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Abstract

Wavelength-Routed Optical Network-on-Chip (WRONoC) possesses the advantages of high

bandwidth and low latency and holds substantial potential to meet the escalating communica-

tion demands of multi-core processors. In WRONoC, all signal transmission paths are preserved

during the design phase of the communication topology, which enables simultaneous, collision-

free signal communications among all initiators and targets. The key optical components for

signal routing include waveguides, and a ring-shaped waveguide called a micro-ring resonator

(MRR). The optical path length of the MRR is calculated based on its radius. When the

optical path length of the MRR is an integer multiple of the signal wavelength, the MRR can

resonate with the signal and change its transmission direction; otherwise, the signal is trans-

mitted in the original direction. It is worth noting that high-refractive-index contrast materials

used to fabricate the MRRs are susceptible to process variation, which can lead to changes in

the MRR radius. Such changes will shift the power transmission spectrum of the MRR with

respect to wavelength and cause unexpected power loss. This reduces the signal power arriving

at the destination, and the crosstalk increases. When process variation occurs in more than

one MRR, crosstalk effects accumulate and severely degrade signal transmission quality in the

network.

Previous topology designs did not consider these effects caused by process variation. To over-

come these challenges, I first quantify the signal transmission power when the MRR suffers

process variation. Then, I build a mathematical model and develop a stochastic optimization

algorithm that can optimize the expected signal transmission power of different WRONoC

topologies under process variation. Experimental results show that this optimization approach

is applicable to a variety of WRONoC topology designs and can significantly improve the

expected signal transmission power when relative process variation occurs. As this process

variation becomes greater, the effectiveness of the approach increases accordingly. Compared

to the case where this variation is not considered, this approach can achieve up to more than

twice the expected signal power transmission. This demonstrates the robustness of the ap-

proach against process variation.
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1. Introduction

A multiprocessor system-on-chip (MPSoC) is a highly integrated chip widely used in micro-

controllers or systems-on-a-chip that require high processing power. As the demand for data

transmission within MPSoCs increases, achieving high-performance inter-core communication

has become a major challenge.

Traditional electronic networks-on-chips (NoCs) may not be able to support the coming de-

mands for performance and power due to bandwidth limitations and the high power consump-

tion of metal interconnects (Ye et al. 2009). With the development of silicon photonics, optical

networks-on-chip (ONoC) are becoming an effective solution to the limitations of electronic

NoCs. By using wavelength-division multiplexing (WDM) technology, ONoCs enable a single

waveguide to carry multiple optical signals on different wavelengths, providing on-chip com-

munication with high bandwidth and low signal latency (Tseng et al. 2019).

There are two main types of ONoCs: 1) active networks that require a control layer to em-

ploy real-time switching mechanisms for routing processes, and 2) passive networks that uti-

lize routing components resonating at distinct wavelengths (Truppel et al. 2020). Of these,

wavelength-routed optical networks-on-chips (WRONoCs) fall into the latter category, where

the data transmission path is entirely determined by its sender and wavelength, and routing

elements such as waveguide and silicon micro-ring resonators (MRR), where the MRR consists

of a looped waveguide, are used to deliver the signal to its destination. Active networks require

a control layer to dynamically establish signal paths. In contrast, all signal paths are stati-

cally preserved during the design phase of WRONoC, which allows all initiators and targets

to communicate simultaneously without data collision and eliminates the dynamic overhead of

the control layer (Truppel et al. 2020).

In WRONoC systems, optical signals are transmitted through waveguides and can be turned

by coupling to MRRs. The degree of coupling between the signal and the MRR depends on

the radius of the MRR and the wavelength of the signal. In particular, if the optical path
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1. Introduction

circumference of the MRR is an integer number of the wavelength of the signal, then the sig-

nal is maximally coupled to the MRR, a condition also referred to as being “on-resonance”

with the MRR. An MRR can resonate with multiple wavelengths, and these wavelengths are

referred to as “resonant wavelengths” of this MRR. If this condition is not satisfied, the signal

is only partially coupled to the MRR (Bogaerts et al. 2012). Wavelengths that meet this latter

condition are called “non-resonant wavelengths” of this MRR. I illustrate this coupling mech-

anism using an example shown in Figure 1.1. The red and blue lines represent optical signals

of different wavelengths that are resonant wavelengths of the same colored MRRs. When two

optical signals enter this simplified network from the initiator I1, the red signal first encounters

an MRR that resonates with it and is directed toward the target T1. Simultaneously, the red

MRR does not resonate with the blue signal, so the blue signal maintains its original transmis-

sion direction until it encounters a blue MRR. The blue MRR resonates with it and turns it

towards target T2. Thus, through this coupling mechanism, the red signal is transmitted from

I1 to T1, and the blue signal is transmitted from I1 to T2.

During the signal transmission process, power loss occurs when the signal passes through

waveguide intersections and couples with the MRR. This loss, known as insertion loss, can affect

the overall efficiency of the transmission. Transmission efficiency is specifically defined as the

ratio of the signal’s transmitted power at the designated location to its original input power.

Several advanced WRONoC topologies have been suggested, including the λ-router (Brière

et al. 2007), GWOR (Tan et al. 2011), Snake (Ramini et al. 2013), Light (Zheng et al. 2021)

and CustomTopo (Li et al. 2018). These topology designs are aimed at minimizing insertion

loss to meet signal communication requirements. This can be achieved by adjusting the position

of MRRs, reducing the number of MRRs and wavelengths, and optimizing waveguide routing,

among other strategies. However, the design of these topologies has not taken into consideration

the impact of process variation on WRONoC. Process variation, a phenomenon occurring

during manufacturing, leads to changes in the radius of the MRR. As a result, the transmission

Figure 1.1.: Example of optical signal coupling mechanism to MRR.
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1. Introduction

Without process 
 variation

With process 
 variation

Figure 1.2.: Transmission efficiency spectra for red and blue MRRs with and without process
variation.

efficiency spectrum of the MRR shifts (Mirza et al. 2020). This shift leads to significant power

insertion loss and crosstalk in the network, as illustrated in Figure 1.2. The red and blue

solid curves in Figure 1.2 represent the transmission efficiency spectra with respect to different

wavelengths of the same colored MRR without process variation in Figure 1.1. The wavelengths

corresponding to the peaks of these curves are the resonant wavelengths for the MRR, while

the wavelengths at the troughs are the non-resonant wavelengths. In order to transmit a signal

from I1 to T2 in Figure 1.1, the resonant wavelength of the blue MRR can be chosen along

with the non-resonant wavelength of the red MRR. Wavelengths λ1, λ2, and λ3 all satisfy these

conditions. When the red MRR suffers process variation, its transmission efficiency spectrum

shifts, as shown by the red dashed curve. This causes λ2 to become a resonant wavelength for

both the red and blue MRRs. If λ2 is chosen as the resonant wavelength for the blue signal

traveling from I1 to T2, the blue signal will first encounter the red MRR and be on-resonance

with it, redirecting to T1. The misdirected blue signal to T1 becomes crosstalk noise in the

communications network. Meanwhile, the intended target T2 receives little or none of the blue

signal’s power, resulting in significant power insertion loss. Although more than one wavelength

can be selected for the signal to resonate with an MRR, this example shows that not every

resonant wavelength is the optimal choice when the signal passes through multiple MRRs with

process variation. Therefore, it is important to fully investigate the expected changes in the

transmission efficiency spectrum with this variation. Based on this understanding, the selection

of signal wavelengths and MRR radii should be optimized to ensure that the communication

requirements are met.

11



1. Introduction

In this thesis, I identify shortcomings in existing research and propose a stochastic optimization

method. By using the expected value as a key metric to evaluate system performance under

process variation, this method aims to maximize the expected value of signal transmission

efficiency (also referred to as the expected transmission efficiency) by optimizing the selection

of MRR radii and signal wavelengths. I begin by introducing the WRONoC’s background and

exploring the causes of process variation in Chapter 2. Next, Chapter 3 includes a review

of the models in (Bogaerts et al. 2012) and (Chrostowski & Hochberg 2015) that calculate

transmission efficiency based on MRR radius and signal wavelength. This chapter also details

the impact of process variation on WRONoC, reviews previous work in this area, highlights

the limitations of the state-of-the-art in addressing the issues under study, and formalizes the

problem definition for optimizing the expected transmission efficiency. In Chapter 4, I combine

the transmission efficiency models with probability theory, construct analytical models for the

expected transmission efficiency under process variation, and use the results as design options

for optimization. Then, I build an integer-linear programming (ILP) model to provide an

exact optimization solution. Since the complexity of the ILP problem is NP-hard, it becomes

increasingly difficult to find a solution in a feasible time as the problem size increases. To

overcome this limitation, I develop a simulated annealing algorithm tailored for WRONoC

properties, which is a stochastic optimization algorithm that efficiently provides approximate

solutions in a faster feasible time with more design options than ILP. All the optimization

methods are detailed in Chapter 5. I further present the experimental setup and analyze the

results in Chapter 6. The thesis concludes in Chapter 7, where I summarize the main findings

and suggest potential directions for future research.

12



2. Wavelength-Routed Optical Network on Chip

This chapter presents the fundamentals of WRONoC. First, the representative experimental

setting for WRONoC is explored. Next, the routing elements that constitute WRONoC are

introduced. After that, the logical designs of different WRONoC routers are described. Finally,

the insertion loss and fabrication process variations are discussed.

2.1. Experimental Setup for WRONoC

The experimental environment of the WRONoC is based on the 3D-structure shown in Fig-

ure 2.1, which consists of a multi-core processor, an electronic layer, and a vertically aligned

photonic layer (Tseng et al. 2019). In the electronic layer, multiple processor cores are or-

ganized into clusters, each with its own hub, and these hubs are connected to the photonic

layer by through-silicon vias (TSVs) (Tseng et al. 2019). The off-chip laser sources generate

light of different wavelengths (Ramini et al. 2013). These wavelengths enter the power dis-

tribution network and are routed to the electrical/optical (E/O) interface. At this interface,

with the provided wavelengths, the data from the original electrical signals are converted to

optical signals (Tseng et al. 2019). Finally, these optical signals are passively transmitted by

the WRONoC router through the waveguide to each communication node in the network. This

router specifies the initiator and target of the optical signal transmission and defines the path

of the optical signal for data transmission (Tseng et al. 2019), and enables communications (1)

between hubs; (2) from a hub to an off-chip memory controller; and (3) from a memory con-

troller to a hub (Ramini et al. 2013). If the received optical signals need to be processed or read,

they are converted back to electrical signals at the optical/electrical (O/E) interface (Tseng

et al. 2019). These electrical signals can then be processed.

13



2. Wavelength-Routed Optical Network on Chip

Hub

Router

Off-Chip Laser Sources

MC MC

MC Memory

Memory Memory

Electronic Layer

Photonic Layer

Hub

Hub Hub

TSV

TSV

TSV

TSV

MCMemory

Cluster 1 Cluster 2

Cluster 3Cluster 4

...

Power Distribution Network

Figure 2.1.: A representative experimental setup for WRONoC on a 3D-structured chip.

2.2. Routing Elements

Waveguide serves as physical channels for optical signal transmission, and MRR is a critical

component for modulating and directing optical signals. Together, they form the backbone of

the WRONoC system. A detailed discussion of their structure and functionality is presented

in this section.

