the results shown in
Table 3.1.

Knowing this, we can move into explaining the send phase of the technique. Given a source
processor ps and its source local array, we want to determine the destination processor pd of
every element within the first basic-cycle, so SLAs[0:BC-1]. The paper presents a formula that
computes pd for any given element with local array index c, given by Equation 3.15.

pd =

8
<

:
PN � 1, if a = 0j

a�1
y

k
, otherwise

(3.15)

18

3 Index Computation

index 0 1 2 3 4 5 6 7 8 9
SLA0 0 1 / / 2 3 / / 4 5
SLA1 / / 0 1 / / 2 3 / /
SDPP 0 1 2 3 0 1 2 3 0 1
DLA0 0 / 1 / 2 / 3 / 4 /
DLA1 / 0 / 1 / 2 / 3 / 4
DDPP 0 1 0 1 0 1 0 1 0 1

Table 3.1: Table that describes SLA’s, DLA’s, SDPP and DDPP for a given problem

a =

✓
x ⇥

✓�
c � 1

x

⌫
⇥ (PN � 1) + ps + c

◆◆
mod (PN ⇥ y) (3.16)

One problem, however, is that a basic-cycle can be large depending on the values of x and y.
In that case, we have to do a lot of calculations to determine all the destination processors,
which is impractical. To take care of this problem, the paper suggests making use of the
consecutive nature of elements in blocks. That is to say, the fact that in a cyclic(x) distribution,
the x elements are always taken consecutively from the global array. This allows us to simply
calculate the DDPP of the first element of each block in a given source local array which then
allows for trivially determining the destination processors of the following x � 1 elements.
bDDPP ÷ yc determines the destination processor and the DDPP of each block element c 2
[0, x - 1] is simply DDPP[0] + c mod PN .

The DDPP of the first element u of a respective block with the number v 2 {1, . . . , BC
x } can be

easily calculated using Equation 3.17 and Equation 3.18.

DDPP[SLAs(u)] = ((v � 1)⇥ PN + ps ⇥ x) mod (PN ⇥ y) (3.17)

u = (v � 1)⇥ x + 1 (3.18)

The calculations for the receiving phase are essentially identical, except SDPP is used instead
of DDPP and the x and y parameters switch roles.

The above algorithm results in an indexing cost of O
⇣

lcm(x,y)
gcd(x,y)

⌘
. This is the primary achieve-

ment of this paper compared to the previous ones. The development of an indexing algorithm,
the runtime of which is independent of number of processors and array size, is hugely im-
portant in facilitating scalable index computation. This work achieves this by recognizing
the repetitive pattern in the spacing of the data in the send sets of a given processor relative
to the original distribution. This same principle is used in several other papers in this field
as well, and is one of the quintessential aspects of effective data redistribution algorithms.
Its importance can be demonstrated by the marked improvements in performance the BCC
technique shows in almost all cases compared to the algorithms previously discussed in this
section.

19

3 Index Computation

3.2.7 1998: Efficient Methods for Multidimensional Array Redistribution

This paper[5] is based on the BCC method discussed in the previous subsection 3.2.6. Using it
as a basis, two techniques are presented specifically for multi-dimensional array redistribution.
These are, on one hand, the Basic-Block Calculation (BBC) method, and on the other, the
Complete-Dimension Calculation (CDC) technique.

The paper posits that, much like in the one-dimensional case, it is only necessary to construct
the communication sets (i.e source and destination processor) for a certain section of the
multi-dimensional array, and that the rest repeats itself. In this case, that unit is one basic-
block. In the case of a general multi-dimensional redistribution from cyclic(x0, x1,, xm�1)
to cyclic(y0, y1,, ym�1) that basic-block consists of the basic-cycles in each dimension, so
BC0, BC1,, BCm�1 for a total size of BC0 ⇥ BC1 ⇥ ... ⇥ BCm�1. Each basic-cycle BCi is then
defined as in the original paper (Equation 3.11), except that one must use xi and yi as the
distribution parameters.

To explain the algorithm used in this paper we must first slightly extend the notation of SLA
used up until now. SLAi,l will be defined as the set of array elements of processor i in the
first row of the lth dimension, in the source distribution. The DLA is extended analogically.

In other words, assuming SLAi is the following 4 ⇥ 4 two-dimensional array, SLAi,0 consists
of the elements coloured in blue, and SLAi,1 of the elements coloured in red. The element (0,
0) that is in both arrays is coloured purple, as can be seen in Figure 3.7.

(0, 0) (0, 1) (0, 2) (0,3)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3)

Figure 3.7: An array of size 4 ⇥ 4 colored to depict SLAi,0 and SLAi,1

The paper presents two vital new lemmas that build the basis for the redistribution algorithm
to come, which we must first discuss.

The first defines a translation between redistribution in one-dimension and redistribution in
m dimensions. This lemma starts by observing the array element SLAi,k[rk], that is to say, the
rkth element of the first row of the kth dimension of the source local array of processor pi.
Now, let us say the destination processor of this element is p0,...,0,jk ,0,...,0 where 0  jk  Pk.
Then, given the array element SLAi[r0, r1, ..., rm�1] its destination processor would be, in
turn, pj0,j1,...,jm�1 . In other words, the destination processor of a given array element in a

20

3 Index Computation

multi-dimensional array can be determined if one knows the destination processors of each
index in the first row of its respective dimension. Knowledge of the destination processors
of SLAi,k[rk] 8k 2 {0, ..., m � 1} can thus be used to determine the destination processor of
SLAi[r0, r1, ..., rm�1].

Under the consideration that each basic-cycle (of a given dimension) always has the same
communication set if gcd(xi, yi) = 1, i, y 2 {0, ..., m � 1}, or if the array is adjusted according
to the algorithm described in subsection 3.2.6, the second lemma is derived. To calculate
the destination processor of any given element in a multi-dimensional array it is enough to
calculate the destination processors for the first basic-block, i.e. SLAi[1 : BC0, 1 : BC1, ..., 1 :
BCm�1]. And in turn, to calculate these, we simply need to calculate the destination processors
for each of the individual basic-cycles, as lemma 1 implies. This means that for any multi-
dimensional array, Equation 3.19 holds true, with 0  ki  bNi ÷ (lcm(xi, yi)⇥ Pi)c. As a
reminder, Ni and Pi are the size of the respective ith dimensions of the array and processor
sets respectively. In other words, ki is defined so that the index does not exceed the size of
the arrays dimension.

SLAi[r0, r1, ..., rm�1] = SLAi[r0 + k0 ⇥ BC0, r1, ..., rm�1]

= SLAi[r0, r1 + k1 ⇥ BC1, ..., rm�1]

= ...
= SLAi[r0, r1, ..., rm�1 + km�1 ⇥ BCm�1]

= SLAi[r0 + k0 ⇥ BC0, r1 + k1 ⇥ BC1, ..., rm�1 + km�1 ⇥ BCm�1]

(3.19)

This also further extends to the case where any arbitrary subset of the dimensions changes by
the respective factors of k and BC. Given this knowledge, we can now think of an efficient
algorithm.

At first glance, it seems simple: we just need to compute all destination processors of array
elements in SLAi[1 : BC0, 1 : BC1, ..., 1 : BCm�1]. However, in case of a large basic-block size
this can take a long time even with the simple formula to enumerate the processor described
in chapter 2, as we need to calculate each destination processor. As such, we instead make
use of send tables. A table is created for each dimension of the array, gathering the indexes of
the respective SLAi,l [1 : BCl] array elements that have the same destination processor into
one entry. Then, for any given processor pi we wish to send to, we can simply look up the
entries in the tables. This can be done simply by reversing the formula described in chapter 2
which converts the dimension wise representation of a processors index to the absolute one
using the appropriate mod operations. This concludes the basic-block method.

When it comes to the complete-dimension-calculation method, things change only slightly.
Instead of calculating only the destination processors of the first basic-cycles of each dimension,
we also calculate the destination processors of the first row of every dimension (all else being
0), so: SLAi,l [0 : Ll], with l 2 {0, ..., m� 1} and Ll =

Nl
Pl

, the size of the array and the processor

21

3 Index Computation

set in the dimension l. This information is then used to construct the send tables, similarly to
the basic-block calculation technique. The idea behind this is that we trade in higher indexing
cost due to having to calculate destination processors for more elements of source local arrays
for more packing/unpacking information that does not require any deciphering via modulo
operations like in the case of the previous method.

In terms of performance relative to one another, the paper also gives a clear answer by
determining the exact conditions under which the CDC technique outperforms the BBC
technique. What is being compared here is the total computation time, so not only indexing
where the basic-block method would be trivially superior, but also packing and unpacking,
i.e: Tcomp = Tindexing + T(un)packing. The conclusion at which the paper arrives is summarized
by the Equation 3.20 in combination with Equation 3.21.

Tcomp(CDC) < Tcomp(BBC) () O(L0 + L1 + ... + Lm�1) < O(
Lm�1

BCm�1
⇥ Lm�2 ⇥ ... ⇥ L0)

(3.20)

Ll =
Nl
Pl

(3.21)

Using this equation we can then judge which method is superior depending on the situation.

This papers description of an extension to the multi-dimensional covers one of the two aspects
missing from the original Basic-Cycle Calculation method paper to make it a more universally
applicable indexing technique. The other one is discussed by another paper extending the
original technique, namely:

3.2.8 2000: A Generalized Basic-Cycle Calculation Method for Efficient Array
Redistribution

As the name suggests, this paper [14] is another extension of the BCC technique described in
[3] (subsection 3.2.6). The generalized version of the basic-cycle method covers the case of
cyclic(x) to cyclic(y) redistribution from PN to QN processors. In other words, the primary
difference compared to the original version is the consideration of different source and target
processor sets, P and Q. In doing so, a new version of a basic-cycle involving these new
variables is introduced and the same principles of communication pattern repetition are
applied to minimize index computation overhead.

This papers generalized basic-cycle changes for source and destination distribution. For
the source distribution, it is defined by Equation 3.22 . For the destination distribution, by
Equation 3.23

GBC(P) =
lcm(x ⇥ PN , y ⇥ QN)

gcd(x, y)⇥ PN
(3.22)

22

3 Index Computation

GBC(Q) =
lcm(x ⇥ PN , y ⇥ QN)

gcd(x, y)⇥ QN
(3.23)

The basic logic used for the generalized basic cycle calculation technique is the same as for
the normal BCC technique: calculating the source and destination processors for the first
generalized basic cycle is enough to determine the destination processors for the rest. As is
the case with the original technique, this requires gcd(x, y) to be equal to 1 or otherwise a
reorganisation of the array as discussed in the earlier paper. Similarly, the consecutive nature
of blocks is again used to only calculate the destination processor of the first element of each
block explicitly, after which the rest can be inferred the rest via addition and modulo.

Where things change are the formulas used to calculate the destination processors. For a
given index c which is the first in a given block of the source local array of a processor ps, we
use Equation 3.24 to determine the corresponding global array index.

sgindexs(c) = c ⇥ PN + i ⇥ x (3.24)

Then, using this global array index we determine the destination processor qd with Equa-
tion 3.25.

qd =

�
sgindexs(c)

y

⌫
mod QN (3.25)

From here, we must now calculate how many elements must still be sent to qd. We will call
this value r and calculate it using Equation 3.26.

r =
✓�

sgindexs(c)
y

⌫
+ 1

◆
⇥ y � sgindexs(c) (3.26)

With knowledge of x, y, r and qd we can now easily distribute the rest of the block. We do this
by sending the next r elements to qd, or as many as we can until the block ends. Having done
that, we must now send segments of y elements at a time until we reach the end of the block.
The first block of y elements, SLAi[r : r + y] would be sent to (qd+1) mod QN , the second
block, SLAi[r + y : r + (2y)] to (qd+2) mod QN and so on. This process must be performed
for every block in a generalized basic-cycle, so, a total of GBC(P)÷ x times.

The generalized form of the basic cycle calculation method yields similar results to the original,
applied to the broader scope of different source and target processor sets. It outperforms
methods from previous papers such as the ScaLAPACK method and PITFALLS and offers an
efficient way to deal with indexing as well as packing and unpacking.

On the other hand, it does nothing to address the topic of efficient communication, much like
its predecessor, even though the paper itself addresses that this is the most time consuming

23

3 Index Computation

aspect of redistribution in the examples given. Ensuring efficient communication is the other
half of efficient data redistribution which will be addressed in chapter 4.

3.3 Performance Comparison

In this section, the topic of discussion will be the performance of the algorithms we discussed
earlier. Almost all of the papers include some kind of performance comparison to previous
algorithms, which allows for a fairly grounded view of how they compare. We will start
by looking at the general case, as in a lot of instances the results of the comparisons there
translate to the other two cases.

3.3.1 The general case

In terms of performance with regard to the general case we see a marked progression over the
course of the papers discussed. The baseline for the discussion will be a "brute-force" runtime
resolution method such as the one from [7] briefly discussed in subsection 3.2.1, wherein the
destination processor is calculated from scratch for every element of the array.

[9] (subsection 3.2.2), which presents the PITFALLS representation, as well as the associated
redistribution algorithm, also includes some performance tests. Performance comparisons
were made using 3 different source/target array distribution pairs, 2 different processor
source/target distribution pairs per array distribution and 2 different array sizes, 128 ⇥ 128
and 512 ⇥ 512. PITFALLS came out ahead consistently, the difference being larger the larger
the size of the array. The improvements ranged from a 1.7x to a 3.8x speed-up.

Next, [13] (subsection 3.2.5) shows a further improvement. Here it is important to note that
communication scheduling is being used that is not mentioned at all in PITFALLS, so whether
these results are actually because of the indexing algorithm is unclear. Nevertheless it is
important to mention because this algorithm in turn is subject to more comparisons down
the line. The comparisons made similarly used 128 ⇥ 128 and 512 ⇥ 512 sized arrays as well
as a variety of source/target array and processor distributions. The results were speed-ups
ranging from 1.16 to 3.5 times, growing with larger block and array sizes.

[3] (subsection 3.2.6) also measures performance across a variety of cases, specifically compar-
ing its own BCC method to both PITFALLS and the multi-phase method. The multi-phase
method in this case refers to what is presented in [12] (subsection 3.2.4) which was thus far
not mentioned in this section as result of not containing performance comparisons to other
algorithms (excluding its previous iteration).

For the sake of this comparison, we will observe only the indexing and packing/unpacking
times (i.e computation cost) of the respective algorithms, which are recorded separately, as
anything to do with communication is not relevant to this section. Incidentally, it does not
change the result significantly.

24

3 Index Computation

Upon analyzing the indexing costs of the respective methods, the primary realization is the
differences in dependencies: the multi-phase method is dependent on array size and number
of processors (inversely). PITFALLS is dependent on number of processors and distribution
factors while the basic-cycle calculation technique is dependent only on the parameters of the
source and target distribution x and y. The packing costs are all almost identical, differing
only in so far as that the multi-phase method needs to pack and unpack twice as much due
to the two-stage redistribution process.

The performance tests utilized in this paper compare the algorithms using various different
block-cyclic redistributions on a one-dimensional array. For each one, they perform two
types of tests: one where the amount of processors PN is constant and the array size N is
gradually increased, and vice versa. The amount of processors varies between 10 and 72,
where as the size of the array size is between 360.000 and 1.800.000. In other words, the focus
is on the testing of performance regarding larger arrays, which is beneficial to the basic-cycle
calculation method as it is the only one of the three the execution time of which does not
increase with the array size. Nevertheless, this can be considered reasonable, as redistribution
is often times relevant precisely to larger arrays.