2.2.1. Optical Waveguide

As the fundamental elements of photonic devices, waveguides are responsible for signal trans-

mission and connecting diverse photonic components. An optical waveguide is a planar dielec-

tric structure consisting of a cladding material surrounding a core (Nakagawa et al. 2001). In

this work, a silicon-insulator (SOI) material is used for the optical waveguide. Figure 2.2 shows

the structure of a SOI waveguide section (Mohammed et al. 2021). The optical waveguide is
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2. Wavelength-Routed Optical Network on Chip

specially designed to use a silicon core formed on an insulating silicon substrate with its own

height and width (Chrostowski & Hochberg 2015). The silicon core is then covered by the

cladding of an insulator (usually silicon oxide), which takes advantage of the high refractive

index difference between silicon and insulator to achieve controlled propagation of the optical

signal inside the silicon core (Bogaerts et al. 2012).

Such silicon optical waveguides are typically fabricated using e-beam or optical lithography

techniques in combination with reactive ion etching, operations typically performed on CMOS

fabrication tools (Bogaerts et al. 2012). With improvements in process technology, the propa-

gation loss of silicon conductors can be reduced to less than 3 dB/cm (Bogaerts et al. 2012).

Several optical signals on different wavelengths can be transmitted through the same optical

waveguide without interference, achieving high bandwidth for optical waveguide transmission,

which is called wavelength division multiplexing (WDM) technology (Li et al. 2018).

Insulator:

Cladding: SiO 

Core: Si

Substrate:

Width

Height

2

SiO 2

Si

Figure 2.2.: SOI waveguide section.

2.2.2. Micro-Ring Resonator

Micro-ring resonators (MRRs) are composed of ring-shaped waveguides that operate using a

coupling mechanism. The situation of a signal passing through an MRR can be divided into

two cases: on-resonance and off-resonance, according to the radius of the MRR (Bogaerts

et al. 2012). The signal enters the MRR through the input port, and if the optical path length

15



2. Wavelength-Routed Optical Network on Chip

of the MRR is exactly an integer number of wavelengths, then the signal is on-resonance with

the MRR (Bogaerts et al. 2012). The signal is off-resonance with the MRR if this condition is

not met (Bogaerts et al. 2012).

There are two types of MRR: all-pass MRR and add-drop MRR. As shown in Figure 2.3, an all-

pass MRR operates by coupling to a single waveguide with an input and a through port. When

optical signals of two different wavelengths, λ1 and λ2, enter the all-pass MRR from the input

port, distinct paths are taken. The signal on λ1, indicated by the blue line, is on-resonance

with the ring, causing it to travel along the ring and then return back into the waveguide,

finally out of the through port. The signal on λ2, indicated by the green line, is off-resonance

with the ring, travels directly along the waveguide, and finally outputs from the through port

as well. Thus, an all-pass MRR can allow all wavelengths of signals to pass through the device

and adjust the phase of the optical signal without affecting the amplitude spectrum of the

signal (Chen et al. 2022), but it does not have the ability to filter wavelength-specific optical

signals.

Input Through

Figure 2.3.: All pass MRR.

On the other hand, the add-drop MRR works by coupling to two waveguides. It has four ports:

an input port, a through port, an add port, and a drop port. There are two structures that

can be used to change the direction of signal transmission and achieve the filtering function

of different wavelengths. One is the parallel switching element (PSE) structure, as shown in

Figure 2.4, in which two waveguides are placed in parallel at the top and bottom of the ring

structure. The optical signals of two different wavelengths, λ1 and λ2, enter the add-drop MRR

from the input port. The signal on λ1, indicated by the blue line, is on-resonance with the ring

so that the optical signal travels around the ring and is rotated 180 degrees. After coupling

to the top waveguide, it exits through the drop port. Conversely, the signal on λ2, indicated

by the green line, is off-resonance with the ring and maintains its propagation direction in the

bottom waveguide, finally exiting the through port. The other is the cross switching element

(CSE) structure, where the waveguides are crossed orthogonally, and a ring is placed near the

16



2. Wavelength-Routed Optical Network on Chip

Input Through

Drop Add

Figure 2.4.: PSE structure with 180 degrees rotation.

crossing waveguides. Figure 2.5 (a) shows that the signal on wavelength λ1, indicated by the

blue line, enters the add-drop MRR from the input port and is on-resonance with the ring.

The signal is then rotated 90 degrees to couple to the other waveguide and output from the

drop port. The signal on wavelength λ2, indicated by the green line, is off-resonance with the

ring, so the signal continues to travel in the waveguide and is finally output from the through

port. Similarly, Figure 2.5 (b) shows that the signal on wavelength λ1, indicated by the blue

line, enters the add-drop MRR from the input port and is on-resonance with the ring. The

signal is then turned 270 degrees and coupled to the other waveguide and output from the

drop port. The signal on wavelength λ2, indicated by the green line, is off-resonance with the

ring, so the signal keeps its traveling direction and is finally output from the through port. In

both cases, the add-drop MRR provides filtering and routing of the optical signals on specific

wavelengths. Therefore, unless otherwise noted, every mention of MRR in this work refers to

add-drop MRR.

Depending on the signal routing requirements, if the signal is designed to be transmitted to

the drop port of the MRR, the MRR is called the drop MRR for that signal. Conversely, if

the signal is designed to be transmitted to the through port of the MRR, the MRR is called

the through MRR for that signal.
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2. Wavelength-Routed Optical Network on Chip

Input Through

Drop

Drop

Input

Through

(a) (b)

Add

Add

Figure 2.5.: (a) CSE structure with 90 degrees rotation. (b) CSE structure with 270 degrees
rotation.

2.3. Logical Design of Router

To achieve communication between different cores (hubs or memories) in Figure 2.1, researchers

have constructed two main types of logical topology designs: full-connectivity topology and

application-specific topology. In this work, the core initiating the signal is referred to as the

master, while the target core receiving the signal is referred to as the slave.

2.3.1. Full-Connectivity Topologies

In the full-connectivity topology, each core has a path for signal transmission with other cores.

Representative examples include the following and are illustrated in Figure 2.6:

λ-router: The λ-router is proposed in (Brière et al. 2007). It is necessary to use CSE struc-

tures with N×(N−1) MRRs to achieve a complete N -cores-to-N -cores connection. A λ-router

is shown in Figure 2.6 (a) with four masters (m1, m2, m3, m4) connected to four slaves (s1,

s2, s3, s4) using 12 MRRs.

18



2. Wavelength-Routed Optical Network on Chip

 (a) (b)

(c) (d)

m1m1

m2m2 m3

m4

s1s1

2s
2s

3s

3s

s4

m

m

m3

m3

m3

m

1

2

m2

3

4

m4s1

s1

2

s

3s
s

s

2s
4

s4

m1

m4

s4

Figure 2.6.: (a) 4×4 λ-router. (b) 4×4 Snake. (c) 4×3 GWOR. (d) 4×3 Light.

Snake router: The Snake-router is proposed in (Ramini et al. 2013). It is necessary to use

CSE structures with N × (N −1) MRRs to achieve a complete N -cores-to-N -cores connection.

A Snake-router is shown in Figure 2.6 (b) with four masters connected to four slaves using 12

MRRs.

GWOR: The generic wavelength-routed optical router (GWOR) proposed by (Tan et al. 2011)

interconnects N cores and requires the CSE structures with N× (N−2) MRRs. This topology

does not support self-communication, i.e., each core cannot communicate with itself but can

communicate with other cores. Figure 2.6 (c) shows the communication structure of four

masters with four slaves.
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Light: The Light-router is presented in (Zheng et al. 2021), which requires PSE structures

with 2dN2 e(d
N
2 e − 1) MRRs to achieve connectivity between N cores. Similar to the GWOR,

the Light-router does not support self-communication. Figure 2.6 (d) shows the topology of a

Light-router connecting four cores.

In Figure 2.6, MRRs that can resonate with the same wavelengths are shown with the same

color. Each topology design then shows the conflict-free signal transmission path from m1 to

each slave with different colored dashed lines. When a signal encounters an MRR of the same

color, resonance occurs, and the propagation direction of the signal is changed.

2.3.2. Application-Specific Topologies

Application-specific topologies provide tailored connectivity where nodes without data trans-

mission requirements are not interconnected. Topologies synthesized through such a de-

sign automation approach are proposed in previous work: CustomTopo (Li et al. 2018),

PSION+ (Truppel et al. 2020) and FAST+ (Xiao et al. 2022).

2.4. Insertion Loss

During the signal transmission process, the signal power is affected by various types of loss,

referred to as insertion loss. These include propagation loss, which occurs as the signal is

transmitted through the waveguide; crossing loss, which occurs when the signal traverses

crossing optical waveguides; bending loss, which happens when the signal is transmitted

along the waveguide in a bend; drop loss occurs when the signal is resonant with the MRR;

and through loss, which occurs when signals pass through MRR without resonating.

2.5. Process Variation

The manufacturing process for ONoC devices generally begins on CMOS manufacturing tools

with the preparation of a silicon-on-insulator (SOI) wafer. This wafer is composed of three
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layers, namely a thin silicon layer, an insulating layer, and a silicon substrate, as shown in Fig-

ure 2.2. Wafer-level processing techniques, such as cladding deposition, chemical-mechanical

polishing, baking, and etching, are employed to fabricate the necessary structures. At the

chip level, UV lithography is used to pattern waveguides, MRRs, and other optical compo-

nents (Selvaraja et al. 2010), and then the exposed silicon is removed by wet or dry etching to

create the required structure (O’Connor et al. 2012).

Process variation in WRONoC occurs primarily due to the lithography and etching imperfec-

tions of devices. They can be caused by factors including poor mask pattern quality, lithography

limitations, equipment inaccuracies in etch depth and deposition rate, as well as environmental

influences such as tuning temperature and input power. These variations can occur randomly

or systematically over time and space (Selvaraja et al. 2010). In particular, this work considers

only the irreversible process variations that occur during manufacturing and does not take into

account modifiable environmental factors.
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This chapter first establishes the power transmission efficiency models for the MRR and the

signal. Then, based on these models, the challenges posed by process variations are illustrated.

Next, related works that attempt to address these challenges are reviewed, and the limitations

of the state of the art are discussed. Finally, the optimization problem that this work aims to

solve is defined.

3.1. Transmission Efficiency Model

Based on the MRR radius and signal wavelength, I formulate the signal transmission efficiency

at the drop port and through port of a single MRR. The parameters and formulas are reviewed

from (Bogaerts et al. 2012) and (Chrostowski & Hochberg 2015) if not otherwise specified. The

parameters that appear in Figure 3.1 and Figure 3.2, as well as other required parameters for

the models, are introduced below:

Sinput: The signal input power intensity.

Sdrop: The signal power intensity at the drop port of the MRR.

Sthrough: The signal power intensity at the through port of the MRR.

Figure 3.1.: PSE structure with coupling parameters.
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Figure 3.2.: CSE structure with coupling parameters.

r: The radius of the MRR.

Lr: The optical round-trip path length of the MRR.

λ: The wavelength of the signal.

neff(λ): The effective refractive index on wavelength λ in the SOI waveguide.

β(λ): The propagation constant of the circulating mode.

φ(r, λ): The phase shift.

a: The single-pass amplitude transmission, which characterizes the losses in the MRR due to

factors such as propagation and bending losses. In this work, such losses are assumed to be

ignored, and consequently, a is set equal to 1, i.e., a = 1.

k1, k2, k: The cross-coupling coefficients, which represent the portion of the input power that

is coupled from one waveguide to the other. In this work, a symmetric coupling scenario is

assumed, and the cross-coupling coefficients are set accordingly as k1 = k2 = k ∈ [0, 1].

t1, t2, t: The self-coupling coefficients, which represent the portion of the input power that

remains in the waveguide after the interaction with other waveguide. In this work, the self-

coupling coefficients are set as t1 = t2 = t ∈ [0, 1].

Hdrop(r, λ): The transmission efficiency function of a signal, on a wavelength of λ, at the drop

port of an MRR with a radius of r.

Hthrough(r, λ): The transmission efficiency function of a signal, on a wavelength of λ, at the
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through port of an MRR with a radius of r.

Given the wavelength of the signal, the radius of the MRR, and the cross-coupling coefficient,

these parameters can be calculated as follows:

neff(λ) = 2.57− 0.85(λ[µm]− 1.55) (3.1)

β(λ) =
neff (λ)2π

λ
(3.2)

φ(r, λ) = β(λ)2πr (3.3)

t2 = 1− k2 (3.4)

From Equation (3.2) and Equation (3.3), it can be concluded that the larger the radius of

the MRR, the greater the number of wavelengths that can resonate. This is because as the

radius of the MRR increases, the length of the optical path that must travel within the MRR

increases accordingly. Thus, more wavelengths can satisfy the same phase shift condition.

By employing the given equations, the transmission efficiency functions of a signal, on a wave-

length of λ, at the drop port and through port of an MRR with a radius of r can be determined

as below:

Hdrop(r, λ) =
Sdrop

Sinput

=
(1− t2)(1− t2)a

1− 2t2acos(φ(r, λ)) + (t2a)2

=
k2k2a

1− 2t2acos(φ(r, λ)) + (t2a)2

a=1
=

k4

1− 2t2cos(φ(r, λ)) + (t2)2
(3.5)

Hthrough(r, λ) =
Sthrough

Sinput
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=
t2a2 − 2t2a cos(φ(r, λ)) + t2

1− 2t2a cos(φ(r, λ)) + (t2a)2

=
t2(a2 + 1)− 2t2a cos(φ(r, λ))

1− 2t2a cos(φ(r, λ)) + (t2a)2

a=1
=

2t2 − 2t2 cos(φ(r, λ))

1− 2t2 cos(φ(r, λ)) + (t2)2
(3.6)

Using the condition t2 + k2 = 1, Hthrough(r, λ) can be written as:

Hthrough(r, λ) =
Sthrough

Sinput

a=1
=

2t2 − 2t2 cos(φ(r, λ))

1− 2t2 cos(φ(r, λ)) + (t2)2

=
t2 + (1− k2)− 2t2 cos(φ(r, λ))

1− 2t2 cos(φ(r, λ)) + (t2)2

=
(t2 − k2) + 1− 2t2 cos(φ(r, λ))

1− 2t2 cos(φ(r, λ)) + (t2)2

=
(t2 + k2)(t2 − k2) + 1− 2t2 cos(φ(r, λ))

1− 2t2 cos(φ(r, λ)) + (t2)2

=
t4 − k4 + 1− 2t2 cos(φ(r, λ))

1− 2t2 cos(φ(r, λ)) + (t2)2

= 1− k4

1− 2t2 cos(φ(r, λ)) + t4

= 1−Hdrop(r, λ) (3.7)

It is now possible to construct a model for the transmission efficiency of the signal sent by the

master and received by the slave. Since propagation loss and bending loss are related to the

physical layout design and cannot be directly applied to the logical topology, these two losses

will be ignored in this work.

I first introduce the following symbols to represent the expressions needed in the model:

25



3. Problem Description

M: The set of masters, with |M| representing the total number of masters.

S: The set of slaves, with |S| denoting the total number of slaves.

SP: The set of all signals within the topology, with |SP| denoting the total number of signals.

(mi, sj): The signal sent by the i-th master mi and received by the j-th slave sj , where

i ∈ |M|, j ∈ |S| and (mi, sj) ∈ SP.

cl: The coefficient of crossing loss, with cldB denoting the coefficient of crossing loss in dB.

c(mi,sj): The number of waveguide crossings in the transmission path of signal (mi, sj).

MRR: The set of MRRs within the topology, with |MRR| denoting the total number of

MRRs.

MRR(mi,sj): The set of MRRs in the transmission path of signal (mi, sj), withMRRdrop
(mi,sj)

denoting the set of drop MRRs in the transmission path of signal (mi, sj) and MRRthrough
(mi,sj)

denoting the set of through MRRs in the transmission path of signal (mi, sj).

mrrh: The h-th MRR in the given topology.

Using these symbols, I then define the transmission efficiency model of the signal sent by the

master and received by the slave without process variation:

Definition 3.1. Let mi ∈ M and sj ∈ S. The transmission efficiency of signal (mi, sj),

denoted by H(mi,sj), is defined as:

H(mi,sj) = (1− cl)c(mi,sj)
∏

mrrh∈MRRdrop
(mi,sj)

Hdrop(rx, λl)
∏

mrrf∈MRRthrough
(mi,sj)

Hthrough(ry, λl). (3.8)

Here, λl is the signal wavelength, and rx, ry are the radii of the mrrh and mrrf , respectively.

3.2. Process Variation Challenges

This work investigates the impact of process variation on the radius of MRR. Although state-of-

the-art process technologies can achieve in-chip linewidth variations of less than 1% (Selvaraja

et al. 2010)), it is notable that even a tiny process variation of 0.1% in radius can significantly
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shift the transmission spectrum, which leads to signal power loss and crosstalk in the network.

I explain this with the following example:

Example 3.2. The 4× 3 Light-router shown in Figure 3.3 can be denoted as follows:

M = {m1,m2,m3,m4};

S = {s1, s2, s3, s4};

SP = {(m1, s2), (m1, s3), (m1, s4), . . . };

In previous work, as shown in Figure 3.3, MRRs that resonate with the same wavelength

m
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= 1505 nm

Figure 3.3.: The transmission path of signal (m1, s2) within a 4× 3 Light topology.

are denoted by the same color. When a signal encounters an MRR, if a substantial portion

of the signal can be transmitted into the drop port of the MRR, it’s considered to be on-

resonance. Conversely, if most of the signal is transmitted into the through port of the MRR,

it’s considered to be off-resonance.

To transmit a signal from m1 to s2, an appropriate red MRR radius and its resonant wavelength

must be identified. I apply the signal transmission efficiency model at the drop port of the

MRR with k1 = k2 = 0.4 (Li, Shen, Yu, Zhang, Chen & Zhang 2020) and plot the transmission

spectra for radii of 10 µm and 27 µm within the 1500 nm – 1525 nm wavelength range in

Figure 3.4. It can be seen that both radii can be chosen for red and blue MRRs. In the

spectral curve, the wavelengths corresponding to the peaks represent the resonant wavelengths

for each MRR, while those at the valleys can be considered non-resonant wavelengths. If I set
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Figure 3.4.: Transmission spectra for MRRs with radii of 10 µm and 27 µm.

27 µm as the radius for the red MRR and 10 µm as the radius for the blue MRR, then the red

MRR has seven resonant wavelengths, while the blue MRR has three resonant wavelengths. I

select three resonant wavelengths of the red MRR, 1505 nm, 1511.9 nm, and 1522.4 nm, and

calculate the transmission efficiency of the signal on these three wavelengths separately. I set

the crossing loss to 0.009168 (Xiao et al. 2022) and consider four crossings in the transmission

path of signal (m1, s2). The blue MRRs in the upper left and lower right corners are the

“through MRRs” in this transmission path, while the red MRR in the lower left corner is

the “drop MRR” in this transmission path. The transmission efficiency of the signal can

be computed using the model in Definition 3.1. When considering 1522.4 nm as the signal

wavelength, the transmission efficiency of signal (m1, s2) is calculated as

(1− 0.009168)4 · (1− 0.37) · 1 · (1− 0.37) ≈ 0.3825.

Less than 40% of the power can reach the receiving end s2, which indicates that 1522.2 nm is

unsuitable for a resonant wavelength under the given radii setting. The transmission efficiency

of the signal on a wavelength of 1505 nm can be calculated as

(1− 0.009168)4 · (1− 0.06) · 1 · (1− 0.06) ≈ 0.8516.

Similarly, for the signal on a wavelength of 1511.9 nm, its transmission efficiency can be cal-
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culated as

(1− 0.009168)4 · (1− 0.04) · 1 · (1− 0.04) ≈ 0.8883.

0.8516 and 0.8883 show that a significant amount of the signal can reach s2. Both the 1505

nm and 1511.9 nm wavelengths can be resonant wavelengths of the red MRR, while they are

non-resonant wavelengths of the blue MRR, positioning them as suitable wavelength choices

for the signal (m1, s2).

Previous work overlooks the effect of process variation. Considering a process variation of 0.1%

in the radius of the two MRRs, the radius of the red MRR changes to 10.01 µm, and the radius

of the blue MRR changes to 27.027 µm. As a result, as shown in Figure 3.5, their transmission

spectra shift. It can be seen that 1505 nm has become the resonant wavelength of the blue

Figure 3.5.: Transmission spectra for MRRs with radii of 10.01 µm and 27.027 µm.

MRR. If 1505 nm is still chosen as the wavelength of signal (m1, s2), the transmission efficiency

of this signal can be calculated as

(1− 0.009168)4 · (1− 0.99) · 0.01 · (1− 0.99) ≈ 0.000001.

This means that virtually no signal from m1 can reach s2. The insertion loss for this signal

is massive, which requires more than one million times amplification of the laser power to

29



3. Problem Description

achieve the minimum power requirement at the receiving end. In addition, 99% of the signal

is initially coupled to the first blue MRR and then transmitted to s4. These signals, which

should have been directed to s2, become crosstalk noise, significantly reducing the signal-to-

noise ratio at the s4 port. It’s important to note that any amplification of laser power will also

correspondingly increase the crosstalk noise by the same factor. Similarly, the transmission

efficiency of signal (m1, s2) on 1511.9 nm can be calculated as

(1− 0.009168)4 · (1− 0.01) · 0.01 · (1− 0.01) ≈ 0.0094.

Virtually no signal reaches s2, which means massive signal insertion loss. Furthermore, the

wavelength 1511.9 nm does not resonate with the changed red or blue MRR. Almost all the

signal becomes crosstalk noise and is directly transmitted along the waveguide to slave s3.

It can be seen that the previous designs of categorizing MRRs and signals based on commu-

nication requirements and resonance states are affected by process variation. In this work, to

comprehensively investigate the options that are robust to process variation, I individually se-

lect the radius for each MRR as well as the wavelength for each signal. As shown in Figure 3.6,

I label the MRR in the upper left corner as mrr1, the MRR in the upper right corner as mrr2,

the MRR in the lower left corner as mrr3, and the MRR in the lower right corner as mrr4.