When testing using an N = 1.800.000 and performing a cyclic(5) to cyclic(8) redistribution
and gradually increasing PN in steps of 10, we notice that, when it comes to indexing, the
basic-cycle calculation method outperforms the multi-phase method by a factor of about 10
to 20x, with that factor shrinking the higher the number of processors. When it comes to
PITFALLS, the basic-cycle calculation method is also ahead, though the speed-up is only
roughly 1.3x in the case where PN = 10. This then grows to a speed-up of roughly 4.3x when
the PN is increased to 72. In other words, when the number of processors is low, PITFALLS
and the basic-cycle calculation method are not massively apart in terms of performance. That
being said, this gap also depends on the distribution parameters used, as a large difference in
x and y bodes poorly for the performance of PITFALLS, while a small LCM to GCD ratio is
good for the BCC method. In general, both methods benefit from a large GCD. In the case of
a cyclic(300) to cyclic(200) redistribution we see the minimum speed-up of the BCC technique
over PITFALLS rise to roughly 2.3x, and for cyclic(60) to cyclic(3) it even gets to about 3.5x.

On the other hand, when testing with PN = 72 and N incremented from 340.000 to 1.800.000
in steps of 340.000, we see that the PITFALLS and the BCC method retain roughly the same
performance throughout, with a ratio equivalent to the above case where we also had PN = 72.
On the contrary, the multi-phase method performs worse and worse, and the initial 6x
speed-up BCC had over it increases to 12x.

In total it can be said that this papers performance analysis demonstrates that, for the general
case, when it comes to indexing large arrays, the hierarchy of the algorithms is as follows:
BCC > PITFALLS > Multi-phase. However, something also worth noting is that in practically
all the examples, the overall redistribution time was dominated by packing/unpacking costs
and communication time. This means that, depending on the potential for improvement in
these two areas, indexing algorithms may not be very important to the total redistribution

25

3 Index Computation

optimization process.

3.3.2 The one-divides-the-other case

This case is only explicitly discussed in the paper [7] (subsection 3.2.1) and its extension [12]
(subsection 3.2.4), though obviously any algorithm that can carry about the general case is
also capable of this. There are little explicit performance comparisons regarding this case,
though it is notable that the distribution parameters being multiples of one another is not
particularly relevant to the runtime of any of the general algorithms. This means that the
relationships from the previous discussion should hold. The only question is where [7]’s
algorithm fits in, which specializes in the case. However, this is also answerable, as both [13]
(subsection 3.2.5) and [3] (subsection 3.2.6) address this topic, albeit with somewhat different
results.

[13] (subsection 3.2.5) mentions the multi-phase method only in passing and does not provide
a detailed analysis. However, it does note that in the one-divides-the-other case, the multi-
phase method slightly outperforms its own methods with regards to packing, which, as
explained earlier, dominates indexing itself in terms of total cost.

The 1998 paper [3] (subsection 3.2.6) has an actual test case measuring the performance of the
one-step multi-phase method compared to PITFALLS and the BCC technique. In this case, a
redistribution of cyclic(10) to cyclic(500) is performed and the results are measured over the
same ranges of N and PN described earlier. In these cases, the multi-phase method is still
outperformed by PITFALLS and the BCC technique for almost all cases. However, in two
cases it beats out PITFALLS with a speed-up of roughly 1.25x. That is, in the case where the
N is 2 {360.000, 720.000} and PN = 72. In other words, the smaller the N to PN ratio is, the
better the multi-phase method performs against PITFALLS. So, for small arrays and large
processor sets, there will be cases where multi-phase can win out over PITFALLS, though not
against the BCC technique which is at minimum about 3x faster even for the best case for
multi-phase (N = 360.000 and PN = 72).

3.3.3 The block-to-cyclic case

Regarding this last case there are not any specific tests that deal with it. However, precisely
because this case is so specific we can say that the importance is small: it would almost
always be handled by an algorithm that deals with either of the above cases as opposed to
anything specific. Interestingly, however, depending on the size of the array, this could be
a troublesome case for something like the BBC technique because the LCM to GCD ratio is
very lopsided: the LCM is always equal to m and the GCD is always 1. Therefore, if we have
a large array, we are in rough shape. This is similarly true for PITFALLS due to the large gap
in size between the distribution factors. Thus, as long as the N to PN ratio is smaller than m,
it is probably an edge case where the multi-phase method can perform better than either of
the other methods.

26

4 Communication

4.1 Definition and Notation

Communication refers to the process of sending messages buffered with the elements com-
puted by the indexing algorithm from the source processors to the destination processors
receiving them. This means that each source processor creates a message for each destination
processor it must send to, and fills said message with the array data (i.e packing). Then
the destination processor receives said message and stores the data locally according to the
indexes it computed (i.e unpacking).

The question now, is how to structure this process so that it is maximally efficient. Setting
aside packing and unpacking, this means optimizing the sending and receiving process.
In principle, when it comes to such communication, there are two possible approaches:
synchronous and asynchronous communication algorithms. Each have their own advantages
and disadvantages, which we will go over.

4.1.1 Synchronous Communication

Communication is usually called synchronous, or otherwise blocking, when, after the source
processor sends the message, it must wait until the corresponding destination processor has
received it to continue with performing other tasks, such as sending the next message. The
same goes for the destination processor, which must wait until the message has arrived after
posting its receive operation. Communication algorithms operating using this principle of
communication have destination processors post one receive at a time, and source processors
post a corresponding send, explicitly pairing them up in each iteration of communication. It
is worth noting, however, that such algorithms as the one above, that are described, in general,
as synchronous, often use asynchronous receives. This is not particularly relevant, however,
as each "round" of communication is synchronous nonetheless [1].

The advantage of these types of algorithms is that they are very forgiving in terms of memory
consumption. Both source and destination processors can reuse buffers used to store messages
after each round of communication. On the other hand, it is inefficient when it comes to
performance, due to the need to wait on the completion of the specific pairwise exchange
before continuing with other work. This means that, if two or more source processors are
paired up with the same destination processor, one may have to wait a significant amount of
time until it can continue sending to other processors. This is called node contention.

27

4 Communication

4.1.2 Asynchronous Communication

Communication is called asynchronous or otherwise non-blocking, when the operations for
sending and receiving messages return immediately without waiting for completion of the
communication. The rest of the communication then happens in the background while the
processors are freed up to continue their work, which in this case usually means sending and
receiving more messages. Alternatively, it can also refer to index computation, in case we
overlap it with communication as opposed to completing it all beforehand. The completion
of the individual communications can be checked on later. Communication algorithms that
make heavy use of this concept may simply have destination processors post all of their
receives at once, asynchronously, and then wait for the messages from the source processors,
knowing they can immediately receive them [1].

These kinds of algorithms are the opposite of the synchronous ones in terms of their advan-
tages and disadvantages. We must use separate buffers for the messages, assuming we post
multiple asynchronous receives before checking if others are completed, meaning memory
requirements are large, but we can continue working without waiting on the completion
of individual communications, which guarantees efficiency. Explanations for a possible
implementation of both a synchronous and asynchronous algorithm are provided in [1],
which we discuss in subsection 4.2.3.

Generally, if memory requirements are not an issue, asynchronous communication will be
used. However, if we are sending a large amount of data or otherwise do not have a large
amount of memory available, we must resort to synchronous communication. Furthermore,
there may be some cases where asynchronous receives are not be available, such as was
the case at the time for the BLACS message passing library used for ScaLAPACK [13]. In
that case, we optimize the communication so that we lose as little performance as possible
compared to the asynchronous version. As the end result of this optimization process is
similar for all papers discussed, it shall be explained here.

The goal of scheduling is to minimize node contention such that we do not have hot spots
in communication. The optimal way to do this is to divide the communication into steps
denoted by ki for the ith communication step, indexed from 0. In each step, each sending
processor, if possible, is paired up with a distinct receiving processor it sends to, that is to
say, no two sending processors are paired up with the same receiving processors and vice
versa. Then, after all communication steps are completed, all data must have been sent.
Such a schedule can be represented as a matrix, the exact size depending on the case: each
column representing a source processor and each row a communication step. An entry of x
in column i and row j then means that the processor pi�1 sends a message to processor qx
in communication step kj�1. As an example, Table 4.1 shows such a communication matrix,
otherwise also called process send schedule. Here we assume P = Q.

Here we can see that there are 3 sending and receiving processors, as the length of each row
is three and there are three communication steps. We also note that each communication
step consists of a permutation of all destination processors: indeed, this is a necessity if we

28

4 Communication

k / p p0 p1 p2

k0 1 2 0
k1 2 0 1
k2 0 1 2

Table 4.1: Example of a communication matrix

want a minimum number of contention-free steps while the source processor set is equal to or
larger than the destination processor set, i.e PN � QN , in a redistribution involving all-to-all
communication. Finally, the entries of each row i consist of a permutation of the processors
pi must send to. At first glance this appears simple, but if P 6= Q and/or we do not have
all-to-all communication, constructing a contention free schedule can be significantly more
complex.

The following section will revolve largely around the different algorithms for obtaining such
a schedule. Some algorithms are indeed more efficient than others or cover a broader case.
For instance, many of the algorithms presented below apply only to the one-divides-the-other
case for a single processor set P. Furthermore, while all of the algorithms presented will
result in a contention-free schedule, some contention-free schedules are superior to others,
as we will discuss. We also consider other communication based optimizations outside of
scheduling, primarily the idea of a multi-phase redistribution that was already presented for
indexing purposes in the previous chapter.

4.2 Algorithm Analysis

4.2.1 1994: An Approach to Communication Efficient Data Redistribution

The 1994 paper "An Approach to Communication Efficient Data Redistribution"[15] continues
to explore the idea of a multi-phase redistribution, this time with respect to its advantages in
terms of communication. In previous papers such as [12], which we covered in subsection 3.2.4,
it was assumed as a given that this approach would result in an increase in communication
time. However, this paper challenges that idea: depending on how large the message set-up
time is compared to the actual data transfer, it can be more efficient in terms of communication
time to perform a multi-phase redistribution. This paper develops a model for analysing the
communication costs of a given redistribution as well as a method of communication efficient
redistribution, making use of the model.

This paper makes heavy use of a tensor product representation to create its analysis model
and efficient methods. Given two matrices A and B, with A as an m ⇥ n matrix and B as a
p ⇥ q matrix, it is defined by Equation 4.1.

29

4 Communication

A ⌦ B =

2

64
a0,0B . . . a0,n�1B

...
am�1,0B . . . am�1,n�1B

3

75 (4.1)

Specifically relevant are the tensor products of vector bases, em
i , a column vector of length m

with a 1 at position i and 0 everywhere else. Tensor products of two such bases are called a
tensor basis, demonstrated in Equation 4.2.

em
i ⌦ en

j = emn
in+j (4.2)

In this paper, they key is the ability to factorize a given vector basis eM
i . This means

representing it as a tensor product of smaller vector bases such that the above conditions
apply. For example, it would be possible to factorize e16

9 in the alternative ways shown in
Equation 4.3.

e16
9 = e2

1 ⌦ e8
1

e16
9 = e4

2 ⌦ e4
1

e16
9 = e2

1 ⌦ e2
0 ⌦ e4

1

(4.3)

This notation can be used to express regular distributions. A distribution cyclic(x) on PN
processors for an array A of size N can be represented by factorizing a vector basis eN

i , where
i is the index of a given element in array A and M = N ÷ PN . The exact way to do this is
given by Equation 4.4.

eN
i = eM÷B

i÷(PN⇥x) ⌦ pPN
i÷x mod PN

⌦ ex
i mod x (4.4)

The index in the second vector basis corresponds to the rank s of the processor ps i is assigned
to, because of which p is used instead of e in the notation to signify the vector basis that
determines the processor index, so, the processor basis. Meanwhile, the vector basis identified
by e is called the data basis. Then, the tensor product of the first and third vector base
produces the local index of the element i on ps. Such a factorized tensor basis in which the
vector basis determining the processor index is identified with the p is called a distribution
basis.

This representation thus neatly encompasses all relevant information: the global array index,
the local array index and the assigned processor. This notation is also easily extended to the
multi-dimensional case by simply taking the tensor product of the distribution representations
in each dimension.

Using this notation, it is now possible to develop a cost model that then allows for an optimal
multi-phase redistribution. With respect to the communication cost of a given redistribution,

30

4 Communication

several factors are of importance: the start-up time, ts, which consists of the packing and
unpacking process we have discussed. This is used as a constant in this paper, which is not
necessarily accurate depending on the communication in question, since, if one processor
has to send significantly more data than another, its packing and unpacking time could be
considerably greater. Of primary consideration is the transfer time te, the time it takes for
data to be transmitted, which is dependent on the network bandwidth as well as the path
length, though the latter is negligible. This time is assumed to scale linearly with the length
of the message, such that the communication cost for a message of length n is ts + te ⇥ n.

The last aspect to be considered is network contention: communication can be slowed down
significantly when several sending processors communicate simultaneously with the same
destination processor. As such, it is logical to schedule communication into several steps,
such that each step involves a permutation of destination processors: as no processor sends
to the same destination in each step, we avoid node contention, assuming a sufficiently large
topology. This is equivalent to the common idea presented in section 4.1.

Knowing this, we can deduce that two factors are of great importance in the communication
cost of a redistribution: the amount of communication steps and the cost of each step. If
it is possible to determine these factors, it is also possible to develop a coherent model for
communication cost. This is easily possible using two qualities that can be applied to the
distribution basis of the source and destination distribution: the distribution base difference
and union.

The distribution base difference is defined as Q(b1, b2) and is given by Equation 4.5, with b1
as the source distribution basis and b2 as the destination distribution basis. b1 and b2 can be
factorized such that b1 = snt

jt ⌦ . . . ⌦ sn0
j0 and b2 = dnt

kt
⌦ . . . ⌦ dn0

k0
. Being able to factorize the

distribution bases of the source and destination distributions in this manner means they are
compatible, a pre-requisite for redistributing between them as far as this paper is concerned.

Q(b1, b2) = ’
l

nl with 0  l  t s.t. (snl
jl
= enl

jl
) ^ (dnl

jl
= pnl

jl
) (4.5)

The distribution base union U(b1, b2), then, is defined by Equation 4.6.

U(b1, b2) = ’
l

nl with 0  l  t s.t. (snl
jl
= enl

jl
) _ (dnl

jl
= pnl

jl
) (4.6)

This is, in turn, equivalent to PN ⇥ Q(b1, b2).

These two qualities correspond to important aspects of the communication process. The
distribution base difference Q(b1, b2) is equivalent to the maximum number of messages a
processor must send during redistribution. The fraction of the total data that constitutes the
largest amount of data to be sent in a single message is determined by the distribution base
union. This means that the size of the largest message to be sent is N

U(bs,bd)
. Furthermore,

knowing that each processor sends at most Q(b1, b2) messages is vital, as this implies that we

31

4 Communication

can construct exactly that many permutations to perfectly represent the communication, as is
proven in Theorem 3.1 on page 369 in [15]. In turn, this also means that this is the minimum
amount of communication steps we can undertake. All of this results in the formula for
the communication cost C(bs, bd) of a redistribution from bs to bd given by Equation 4.7, in
which case the constant k is the fixed number of communication steps per permutation. This
value depends on the underlying architecture and will not be further considered.

C(bs, bd) = Q(bs, bd)⇥ k ⇥ (ts +
N ÷ PN

Q(bs, bd)
⇥ te) (4.7)

Immediately noticeable is the fact that the cost of a given communication step is equivalent to
the cost of the single largest message: this observation stems from the fact that all messages
are sent in parallel: hence the cost of the largest one dominates the step. This is a characteristic
that generally applies to communication steps, regardless of the scheduling algorithm. This
same formula can also be applied to each dimension of a given multi-dimensional array
if need be, in order to facilitate the optimization of communication for arrays that are not
one-dimensional.