Thus, the set of all MRRs in the topology can be given as follows:
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Figure 3.6.: The transmission path of (m1, s2) within a 4× 3 Light topology with new denota-
tions.

MRR = {mrr1,mrr2,mrr3,mrr4}.
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For example, The set of MRRs for different routing requirements in the transmission path of

signal (m1, s2) can be described as

MRR(m1,s2) = {mrr1,mrr3,mrr4};

MRRthrough
(m1,s2) = {mrr1,mrr4};

MRRdrop
(m1,s2) = {mrr3}.

Based on the topology structure, communication requirements, and process variation, I will

determine the optimal combination of signal wavelengths and MRR radii to minimize insertion

loss.

3.3. Related Works

There are several studies working on the methods to compensate for the impact of process

variation in the ONoC integrating MRRs. The studies focus on two main directions: parameter

optimization of MRR and enhancement of fault tolerance of ONoC systems.

In the domain of MRR parameter optimization, (Mirza et al. 2020) adjust the design param-

eters of MRR under process variation conditions, aiming to reduce the insertion loss as signal

encounters the MRR. Similarly, (Weng et al. 2017) introduces a sparse combined generalized

polynomial chaos (gPC) model for analyzing the uncertainty and optimizing the physical pa-

rameter design of a five-ring coupled resonator filter under process variation, thereby enhancing

the robustness of the MRR to the process variation. The experiments of both studies are val-

idated on a wavelength of 1550 nm. However, these two studies optimized parameters only

for a specific signal wavelength and did not consider the more complicated scenarios in which

an MRR may be passed by multiple signals simultaneously, and a signal may pass through

multiple MRRs along its path. If the parameters of the MRR are optimized only for a specific

signal wavelength, the transmission efficiency of other signals may be affected. Therefore, this

work considers the communication requirements of WRONoC as well as the interaction effects

between multiple signals and MRRs. Both MRR parameters and signal wavelengths are opti-

mized in this work to improve the overall transmission efficiency of the network under process

variation.
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To improve the fault-tolerance of ONoC under process variation, (Meyer et al. 2015) proposed

a fault-tolerant optical router with an electrical control module. However, this study is not

applicable to WRONoC, which requires no control module. Considering the process variation

that may occur in WRONoC, (Chuang et al. 2021) suggests adding backup MRRs to im-

prove network reliability. However, this approach inevitably results in signals passing through

additional MRRs, thereby increasing insertion loss.

In conclusion, this work is the first mathematical optimization method that requires no ad-

ditional resource allocation and is universally applicable to various topological designs in

WRONoC to maximize signal transmission efficiency and improve robustness under process

variation.

3.4. Problem Formulation

To ensure that the signal power can still reach the target efficiently under MRR process varia-

tion, the probability distribution of the signal transmission efficiency at the ports of the MRR

must be considered in the design phase.

Due to the unavailability of publicly shared MRR production data at present, I hypothesize,

based on the central limit theorem, that the radius of a single MRR follows a normal distri-

bution in large-scale production. The normal distribution can be expressed by the following

example based on the content in (Bryc 1995):

Example 3.3. The probability density function (PDF) fX(x) of a normal distribution X

with mean µ and standard deviation σ, denoted as X ∼ N (µ, σ2), is given by:

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

The density function fZ(x) of a standard normal distribution Z = X−µ
σ is given by taking

µ = 0 and σ2 = 1:

fZ(x) =
1√
2π
e−

x2

2 .

The cumulative distribution function (CDF) of the standard normal distribution, denoted by
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Φ, is given by the integral:

Φ(x) = P (Z ≤ x) =

∫ x

−∞

1√
2π
e−

t2

2 dt.

The CDF of X can be written as

FX(x) = P (X ≤ x) = P (σZ + µ ≤ x) = P (Z ≤ x− µ
σ

) = Φ

(
x− µ
σ

)
.

The central limit theorem is expressed as follows:

Theorem 3.4 (Central limit theorem (CLT) (Klenke 2006)). For n ∈ N, let X1, X2, . . . , Xn be

a sequence of independent and identically distributed random variables with mean µ := E[X1],

variance σ2 := V ar[X1] ∈ [0,∞) and S∗n := 1√
n

∑n
i=1

(Xi−µ)
σ . As n→∞, the distribution of S∗n

converges weakly to the standard normal distribution N(0, 1). Then

lim
n→∞

P (S∗n ∈ [a, b]) =
1√
2π

∫ b

a
e−

x2

2 dx

for −∞ ≤ a < b ≤ +∞.

Proof. The proof can be found on page 321 of book (Klenke 2006).

In large-scale production processes, the MRR radius can be affected by numerous independent

random factors, including lithography and etching processes, material consistency, equipment

accuracy, environmental conditions, and others. These factors are considered independent

random variables, each of which can cause small changes in the MRR radius. According to

Theorem 3.4, if the effects of a large number of independent random variables are relatively

small, then the sum or average of these variables will be approximately normally distributed,

regardless of the distribution of these independent variables themselves. It is reasonable to

assume that in large-scale production, the MRR radius affected by numerous independent

random factors follows a normal distribution. Then, the radius can be written as a random

variable R ∼ N(r, σ2). In this case, r ∈ R+ represents the nominal radius without process

variation of the designed MRR, and σ describes the standard deviation introduced during the

process variation.
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Considering that the radius of the MRR follows a normal distribution, signals of different

wavelengths and MRRs of different radii exhibit their own transmission efficiency probability

distribution at each port. To accurately quantify the effect of process variation on the power

transmission capability of signals at each MRR port, I adopt the expected value as a statistical

measure. This concept is detailed in the following definition:

Definition 3.5. (Durrett 2019) Let X be a real-valued integrable and random variable on

(Ω,F , P ). If X is a discrete random variable with probability mass function pX(x), then the

expected value of X is defined as:

E[X] =
∑
x∈Ω

x · pX(x).

If X is a continuous random variable with probability density function fX(x), then the ex-

pected value of X is defined as:

E[X] =

∫
Ω
X dP =

∫
Ω
x · fX(x) dx.

The expected value essentially provides a “mean” outcome for the random variable X, taking

into account the various possibilities of its outcomes and their associated probabilities. The

expected value of power transmission efficiency serves as a metric that aggregates the power

transmission efficiencies at various possible MRR radii weighted by their respective probabilities

in the radius normal distribution. For brevity, this term will be referred to as “expected

transmission efficiency” in the following sections.

The random variable R follows a normal distribution with mean r and variance σ2, denoted

by R ∼ N(r, σ2). The expected transmission efficiency of the signal on wavelength λl at the

drop port of the MRR with radius R can be then expressed as E[Hdrop(R, λl)]. Similarly, the

expected transmission efficiency of the signal on wavelength λl at the through port of the MRR

with radius R can be denoted as E[Hthrough(R, λl)]. Now, a model of the expected transmission

efficiency of a signal sent by the master and received by the slave can be constructed. The

formulation of this model relies on the introduction of several additional parameters that extend

the basic parameters presented in Section 3.1:

R: The set of available radius options, with |R| denoting the total number of radius options.
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rx: The x-th radius among these options, where x ∈ |R|.

Λ: The set of available wavelength options, with |Λ| denoting the total number of wavelength

options.

λl: The l-th wavelength in the options, where l ∈ |Λ|.

σ: The standard deviation representing the variation during the fabrication process.

Consequently, a model of the expected transmission efficiency of the signal sent by the master

and received by the slave can be formalized as follows:

Definition 3.6. It is assumed that all MRRs in the network topology are subject to the same

process variation error. The expected transmission efficiency of signal (mi, sj), denoted by

E[H(mi,sj)], is given as

E[H(mi,sj)] = (1− cl)c(mi,sj)
∏

mrrh∈MRRdrop
(mi,sj)

E[Hdrop(Rx, λl)]
∏

mrrf∈MRRthrough
(mi,sj)

E[Hthrough(Ry, λl)].

(3.9)

Here, λl is the signal wavelength. Rx and Ry are independent random variables following the

normal distribution, with Rx ∼ N(rx, σ
2) and Ry ∼ N(ry, σ

2). The parameters rx and ry

denote the nominal radii of mrrh and mrrf , while σ represents the standard deviation due to

the process variation error.

Transmission efficiency is often expressed in decibels (dB), which are used to compare the

intensity of two signals or a change in the power level of a signal. In addition, when powers

are multiplied together, the corresponding decibel values can be added directly.

Definition 3.7. The input power Sinput is set to 1 Watt as 1 unit. Let E[Hdrop(Rx, λl)]dB and

E[Hthrough(Rx, λl)]dB represent the expected transmission efficiencies of a signal on wavelength

λl at the drop port and the through port of an MRR with radius Rx, respectively, all expressed

in dB. These expected transmission efficiencies can be converted using the following expressions:

E[Hdrop(Rx, λl)]dB = 10 log10

(
E[Hdrop(Rx, λl)]

Sinput

)

= 10 log10 E[Hdrop(Rx, λl)]; (3.10)
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E[Hthrough(Rx, λl)]dB = 10 log10

(
E[Hthrough(Rx, λl)]

Sinput

)

= 10 log10 E[Hthrough(Rx, λl)]. (3.11)

Conversely,

E[Hdrop(Rx, λl)] = 10
E[Hdrop(Rx,λl)]dB

10 , (3.12)

and

E[Hthrough(Rx, λl)] = 10
E[Hthrough(Rx,λl)]dB

10 . (3.13)

Here, Rx follows the normal distribution, with Rx ∼ N(rx, σ
2). The parameter rx denotes the

nominal radius, while σ represents the standard deviation due to the process variation error.

E[H(mi,sj)]dB represents the expected transmission efficiency of signal (mi, sj) in dB, which can

be calculated as:

E[H(mi,sj)]dB = 10 log10

(E[H(mi,sj)]

Sinput

)

= 10 log10 E[H(mi,sj)]. (3.14)

The transmission efficiency after a wavegudie crossing, expressed in dB, can be defined as

follows:

(1− cl)dB = 10 log10

(
1− cl
Sinput

)

= 10 log10(1− cl). (3.15)

Conversely,

1− cl = 10
(1−cl)dB

10 . (3.16)

Theorem 3.8. The expected transmission efficiency of signal (mi, sj) in unit dB, denoted as
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3. Problem Description

E[H(mi,sj)]dB, can be calculated as follows:

E[H(mi,sj)]dB =c(mi,sj) · (1− cl)dB +
∑

mrrh∈MRRdrop
(mi,sj)

E[Hdrop(Rx, λl)]dB

+
∑

mrrf∈MRRthrough
(mi,sj)

E[Hthrough(Ry, λl)]dB. (3.17)

Here, Rx and Ry are considered as independent random variables, each following a normal

distribution, where Rx ∼ N(rx, σ
2) and Ry ∼ N(ry, σ

2). The parameters rx and ry denote

the nominal radii of mrrh and mrrf in the transmission path of signal (mi, sj), respectively,

while σ stands for the standard deviation due to the process variation error. Additionally, λl

represents the wavelength of signal (mi, sj).

Proof. Using Definition 3.7, E[H(mi,sj)]dB can be converted as

E[H(mi,sj)]dB = 10 log10 E[H(mi,sj)]. (3.18)

Then, applying Definition 3.6:

E[H(mi,sj)]dB = 10 log10 E[H(mi,sj)]

= 10 log10

(1− cl)c(mi,sj)
∏

mrrh∈MRRdrop
(mi,sj)

E[Hdrop(Rx, λl)]
∏

mrrf∈MRRthrough
(mi,sj)

E[Hthrough(Ry, λl)]



= 10 log10

(10
(1−cl)dB

10 )
c(mi,sj)

∏
mrrh∈MRRdrop

(mi,sj)

10
E[Hdrop(Rx,λl)]dB

10

∏
mrrf∈MRRthrough

(mi,sj)

10
E[Hthrough(Ry,λl)]dB

10



= 10 log

(10
(1−cl)dB

10 )
c(mi,sj)10

∑
mrrh∈MRR

drop
(mi,sj)

E[Hdrop(Rx,λl)]dB

10 10

∑
mrrf∈MRR

through
(mi,sj)

E[Hthough(Ry,λl)]dB

10



= 10 log

(10
(1−cl)dB

10 )
c(mi,sj)10

∑
mrrh∈MRR

drop
(mi,sj)

E[Hdrop(Rx,λl)]dB+
∑
mrrf∈MRR

through
(mi,sj)

E[Hthough(Ry,λl)]dB

10


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3. Problem Description

= c(mi,sj)(1− cl)dB +
∑

mrrh∈MRRdrop
(mi,sj)

E[Hdrop(Rx, λl)]dB +
∑

mrrf∈MRRthrough
(mi,sj)

E[Hthough(Ry, λl)]dB.

(3.19)

In WRONoC, the worst-case transmission efficiency among all signals is a critical factor because

it determines the laser power required while ensuring the desired performance. Given the

context of process variation, it is essential to calculate the expected transmission efficiency

of each signal and identify the worst-case expected transmission efficiency of all signals to

determine the required expected compensating power. Therefore, E[Hworst] is defined as the

worst expected transmission efficiency of all signals, and its decibel value is represented as

E[Hworst]dB.

Definition 3.9. Let E[Hworst]dB represent the worst-case expected transmission efficiency

among all signals in dB. If the input power Sinput is set to 1 Watt as 1 unit, then

E[Hworst]dB = 10 log10

(
E[Hworst]

Sinput

)

= 10 log10 E[Hworst]. (3.20)

Consequently, the goal of this work is to maximize the value of E[Hworst]dB in the presence of

process variation, which is accomplished by optimizing both the selection of MRR radii and

signal wavelengths.

3.4.1. Inputs

The following inputs are necessary for the problem formulation:

• A topology of the WRONoC. This should specify the master and slave nodes for each

signal, the set of MRRs for different routing requirements (i.e., drop MRR or through

MRR) of the signal, and the number of waveguide crossings in the transmission path of

the signal.
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3. Problem Description

• A set of options for MRR radii.

• A set of wavelength options for data transmission.

• The standard deviation resulting from the process variation.

• The coefficient accounting for the crossing loss.

3.4.2. Outputs

The solutions, serving as the outputs of the optimization problem, yield:

• The selected radius for each MRR within the topology.

• The specific wavelength value of each signal.

3.4.3. Objective

The primary objective of the problem is to maximize E[Hworst]dB, which is the worst expected

transmission efficiency in dB among all signals.
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4. Analytical Stochastic Modeling and Analysis of Expected

Transmission Efficiency

Before optimizing the expected transmission efficiency of all signals under process variation,

it is critical to first determine the signal expected transmission efficiency at the drop and

through ports of an individual MRR based on the input settings. This chapter begins with a

review of the fundamentals of probability theory. These principles are then used to model the

expected transmission efficiency of an MRR, taking into account process variation. Once the

model development is completed, an analysis is performed. The derived expected transmission

efficiency then becomes the input for the upcoming optimization process.

4.1. Probability Theory

In this section, I provide the probability theoretical foundation for the mathematical model

to be introduced shortly. This section is primarily based on the content presented in (Durrett

2019). The definitions, theorems, and examples discussed in this section are derived from this

source unless otherwise indicated.

Let Ω be a non-empty set, and let F be a subset of 2Ω. In this context, the term countable

is interpreted to mean either finite or countably infinite. The set Ω represents the space of

elementary events, while F represents a collection of events.

Definition 4.1. A collection of sets F is called a σ-algebra if it satisfies the following three

conditions:

(i) Ω ∈ F .

(ii) If A ∈ F , then Ac ∈ F , and

(iii) If Ai ∈ F is a countable sequence of sets, then
⋃
iAi ∈ F .
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Definition 4.2. A pair (Ω,F) is called a measurable space.

Definition 4.3. A measure µ on a measurable space (Ω,F) is a non-negative countably

additive set function that satisfies:

(i) µ(∅) = 0,

(ii) µ(A) ≥ 0 for all A ∈ F , and

(iii) for a countable sequence of disjoint sets Ai ∈ F , it holds that µ(
⋃
iAi) =

∑
i µ(Ai).

µ is called a probability measure if µ is a measure and µ(Ω) = 1. In this work, the

probability measure is denoted as P .

Definition 4.4. Let (Ω, τ) be a topological space. The σ-algebra B(Ω) := B(Ω, τ) := σ(τ),

generated by the open sets, is referred to as the Borel σ-algebra on Ω. The elements A ∈
B(Ω, τ) are called the Borel sets of (Ω, τ).

Definition 4.5. A function X : Ω 7→ R is called a random variable if, for every Borel set

B ⊂ R, it holds that X−1(B) = {ω : X(ω) ∈ B} ∈ F .

Definition 4.6. For a discrete random variable X on a sample space Ω, the probability

mass function (PMF) pX(x) : R→ [0, 1] of X is defined by pX(x) = P (X = x). The PMF

satisfies the following conditions:

(i) pX(x) ≥ 0 for all x ∈ Ω,

(ii)
∑

x∈Ω pX(x) = 1.

For a continuous random variable X on a sample space Ω, the probability density function

(PDF) is a function fX(x) that satisfies the following conditions:

(i) fX(x) ≥ 0 for all x ∈ Ω,

(ii)
∫

Ω fX(x)dx = 1.

Definition 4.7. The variance of a random variable X, denoted by Var(X), is defined as

Var(X) = E[(X − E[X])2].
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4. Analytical Stochastic Modeling and Analysis of Expected Transmission Efficiency

Definition 4.8. (i) σ-fields F1,F2, . . . ,Fn are independent if for any Ai ∈ Fi with i =

1, . . . , n, the following holds:

P

(
n⋂
i=1

Ai

)
=

n∏
i=1

P (Ai).

(ii) Random variables X1, . . . , Xn are independent if for any Borel sets Bi ∈ R with i =

1, . . . , n, the following holds:

P

(
n⋂
i=1

{Xi ∈ Bi}

)
=

n∏
i=1

P (Xi ∈ Bi).

(iii) Sets A1, . . . , An are independent if for any subset I ⊂ {1, . . . , n}, the following holds:

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai).

Theorem 4.9. Let X1, . . . , Xn be independent random variables. If either

(a) Xi ≥ 0 for all i = 1, . . . , n, or

(b) E[|Xi|] <∞ for all i = 1, . . . , n, then

E

[
n∏
i=1

Xi

]
=

n∏
i=1

E[Xi].

Proof. The proof can be found on page 49 of book (Durrett 2019).

Definition 4.10. A sequence of random variables Yn converges to a random variable Y in

probability if for every ε > 0, limn→∞ P(|Yn − Y | > ε) = 0.

Theorem 4.11 (Weak Law of Large Numbers). Let X1, X2, . . . be a sequence of independent

and identically distributed random variables satisfying limx→∞ xP(|Xi| > x) = 0. Define Sn =∑n
i=1Xi and µn = E[X11{|X1|≤n}]. Then as n→∞, (Sn/n−µn) converges to 0 in probability.
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4. Analytical Stochastic Modeling and Analysis of Expected Transmission Efficiency

Proof. The proof can be found on page number 63 in the book (Durrett 2019).

4.2. Derivation of the Analytical Stochastic Model

This section presents the derivation of the signal expected transmission efficiency at the drop

and through ports of an MRR. The derivation uses the cumulative distribution function (CDF),

which is defined as follows:

Definition 4.12. (Durrett 2019) Let X be a random variable.

(i) The probability measure PX := P ◦X−1 is referred to as the distribution of X.

(ii) If X is a real random variable, the function FX(x) = P (X ≤ x) =
∫ x
−∞ fX(y)dy is known

as the cumulative distribution function of X.

Let the radius be a random variable R ∼ N(r, σ2). In this case, r ∈ R+ represents the nominal

radius of the designed MRR, and σ describes the standard deviation introduced during the

fabrication process variation. I start by specifying the range of transmission efficiency without

process variation.

Lemma 4.13. The transmission efficiency of the signal on wavelength λ at the drop port of the

MRR with radius r, denoted by Hdrop(r, λ) = k2k2

1−2t2cos(φ)+(t2)2
, where k, t ∈ [0, 1] and r, λ ∈ R+,

satisfies the following inequality:

k4

(2− k2)2
≤ Hdrop(r, λ) ≤ 1. (4.1)

Proof. Since cos(φ) ∈ [−1, 1], it follows that

−2t2 cos(φ) ∈ [−2t2, 2t2] =⇒ 1− 2t2 cos(φ) + t4 ∈ [1 + t4 − 2t2, 1 + t4 + 2t2].

It can be observed that

k4

1− 2t2 cos(φ) + t4
∈
[

k4

1 + t4 + 2t2
,

k4

1 + t4 − 2t2

]
.
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Given the condition k2+t2 = 1, noting that 1+t4+2t2 = (1+t2)2 = (1+1−k2)2 = (2−k2)2 ≥ 1

for k ∈ [0, 1] and 1 + t4 − 2t2 = (1− t2)2 = (k2)2 = k4, the inequality can be rewritten as:

k4

1− 2t2 cos(φ) + t4
∈
[

k4

(2− k2)2
,
k4

k4

]
=⇒ k4

1− 2t2 cos(φ) + t4
∈
[

k4

(2− k2)2
, 1

]
.

This establishes the range of Hdrop(r, λ).

Lemma 4.14. The transmission efficiency of the signal on wavelength λ at the through port

of the MRR with radius r, denoted by Hthrough(r, λ) = 1 − Hdrop(r, λ) = 1 − k2k2

1−2t2cos(φ)+(t2)2
,

where k, t ∈ [0, 1] and r, λ ∈ R+, satisfies the following inequality:

0 ≤ Hthrough(r, λ) ≤ 1− k4

(2− k2)2
. (4.2)

Proof. Recall from Lemma 4.13 that the range of Hdrop(r, λ) is given by [ k4

(2−k2)2
, 1], it fol-

lows that −Hdrop(r, λ) ∈ [−1,− k4

(2−k2)2
]. Since Hthrough(r, λ) = 1 − Hdrop(r, λ), it yields that

Hthrough(r, λ) ∈ [1− 1, 1− k4

(2−k2)2
] =⇒ Hthrough(r, λ) ∈ [0, 1− k4

(2−k2)2
].

The next step is to derivate its cumulative distributions:

Theorem 4.15. The cumulative distribution function of Hdrop(R, λ) for R ∼ N(r, σ2) is

∑
n∈Z

Φ


2π(n+1)−arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ

− Φ


2nπ+arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ



 , (4.3)

where r, λ ∈ R+ and σ ≥ 0.