Considering this cost model and the representation of distributions via distribution bases, it
is possible to determine the optimal intermediate distributions for an optimal multi-phase
redistribution. Considering the source distribution bs and the destination distribution bd, the
condition of compatibility means both can be factorized into equally many vector bases, each
corresponding one being of the same size. This means that redistribution is essentially just a
mapping of the respective data bases to processor bases and vice versa. These mappings can
be performed either all at once or in multiple steps. How many steps exactly, depends on the
factorization performed on the respective distributions. Q(bs, bd) = r0 ⇥ . . .⇥ rg�1 =) g� 1
intermediate distributions, one for every vector basis in the factorization bs that is mapped
into a processor basis in the factorization of bd. Each intermediate distribution then performs
another mapping. Pursuing this method for a given redistribution leads to the cost structure
given by Equation 4.8.

C(bs, bd) =
g�1

Â
i=0

(ri ⇥ ts +
N
PN

⇥ te) (4.8)

Comparing this to the single-phase redistribution, we can see the trade-offs demonstrated in
Table 4.2.

single-phase multi-phase

start-up(⇥ts)
g�1
’
i=0

ri
g�1
Â

i=0
ri

transmission(⇥te) N
PN

g ⇥ N
PN

Table 4.2: The trade-offs between single-phase and multi-phase redistribution

32

4 Communication

In other words, if ((
g�1
’
i=0

ri)� (
g�1
Â

i=0
ri)) > (g � 1)⇥ N

PN
, the multi-phase redistribution delivers

better performance than the single-phase variation. Of course, it is also possible to choose
a lesser amount of intermediate distributions for a multi-phase approach. The precise
partition of Q(bs, bd) necessary for the best result is in of itself an optimization problem
worth discussing. A subset of this problem is presented in the paper "Optimal phase barrier
synchronization in k-ary n-cube wormhole-routed systems using multirendezvous primitives"
[16], for the case that Q(bs, bd) = rp, r 2 Z. Comparing this with the single-phase approach
would then yield the optimal approach under those constraints.

It also noteworthy that the distribution basis notation can also be used for index computation,
which is also described in the paper and can thus be used for the whole redistribution process.
This will not be covered further here, as it falls outside the scope of this section.

Overall, the paper presents an interesting approach to efficient communication that falls
somewhat outside of most of the literature. Instead of presenting an optimized scheduling
algorithm for the communication in a single-phase redistribution as the following papers
largely do, it presents a redistribution strategy that can result in better performance. In
practice, whether it is worth pursuing this strategy depends on factors like the specific
redistribution parameters and the size of the array, which we cover in the performance
analysis section, section 4.3.

4.2.2 1995: Multiphase Array Redistribution - Modeling and Evaluation

This paper [17] acts as an extension and evaluation of the previously discussed [15] (sub-
section 4.2.1). It translates the results of the previous paper, based heavily in the tensor
notation, into a more standard notation, conforming roughly to the one this thesis establishes
in chapter 2. Furthermore, it goes much more in-depth in terms of the actual scheduling
process that takes place in a given communication step, which was only a small footnote in the
previous paper. Finally, it provides an analysis of the multi-phase redistribution techniques in
terms of performance which the original paper does not do. The communication cost model
used mirrors that of the original paper, so the focus of this analysis will be on the scheduling.

The focus of this paper is on the one-divides-the-other case regarding a single set of PN
processors, as the intermediate distributions of a given multi-phase distribution always follow
this pattern, hence scheduling this case is what is relevant to the topic. Specifically, the
paper devises a scheduling algorithm to optimally schedule, in terms of both number of
communication steps and contention, a cyclic(kx) to cyclic(x) redistribution.

For a cyclic(kx) to cyclic(x) redistribution, there are two cases to cover: one in which the
communication is all-to-all, and another where it is not. The case in which all-to-all commu-
nication is present is one in which k > PN , assuming that PN ⇥ kx  N. This assumption
is a non-issue because the array can simply be padded accordingly. In this case scheduling
communication is trivial and the paper does not focus on it. This is because it is simple: if

33

4 Communication

every processor communicates with every other processor, a contention-free schedule can be
obtained with the following algorithm 1.

Algorithm 1 Processor Communication Scheduling
1: for i = 0 to PN � 1 do
2: for j = 0 to PN � 1 do
3: Schedule message of processor pi to processor p(j+i) mod PN in communication step

j
4: end for
5: end for

By simply spacing out the start of the iteration through all processors by one, contention
free scheduling in PN steps is guaranteed. Note that this algorithm no longer works in the
same way if we have separate processor sets P and Q. If this is the case and QN > PN we
either have to accept contention or accept that some processors cannot communicate in some
communication steps as all the destination processors are already paired up with source
processors. This then means that we must schedule PN � QN processors after the first QN .

This paper covers the less trivial second case: all-to-many communication which occurs when
PN > k. This in turn is split into two further sub-cases: first is the case in which the source
processors each communicate with distinct first destination processors. The second case
occurs when the first destination processors are not distinct. The first destination processors
refer to the destination processors source processors must send the very first block of the
global array they are assigned in the source distribution. In other words, for a given processor
pj, (j ⇥ k) mod PN = (pj ⇥ k) mod PN .

The first sub-case is once again trivial: in the case where each first destination processor
is distinct, the respective next destination processors in order are necessarily also distinct.
This means simply scheduling messages in order of the blocks in the local array and their
respective destination processor will produce a contention-free schedule. In the other sub-case,
in step i each processor sends its ith local block. Consider, for example, a redistribution
from cyclic(4) to cyclic(2) with PN = 5 and array size N = 20. Figure 4.1 shows the array
distribution pre and post-redistribution.

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

0 0 1 1 2 2 3 3 4 4 0 0 1 1 2 2 3 3 4 4

Figure 4.1: An array of size 20 distributed across 5 processors, first in cyclic(4), then in cyclic(2)

The first destination processors of processors p0 through p4 are as follows, in order: p0, p2,
p4, p1, p3. This then allows for the following communication table, shown in Table 4.3 which,

34

4 Communication

when comparing it side by side to the two distributions shown earlier, is clearly correct and
contention-free.

k / p p0 p1 p2 p3 p4

k0 0 2 4 1 3
k1 1 3 5 2 4

Table 4.3: Communication matrix for the problem described above

The second sub-case is significantly more complex. Essentially, the goal is to structure
the communication in such a way that we mimic the first sub-case: we want to manually
alter the destination processor order that source processors with the same first destination
processor send to, such that the new first destination processors of every source processor are
different. In order to do this, we must first identify which source processors have the same
first destination processor. To do this, we must partition the processors into lcm(PN ,k)

k groups,
with each processor pj being sorted into group i with, i given by Equation 4.9.

i = pj mod
lcm(PN , k)

k
(4.9)

All processors within the same group have the same first destination processor pd, as (pj ⇥
k) mod PN determines the first destination processor for processor pj and thus lcm(PN ,k))

k limits
the amount of times pj can be incremented until we return to the same value. The size of each
group is given by gcd(PN , k), because PN = lcm(PN ,k)

k ⇥ gcd(PN , k). What’s noticeable here is
that this means there are only lcm(PN ,k)

k possible first destination processors, all of which are
multiples of gcd(PN , k), according to Lemma 4.2. This means that there are gcd(PN , k)� 1
non-first destination processors following any pd, all of which every processor in group
i obviously has to send to. Hence, a simple approach is to change the first destination
processor of processor ph with h = pj +

k⇥lcm(PN ,k)
k with 0  j < lcm(PN ,k)

k from (j ⇥ k) mod PN
to (pj ⇥ k) mod PN + k. Doing this for every group guarantees unique first destination
processors for all source processors and therefore a contention-free schedule when following
the method of sub-case 1. Though we must remember to loop back around to the destination
processors of the earlier blocks we skipped over when determining the new first destination
processors.

Let us consider the example redistribution of cyclic(3) to cyclic(1) with PN = 6 and N = 18. In
this redistribution, k = 3. Since PN > k we do not have all-to-all communication. Immediately,
it is noticeable that the first destination processors are not all distinct. They form two groups:
group one consists of processors p0 , p2 and p4 with the first destination processor p0 and
group two consists of processors p1, p3 and p5 with the first destination processor p3. This
means we are in the second sub-case. This means we must iterate through each group i,
0  i < lcm(6,3)

3 , such that the kth element of the group has its first destination processor

35

4 Communication

altered to pg with g = (i ⇥ 3) mod 6 + k. This then produces the communication matrix seen
in Table 4.4, which is clearly contention free and also complete.

k / p p0 p1 p2 p3 p4 p5

k0 0 3 1 4 2 5
k1 1 4 2 5 3 0
k2 2 5 3 0 4 1

Table 4.4: Communication matrix for the problem described above using the algorithm from
the multi-phase method

Having covered the scheduling method, we now dive into the cost model presented, which
is the same as in the previous paper, except translated from tensor notation and applied
specifically to the cyclic(kx) to cyclic(x) case. Just as it was before, the cost of a single
communication cost is dominated by that of the largest message, which is ts + n ⇥ te if that
size is n. Then, the amount of permutations, previously described by the distribution base
difference Q, is now simply min(k, PN). This is because, using the schedule, each processor
can send a message in each step and that amount of messages is either k in the case k < PN
or PN in the case k > PN as we discussed earlier. Then, the size of each message must be

N
PN⇥min(PN ,k) . This is simply because we know each processor sends min(PN , k) messages and
there are PN processors, hence each message size is the one described above. Here the paper
implicitly assumes the array is padded accordingly, preferably such that its size is some
multiple of PN ⇥ kx. All of this results in the redistribution cost C given by Equation 4.10.

C = min(PN , k)⇥ ts +
N
PN

⇥ te (4.10)

For a g-phase redistribution as described in the previous paper, which consists of a redistri-
bution from cyclic(kx) to cyclic(k

k1
x) and so on to cyclic(k

k1⇥...⇥kg�1
x) and finally, to cyclic(x),

the paper presents the following cost C given by Equation 4.11.

C =
g�1

Â
i=0

(ki ⇥ ts +
N
PN

⇥ te) (4.11)

Once again, the structure of the equation is identical to the one from the previous paper.

This paper now goes one step further and dives into a discussion of the two-phase approach
for the general case redistribution, cyclic(x) to cyclic(y). Specifically, the optimal intermediate
distribution for this case is determined. Naturally, the distribution should have a distribution
factor that either divides or can be divided by both x and y, the source and destination
distribution factors. This is so the previously discussed models and schedules can be applied,
which work only for the one-divides-the-other case.

36

4 Communication

And so, for a cyclic(x) to cyclic(f) to cyclic(y) redistribution where f is divided by x and y,
Equation 4.12 is constructed to determine the total cost of such a redistribution.

C =
f
x
⇥ ts +

N
PN

⇥ te +
f
y
⇥ ts +

N
PN

⇥ te = f ⇥ (
1
x
+

1
y
)⇥ ts + 2

N
PN

⇥ te (4.12)

This equation assumes f > x ^ f > y. We can determine the best f within those parameters
by minimizing f ⇥ (1

x + 1
y), which in turn means simply picking the smallest possible f such

that f mod x = 0 ^ f mod y = 0. This is the least common multiple of x and y. In the other
case, where f < x ^ f < y and thus f divides x and y, we must instead minimize 1

f ⇥ (x + y).
This means choosing the largest possible f such that x mod f = 0 ^ y mod f = 0. In
others words, the greatest common divisor of x and y. These being the two most optimal
intermediate distribution choices, equally good, aligns with the results discussed in the
indexing section. Then, given the advantages the least common multiple has over the greatest
common divisor when it comes to indexing, the most optimal choice for f should be lcm(x, y).

All-in-all, this paper does not provide a new method, as it is merely an extension and
evaluation of an approach already discussed in the previous section, however, the clarity
it provides with regard to the previous paper is very helpful nonetheless. In terms of the
scheduling algorithm presented, its primary weakness lies within the fact that it applies only
to redistributions within the same processor set, which is a big limitation. Furthermore, in
the exact form explained here, the algorithm only applies to the sending part of a cyclic(kx)
to cyclic(x) redistribution or the receiving part of a cyclic(k) to cyclic(kx) redistribution. The
next paper discussed presents an algorithm for the other half.

4.2.3 1996: Redistribution of Block-cyclic Data Distributions using MPI

This paper [1], much like the previous case, deals with scheduling redistribution primarily
for the one-divides-the-other case, specifically cyclic(x) to cyclic(kx). It also does not consider
different processor sets, simply using a uniform set P for both the source and destination
distribution. This work presents both an asynchronous and a synchronous communication
algorithm in the form of MPI code: then, later, it develops an algorithm to schedule the
synchronous communication in order to make it more efficient.

Both of these algorithms work much the way they were described in the first section of this
chapter. Here, we will cover them in a bit more detail. This paper makes the same observation
several others in the indexing section also did, that is, that there is a repeating communication
pattern in the redistribution: in what this paper calls a superblock, that is, every PN ⇥ k blocks
or every PN ⇥ k ⇥ x elements, communication patterns repeat themselves. Hence, for both
algorithms, we have only k communication steps: an MPI derived vector data type is used
to send all blocks occupying the same position within the superblock at once. Then the PN
processors need only send k blocks each. Some perhaps less, if the last block is incomplete.
Such cases must be handled separately, but as this is a trivial aspect, neither this paper nor
most of the others discussed explicitly deal with it.

37

4 Communication

The synchronized algorithm has each processor, within a single communication step, first
post a non-blocking, wildcard receive. This means that it is not determined from which other
processor a message will be received and it is essentially done on a first-come, first-serve
basis. The receive is non-blocking so as to allow the process to pack the necessary data and
perform a send call in parallel to waiting on the incoming data. Next, the processors use a
blocking operation to send out messages to the respective destination processors, iterating
through the local blocks belonging to them from front to back, so in the nth step kn, each
process sends its nth block. Here, it is important that they also prepend the global index of
the block being sent to the beginning of the message: otherwise it would be impossible to tell
where the block must be placed locally, given that a wildcard receive is used as opposed to
any specific one and we thus have no information about what data we are receiving. This
changes when scheduling is introduced, which makes it definitive from which processor is
received in which communication. Next, MPI_wait is called to complete the receive operation
that was started earlier. Finally, the received data is unpacked. Then all processors move
into the next step and repeat this process until communication is complete. The problem this
method faces is that some processors may have to wait a long time for their send operation to
complete, which in turn also means they must wait a long time for their receive. Additionally,
some processes may receive their data later in general, due to other processes only sending to
them in the very last steps.

Take, for example, a redistribution from cyclic(1) to cyclic(3) with PN = 4 and N = 12.
Using the above algorithm without any sort of additional scheduling would result in the
communication matrix seen in Table 4.5.

k / p p0 p1 p2 p3

k0 0 0 0 1
k1 1 1 2 2
k2 2 3 3 3

Table 4.5: Communication matrix for the problem described above using the synchronized
algorithm without scheduling

Here we immediately see the problems described earlier. In the first communication step,
processor p0 is clearly a hotspot: it must receive data both from itself and 2 other processors
before the communication step can conclude. At least one of the processors sending to
processor 0 will have to wait a significant amount of time. We also see that processor p3
receives all of its data in the very last communication step, when processors p0 and p1 have
already received all of theirs. The schedule produced by this algorithms basic form is very
sub-optimal.