Proof. Using Example 3.3, the density function of the random variable radius R can be written

as:

fR(x) =
1

σ
√

2π
e−

(x−r)2

2σ2 . (4.4)
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The cumulative distribution function of R is given by:

FR(x) = Φ(
x− r
σ

). (4.5)

Let Y = Hdrop(R, λ) be a random variable. The cumulative distribution function of Y is

denoted by GY (y) and defined by Definition 4.12. By Lemma 4.13, y ∈ [ k4

(2−k2)2
, 1]. Then

GY (y) = P (Y ≤ y) = P (Hdrop(R, λ) ≤ y). (4.6)

Applying Equation (3.5) of Hdrop(r, λ), the distribution function can be calculated as:

GY (y) = P (Y ≤ y)

= P (Hdrop(R, λ) ≤ y)

= P

(
k2k2

1− 2t2 cos(φ(R, λ)) + (t2)2
≤ y
)

(3.3)
= P

(
k4

1− 2t2 cos(2πRβ(λ)) + (t2)2
≤ y
)

= P

(
1− 2t2 cos(2πRβ(λ)) + (t2)2 ≥ k4

y

)

= P

(
−2t2 cos(2πRβ(λ)) ≥ k4

y
− 1− (t2)2

)

= P

(
2t2 cos(2πRβ(λ)) ≤ −k

4

y
+ 1 + (t2)2

)

= P

(
cos(2πRβ(λ)) ≤

1− k4

y + (t2)2

2t2

)
.

(4.7)

The range of y can be employed to investigate whether the range of

1− k4

y + (t2)2

2t2

satisfying the domain of arccos function, which is [−1, 1]:

y ≥ k4

(2− k2)2

k2+t2=1
=⇒ y ≥ k4

(1 + t2)2
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=⇒ k4

y
≤ (1 + t2)2

=⇒ k4

y
≤ 2t2 + 1 + t4

=⇒ k4

y
− 1− t4 ≤ 2t2 (4.8)

=⇒
k4

y − 1− (t2)2

2t2
≤ 1

=⇒
1− k4

y + (t2)2

2t2
≥ −1,

and

y ≤ 1 =⇒ y ≤ k4

k4

k2+t2=1
=⇒ y ≤ k4

(1− t2)2

=⇒ k4

y
≥ 1 + t4 − 2t2

=⇒ −k
4

y
≤ −1− t4 + 2t2 (4.9)

=⇒ −k
4

y
+ 1 + t4 ≤ 2t2

=⇒
1− k4

y + t4

2t2
≤ 1.

Since both conditions hold, it can be concluded that the range of
1− k

4

y
+(t2)2

2t2
satisfies the domain

of the arccos function. Then

GY (y) =
∑
n∈Z

P

(
2nπ + arccos

(
1− k4

y + (t2)2

2t2

)
≤ 2πRβ(λ) ≤ 2π(n+ 1)− arccos

(
1− k4

y + (t2)2

2t2

))
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2πβ(λ)>0
=

∑
n∈Z

P


2nπ + arccos

(
1− k

4

y
+(t2)2

2t2

)
2πβ(λ)

≤ R ≤
2π(n+ 1)− arccos

(
1− k

4

y
+(t2)2

2t2

)
2πβ(λ)



=
∑
n∈Z

P
R ≤

2π(n+ 1)− arccos

(
1− k

4

y
+(t2)2

2t2

)
2πβ(λ)

− P
R ≤

2nπ + arccos

(
1− k

4

y
+(t2)2

2t2

)
2πβ(λ)




=
∑
n∈Z

FR


2π(n+ 1)− arccos

(
1− k

4

y
+(t2)2

2t2

)
2πβ(λ)

− FR


2nπ + arccos

(
1− k

4

y
+(t2)2

2t2

)
2πβ(λ)




=
∑
n∈Z

Φ


2π(n+1)−arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ

− Φ


2nπ+arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ



 .
(4.10)

Theorem 4.16. The cumulative distribution function of Hthrough(R, λ) for R ∼ N(r, σ2) is

∑
n∈Z

Φ


2πn+arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ

− Φ


2nπ−arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ



 , (4.11)

where r, λ ∈ R+ and σ ≥ 0.

Proof. Using Example 3.3, the density function of the random variable radius R is defined as

fR(x) =
1

σ
√

2π
e−

(x−r)2

2σ2 . (4.12)
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The cumulative distribution function of R is given by

FR(x) = Φ(
x− r
σ

). (4.13)

Let Z = Hthrough(R, λ) be a random variable. The cumulative distribution function of Z is

denoted by GZ(z) and is defined by Definition 4.12. By Lemma 4.14, z ∈ [0, 1− k4

(2−k2)2
]. Then

GZ(z) = P (Z ≤ z) = P (Hthough(R, λ) ≤ z).

Applying Equation (3.6) of Hthrough, the cumulative distribution function can be calculated as:

GZ(z) = P (Z ≤ z)

= P (Hthrough(R, λ) ≤ z)

= P (1−Hdrop(R, λ) ≤ z)

= P

(
1− k2k2

1− 2t2 cos(φ(R, λ)) + (t2)2
≤ z
)

= P

(
− k2k2

1− 2t2 cos(φ(R, λ)) + (t2)2
≤ z − 1

)

= P

(
k2k2

1− 2t2 cos(φ(R, λ)) + (t2)2
≥ 1− z

)
(3.3)
= P

(
k4

1− 2t2 cos(2πRβ(λ)) + (t2)2
≥ 1− z

)

= P

(
1− 2t2 cos(2πRβ(λ)) + (t2)2 ≤ k4

1− z

)

= P

(
−2t2 cos(2πRβ(λ)) ≤ k4

1− z
− 1− (t2)2

)

= P

(
2t2 cos(2πRβ(λ)) ≥ − k4

1− z
+ 1 + (t2)2

)

= P

(
cos(2πRβ(λ)) ≥

1− k4

1−z + (t2)2

2t2

)
. (4.14)
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The range of z can be used to investigate whether the range of

1− k4

1−z + (t2)2

2t2
(4.15)

satisfying the domain of arccos function, which is [−1, 1]:

z ≥ 0 =⇒ z ≥ 1− k4

k4

=⇒ z ≥ 1− k4

(1− t2)2

=⇒ −z ≤ k4

(1− t2)2
− 1

=⇒ 1− z ≤ k4

(1− t2)2

=⇒ 2t2(1− z) ≤ 2t2
k4

(1− t2)2

=⇒ k4

2t2(1− z)
≥ (1− t2)2

2t2

=⇒ k4

2t2(1− z)
≥ 1 + t4

2t2
− 1

=⇒ − k4

2t2(1− z)
≤ 1− 1 + t4

2t2

=⇒ 1 + t4

2t2
− k4

2t2(1− z)
≤ 1

=⇒
1− k4

1−z + (t2)2

2t2
≤ 1, (4.16)

and

z ≤ 1− k4

(2− k2)2
=⇒ z ≤ 1− k4

(1 + t2)2

=⇒ −z ≥ k4

(1 + t2)2
− 1
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=⇒ 1− z ≥ k4

(1 + t2)2

=⇒ k4

1− z
≤ (1 + t2)2

=⇒ k4

(1− z)2t2
≤ (1 + 2t2 + t4)

2t2

=⇒ k4

(1− z)2t2
≤ (1 + t4)

2t2
+ 1

=⇒ − k4

(1− z)2t2
≥ −(1 + t4)

2t2
− 1

=⇒ (1 + t4)

2t2
− k4

(1− z)2t2
≥ −1 (4.17)

Since both conditions hold, it can be concluded that the range of (1+t4)
2t2
− k4

(1−z)2t2 satisfies the

domain of the arccos function. Then

GZ(z) =
∑
n∈Z

P

(
2nπ − arccos

(
1− k4

1−z + (t2)2

2t2

)
≤ 2πRβ(λ) ≤ 2πn+ arccos

(
1− k4

1−z + (t2)2

2t2

))

2πβ(λ)>0
=

∑
n∈Z

P


2nπ − arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ)

≤ R ≤
2πn+ arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ)



=
∑
n∈Z

P
R ≤

2πn+ arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ)

− P
R ≤

2nπ − arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ)




=
∑
n∈Z

FR


2πn+ arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ)

− FR


2nπ − arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ)



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=
∑
n∈Z

Φ


2πn+arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ

− Φ


2nπ−arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ



 .
(4.18)

The following theorem can be used to calculate the expected value using the cumulative dis-

tribution function:

Theorem 4.17. (Saeed 2000) The expected value of a non-negative continuous random vari-

able X with cumulative distribution function FX and density function fX can be computed

using the following integral formula:

E(X) =

∫ ∞
0

(1− FX(t)) dt. (4.19)

Proof. According to Definition 3.5 of the expected value, for X ≥ 0:

E[X] =

∫ ∞
0

xfX(x) dx

=

∫ ∞
0

(∫ x

0
dt

)
fX(x) dx. (4.20)

Then, the order of integration can be changed:

E[X] =

∫ ∞
0

(∫ ∞
t

fX(x) dx

)
dt

=

∫ ∞
0

P (X ≥ t) dt

=

∫ ∞
0

(1− FX(t)) dt. (4.21)

Then, the expected transmission efficiencies of the signal at drop and through ports of an MRR
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can be derived.

Theorem 4.18. The expected value of Hdrop(R, λ) with R ∼ N(r, σ2), r ∈ R+, σ ≥ 0, and

λ ∈ R+ for y ∈
[

k4

(2−k2)2
, 1
]

is

E[Hdrop(R, λ)] =

∫ 1

k4

(2−k2)2

(
1−

∑
n∈Z

[
Φ


2π(n+1)−arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ



− Φ


2nπ+arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ


])

dy.

(4.22)

Proof. Lemma 4.13 establishes the domain of the expected value function as
[

k4

(2−k2)2
, 1
]
. The

cumulative distribution function of Hdrop(R, λ), denoted by GY (y) with Y = Hdrop(R, λ), can

be represented using Theorem 4.15:

GY (y) =
∑
n∈Z

[
Φ


2π(n+1)−arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ

− Φ


2nπ+arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ


]
.

(4.23)

Applying Theorem 4.17, the expected value of Hdrop(R, λ) is given as

E[Hdrop(R, λ)] = E[Y ]

=

∫ 1

k4

(2−k2)2

(1−GY (y)) dy

=

∫ 1

k4

(2−k2)2

(
1−

∑
n∈Z

[
Φ


2π(n+1)−arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ


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− Φ


2nπ+arccos

(
1− k

4
y +(t2)2

2t2

)
2πβ(λ) − r

σ


])

dy. (4.24)

Theorem 4.19. The expected value of Hthrough(R, λ) with R ∼ N(r, σ2), r ∈ R+, σ ≥ 0, and

λ ∈ R+ for z ∈ [0, 1− k4

(2−k2)2
] is

E[Hthrough(R, λ)] =

∫ 1− k4

(2−k2)2

0

(
1−

∑
n∈Z

[
Φ


2πn+arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ



− Φ


2nπ−arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ


])

dz.