The asynchronous version is very similar in nature, also using the same non-blocking receives
and blocking send operations. The difference is that, in the unsynchronized version, all k
receives are posted consecutively, and only after they have all been posted, are the k send
operations performed, after which MPI_waitany is called k times and the received data is

38

4 Communication

unpacked. This sidesteps the problems described above, as we can be sure all send operations
complete very quickly, since the corresponding receives are posted before any waiting is done
for the send operations. On the other hand, posting k receives at once, all of which require a
separate buffer into which to receive data, is very memory expensive.

In order to allow the synchronous algorithm to compete with the non-synchronous one in
terms of performance, contention must be reduced. One way to do this is by randomizing
the block-sending order for each process involved: this reduces communication hotspots
significantly. This can best be explained using the earlier example. Assuming we randomize
the sending order with a random number generator, we might obtain a schedule like the one
shown in Table 4.6.

k / p p0 p1 p2 p3

k0 1 3 2 1
k1 0 1 0 3
k2 2 0 3 2

Table 4.6: Communication matrix for the problem described above using the synchronized
algorithm with random sending order

Clearly, this is an improvement on the previous case: only 2 processors send to the same
processor in each step. No processor has to wait until the last step to begin receiving data
either. Nonetheless, this is an imperfect tactic, as it fails to eliminate node contention in most
cases. As such, this paper returns to devising an optimal communication schedule in the
form of a k ⇥ PN matrix, called a communication matrix or a process send schedule here. This
is done according to criteria very similar to those presented at the beginning of this chapter,
which are formulated here as follows:

1. The rows of the process send schedule are permutations of the process ranks, so,
permutations of the numbers 0, 1, . . . , PN � 1

2. The ith column of the send schedule is a permutation of the processes to which process
pi must send data

If these two criteria are fulfilled in the schedule, it is possible for the synchronous commu-
nication method to rival the asynchronous one in terms of performance. Determining the
solution that fulfills these conditions numerically is somewhat complex. First Equation 4.13 is
constructed for the global block B from both the source and destination distribution, given
the respective local block indexes b and d, as well as the source and destination processor
ranks pi and pj, taking into account that this paper is strictly focused on the case of a cyclic(x)
to cyclic(kx) redistribution.

B = PN ⇥ b + pi = k(PN ⇥ d + pj) + t (4.13)

This is the primary equation this paper works with. Here, 0  t < k. t is representative of

39

4 Communication

which place inside of the k slots of size x in a block the local block sent from pi is placed
into. This equation can be simplified, because we know communication repeats itself each
superblock: and since a superblock is merely k ⇥ PN elements, we know the first superblock
is completely covered by elements within local block d = 0 of the destination distribution.
Hence, Equation 4.13 can be rewritten as Equation 4.14.

B = PN ⇥ b + pi = k ⇥ pj + t (4.14)

The goal is to use this equation to determine in which step kn each processor sends a given
local block. An intuitive thought may be to simply send in step kn, from each processor, the
block that is placed into slot kn = n in the corresponding destination processors block. So,
essentially, for a given value of kn setting t = kn and, for each processor pi, determining the
corresponding block b (or B) and destination processor pj that fulfills this condition. Formally,
this is given by Equation 4.15.

B = PN ⇥ b + pi = k ⇥ pj + kn (4.15)

This carries with it a fatal flaw, however: it does not necessarily produce a unique solution.
We can easily envision a redistribution where processor pi sends a different block to a
different destination processor that happens to be slotted into the same fixed index kn in
the larger block of the destination distribution. Take, for example, a redistribution from
cyclic(1) to cyclic(4) with PN = 6 and N = 48. Processor p1 would send its first block with
global block index 1 to processor p0, which would be placed into the second slot in the new,
larger block. Then, processor p1’s third block would be redistributed to processor pd with
d = (6 ⇥ 2 + 1)÷ 4 = 3. Here, too, it would be placed into the second slot of the block, with
index 1, since (6 ⇥ 2 + 1) mod 4 = 1.

Because we are left with (potentially) more than one destination processor to which a given
source processor can send in any given step the problem may have been narrowed down
somewhat, but it is not yet solved.

Nonetheless, this attempt at a solution is on the correct path: if the redistribution problem is
minimized in such a way that the solutions become unique while still being able to expand
back into the original case, we will have a viable method. This can be achieved simply by
factoring out the greatest common denominator g of PN and k, such that k = g ⇥ k0 and
PN = g ⇥ P0

N . Then the following formulas shown in Equation 4.16 are derived for the other
variables.

b = k0 ⇥ b + b0 pj = P0
N ⇥ b + p0j0

pi = g ⇥ p0i0 + a t = g ⇥ t0 + a
(4.16)

When inserted into the original equation, we receive a reduced version of the initial equation,
perfectly suited for deriving unique solutions, which is shown below. The reason factoring

40

4 Communication

out gcd(k, PN) results in unique solutions is because relatively prime values for k and PN
guarantee that if a processor pi sends to a processor p0i0 a block into slot i, it sends blocks into
slot i only to processor p0i0 . This uniqueness theorem is proven in the appendix of the paper,
A.1.

B0 = P0
N ⇥ b0 + p0i0 = k0 ⇥ p0j0 + t0 (4.17)

Solving this equation by setting t0 = kn0 gives an optimal schedule. This is because the earlier
problem has been eliminated: since k and PN have been reduced down to k0 and P0

N , there are
no longer multiple destination processor, block number combinations that fulfil the equation
B0 = P0

N ⇥ b0 + p0i0 = k0 ⇥ p0j0 + kn0 . Therefore, per (kn0 , p0i0) pair, we have a unique solution to
the equation, (p0j0 , b0), as, obviously, there must be at least one solution assuming we have a
valid global index B. Furthermore, we know that for a given kn, for each pi, the result contains
a different pj, as each global block is only assigned to one processor. The same argument
applies for a given kn and each pi. Therefore, we know this method fulfils the two criteria for
the communication matrix explained at the beginning of the section. The proofs for these
attributes can be found in the appendix of the paper (uniqueness, existence and permutation
theorem).

The solutions for this equation are given by the formulas shown in Equation 4.18.

q0j0 = l ⇥ x + P0
N ⇥ z

b0 = �l ⇥ y + k0 ⇥ z
(4.18)

Here, x and y are the solutions for g = x ⇥ k + y ⇥ PN that can be found with the extended
Euclid algorithm. l = p0i0 � kn0 and z = dl ⇥ y ÷ k0e = dl ⇥ x ÷ P0

Ne. As such, we now know
that p0i0 sends local block b0 to destination processor p0j0 in step kn0 and that this is optimal. It
is worth noting that this calculation doubles as an index computation, even though that is not
its primary purpose.

The send schedule corresponding to the equations solution can be acquired by constructing
the respective matrix of size k0 ⇥ P0

N . This is done by starting at position (0, 0) in the matrix,
which is filled by the value 0 and moving along diagonally, incrementing the value along
the way. When moving off the edge or bottom of the matrix, we simply wrap-around. It is
worth noting that this manner of constructing the schedule means the entries of the schedule
are global block indexes B. However, these can easily be converted to the corresponding
processors by simply dividing by k0. Taking the example from earlier where k = 4, PN = 6,
we would have k0 = 2 and P0

N = 3, hence, the following, obviously contention free global
block/processor send schedules seen in Table 4.7 and Table 4.8.

The last step is to expand the solution we obtain via these equations from the reduced
equation where g is factored out to the original one. This is fairly easy: we merely need
to convert each of the k0 ⇥ P0

N entries we obtain by calculating the results of the reduced

41

4 Communication

k / p p0 p1 p2

k0 0 4 2
k1 3 1 5

Table 4.7: Block send schedule for the problem described above, using the synchronized
algorithm with scheduling in the reduced system

k / p p0 p1 p2

k0 0 2 1
k1 1 0 2

Table 4.8: Process send schedule for the problem described above, using the synchronized
algorithm with scheduling in the reduced system

equation for all k0 and p0i0 into a g ⇥ g block, called a permutation block. This is done by
making use of the equations for b and pi that were presented earlier. By inserting them
into the basic equation B = PN ⇥ b + pi which we recognize as the first part of the primary
equation, Equation 4.13 and summarizing, Equation 4.19 is obtained.

B = g ⇥ B0 + PN ⇥ k0 ⇥ b + a (4.19)

This is immediately recognizable as an equation that allows us to construct the global block
values for the full communication matrix out of the ones calculated for the reduced system.
B0, which is a direct consequence of the chosen calculated values p0j0/b0 (as well as p0i0/k0), is
what differentiates the g ⇥ g blocks from each other. Inside of the block, the differentiating
factors are the variables b and a which take the values of 0 to g � 1. Each entry in the g ⇥ g
block has a different pair of (a, b), which adhere to the following rules.

1. a = column number of permutation block: if g = 4, all entries in second column of the
block use a = 2

2. Each row of a permutation block must have a permutation of all b values: if g = 3, the
second row must have an entry where b = 0, b = 1 and b = 2

The first rule guarantees that the second criteria of the process send schedule is upheld: since
we know pi = g⇥ p0i0 + a, having different a values inside of the same column would violate it.
The second rule guarantees the first criteria is upheld: if two identical b values were allowed
within the same row, two different processors would be sending to the same destination, as
pj = P0

N ⇥ b + p0j0 . Having generated all of the blocks, assembling the schedule is a simple
matter of placing them adjacent to each other in the correct order. Using a = pi mod g and
b = (a � y + g) mod g, with y = kn mod g, for example, the above criteria are fulfilled.

Let us return to the example from earlier, where k = 4 and PN = 6 and, therefore, gcd(k, PN) =
2. Using a and b as described above, we get the block/process send schedules shown in

42

4 Communication

Table 4.9 and Table 4.10.

k / p p0 p1 p2 p3 p4 p5

k0 0 13 8 21 4 17
k1 12 1 20 9 16 5
k2 6 19 2 15 10 23
k3 18 7 14 3 22 11

Table 4.9: Block send schedule for the problem described above, using the synchronized
algorithm with scheduling in the full system

k / p p0 p1 p2 p3 p4 p5

k0 0 3 2 5 1 4
k1 3 0 5 2 4 1
k2 1 4 0 3 2 5
k3 4 1 3 0 5 2

Table 4.10: Process send schedule for the problem described above, using the synchronized
algorithm with scheduling in the full system

This total procedure is similar to the one described in the paper that was covered in sub-
section 4.2.2, [17]. Much like in that paper, the processor set is first reduced and then the
results computed for that reduced set are used to deduce the destination processors of the
expanded set accordingly. The main difference is that this paper considers the redistribution
from cyclic(k) to cyclic(kx) while the previously discussed paper covers primarily cyclic(kx)
to cyclic(x).

In total, this paper presents an important intermediate step. While it only offers a solution to
general case redistribution in the form of a multi-phase method, much like earlier iterations
and does not account for cases in which the source and destination processor sets are different,
it is this paper that later becomes the basis for more complete algorithms that can solve for
the general case directly. Additionally, actually providing the MPI code for the synchronized
and unsynchronized versions of the redistribution clarifies the process significantly.

4.2.4 1997: Fast Runtime Data Redistribution - Communication

The 1997 paper "Fast Runtime Block Cyclic Data Redistribution on Multiprocessors" [13],
which we had previously discussed with regards to indexing in subsection 3.2.5, also provides
an algorithm for scheduling communication. The so-called caterpillar algorithm is what is
implemented in ScaLAPACK and referenced in several other highly relevant papers, such as
[2], which we will cover in subsection 4.2.6. The caterpillar algorithm as presented in this
paper works for the general case redistribution from cyclic(x) to cyclic(y). It only considers
one processor set P, however, due to the nature of the algorithm, P can contain both the source

43

4 Communication

and destination processor set - effectively allowing for a different processor sets between the
source and destination distribution. This also means that in this paper, it is not assumed
that all processors in P are considered when assigning elements in the source or destination
distribution. In the other papers, this is usually the case.

The idea behind the caterpillar algorithm is almost the same as the simple scheduling
algorithm for all-to-all communication we discussed covering the multi-phase method in
the subsection 4.2.2. Essentially, each processor starts off with a different first destination
processor and iterates through all the others in a static order. In this case, it works via a given
processor pi exchanging data with p(PN�i�d) mod PN in a given step, with d being the current
communication step and 1  d < PN � 1.

The only real difference is the ability to account for non all-to-all communication by mapping
processors that are only sending and ones that are only receiving to the same index slot.
This way, the algorithm does not have to iterate through all PN processors in all cases, but
only through the max(sending processors, receiving processors), which can, if both sets are
disjoint, halve the communication step amount.

As an example, let us consider a case in which we have PN = 6, with 3 sending processors
and 3 receiving processors, 0 through 2 and 3 through 5 respectively. In this case, we can
safely map pi and pi+3 to the same index i, where 0  i < 3. Let us call this new set involving
these mappings G, which we will use in place of P for the algorithm. This means that gi is
treated as pi when sending data, but as pi+3 when receiving data. In other words, when the
algorithm determines gs must send to gd, this means processor ps must send to processor pd+3.
To illustrate this point, let us look at the third step of the communication d = 3, considering
GN = 3 as described above:

• g0, in other words, p0 communicates with g(3�0�3) mod 3 = g0, so, p3

• g1, in other words, p1 communicates with g(3�1�3) mod 3 = g2, so, p4

• g2, in other words, p2 communicates with g(3�2�3) mod 3 = g1, so, p5

Here, we can quite clearly see how g0 sends to g0, again, but these take on different values
depending on whether they are on the sending or receiving side. The sending g0 is p0 but the
receiving g0 is p0+3 = p3. The total communication matrix of the given example would be the
one that can be seen in Table 4.11.

k / p p0 p1 p2

k0 5 4 3
k1 4 3 5
k2 3 5 4

Table 4.11: Communication matrix for the problem described above using the caterpillar
algorithm

Evidently, this is contention-free and optimal, in so far as we have all-to-all communication.

44

4 Communication

Aside from this scheduling algorithm, the paper also presents the idea of communication
pipelining. The idea is that data sent in the form of a message is split into much smaller
packets. Then, the unpacking and communication process is overlapped: while the small data
packets are being sent and the processors receiving them would usually wait, they instead
unpack the small packet that was received previously. This method is used when applying
the caterpillar algorithm, if the total data sent is large enough to be split into small packets.

This scheduling algorithm is very important, as the one used in ScaLAPACK for array
redistribution, and it gets the job done by ensuring all sending processors communicate
with all receiving ones. However, this could also be seen as a problem: this algorithm does
not take into consideration that there are pairs of source and destination processors that
may not exchange messages at all, as we will see when analyzing the following papers, in
which non all-to-all communication is an important topic. As such, some processors may
not be sending or receiving data at all during some steps of communication, which is a clear
inefficiency, as it also leads to needing more total communication steps than a schedule that
takes this into account [18]. Furthermore, we do not take any care to schedule messages
into a communication step according to their size and since communication step costs are
dominated by the size of the largest message being sent, this can lead to inefficiencies.

4.2.5 1998: Scheduling Block-Cyclic Array Redistribution

This paper [18] builds on the foundations of Walker and Otto’s paper from 1996 [1], which
we have previously discussed in subsection 4.2.3. It builds on said paper by creating an
algorithm that can arrive at an optimal schedule for the general case of a cyclic(x) to cyclic(y)
redistribution over arbitrary processor sets P and Q, compared to the original paper which
focuses only on the one-divides-the-other case. This is done by modelling the communication
involved as a bipartite graph and then using a matching algorithm to derive the best schedule.
This paper also focuses on the one-dimensional case exclusively, as an extension to the multi-
dimensional is merely the tensor product of the individual dimensions, essentially, a series of
one-dimensional redistributions due to the limitations of HPF, an extension to the Fortran
language this paper is motivated by. As this paper is more complex than most of the others in
terms of the mathematics involved, we will reference the propositions and their proofs made
in the paper when we feel it is appropriate. This is to avoid covering every mathematical
process the paper engages in, as doing this would unnecessarily bloat this sub-section.

In principle, this paper sticks with the same idea as its predecessor: communication is still
scheduled into steps in which contention is avoided by guaranteeing that each sender only
sends at most one message and each receiver only receives at most one message. The concept
of a superblock, a certain number of elements after which communication repeats, is also
recycled. So, for a superblock of size L and an array of size N, N � 2L, element i, 0  i < L,
elements i and L + i are distributed onto the same processor in both source and destination
distribution. Here the superblock size L = lcm(PN ⇥ x, QN ⇥ y). In addition, message size is
now considered when constructing the schedule: in the previous paper the goal was simply

45

4 Communication

contention-free communication steps. As a consequence of the two criteria set up for the
process send schedule, the number of communication steps was guaranteed to be minimum,
but the cost of each step was not taken into account. This paper, on the other hand, aims to
create a schedule with a minimal cost, which is evaluated in one of two ways:

1. by the number of communication steps H

2. by the total cost, i.e.
H�1

Â
kn=0

cost(kn), whereby kn is a given communication step and

cost(kn) is the longest message sent in communication step kn

The first option is the simpler one, as it implicitly assumes the cost per communication step
is roughly equal, thereby avoiding explicitly calculating it. The second option is more precise,
though it does not take into account other aspects such as link contention.

Before diving into the actual algorithms for computing an optimal schedule, the the concept
of classes is introduced, the purpose of which is to group together pairs of processors
sharing certain characteristics. Classes are sets of pairs (pi, qj) and are defined as shown
in Equation 4.20, assuming gcd(x, y) = 1, in other words, that x and y are relatively prime.
This is a safe assumption, because translation between a redistribution of cyclic(x) to cyclic(y)
and cyclic(x0) to cyclic(y0) where x0 = gcd(x0, y0)⇥ x and y0 = gcd(x0, y0)⇥ y is as simple as
increasing all message lengths by a factor of gcd(x0, y0). The scheduling does not change.
Here, 0  k < g, meaning there are g total classes, with g = gcd(PN ⇥ x, QN ⇥ y) and u, v
such that x ⇥ u � y ⇥ v = 1.

✓
pi
qj

◆
with

✓
i
j

◆
= l ⇥

✓
y
x

◆
+ k ⇥

✓
u
v

◆
mod

✓
PN
QN

◆
; 0  l <

PN ⇥ QN

g
(4.20)

These classes have multiple interesting characteristics that will not be proven here, but can
be found in the paper, in section 4.2. If k 2 [1 � x, y � 1](modg), that means all pairs in the
class communicate. If not, none of them communicate. Furthermore, all processor pairs in
the same class exchange messages of the same length. Classes are also disjoint from each
other, that is to say, each possible pair (pi, qj) for all possible values of i and j is in only one
class. And finally, all classes are of the same cardinality, that is PN⇥QN

g . This concept of classes
is derived from the general redistribution block equation, the general case version of the
equation that was used to derive an optimal schedule in the paper [1], which we covered in
subsection 4.2.3. The exact process by which the paper arrives at the class definition can be
found in sections 4.1 and 4.2 of the paper itself.

Knowing this about classes, we can begin to derive the optimal schedules. This is simplest
in the case where both gcd(x, QN) = 1 and gcd(y, PN) = 1. This is because these conditions
guarantee that the pairs belonging to each class are evenly distributed across P and Q, which
follows from proposition 3 and the proof provided for it in section 4.3.2 of the paper. For a
total of PN⇥QN

g elements, each value i of pi is represented QN ÷ g times, meaning, a given

46

4 Communication

processor pi sends to QN
g destination processors in a given class. In turn, each value of j

for qj is represented PN
g times, which means a given processor qj receives messages from

PN
g different source processors in a given class. This allows for scheduling communications

on a class by class basis. For a contention free communication, we know no processor can
either send or receive more than one message in a given communication step. This means
that, to schedule a single class, we need max(PN ,QN)

g steps. Each step, then, naturally, must
consist of min(PN , QN) messages. In the steps themselves, blocks of size g for both source and
destination processors are considered. For each pi0 within such a block of source processors,
a message must be sent to each member of the blocks of destination processors qj0 that have
index j0 = y�1 ⇥ (pi0 ⇥ x � k), where y�1 is the inverse of y modulo g, which we know is
defined because it is assumed gcd(x, QN) = gcd(y, PN) = 1. This formula also follows from
proposition 3 in section 4.3.2 of the paper. Knowing this, the only thing left is to arrange a
suitable permutation of the blocks pairs such that no single block appears twice in a given
step. How this is accomplished does not matter as the order of communication is irrelevant.
This scheduling method guarantees that each communication step includes only messages of
the same size, as each step only consists of pairs of the same class. This means the cost of
each step is minimized and therefore, the total cost, because the minimum number of steps is
already guaranteed.

Now, let us consider this algorithm as it pertains to three sub-cases. The first is when
g > (x + y � 1). This means that there are classes of pairs that do not communicate, according
to the characteristics defined earlier. Therefore, the communication is not all-to-all. This does
not matter for this algorithm, however, as only communicating classes are considered. If
g = x + y � 1, we have all-to-all communication and can apply the algorithm to all classes.
Finally, if g < x + y � 1, the classes k that have the same value modulo g are summarized into
one and the algorithm is applied. The algorithm works easily for any relation of g to x and y
assuming the basic assumptions hold. Perhaps noteworthy is also that this algorithm allows
for the same results as the technique Walker and Otto presented in this papers predecessor
[1] (subsection 4.2.3), for a redistribution from cyclic(x) to cyclic(kx) if gcd(PN , k) = 1. By
reducing the case of said redistribution to a redistribution from cyclic(1) to cyclic(k), as we
know is possible by simply scaling down message lengths accordingly, this algorithms first
condition of gcd(x, QN) = 1 is already fulfilled. Then merely the second, gcd(y, PN) = 1
needs to hold, which is equivalent to gcd(PN , k) = 1 in this case. Applying the algorithm then
leads to the same results, showing that this paper can replicate these original findings.

Now, let us consider the general case, where no assumptions are held regarding gcd(x, QN)
and gcd(y, PN), thus making the algorithm generally applicable to all one-dimensional
redistributions. As the conditions from earlier are no longer maintained, it is now not
guaranteed that each classes processor pairs are evenly distributed for each possible pi and
qj. However, we can determine in what manner they are distributed. Given gcd(x, QN) = x0

and gcd(y, PN) = y0, and correspondingly PN = P0
N ⇥ y0, QN = Q0

N ⇥ x0 as well as g0 =
gcd(P0

N , Q0
N), Lemma 3 in section 4.4.1 of the paper states the following: the processor pairs

of all classes are distributed as follows.

47

4 Communication

• P0
N

g0
entries for Q0

N destination processors, none for the remaining QN � Q0
N = (x0 � 1)⇥

Q0
N processors

• Q0
N

g0
entries for PN destination processors, none for the remaining PN � P0

N = (y0 � 1)⇥
PN processors

This means that a method akin to the previous algorithm wherein we schedule communication
class by class is no longer feasible. This would lead to a schedule in which, in every
communication step, wthere is no longer a permutation of either every sending processor
or every receiving processor (whichever set is smaller). This is obviously inefficient, as it
means we are missing out on possible contention-free communications in every step: we
would need more communication steps to compensate, which increases the total cost of the
schedule. What we must do is determine the number of communication steps we can feasibly
achieve: as each processor can only send or receive one message per step, the minimum
number of communication steps is necessarily limited by the number of messages the source
processor that communicates with the most destination processor sends, mR, or the number
of messages the destination processor that communicates with the most source processors
receives, mC. Proposition 5 in section 4.4.2 of the paper states these values are defined as
shown in Equation 4.21, assuming communication is not all-to-all, so g > (x + y � 1),. This is
assumed from here on out.

mR =
Q0

N
g0

⇥
⇠

x + y � 1
y0

⇡

mC =
P0

N
g0

⇥
⇠

x + y � 1
x0

⇡ (4.21)

Proof of this proposition can be found in the same section. Now we know the number of
steps H is at minimum max(mR, mC). Knowing this, there are now have two ways forward in
defining the algorithm: either achieving exactly that minimum step number, or minimizing
the total cost of the schedule according to the earlier definition, which could lead to a greater
amount of steps. With either method, the paper makes use of a bipartite matching. The
communication taking place can be represented as a weighted graph G = (V, E), vertices and
edges respectively. The vertices then consist of P [Q, the sending and receiving processors,
which are always considered separate sets here even if they might not be disjoint in reality.
The edges then consist of pairs (pi, qj) that communicate so all pairs in classes k where
k 2 [1 � x, y � 1](modg). Their weight is equivalent to the length of the message sent. G is a
bipartite graph: in other words, its vertices can be divided into two disjoint sets (in this case,
P and Q) and for any edge (pi, qj), pi is member of one set (in this case P) and qj of the other
(in this case Q).

The degree of G is the maximum degree of its vertices dG, that is to say, the largest amount
of edges connected to any one vertice. As the vertices consist of the source and destination
processors and the edges are the messages sent, this is naturally equal to what was determined
earlier, max(mR, mC). This degree is in turn equal to the edge coloring number of the graph,

48

4 Communication

as it is bipartite, as dictated by the König’s edge coloring theorem. By definition, edge coloring
means dividing edges into different groups such that no two edges in the same group are
incident - they do not share a common vertice. These groups are called maximum matchings.
The edge coloring number, then, is the minimum amount of colors (matchings) needed to
make this possible. Translating this to our case, this means the amount of communication
steps needed to divide up the communicating pairs such that no two pairs in a step share the
same source or destination processor.

Knowing this number is dG = max(mR, mC), it is easy now, to optimize for the first criteria,
so, creating a schedule with the minimum number of steps. We must iterate dG times and, in
each step, extract from E a maximum matching that saturates all maximum degree vertices.
This means that all of the vertices with the most amount of edges left over are included in
the matching of a given step - i.e. the ones that send or receive in every step. In choosing
these matchings, it is logical to pick them such that in every step, it is a matching with the
maximum weight. Weight being defined as the sum of the weight of all edges in the matching.
The schedule then consists of dG steps, each one performing all the communications between
the processor pairs in a given matching.

On the other hand, if we want to optimize for total cost of all steps, the paper suggests
making use of a greedy algorithm. Here we must simply select maximum weighted matchings
iteration after iteration until the whole graph has been consumed.

For both algorithms, the following model is used. First, A is defined, the |V|⇥ |E| sized
incidence matrix of G, which means that aij = 1 if edge j is incident to vertex j, 0 otherwise.
Then, a set of vectors s 2 Q|E| is considered for the matching. These are defined by the
following two criteria :

• s(e) � 0 8e 2 E

• Âv2e s(e)  1 8v 2 V

In short, s(e) = 1 if and only if edge e is selected in the matching. For the sake of this
matching algorithm, this set of vectors can be written as shown in Equation 4.22.

s � 0, A ⇥ s  b, where b =

0

BBB@

1
1
...
1

1

CCCA
2 Q|V| (4.22)

These restrictions on s are very important: naturally, it makes no sense for the vector defining
the processor pairs involved in a communication step to have entries > 0. In addition, A ⇥ s
being upwards bounded by a vector of 1’s is necessary, because an entry > 1 at any point
in the vector would imply two edges in the matching containing the same vertice. In other
words, contention, which we want to avoid.

49

4 Communication

Now, in order to find the maximum weighted matching needed for the steps of both algorithms
(one to minimize costs, one to minimize number of steps), we must determine s such that
it maximizes ct ⇥ s with c 2 N|E| being the weight vector of the edges. All conditions
for s described above still apply. This makes sense intuitively: s(e) is 1 exactly when the
edge is included in the matching, so ct ⇥ s thus sums the weights for all edges included
in the matching, which is what we aim to maximize. This is all that is necessary in order
to minimize the total cost using the greedy algorithm: simply determining this maximum
matching iteratively until all steps are concluded. In order to minimize the number of
communication steps, one condition for the value of s is adjusted: for each vertex v at position
i of the vector b, the constraint regarding (A ⇥ s)i  bi becomes (A ⇥ s)i = bi. This is because
in order to minimize the number of steps, all vertices of maximum degree, i.e. processors
that send/receive the most messages, must send/receive in every step. This is what bounds
the number of steps to dG = max(mR, mC), as was discussed earlier.

Let us illustrate one step of the algorithm for an appropriate case. Consider a redistribution
from cyclic(2) on 5 processors to cyclic(5) on 6 processors for an array of size 30. In this
case, gcd(x, QN) = gcd(2, 6) = 2 6= 1 and gcd(y, PN) = gcd(5, 5) = 5 6= 1 - clearly, we do
not have an even distribution across classes. Furthermore, gcd(x, y) = gcd(2, 5) = 1 and
x + y � 1  gcd(PN ⇥ x, QN ⇥ y) = 2 + 5 � 1  gcd(5 ⇥ 2, 6 ⇥ 5) ⌘ 6 < 10. In other words,
we do not have all-to-all communication. Furthermore, this is a general case redistribution
where y 6= kx and we have different processor sets. This makes it a case that would be
impossible to handle using previous algorithms. In this paper we simply construct the
respective communication graph and weight table after index computation, which can be seen
in Figure 4.2 and Table 4.12 respectively. For this example, extracting maximum matchings
is relatively trivial - in the first step, there are clearly multiple options for such a matching.
One such example would be: (p0, q0), (p1, q2), (p2, p4), (p3, q1), (p4, q3). Continuing this way,
we might arrive at the schedule shown in Table 4.13, with both the greedy or the stepwise
algorithm. Interesting to note here is that there are alternative schedules that are just as
optimal depending on the first matching.

p0

p1

p2

p3

p4

q0

q1

q2

q3

q4

q5

Figure 4.2: Weighted, bipartite graph of the
communication between P and Q

p0 p1 p2 p3 p4

q0 2 2 1 – –

q1 – – 1 2 2

q2 2 2 1 – –

q3 – – 1 2 2

q4 2 2 1 – –

q5 – – 1 2 2

Table 4.12: Weights of edges in graph

50

4 Communication

k / p p0 p1 p2 p3 p4

k0 0 2 4 1 3
k1 2 4 1 3 5
k2 4 0 2 5 1
k3 – – 3 – –
k4 – – 3 – –

Table 4.13: A possible communication matrix for the problem described above, using the
bipartite matching scheme

Overall, it can be said that this paper is somewhat of a milestone: it expands the algorithm
for acquiring an optimal schedule to a much more general format than the previous works,
which essentially required use of the multi-phase method for a redistribution that was not in
the format of the one-divides-the-other case. Furthermore, the schedule is derives is optimal.
The only problem is that the algorithm itself has a very high complexity. This is because
the best algorithm for weighted, bipartite matching at the time, the Hungarian method has
a cost of O(|V|3). Then, since up to max(PN , QN) iterations of this algorithm are required
to produce the schedule and |V| = PN + QN , we end up with an algorithm with a runtime
complexity in O((PN + QN)4), which is obvious problematic for larger processor sets. This
means that while it may optimize communication, the algorithm itself is not necessarily an
optimal way to arrive at that schedule. It is worth noting, however, that there is a chance this
runtime could be improved upon using newer, potentially faster solutions to the problem of
weighted, bipartite maximum matching (the assignment problem).