(4.25)

Proof. Lemma 4.14 shows the domain of the expected value function as
[
0, 1− k4

(2−k2)2

]
. The

cumulative distribution function of Hthrough(R, λ), denoted by GZ(z) with Z = Hthrough(R, λ),

can be represented using Theorem 4.16:

GZ(z) =
∑
n∈Z

Φ


2πn+arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ

− Φ


2nπ−arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ



 .

(4.26)

Applying Theorem 4.17, the expected value of Hthrough(R, λ) is given as

E[Hthrough(R, λ)] = E[Z]
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=

∫ 1− k4

(2−k2)2

0
(1−GZ(z)) dz

=

∫ 1− k4

(2−k2)2

0

(
1−

∑
n∈Z

[
Φ


2πn+arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ



− Φ


2nπ−arccos

(
1− k4

1−z+(t2)2

2t2

)
2πβ(λ) − r

σ


])

dz. (4.27)

The linearity property of the expected value can be used as a quick approach to calculating

the expected value of Hthrough(R, λ). This property can be formally described by the following

theorem:

Theorem 4.20. (Stein 2005) Let X and Y be two random variables, then

E[X + Y ] = E[X] + E[Y ]. (4.28)

Proof. If X and Y are discrete random variables, their joint probability mass function is

denoted by fXY (xi, yj). By using Definition 3.5, the expected value of their sum can be

computed as follows:

E[X + Y ] =
∑
i∈Z

∑
j∈Z

(xi + yj)fXY (xi, yj)

=
∑
i∈Z

∑
j∈Z

xifXY (xi, yj) +
∑
i∈Z

∑
j∈Z

yjfXY (xi, yj)

= E[X] + E[Y ].

If X and Y are continuous random variables, then their joint probability density function is
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denoted by fXY (x, y). By using Definition 3.5, the expected value of their sum is given by:

E[X + Y ] =

∫ +∞

−∞

∫ +∞

−∞
(x+ y)fXY (x, y) dxdy

=

∫ +∞

−∞

∫ +∞

−∞
xfXY (x, y) dxdy +

∫ +∞

−∞

∫ +∞

−∞
yfXY (x, y) dxdy

= E[X] + E[Y ].

Theorem 4.21. The expected value of Hthrough(R, λ) with R ∼ N(r, σ2), r ∈ R+, σ ≥ 0, and

λ ∈ R+ for z ∈ [0, 1− k4

(2−k2)2
] is given by

E[Hthrough(R, λ)] = 1− E[Hdrop(R, λ)]. (4.29)

Proof. From Equation (3.7), it can be observed that Hthrough(R, λ) +Hdrop(R, λ) = 1. There-

fore, based on the linearity property of the expected value in Theorem 4.20, the equation can

be rewritten as follows:

E[Hthrough(R, λ)] + E[Hdrop(R, λ)] = E[Hthrough(R, λ) +Hdrop(R, λ)]

= E[1]

= 1 (4.30)

=⇒ E[Hthrough(R, λ)] = 1− E[Hdrop(R, λ)].

4.3. Expected Transmission Spectral Analysis

Numerical integration is the mainstream method for solving integration problems in computer

programs. The core idea is to discretize continuous integration problems to obtain an approx-

imate numerical solution. To perform an analysis of the expected transmission spectra, I used

the numerical integration technique of the Riemann summation method in the C++ program

to approximate the expected values. It can be formally defined as follows:
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Definition 4.22. (Philip 2023) Given a function f defined over the interval [a, b] and a

partition a = x0 < x1 < · · · < xn = b, the Riemann sum of f over the partition is defined as

n∑
i=1

f(x∗i )(xi − xi−1),

where each x∗i is any chosen point in the interval [xi−1, xi].

Theorem 4.23. (Philip 2023) Let f be a function defined on the closed interval [a, b]. The

limit of the Riemann sums

∫ b

a
f(x) dx = lim

n→∞

n∑
i=1

f(x∗i )(xi − xi−1)

exists. The limit is unique and is defined as the definite Riemann integral of the function f

over [a, b], where a = x0 < x1 < · · · < xn = b.

I divide the domain of the expected values in Theorem 4.18 and Theorem 4.19 into 1000

equal intervals and use the Riemann sum method to accumulate the areas of these intervals

to obtain the approximate expected value. The choice of 1000 subintervals strikes a balance

between ensuring accuracy and avoiding excessive computational load.

After specifying the definition of Riemann summation and the setting of the parameters, the

expected transmission efficiency of the signal on wavelength λ at the drop port of an MRR

with radius R ∼ N(r, σ2) can be approximated as follows:

E[Hdrop(R, λ)] ≈

1− k4

(2−k2)2

1000

 1000∑
i=0

[
1−

∑
n∈Z

Φ


2π(n+1)−arccos

 1− k
4
yi

+(t2)2

2t2


2πβ(λ) − r

σ



−Φ


2nπ+arccos

 1− k
4
yi

+(t2)2

2t2


2πβ(λ) − r

σ




]
, (4.31)

where yi is the left endpoint of the subinterval. And the transmission efficiency of the signal on
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wavelength λ at the through port of an MRR with radius R ∼ N(r, σ2) can be approximated

as follows:

E[Hthrough(R, λ)] ≈

1− k4

(2−k2)2

1000

 1000∑
i=0

(
1−

∑
n∈Z

[
Φ


2πn+arccos

 1− k4

1−zi
+(t2)2

2t2


2πβ − r
σ

 (4.32)

− Φ


2nπ−arccos

 1− k4

1−zi
+(t2)2

2t2


2πβ − r
σ


])

, (4.33)

where zi is the left endpoint of the subinterval.

In the absence of publicly available specific error data, and considering that the existing process

technologies mentioned in Section 3.2 can limit the error to less than 1%, I introduce two types

of standard deviations to describe the error due to process variation, the absolute standard

deviation, and the relative standard deviation. The absolute standard deviation has constant

values regardless of the radius of the MRR. On the other hand, the relative standard deviation

is proportional to the radius of the MRR. For example, a relative standard deviation of 1%

means that the standard deviation is equal to 1% of the radius. Under the absolute standard

deviation setting, I set two different standard deviation values of 5 nm and 10 nm; under the

relative standard deviation setting, I similarly set two different standard deviation values of

0.05% and 0.1% for each radius option. For comparative analysis, the scenario where no process

variation occurs is also considered, that is, σ = 0. Then, I set the cross-coupling coefficient k

to 0.4 (Li, Shen, Yu, Zhang, Chen & Zhang 2020) and used this to determine the self-coupling

coefficient t, the value of which is calculated by the equation t =
√

1− k2 =
√

0.84. To illustrate

the properties of MRRs with different radii in the expected transmission spectra under process

variation, I consider two MRRs with radii of 10 µm and 27 µm. The larger MRR has more

resonant wavelengths than the smaller MRR in the same wavelength range. Based on all the

above conditions, the expected transmission spectra at the drop port and through port for

these two representative radii are plotted in the wavelength range of 1500 nm – 1525 nm range

with 0.1 nm increments, which are presented in Figures 4.1 – 4.5.

57



4. Analytical Stochastic Modeling and Analysis of Expected Transmission Efficiency

Figure 4.1 shows the transmission spectra without process variation. As seen in Figure 4.1

(a), in the transmission spectra at the drop ports of MRRs, there are three peaks for the 10

µm radius of MRR and seven peaks for the 27 µm radius of MRR. These peaks correspond to

the troughs at the through port in Figure 4.1 (b) along the wavelength dimension. Figure 4.1

(a) also shows that the resonance peaks become sharper as the radius increases. This suggests

that a larger radius can more effectively limit the passage of non-resonant wavelength signals

through the drop port, thus providing more selective transmission.

Figures 4.2 (a) – 4.5 (a) show the expected transmission spectra at the drop port under different

types of standard deviations. It is worth noting that as the standard deviation changes, the

wavelength corresponding to each peak does not change. As the standard deviation increases,

the resonance peaks become broader, indicating that larger process variation make MRRs less

effective at restricting the passage through the drop port of non-resonant wavelengths.

In particular, Figure 4.2 (a) and Figure 4.3 (a) show the expected transmission spectra at the

drop port of MRRs with different radii under absolute standard deviations. As the absolute

standard deviation increases, the peaks of the expected transmission efficiency continue to

decrease. However, for the troughs and their adjacent areas, the increase in absolute standard

deviation does not induce significant changes. This indicates that the process variation has a

significantly larger effect on the resonant wavelengths of the MRR and their neighborhoods than

on the non-resonant wavelengths. Under the same absolute standard deviation, the degrees of

peak value reduction of MRRs with different radii are generally consistent. Hence, the effect

of absolute process variation on the transmission efficiency at the drop port of MRRs with

different radii does not show a significant discrepancy.

Instead, for MRRs of different radii, the relative standard deviation condition has a different

effect on the expected transmission efficiency. As shown in Figure 4.4 (a) and Figure 4.5 (a),

as the relative standard deviation increases, the rate and magnitude of peak reduction at the

drop port of MRRs with larger radii exceed those with smaller radii. This is because the

relative standard deviation associated with larger radii increases accordingly. Although MRRs

with larger radii support more resonant wavelengths, they are also more susceptible to relative

standard deviation. Similar to the absolute standard deviation, the process variation effect on

the non-resonant wavelength regions remains relatively small.

Since the expected transmission efficiency at the through port shown in Figures 4.1 (b) – 4.5
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(b) is complementary to the efficiency at the drop port of the same MRR under the same

standard deviation, the troughs in the expected transmission efficiency spectra at the through

port correspond to the peaks in the spectra at the drop port, and vice versa. If the influence

of a different standard deviation on the peaks and troughs of the drop port inherently implies

the corresponding influence on the troughs and peaks of the through port.

After presenting the distribution of the expected transmission efficiency and analyzing it, the

optimization potential can be explained with the following example. Using the resonant wave-

lengths of 1504 nm, 1513.3 nm, and 1522.8 nm from the 10 µm MRR as benchmarks, Figure 4.1

shows that these three wavelengths correspond to the non-resonant wavelengths of the 27 µm

MRR. This means that when the 10 µm MRR serves as the drop MRR and the 27 µm MRR

serves as the through MRR in the transmission path of a signal, all three wavelengths are suit-

able choices. Since 1522.8 nm is closer to the resonance wavelength of the 27 µm MRR than the

other two wavelengths and as the resonance peak broadens with increasing standard deviation,

its expected transmission efficiency change at the drop port of 27 µm MRR is greater than the

other two wavelengths. Therefore, 1522.8 nm is not an ideal choice for the signal when 10 µm

MRR is the drop MRR, and 27 µm is the through MRR in this signal transmission path under

process variation.