4.2.6 1999: Efficient Algorithms for Block-Cyclic Array Redistribution Between
Processor Sets

This paper [2] deals with the problem of communication scheduling regarding redistribution
of the one-divides-the-other case, more specifically, cyclic(x) to cyclic(kx) from PN to QN
processors. The paper does not specifically delve into multidimensional redistribution and
focuses on the one-dimensional case, developing a new algorithm making use of generalized
circulant matrix characteristics to determine an optimal schedule. The goal is to create a
schedule that uses the minimum number of communication steps and fully utilizes network
bandwidth. Primarily, the purpose of this algorithm is to compute the optimal schedule
quickly, much unlike the paper we just covered. Compared to previous papers that covered
the one-divides-the-other case, it stands out by covering the case where the source and
destination processor sets are different.

Much like the papers [1] (subsection 4.2.3) and [18] (subsection 4.2.5), this paper restricts itself
strictly to observing the first superblock of elements in the array that is to be redistributed.
Since this paper deals with the one-divides-the-other case, this is once again defined as
L = lcm(PN , k ⇥ QN). As such, in order to represent both the initial and the final distribution,

51

4 Communication

only the first superblock needs to be considered. Then, the source distribution can be
represented as a two-dimensional table Dinit with the dimensions (L ÷ PN) ⇥ PN . Each
column stands for a source processor pi and each row is a specific local block index lbi. The
entries of the table, then, are the indexes of the global block stored at the respective local
block index on the processor. Df inal is the corresponding table for the destination distribution,
with the dimensions (L ÷ QN)⇥ QN . Table 4.14 shows an example of Dinit for a redistribution
from cyclic(1) on 4 processors to cyclic(2) on 6 processors.

index / p p0 p1 p2 p3

lb0 0 1 2 3
lb1 4 5 6 7
lb2 8 9 10 11

Table 4.14: Dinit for the problem described above

Additionally, the destination source processor table T is defined. It is the same as Dinit except
instead of storing the global array index as its entries, it stores the destination processor
the corresponding local block on the respective processor is sent to. The example Dinit we
constructed earlier would have the corresponding T shown in Table 4.15.

index / p p0 p1 p2 p3

lb0 0 0 1 1
lb1 2 2 3 3
lb2 4 4 5 5

Table 4.15: T corresponding to the earlier Dinit

T can now be viewed as a potential schedule for converting from Dinit to Df inal , where each
row i represents a communication step ki. This is identical to the concept of a communication
matrix first described in this chapters introduction and then used later in [1] (subsection 4.2.3.
Naturally, using T as the schedule is an inefficient scheme, as there is contention in several
steps, since more than one source processor sends to the same destination processor. Therefore,
the goal is now to reorganize the elements of T into Csend, such that Csend achieves a contention-
free communication if communication is scheduled according to rows. Of course, in this
conversion from T to Csend, elements can only be changed row wise: since each column
represents a processor, any changes between columns represents inter-process communication,
which only occurs using the schedule, not while constructing it. What this in-column
reorganization is meant to achieve is transforming the distribution table T into a generalized
circulant matrix, where each row consists of a permutation of some PN sized subset of
0, . . . , QN � 1. Here it is assumed QN � PN .

A generalized circulant matrix is defined as an M ⇥ N matrix, such that the matrix can
be divided to submatrices of size m ⇥ n, where M mod m = 0 and N mod n = 0, so, M
is a multiple of m and N and N a multiple of n. Then, the block matrix consisting of the

52

4 Communication

submatrices is a circulant matrix, as are the individual submatrices. A circulant matrix of size
m ⇥ n is defined by the following two criteria:

1. If m  n, row j = row 0 circularly right shifted j times, 0  j < m

2. If m > n, column l = column 0 circularly down shifted l times 0  l < n

Using these definitions of a circulant matrix and a generalized circulant matrix, we can
demonstrate examples for both the case where m > n and the one where m < n in Figure 4.3.
Furthermore, we devise a generalized circulant matrix where N = M = 8 and n = m = 4, as
shown in Figure 4.4. The respective equivalent submatrices are colored in white and grey
respectively.

2

4
1 2 3 4
4 1 2 3
3 4 1 2

3

5

2

664

1 4 3
2 1 4
3 2 1
4 3 2

3

775

Figure 4.3: Two circulant matrices - on the left: m = 3, n = 4, on the right: m = 4, n = 3

It is very clear why working with (generalized) circulant matrices here is sensible: their
definition already guarantees that the first criteria for a process send schedule/communication
matrix are met, assuming the very first row is a permutation of a subset of Q. As a reminder,
those two criteria, adjusted slightly to consider that Q can be different from P in the problem
this paper is solving for:

1. The rows of the process send schedule are permutations of the process ranks, so,
permutations of a PN sized subset of 0, 1, . . . , QN � 1

2. The ith column of the send schedule is a permutation of the processes to which process
pi must send data

1 2 3 4 5 6 7 8
4 1 2 3 8 5 6 7
3 4 1 2 7 8 5 6
2 3 4 1 6 7 8 5
5 6 7 8 1 2 3 4
8 5 6 7 4 1 2 3
7 8 5 6 3 4 1 2
6 7 8 5 2 3 4 1

Figure 4.4: A generalized circulant matrix

53

4 Communication

In a circulant matrix, if the first row meets the first criteria, so do all other rows. This is
also true for the generalized variant. Assuming for now that this is the case, we know
criterion 2 is also met: because the generalized circulant Csend is constructed from T only
by moving around elements in a given column (e.g. belonging to the same processor), we
know it must be given, because it is already given by T, per definition, as T represents all
communication within a superblock, which is representative of all communication of the
whole redistribution. Now, all that is left is, firstly, the way to efficiently compute the entries
of Csend. Secondly, demonstrating that Csend is indeed simply a reorganized version of T.
Then, finally, demonstrating that the first row of said matrix does indeed consist of PN distinct
elements.

The way to determine the send schedule differs somewhat depending on what type of com-
munication there is, specifically, whether it is all-to-all or not. The criteria used to determine
whether or not this is the case is more or less the same one from [18] (subsection 4.2.5)
and also follows from the basic redistribution equation: if gcd(PN , k ⇥ QN) > k, we do not
have all-to-all communication, otherwise we do. It slightly differs from the criteria in the
aforementioned paper only because here it is not assumed that gcd(x, kx) = 1 (and that
message lengths are scaled accordingly if this is not the case). It is important to note, when
discussing the all-to-all case, this paper assumes that not all processors send messages of the
same length, because if they do, the result is simply a trivial round robin schedule, which
need not be discussed further.

In practice, determining the entries of Csend is actually very simple in all cases. They are
simply computed according to Equation 4.23 with variables as defined by Equation 4.24 if the
communication is not all-to-all.

Csend(i, j) = ((n ⇥ (j1 � i1)) mod P1 + ((i2 � j2) mod Q1)⇥ P1) mod QN (4.23)

P1 =
PN

G1
G1 = gcd(PN , k) Q1 =

QN

G2
G2 = gcd(P1, QN) k1 =

k
G1

i1 =
i

Q1
j1 =

j
G1

i2 = i mod Q1 j2 = j mod G1

m, n s.t. n ⇥ k1 � m ⇥ P1 = 1

(4.24)

Consider a redistribution from cylic(2) on 4 processors to cyclic(4) on 6 processors. In this
case, k = 2 and gcd(PN , k ⇥ QN) = gcd(4, 12) = 4 > 2, meaning we do not have all-to-all
communication. The size of the communication table is given by L

PN
⇥ PN = 12

4 ⇥ 4 = 3 ⇥ 4.
Then, applying the above formulas to each entry (i, j), indexed from 0, we arrive at the results
shown in Table 4.16. The schedule is contention-free and minimal.

We can also see that the resulting communication matrix for the schedule is indeed a
generalized circulant matrix: it can be viewed as a 1 ⇥ 2 block matrix, which is necessarily
circulant. The two blocks, each of size 3 ⇥ 2, are also circulant matrices, since we can observe

54

4 Communication

that for both of them, the second column is merely the first column circularly down shifted
by one. This means that the conditions for a generalized circulant matrix are fulfilled: the
communication matrix has been split into blocks such that the block matrix and the individual
blocks are all circulant matrices.

k / p p0 p1 p2 p3

k0 0 2 1 3
k1 4 0 5 1
k2 2 4 3 5

Table 4.16: A communication matrix for the problem described above, derived using a gener-
alized circulant matrix algorithm

Moving on to the case in which we do have all-to-all communication, the approach must be
changed slightly, because some processors now potentially send more than one local block to
the same destination processor. gcd(PN , k⇥Q)  k, the condition for all-to-all communication,
implies that the column size lcm(PN , k ⇥ QN)÷ PN � QN . This is because of the mathematics
demonstrated in Equation 4.25.

lcm(PN , k ⇥ QN)÷ PN � QN

⌘lcm(PN , k ⇥ QN)÷ PN ⇥ gcd(PN , k ⇥ QN) � QN ⇥ gcd(PN , k ⇥ Q)

⌘PN ⇥ k ⇥ QN ÷ PN � QN ⇥ gcd(PN , k ⇥ QN)

⌘k ⇥ QN � gcd(PN , k ⇥ QN)⇥ QN � k ⇥ QN

(4.25)

As such, we can construct a send schedule of size QN ⇥ PN . QN can also be written as Q1 ⇥ G2,
with Q1 being the column size of each submatrix making up the total generalized circulant
matrix that is the send schedule according to the proof of Theorem 1. In turn, the block matrix
made up of these submatrices has size K1 ⇥ P1 according to the same theorem, which also
means L

PN
can be written as K1 ⇥ Q1. This means that, essentially, every row of submatrices

with index i � G2 can be folded into the row with index i mod G2. Because L
PN

mod QN is not
necessarily 0, this means some processors must send longer messages than others. Precisely,
the first (K1 mod G2)⇥ Q1 communication steps now involve sending messages of (relative)
size d K1

G2
e and the others ones of size b K1

G2
c. In terms of computing the schedule, all it means is

that we now need to compute QN rows of PN entries using the algorithm, as opposed to the
previous lcm(PN , k ⇥ QN)÷ PN rows.

For example, given a redistribution from cyclic(1) on 4 processors to cyclic(3) on 6 processors,
we have gcd(4, 3 ⇥ 6) = 2 < 3 = k, hence, all-to-all communication. Before folding over the
rows, we would have a column size of lcm(4, 3 ⇥ 6)÷ 4 = 9 > 6 = QN . Hence, we would fold
over the last 3 rows into the first 3: the new schedule now has the dimensions 6 ⇥ 4 and in
the first 3 communication steps each processor sends two blocks, in the final 3 just one block.

The process of arriving at the earlier formula is an extensive proof that demonstrated in
the proof for Theorem 2 in section 4.2 of the paper. This proof in turn requires parts of the

55

4 Communication

proof of Theorem 1, also in section 4.2 of the paper, to function. What is important is that
this formula is the result of Theorem 1. Theorem 1 states that Csend can be derived from T
by column-wise rearrangement, and that the first row Csend, and thereby every other row,
contains PN distinct elements of Q. The proof for this theorem that shows these characteristics
is very extensive, too much to reasonably include it in this summary.

As a whole, this paper represents a marked improvement over [18] (subsection 4.2.5) in terms
of its performance - since every processor only needs to apply the formula to the parts of the
communication table relevant to itself, that is to say a single column for each source processor.
Then taking into account that destination processors must also use a similar formula to
compute the receive schedule, the runtime complexity is in O(max(PN , QN) because a source
processor must at most compute an entry for every destination processor in the case of
all-to-all communication, and vice versa. Furthermore, in the time it takes to compute the
schedule we can also compute the index computation using a table called Dsend with the
same dimensions as Csend which computes each local block number corresponding to the
destination processor entry in Csend. This means that it is possible to perform both schedule
computation and index computation in O(max(PN , QN).

4.3 Performance Comparison

When comparing the performance of scheduling, it is sensible to divide it into three parts:
first, the comparison in performance between an unscheduled communication and a sched-
uled communication. This allows us to gauge the performance benefits of communication
scheduling in general, because all of the algorithms we discussed compute optimal schedules.
Then, secondly, the performance of the algorithms we discussed in the previous section - how
do they compare in terms of the time it takes to actually compute the optimal schedule, and
how do the computed schedules differ. Here we have to be careful and take into consideration
that many of these algorithms only consider the case of one-divides-the-other redistribution.
Finally, we want to evaluate how a single-phase redistribution compares to multi-phase for
several cases.

4.3.1 Scheduled vs non-scheduled

The 2001 paper [8] provides such a comparison, using its own indexing algorithm, which is
similar to the PITFALLS method. It also uses its own scheduling algorithm, similar in nature
to that of [17] (subsection 4.2.2), which provides a contention-free schedule in which only
the processors communicate that must necessarily exchange messages - in short, the data
transfer time should be similar to the results of the generalized matrix based algorithm from
[2] (subsection 4.2.6), notwithstanding inefficiencies due to not taking into account message
sizes.

It compares a case using a one-dimensional array of size N = 120.000, varying the number

56

4 Communication

of processors PN from 4 to 256 and using 3 communication steps, presumably the optimal
number. The specific distribution parameters of the source and destination distribution are
not stated, though we know that it must be a cyclic(x) to cyclic(kx) one-divides-the-other case,
as that it all the this papers algorithm deals with. What we observe is that the scheduled
communication outpaces the unscheduled one in every case, with the speed-up increasing
significantly as the number of processors does. At the minimum amount of 4 processors, the
speed-up appears to be roughly 1.15x, and at the maximum of 256 processors, more than 4x.
This appears to strongly support the conclusion that scheduling is worthwhile. This would
also be backed up by the general consensus that contention slows down communication -
synchronous algorithms with contention in each step are slower than ones without contention.
It is nevertheless important to note that a brute force schedule that is asynchronous in nature,
such as the one presented in [1] (subsection 4.2.3) can nonetheless be faster, as is shown both
in that paper and in the 2006 paper [19]. However, this carries with it the disadvantage of
much greater memory requirements.

The performance analysis done in [1] (subsection 4.2.3) for cyclic(x) to cyclic(kx) redistribution,
gives us a similar insight. Performance tests are done for multiple algorithms: the initial
versions of the synchronized and unsynchronized algorithm presented in paper, as well
as the synchronous algorithm using a random schedule and the synchronous algorithm
with the optimal schedule computed by the scheduling algorithm. They were tested for
several different values of PN (source and destination set always equal): 3, 10, 16, 32 and
64. Furthermore, k was varied from 2 to 22. The results were as follows: the synchronized
communication algorithm had significantly worse performance than the unsynchronized
version, taking over 3 times the amount of time if k = 22 and PN = 64. Generally, the higher k
and the greater PN , the worse the performance of the synchronized communication algorithm,
both absolutely and comparatively. This can be attributed to the fact that more processors open
the door to a greater amount of possible contention and hotspots. Furthermore, the schedule
provided by the basic version of a synchronized algorithm is especially contention heavy with
high values of k, because communication steps will have up to max(PN , k) processors sending
to the same processor.

When the schedule is randomized, as predicted, the performance improves significantly and
the impact of higher k and PN declines - the random schedule is only roughly 30 percent slower
than the unsynchronized version. The synchronized algorithm with the optimal schedule
does even better - it is only marginally worse than the unsynchronized version, to the point
it is almost negligible. In short, the conclusion we draw is the following: the difference in
performance between an unsynchronized communication algorithm and a synchronization
algorithm using an optimal schedule is only slight - however, the large benefits with regards
to memory usage means scheduling is usually still worthwhile.

57

4 Communication

4.3.2 Schedule time comparison

The paper [2] (subsection 4.2.6) provides a very interesting comparison between the gen-
eralized circulant matrix based algorithm it develops, as well as the caterpillar algorithm
developed in [13] (subsection 4.2.4) and the bipartite matching scheme described in [18]
(subsection 4.2.5). These algorithms are especially of interest to us because they all allow for
redistribution from one processor set to another and are among the most modern of the ones
covered in this thesis. Furthermore, for the subsets of the problems these papers address that
are covered by earlier papers such as [1] (subsection 4.2.3) and [17] (subsection 4.2.2), the
schedules produced are just as optimal.

In this paper both complexity analysis for the scheduling algorithm as well as the actual
communication time resulting from the schedule are provided. In doing so, the paper
considers two cases: one with non all-to-all communication and another with all-to-all
communication such that not all message sizes are equal. Furthermore, several example
redistributions are used to show how the algorithms compare in practice, all of which consider
only the cyclic(x) to cyclic(kx) case. The third case with all-to-all communication and equal
message sizes is not only trivial, but leads to the same result for all three algorithms, so it is
not considered.

The complexities of the scheduling algorithms themselves were explained in the earlier
sections pertaining to the papers themselves. The caterpillar algorithm as well as the gen-
eralized circulant matrix algorithm are in O(max(PN , QN)) for cases of both all-to-all and
non all-to-all communication while the bipartite matching scheme is in O((PN + QN)4) for
non all-to-all communication, but does not explicitly consider the second case. This means
that in terms of the time it takes to compute the schedule, the caterpillar algorithm and the
generalized circulant matrix algorithm are roughly evenly matched, both far ahead of the
bipartite matching scheme.

The actual data transfer time is modelled in terms of two quantities: ts and te, the start-up
time and the unit transmission time respectively, which we are acquainted with from the
papers [15] (subsection 4.2.1) and [17] (subsection 4.2.2). Much like it was explained in these
papers, one unit of the start-up time cost is invoked for each communication and one unit of
the transmission time cost for each unit of message size. So a message of size m being sent
from one processor to another has a total cost of ts + m ⇥ te. As we explained before, the cost
of a communication step is thus dominated by the largest message sent as everything is sent
in parallel. Therefore, to determine the data transfer cost of the three algorithms, one must
know the number of communication steps and the size of the messages being sent.

The number of communication steps is given by Ls = lcm(PN , k ⇥ QN)÷ PN in the case of
the generalized circulant matrix algorithm, which is also the minimum. In the caterpillar
Algorithm, this amount is max(PN , QN) because it does not check explicitly if any given
pair of processors communicate, but rather iterates once through all of them. The bipartite
matching scheme can also guarantee the minimum number of steps, so, the same as the matrix
algorithm. Furthermore, as all messages sent are of the same size M

Ls
with M = N

PN
assuming,

58

4 Communication

as this analysis does, that we are dealing with cyclic(x) to cyclic(kx) redistribution and that we
are in the case of non all-to-all communication. In case we have all-to-all communication with
different message sizes, things change: the communication step amount of the matrix based
algorithm is now also max(PN , QN) and the message size in the first blocks is increased, as
we saw when analyzing the paper. Precisely speaking, the average message costs changes to
M ÷ max(PN , QN). For the caterpillar algorithm, message sizes are now hard to predict: the
maximum size of a message in each step is considered individually, which is described as
mi for step i. Then, assuming QN � PN , as is the case in all of this papers tests, we have the
following communication costs, shown in Table 4.17 and Table 4.18.

Data transfer cost Schedule comp. cost
Caterpillar algorithm QN ⇥ (ts + M

Ls
⇥ te) O(QN)

Bipartite scheme Ls ⇥ (ts + M
Ls
⇥ te) O((PN + QN)4)

Matrix algorithm Ls ⇥ (ts + M
Ls
⇥ te) O(QN)

Table 4.17: Data transfer cost and schedule computation cost for non all-to-all communication

Data transfer cost Schedule comp. cost

Caterpillar algorithm QN ⇥ ts + te ⇥
QN�1

Â
i=0

mi O(QN)

Bipartite scheme – –
Matrix algorithm QN ⇥ ts + M ⇥ te O(QN)

Table 4.18: Data transfer cost and schedule computation cost for all-to-all communication

Overall, when it comes to non all-to-all communication the caterpillar algorithm and the
matrix algorithm take a similar amount of time to construct the schedules, but the schedule
produced by the matrix algorithm is superior: because Ls < QN in the case of all-to-all
communication, the data transfer cost when using the matrix algorithm is less. The bipartite
matching scheme produces the same schedule as the matrix algorithm, but is far inferior
to both others ín terms of the schedule construction time. Switching the focus to all-to-all
communication, we observe the change in the data transfer cost: while it is not obvious at first
glance, the matrix algorithm comes out ahead again compared to the caterpillar algorithm.
Since it guarantees that all messages in one communication step are of the same size, this
means we minimize the impact of the different message sizes. The caterpillar algorithm gives
no such guarantees, hence, in theory, the performance of the matrix algorithms schedule will
always be greater or equal.

In practice, the results were tested for three examples, all of them cyclic(x) to cyclic(kx)
redistributions. The parameters of the examples can be seen in Table 4.19.

The first tests were for non all-to-all communication, and what was measured was total
redistribution time - that is to say, schedule computation time, index computation time,
packing/unpacking time and data transfer time. For all three examples, the size of the array

59

4 Communication

PN QN k
Example 1 18 76 8
Example 2 30 66 15
Example 3 46 50 25

Table 4.19: Parameters for the first set of examples that are tested

to be redistributed varied from 808.704 to 14.174.980. The results were similar for all three
examples: the caterpillar algorithm had by far the worst performance, whilst the matrix
algorithm and bipartite matching scheme were closer, with the greater scheduling time of
the bipartite matching scheme making it inferior in all cases. The absolute gap between the
caterpillar algorithm and the other two grows with growing array size, but proportionately it
stays roughly the same. Going from example 1 to example 3, as the ratio of QN to PN grows
smaller and k grows larger, the gap between the caterpillar algorithm and the other two
decreases. In example 1, the speed-up of the matrix algorithm over the caterpillar algorithm is
between 1.76 and 2.06x. In example 2, it is also roughly 2x and in example 3, it is reduced to
about 1.6x. The gap in performance is the result of the gap in the number of communication
steps: for example 1, the caterpillar algorithm requires around 78 steps, where as the bipartite
matching scheme and the matrix algorithm only need 39. Hence, roughly a 2x speed-up. The
same holds for the other examples.

Meanwhile, the gap between the bipartite matching scheme and the matrix algorithm comes
down largely to the size of the array. For a small array, in the examples, the bipartite matching
schemes scheduling time can make up to 17 percent of the total redistribution time. Even
more severely, using a redistribution from 40 to 56 processors with k = 25 and an array size
of roughly 900.000, it takes up more than 50 percent of the time of data transfer itself, which
is highly significant.

The second set of tests covering all-to-all communication uses examples with different values
of k, shown in Table 4.20.

PN QN k
Example 1 18 76 8
Example 2 30 66 8
Example 3 46 50 18

Table 4.20: Parameters for the second set of examples that are tested

Here, the redistributions time are significantly closer together for all examples and the matrix
algorithm only has a speed-up of up to 1.25x over the caterpillar algorithm at high array sizes.
At smaller array sizes the start-up costs and other aspects of redistribution time dominate so
that the speed-up becomes almost negligible.

To summarize, the preference for using the three algorithms in cases of cyclic(x) to cyclic(kx)

60

4 Communication

redistribution would be as follows. In the case of a redistribution involving non all-to-all
communication, the clear favorite is the generalized circulant matrix based algorithm, as it
produces an optimal schedule with less costs than the bipartite matching scheme and also
deals with the index computation simultaneously. However, for very large array sizes, the two
are close to interchangeable, as the schedule computation costs become almost negligible as
long as the processor sets are not excessively large. The caterpillar algorithm, by comparison,
creates a very sub-optimal schedule, making it the worst choice by a clear margin. If we are
dealing with an all-to-all communication involving different message sizes, and the choice is
only between the caterpillar algorithm and the generalized circulant matrix based algorithm,
the choice is still clearly the latter due to the more optimal schedule. At small array sizes,
however, this gap can also be considered negligible due to the dominance of other factors,
such as start-up costs.

On the other hand, if we are to consider general case redistributions, where one parameter is
not a multiple of the other, the results becomes a lot less clear. Both the caterpillar algorithm
and the bipartite matching scheme are capable of doing redistributions of this kind in a single
step - between them, it seems likely based on the results we discussed, that the bipartite
matching scheme would have the edge. However, if we take into account the generalized
circulant matrix based algorithm, we have to consider how multi-phase redistributions stack
up to single-phase redistributions and in which case one may be preferable to the other. The
theoretical aspect of this is already covered in [15] (subsection 4.2.1) and [17] (subsection 4.2.2).

4.3.3 Single-phase vs multi-phase

This subsection will serve to illustrate some practical examples of how single phase and
multi-phase redistribution could compare based on the algorithms and the tests done in [17]
(subsection 4.2.2). Here it is important to note that these tests only consider the algorithms
of said paper, which are largely inferior to ones presented in later papers such as the ones
discussed in the earlier section. Furthermore, they test how the two strategies compare
pertaining to the case of cyclic(x) to cyclic(kx) redistribution, when one of the appeals of a
multi-phase strategy is their application of algorithms that only work for the one-divides-the-
other case, to the general case.

The first test compares the two strategies for a redistribution of an array from cyclic(240)
to cyclic(8) on 32 processors. The array to be redistributed consists of elements of size 8
bytes. The size of the array is varied from below 10.000 up to more than 120.000, which is
markedly smaller than a lot of the test cases used in other papers. The second test does the
same, except the redistribution is cyclic(192) to cyclic(8), in other words, a smaller k is used.
The multi-phase redistribution is, in both cases, a two-step redistribution. The intermediate
distribution is chosen as cyclic(40) for the first case and cyclic(48) for the second. In all cases,
the tests measure total redistribution time: much like in the previous section, that means
indexing time, packing/unpacking time and communication time.

The test results for the first case show that the multiphase redistribution outperforms the

61

4 Communication

single-phase up to an array size of roughly 100.000, at which point the single-phase strategy
does better. In the second test case, we see similar results: the single-phase strategy starts
outperforming the multi-phase strategy at an array size of around 90.000. This can be
attributed to the increase in message size in each communication step resulting from the
increased array size: the success of the multi-phase method depends on the significance
of the total start-up time costs compared to the total data transfer costs. Rising array size,
all else equal, means the single-phase strategies relative times will keep improving. The
lower array size threshold needed for the single-phase strategy to start outperforming the
multi-phase strategy in the second test case compared to the third is due to the smaller k. For
a redistribution from cyclic(240) to cyclic(8), k = 30, where for cyclic(192) to cyclic(8), k = 26.
A smaller k means a greater ratio of data transfer to communication start-up time, because
the total amount of communication steps across all redistributions decreases, which means
less start-ups.

The conclusion we draw is that a multi-phase approach can clearly be preferable to a single-
phase approach even if the algorithms being used for each distribution are evenly matched.
The optimal conditions for this are a relatively small array size and, in the case of a cyclic(x)
to cyclic(kx) redistribution, large k: in other words, a significant gap in the block sizes of the
source and target distributions. The exact numbers in which one may be preferable to the
other depend on the ratio of ts to te, the message start-up and data transfer times.

62

5 Discussion

5.1 Conclusion

Redistributing between block-cyclic arrays is of great importance for improving performance
of certain algorithms, such as for example the Alternating-direction Implicit method or
Fast-Fourier Transform. Such redistribution is generally split into two phases. First is index
computation, where the data each source processor must send and what data each destination
processor must receive is calculated. We found that the basic-cycle calculation method from
[3] and later [14] is generally the most efficient when it comes to pure index computation, as
its runtime is independent of factors such as the size of the array being redistributed or the
amount of processors involved in the redistribution, which are usually scaling factors that
can greatly hinder the performance for very large cases. [14] and [5] also extend this method
to be able to handle arbitrary processor sets as well as multi-dimensional arrays.

The second part of array redistribution is communication scheduling: in order to minimize
both memory requirements and redistribution time, it is sensible to use a synchronous
communication algorithm with scheduling that minimizes node contention. In order to
do this, an efficient communication schedule that deals away with node contention must
be computed. We found that the best way to do this is in the case of a redistribution
involving block sizes that are multiples of one another (e.g. cyclic(x) to cyclic(kx)) is to use
the generalized circulant matrix formulism devised by [2]. This formulism can also be used
for redistributions with no limits on the nature of the source and distribution factors. This is
done by using a multi-phase redistribution strategy in which a series of redistributions are
performed. This trades off a decrease in the amount of communication start-ups for increased
total data transfer time, and is thus worthwhile especially for smaller array sizes. On the
other hand, the bipartite matching scheme presented in [18] can perform all redistributions
of one-dimensional arrays directly, but the schedule computation time is comparatively
much higher. Both of these methods can handle arbitrary source and target processor sets,
but do not explicitly provide an extension to the multidimensional case. Much like in the
one-dimensional case, however, a dimension-by-dimension redistribution involving a series
of of one-dimensional redistributions is feasible.

63

5 Discussion

5.2 Future work

The topic of array redistribution between processor sets is very wide and this thesis focuses
on only a small subsection of it. An interesting extension to this paper would be to focus on
redistribution as it pertains to irregular distributions. The paper "Efficient Data Redistribution
Algorithms From Irregular to Block Cyclic Data Distribution" [20] represents an interesting
starting point. It focuses on one and two-dimensional irregular to block-cyclic redistribution
on a fixed processor set. Specifically, it presents algorithms covering the following cases.

• one-dimensional, irregular to two-dimensional, block-cyclic

• one-dimensional, irregular to one-dimensional, regular

• two-dimensional regular to two-dimensional, regular

Furthermore, there are some more specific forms of redistribution that may also be interesting
to examine. Take for example the redistribution of sparse matrices, which are often stored
using compressed representations and may need to be treated differently as a result. The
paper "Sparse Matrix Block-Cyclic Redistribution" [21] covers this topic with regards to
block-cyclic redistributions on a fixed processor set. Also, shape changing redistributions
that involve collapsed dimensions could also be studied further, since they are relevant to
algorithms like ADI and FFT [7].

In order to properly apply the work this thesis does to modern systems, it could also be
interesting to look into redistribution within task-based runtime systems specifically designed
to be highly parallel. The papers "Flexible Data Redistribution in a Task-Based Runtime
System" [22] and "Evaluating Data Redistribution in PaRSEC" [23] deal with this topic as it
pertains to both regular and irregular distributions. The focus is on the task-based runtime
system PaRSEC, developed as part of the exascale computing project [24].

Finally, a practical version of this thesis may be relevant as well. While this thesis largely covers
the theoretical basis of redistribution, it is important to note that a lot of the tests performed
are outdated performance wise. As such, looking into how the algorithms presented in this
paper compare to each other on modern architectures using appropriate test cases seems
sensible.

64

List of Figures

2.1 An array of size 18 in a cyclic, block and block-cyclic(3) distribution 4
2.2 An array of size 8 ⇥ 8 distributed in block-cyclic(2, 2) 5
2.3 A 2 ⇥ 2 grid of processors . 5
2.4 A 1 ⇥ 4 grid of processors . 6

3.1 An array of size 16 distributed in cyclic(1), then cyclic(4) 9
3.2 An array of size 20 distributed in cyclic(4), then cyclic(2) 11
3.3 A visual representation of a FALLS (2, 3, 6, 3), each line representing a block . 13
3.4 A visual representation of a FALLS (3, 5, 6, 2), followed by another FALLS (15,

16, 0, 1) each line representing a block . 13
3.5 A visual representation of two FALLS and their intersection 14
3.6 A visual representation of the translation into a local address 16
3.7 An array of size 4 ⇥ 4 colored to depict SLAi,0 and SLAi,1 20

4.1 An array of size 20 distributed across 5 processors, first in cyclic(4), then in
cyclic(2) . 34

4.2 Weighted, bipartite graph of the communication between P and Q 50
4.3 Two circulant matrices - on the left: m = 3, n = 4, on the right: m = 4, n = 3 . . 53
4.4 A generalized circulant matrix . 53

65

List of Tables

3.1 Table that describes SLA’s, DLA’s, SDPP and DDPP for a given problem 19

4.1 Example of a communication matrix . 29
4.2 The trade-offs between single-phase and multi-phase redistribution 32
4.3 Communication matrix for the problem described above 35
4.4 Communication matrix for the problem described above using the algorithm

from the multi-phase method . 36
4.5 Communication matrix for the problem described above using the synchronized

algorithm without scheduling . 38
4.6 Communication matrix for the problem described above using the synchronized

algorithm with random sending order . 39
4.7 Block send schedule for the problem described above, using the synchronized

algorithm with scheduling in the reduced system 42
4.8 Process send schedule for the problem described above, using the synchronized

algorithm with scheduling in the reduced system 42
4.9 Block send schedule for the problem described above, using the synchronized

algorithm with scheduling in the full system . 43
4.10 Process send schedule for the problem described above, using the synchronized

algorithm with scheduling in the full system . 43
4.11 Communication matrix for the problem described above using the caterpillar

algorithm . 44
4.12 Weights of edges in graph . 50
4.13 A possible communication matrix for the problem described above, using the

bipartite matching scheme . 51
4.14 Dinit for the problem described above . 52
4.15 T corresponding to the earlier Dinit . 52
4.16 A communication matrix for the problem described above, derived using a

generalized circulant matrix algorithm . 55
4.17 Data transfer cost and schedule computation cost for non all-to-all communication 59
4.18 Data transfer cost and schedule computation cost for all-to-all communication 59
4.19 Parameters for the first set of examples that are tested 60
4.20 Parameters for the second set of examples that are tested 60

66

Acronyms

ADI Alternating-direction Implicit. 1, 63

BBC Basic-Block Calculation. 20, 22, 26

BCC Basic-Cycle Calculation. 17, 18, 19, 20, 22, 23, 24, 25, 26

CDC Complete-Dimension Calculation. 20, 22

DDPP Destination Distribution Pattern Position. 18, 19

DLA Destination Local Array. 3, 20

FALLS Family of Line Segments. 12, 13, 14, 15, 17

FFT Fast-Fourier Transform. 1, 63

GCD Greatest Common Divisor. 16, 18, 25, 26

HPF High-Performance Fortran. 17, 45

LCM Least Common Multiple. 14, 16, 25, 26

LS Line Segments. 12, 14

PITFALLS Processor Index Tagged Family of Line Segments. 12, 14, 15, 17, 23, 24, 25, 26

SDPP Source Distribution Pattern Position. 18, 19

SLA Source Local Array. 3, 18, 20

67

Bibliography

[1] D. Walker and S. Otto. “Redistribution of block-cyclic data distributions using MPI”.
In: Concurrency: Practice and Experience 8.9 (1996), pp. 707–728. doi: https://doi.
org / 10 . 1002 /(SICI) 1096 - 9128(199611) 8 : 9<707 :: AID - CPE269 > 3 . 0 . CO; 2 - V.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291096-
9128%28199611%298%3A9%3C707%3A%3AAID-CPE269%3E3.0.CO%3B2-V. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9128%28199611%
298%3A9%3C707%3A%3AAID-CPE269%3E3.0.CO%3B2-V.

[2] N. Park, V. Prasanna, and C. Raghavendra. “Efficient algorithms for block-cyclic array
redistribution between processor sets”. In: IEEE Transactions on Parallel and Distributed
Systems 10.12 (1999), pp. 1217–1240. doi: 10.1109/71.819945.

[3] Y.-C. Chung, C.-H. Hsu, and S.-W. Bai. “A basic-cycle calculation technique for efficient
dynamic data redistribution”. In: IEEE Transactions on Parallel and Distributed Systems
9.4 (1998), pp. 359–377. doi: 10.1109/71.667897.

[4] IBM. Distribution Techniques. 2021. url: https://www.ibm.com/docs/en/pessl/5.3.0?
topic=distributions-distribution-techniques (visited on 12/13/2024).

[5] Y.-C. Chung and C.-H. Hsu. “Efficient methods for multi-dimensional array redistribu-
tion”. In: Proceedings. 1998 International Conference on Parallel Architectures and Compilation
Techniques (Cat. No.98EX192). 1998, pp. 410–417. doi: 10.1109/PACT.1998.727299.

[6] S. Blackford. The Two-dimensional Block-Cyclic Distribution. 1997. url: https://netlib.
org/scalapack/slug/node75.html (visited on 02/06/2025).

[7] R. Thakur, A. Choudhary, and G. Fox. “Runtime array redistribution in HPF programs”.
In: Proceedings of IEEE Scalable High Performance Computing Conference. 1994, pp. 309–316.
doi: 10.1109/SHPCC.1994.296659.

[8] G. M. and N. I. “A Framework for Efficient Data Redistribution on Distributed Memory
Multicomputers”. In: The Journal of Supercomputing 20 (2001), pp. 243–246.

[9] S. Ramasulamy and P. Banerjee. “Automatic generation of efficient array redistribution
routines for distributed memory multicomputers”. In: Proceedings Frontiers ’95. The
Fifth Symposium on the Frontiers of Massively Parallel Computation. 1995, pp. 342–349. doi:
10.1109/FMPC.1995.380436.

[10] S. Ramasulamy and P. Banerjee. Automatic generation of efficient array redistribution routines
for distributed memory multicomputers. 1994. url: https://ntrs.nasa.gov/citations/
19940030437 (visited on 02/06/2025).

[11] S. Ramaswamy, B. Simons, and P. Banerjee. “Optimizations for Efficient Array Redistri-
bution on Distributed Memory Multicomputers”. In: Journal of Parallel and Distributed
Computing 38.2 (1996), pp. 217–228. issn: 0743-7315. doi: https://doi.org/10.1006/

68

https://doi.org/https://doi.org/10.1002/(SICI)1096-9128(199611)8:9%3C707::AID-CPE269%3E3.0.CO;2-V
https://doi.org/https://doi.org/10.1002/(SICI)1096-9128(199611)8:9%3C707::AID-CPE269%3E3.0.CO;2-V
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291096-9128%28199611%298%3A9%3C707%3A%3AAID-CPE269%3E3.0.CO%3B2-V
https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291096-9128%28199611%298%3A9%3C707%3A%3AAID-CPE269%3E3.0.CO%3B2-V
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9128%28199611%298%3A9%3C707%3A%3AAID-CPE269%3E3.0.CO%3B2-V
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9128%28199611%298%3A9%3C707%3A%3AAID-CPE269%3E3.0.CO%3B2-V
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9128%28199611%298%3A9%3C707%3A%3AAID-CPE269%3E3.0.CO%3B2-V
https://doi.org/10.1109/71.819945
https://doi.org/10.1109/71.667897
https://www.ibm.com/docs/en/pessl/5.3.0?topic=distributions-distribution-techniques
https://www.ibm.com/docs/en/pessl/5.3.0?topic=distributions-distribution-techniques
https://doi.org/10.1109/PACT.1998.727299
https://netlib.org/scalapack/slug/node75.html
https://netlib.org/scalapack/slug/node75.html
https://doi.org/10.1109/SHPCC.1994.296659
https://doi.org/10.1109/FMPC.1995.380436
https://ntrs.nasa.gov/citations/19940030437
https://ntrs.nasa.gov/citations/19940030437
https://doi.org/https://doi.org/10.1006/jpdc.1996.0142
https://doi.org/https://doi.org/10.1006/jpdc.1996.0142
https://doi.org/https://doi.org/10.1006/jpdc.1996.0142

Bibliography

jpdc.1996.0142. url: https://www.sciencedirect.com/science/article/pii/
S0743731596901422.

[12] R. Thakur, A. Choudhary, and J. Ramanujam. “Efficient algorithms for array redistri-
bution”. In: IEEE Transactions on Parallel and Distributed Systems 7.6 (1996), pp. 587–594.
doi: 10.1109/71.506697.

[13] L. Prylli and B. Tourancheau. “Fast Runtime Block Cyclic Data Redistribution on
Multiprocessors”. In: Journal of Parallel and Distributed Computing 45.1 (1997), pp. 63–
72. issn: 0743-7315. doi: https://doi.org/10.1006/jpdc.1997.1351. url: https:
//www.sciencedirect.com/science/article/pii/S0743731597913514.

[14] C.-H. Hsu, S.-W. Bai, Y.-C. Chung, and C.-S. Yang. “A generalized basic-cycle calculation
method for efficient array redistribution”. In: Parallel and Distributed Systems, IEEE
Transactions on 11 (Jan. 2001), pp. 1201–1216. doi: 10.1109/71.895789.

[15] S. D. Kaushik, C.-H. Huang, R. W. Johnson, and P. Sadayappan. “An approach to
communication-efficient data redistribution”. In: Proceedings of the 8th International
Conference on Supercomputing. ICS ’94. Manchester, England: Association for Computing
Machinery, 1994, pp. 364–373. isbn: 0897916654. doi: 10.1145/181181.181563. url:
https://doi.org/10.1145/181181.181563.

[16] D. K. Panda. “Optimal Phase Barrier Synchronization in K-ary N-cube Wormhole-
routed Systems Using Multirendezvous Primitives”. In: 1993. url: https : / / api .
semanticscholar.org/CorpusID:14256750.

[17] S. Kaushik, C.-H. Huang, J. Ramanujam, and P. Sadayappan. “Multi-phase array redis-
tribution: modeling and evaluation”. In: Proceedings of 9th International Parallel Processing
Symposium. 1995, pp. 441–445. doi: 10.1109/IPPS.1995.395968.

[18] F. Desprez, J. Dongarra, A. Petitet, C. Randriamaro, and Y. Robert. “Scheduling block-
cyclic array redistribution”. In: IEEE Transactions on Parallel and Distributed Systems 9.2
(1998), pp. 192–205. doi: 10.1109/71.663945.

[19] E. Jeannot and F. Wagner. “Scheduling Messages For Data Redistribution: An Experi-
mental Study”. In: The International Journal of High Performance Computing Applications
20 (2006), pp. 443–454. url: https://api.semanticscholar.org/CorpusID:6046514.

[20] S. Li, H. Jiang, D. Dong, C. Huang, J. Liu, X. Liao, and X. Chen. “Efficient Data
Redistribution Algorithms From Irregular to Block Cyclic Data Distribution”. In: IEEE
Transactions on Parallel and Distributed Systems 33.12 (2022), pp. 3667–3677. doi: 10.1109/
TPDS.2022.3166484.

[21] G. Bandera and E. Zapata. “Sparse matrix block-cyclic redistribution”. In: Proceedings
13th International Parallel Processing Symposium and 10th Symposium on Parallel and Dis-
tributed Processing. IPPS/SPDP 1999. 1999, pp. 355–359. doi: 10.1109/IPPS.1999.760500.

[22] Q. Cao, G. Bosilca, W. Wu, D. Zhong, A. Bouteiller, and J. Dongarra. “Flexible Data
Redistribution in a Task-Based Runtime System”. In: 2020 IEEE International Conference
on Cluster Computing (CLUSTER). 2020, pp. 221–225. doi: 10.1109/CLUSTER49012.2020.
00032.

69

https://doi.org/https://doi.org/10.1006/jpdc.1996.0142
https://doi.org/https://doi.org/10.1006/jpdc.1996.0142
https://doi.org/https://doi.org/10.1006/jpdc.1996.0142
https://doi.org/https://doi.org/10.1006/jpdc.1996.0142
https://www.sciencedirect.com/science/article/pii/S0743731596901422
https://www.sciencedirect.com/science/article/pii/S0743731596901422
https://doi.org/10.1109/71.506697
https://doi.org/https://doi.org/10.1006/jpdc.1997.1351
https://www.sciencedirect.com/science/article/pii/S0743731597913514
https://www.sciencedirect.com/science/article/pii/S0743731597913514
https://doi.org/10.1109/71.895789
https://doi.org/10.1145/181181.181563
https://doi.org/10.1145/181181.181563
https://api.semanticscholar.org/CorpusID:14256750
https://api.semanticscholar.org/CorpusID:14256750
https://doi.org/10.1109/IPPS.1995.395968
https://doi.org/10.1109/71.663945
https://api.semanticscholar.org/CorpusID:6046514
https://doi.org/10.1109/TPDS.2022.3166484
https://doi.org/10.1109/TPDS.2022.3166484
https://doi.org/10.1109/IPPS.1999.760500
https://doi.org/10.1109/CLUSTER49012.2020.00032
https://doi.org/10.1109/CLUSTER49012.2020.00032

Bibliography

[23] Q. Cao, G. Bosilca, N. Losada, W. Wu, D. Zhong, and J. Dongarra. “Evaluating Data
Redistribution in PaRSEC”. In: IEEE Transactions on Parallel and Distributed Systems 33.8
(2022), pp. 1856–1872. doi: 10.1109/TPDS.2021.3131657.

[24] E. C. Project. PARSEC. 2024. url: https://www.exascaleproject.org/research-
project/parsec/ (visited on 01/29/2025).

70

https://doi.org/10.1109/TPDS.2021.3131657
https://www.exascaleproject.org/research-project/parsec/
https://www.exascaleproject.org/research-project/parsec/

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Contributions

	Definitions and Notations
	Basic terminology
	Extension to the multi-dimensional
	Types of block-cyclic redistribution
	Source and distribution factor
	Shape retaining vs shape changing redistributions

	Index Computation
	Definition and Notation
	Algorithm Analysis
	1994: Runtime Array Redistribution in HPF Programs
	1995: Automatic Generation of Efficient Array Redistribution Routines
	1996: Optimizations for efficient Array Redistribution on Distributed Memory Multicomputers
	1996: Efficient Algorithms for Array Redistribution
	1997: Fast Runtime Data Redistribution - Indexing
	1998: A Basic-Cycle Calculation Technique For Efficient Dynamic Data Redistribution
	1998: Efficient Methods for Multidimensional Array Redistribution
	2000: A Generalized Basic-Cycle Calculation Method for Efficient Array Redistribution

	Performance Comparison
	The general case
	The one-divides-the-other case
	The block-to-cyclic case

	Communication
	Definition and Notation
	Synchronous Communication
	Asynchronous Communication

	Algorithm Analysis
	1994: An Approach to Communication Efficient Data Redistribution
	1995: Multiphase Array Redistribution - Modeling and Evaluation
	1996: Redistribution of Block-cyclic Data Distributions using MPI
	1997: Fast Runtime Data Redistribution - Communication
	1998: Scheduling Block-Cyclic Array Redistribution
	1999: Efficient Algorithms for Block-Cyclic Array Redistribution Between Processor Sets

	Performance Comparison
	Scheduled vs non-scheduled
	Schedule time comparison
	Single-phase vs multi-phase

	Discussion
	Conclusion
	Future work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