In summary, this chapter lays the groundwork for optimizing signal transmission efficiency,

emphasizing the importance of determining the appropriate MRR radius and signal wavelength

to counteract process variation in the network.
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(a)

(b)

Figure 4.1.: (a) Transmission spectra at drop ports of MRRs without process variation. (b)
Transmission spectra at through ports of MRRs without process variation.
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(a)

(b)

Figure 4.2.: (a) Expected transmission spectra at drop ports of MRRs with radii of 10 µm
and 27 µm, each with a variation of 5 nm. (b) Expected transmission spectra at
through ports of MRRs with radii of 10 µm and 27 µm, each with a variation of
5 nm.
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(a)

(b)

Figure 4.3.: (a) Expected transmission spectra at drop ports of MRRs with radii of 10 µm
and 27 µm, each with a variation of 10 nm. (b) Expected transmission spectra at
through ports of MRRs with radii of 10 µm and 27 µm, each with a variation of
10 nm.
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(b)

(a)

Figure 4.4.: (a) Expected transmission spectra at drop ports of MRRs with radii of 10 µm and
27 µm, each with a variation of 0.05% of their respective radius. (b) Expected
transmission spectra at through ports of MRRs with radii of 10 µm and 27 µm,
each with a variation of 0.05% of their respective radius.
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(b)

(a)

Figure 4.5.: (a) Expected transmission spectra at drop ports of MRRs with radii of 10 µm
and 27 µm, each with a variation of 0.1% of their respective radius. (b) Expected
transmission spectra at through ports of MRRs with radii of 10 µm and 27 µm,
each with a variation of 0.1% of their respective radius.
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This chapter discusses how to solve the optimization problem proposed in Chapter 3. First, I

construct the integer linear programming (ILP) model for finding the global optimum. How-

ever, as the scale of the model increases, it becomes increasingly challenging within an ac-

ceptable runtime to solve the ILP model. Therefore, I develop a simulated annealing method

specifically tailored for WRONoC. The experimental results show that this method can provide

high-quality, optimized solutions within a practical problem-solving runtime.

5.1. Integer Linear Programming Model

In this section, I first review the definition and complexity of integer linear programming to pro-

vide the basic understanding necessary for the subsequent discussions. I then proceed to model

the optimization problem using the principles of WRONoC and integer linear programming.

5.1.1. Theory and Complexity

Unless specifically stated otherwise, the concepts, definitions, and theorems discussed in this

subsection are primarily a review of the content presented in (Korte & Vygen 2012).

Definition 5.1. Given a matrix A ∈ Zm×n, vectors b ∈ Zm, c ∈ Zn, and a vector x ∈ Zn, the

integer linear programming (ILP) is an optimization problem defined as:

maximize cTx

subject to Ax ≤ b

x ∈ Zn
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The task of ILP is to identify a feasible solution, represented by a vector x ∈ Zn, that

satisfies the constraint Ax ≤ b. Additionally, the solution should maximize the objective

function cTx. If a feasible solution achieves the maximum possible value of the objective

function, it is referred to as an optimal solution.

The problem is said to be infeasible if the set of all x ∈ Zn satisfying Ax ≤ b is empty, i.e.,

{x ∈ Zn : Ax ≤ b} = ∅.

The problem is said to be unbounded if for every x ∈ Zn satisfying Ax ≤ b, the objective

function value cTx can become arbitrarily large, i.e., sup{cTx | x ∈ Zn, Ax ≤ b} =∞.

Definition 5.2. A decision problem is defined by a pair P = (X,Y ), where X is the instance

space that can be processed in polynomial time, and Y ⊆ X. The elements of Y are referred

to as yes-instances, and the elements of X \ Y are referred to as no-instances.

Definition 5.3. The set of decision problems that can be solved in polynomial time is denoted

by P .

Definition 5.4. A decision problem P = (X,Y ) belongs to NP (nondeterministic polyno-

mial time) if there exists a polynomial p and another decision problem P ′ = (X ′, Y ′) ∈ P ,

where X ′ = {x#c : x ∈ X, c ∈ {0, 1}bp(size(x))c}. This implies that Y = {y ∈ X : ∃c ∈
{0, 1}bp(size(y))c with y#c ∈ Y ′}. In this context, x#c is the concatenation of the string x,

the symbol ”#”, and the string c. A string c that satisfies y#c ∈ Y ′ is designated as a cer-

tificate for y, since it verifies that y belongs to Y . An algorithm that solves P ′ is called a

certificate-checking algorithm.

Proposition 5.5. P ⊆ NP.

Definition 5.6. Given two decision problems P1 = (X1, Y1) and P2 = (X2, Y2), P1 is said to

polynomially transform to P2 if there exists a function f : X1 → X2, which is computable in

polynomial time, such that f(x1) ∈ Y2 for all x1 ∈ Y1, and f(x1) ∈ X2 \Y2 for all x1 ∈ X1 \Y1.

Definition 5.7. A decision problem P ∈ NP is referred to as NP-complete if every other

decision problem in NP can be polynomially transformed to P.
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Definition 5.8. A decision problem is referred to as NP-hard if every problem in NP can be

polynomially reduced to P, meaning there exists a polynomial-time oracle algorithm for the

problem in NP using P.

Definition 5.9. Let X be a finite set of boolean variables. A truth assignment for X is a

function T : X → {true, false}. The SAT problem is defined for a given boolean formula.

It aims to determine whether there exists a truth assignment for the variables of the boolean

formula such that the entire formula evaluates to true.

Theorem 5.10 (Cook-Levin Theorem). SAT problem is NP-complete.

The complexity of integer linear programming is given as follows:

Theorem 5.11. Integer linear programming is NP-hard.

Proof. An integer solution to an ILP can be used as a certificate, and it can be verified that

this solution satisfies all the linear inequalities that constitute the ILP in polynomial time.

Thus, the integer linear programming problem is in NP.

To show that ILP is NP-hard, a reduction of the well-known NP-complete problem SAT is

performed. From Definition 5.9 and Theorem 5.10, it is known that an SAT instance is defined

by a set of boolean variables and clauses and is NP-complete. An equivalent ILP instance can

be constructed with the same number of variables. Each integer variable bi is subjected to the

constraint:

0 ≤ bi ≤ 1. (5.1)

For each clause in the SAT instance, an associated constraint is created in the ILP instance.

For example, for the clause x1 ∨¬x2 ∨ x3 in the SAT instance, the corresponding constraint in

the ILP instance is

b1 + (1− b2) + b3 ≥ 1. (5.2)

This transformation can be done in polynomial time. Furthermore, it is straightforward to

confirm that a satisfying assignment for the given SAT instance implies an integer solution for
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the corresponding ILP instance and vice versa. For instance, it can be set b1 = 1 or b2 = 0,

or b3 = 1, which means x1 = true or x2 = false, or x3 = true in the truth assignment for SAT

instance. Hence, the integer linear programming problem is NP-hard.

5.1.2. Variable Setting

Having established the definitions and complexity, the ILP model is now developed to address

the optimization problem proposed in Section 3.4. The input and design options for this model

are adopted from Chapter 3 and Chapter 4.

I introduce a binary variable b
(mi,sj),mrrh
rx,λl

to represent whether wavelength λl is selected for

signal (mi, sj) and mrrh has a radius rx, which can be interpreted as:

b
(mi,sj),mrrh
rx,λl

=

1, if wavelength λl is selected for signal (mi, sj) and mrrh has radius rx,

0, otherwise.

(5.3)

This representation can demonstrate the selection of radius and wavelength under the opti-

mization objective. If the binary variable takes the value 1, it indicates that signal (mi, sj) is

transmitted on wavelength λl, and the MRR with index h has a radius of rx. Conversely, if

the value of this variable is 0, it means that no wavelength λl has been selected for the signal

(mi, sj) or no radius rx has been selected for the MRR with index h.

5.1.3. Radii and Wavelength Assignment

To ensure that exactly one wavelength is selected for each signal and exactly one radius is

assigned to each MRR in the given topology, this constraint can be expressed as follows:

∀(mi, sj) ∈ SP, ∀mrrh ∈MRR :

∑
rx∈R

∑
λl∈Λ

b
(mi,sj),mrrh
rx,λl

= 1. (5.4)
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For example, if b
(mi,sj),mrrh
ra,λb

is set to 1, this constraint ensures that

∀rx ∈ R \ {ra}, ∀λl ∈ Λ \ {λb} : b
(mi,sj),mrrh
rx,λl

= 0.

This implies that this signal (mi, sj) is assigned only one wavelength λb and that mrrh has

only one radius ra.

5.1.4. Consistent Wavelength Selection

To ensure a consistent signal wavelength transmitted in a path, I designate the first MRR in

MRR(mi,sj), denoted as mrr
(mi,sj)
0 , as the benchmark. All other MRRs in the same transmis-

sion path of signal (mi, sj) must cooperate in selecting and switching the same wavelength as

mrr
(mi,sj)
0 . This constraint is modeled as follows:

∀(mi, sj) ∈ SP, ∀mrrh ∈MRR(mi,sj) \ {mrr
(mi,sj)
0 }, ∀λl ∈ Λ :

∑
rx∈R

b
(mi,sj),mrr

(mi,sj)

0
rx,λl

−
∑
ry∈R

b
(mi,sj),mrrh
ry ,λl

= 0. (5.5)

The summation terms,
∑

rx∈R b
(mi,sj),mrr

(mi,sj)

0
rx,λl

and
∑

ry∈R b
(mi,sj),mrrh
ry ,λl

, consider the entire

range of radius options for the mrr
(mi,sj)
0 and mrrh. By ensuring that mrr

(mi,sj)
0 and mrrh

have actually chosen radii for themselves, it becomes possible to assess whether the signal

(mi, sj) has chosen the wavelength λl. If the signal (mi, sj) selects the wavelength λl, then

∑
rx∈R

b
(mi,sj),mrr

(mi,sj)

0
rx,λl

=
∑
ry∈R

b
(mi,sj),mrrh
ry ,λl

= 1.

Combining the Equation (5.4) yields

∀λp ∈ Λ \ {λl} :
∑
rx∈R

b
(mi,sj),mrr

(mi,sj)

0
rx,λp

=
∑
ry∈R

b
(mi,sj),mrrh
ry ,λp

= 0,

which means that no wavelength other than λl will be selected for signal (mi, sj). This ensures

that the wavelength transmitted along the path of signal (mi, sj) remains consistent.
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5.1.5. Consistent Radius Selection

An MRR can appear in multiple signal transmission paths, but its radius must remain consis-

tent. I denote the set of signals whose transmission paths contain mrrh as SPmrrh and the

first element in this set as spmrrh0 . The spmrrh0 is used as the benchmark. The radius of mrrh

in other transmission paths of signals within SPmrrh must be the same as the radius of mrrh

in spmrrh0 . The constraint can be modeled as follows:

∀mrrh ∈MRR, ∀(mi, sj) ∈ SPmrrh \ {sp
mrrh
0 }, ∀rx ∈ R :

∑
λl∈Λ

b
sp
mrrh
0 ,mrrh

rx,λl
−
∑
λp∈Λ

b
(mi,sj),mrrh
rx,λp

= 0. (5.6)

The summation terms,
∑

λl∈Λ b
(mi,sj),mrrh
r,λl

and
∑

λp∈Λ b
sp
mrrh
0 ,mrrh

rx,λp
, consider the entire range of

wavelength options for the signal (mi, sj) and spmrrh0 . By ensuring that the signal (mi, sj) and

spmrrh0 have actually chosen wavelengths for themselves, it becomes possible to assess whether

the mrrh has chosen the radius rx. If the mrrh selects the radius rx, then

∑
λl∈Λ

b
(mi,sj),mrrh
rx,λl

=
∑
λp∈Λ

b
sp
mrrh
0 ,mrrh

rx,λp
= 1.

Combining the Equation (5.4) yields

∀ry ∈ R \ {rx} :
∑
λl∈Λ

b
(mi,sj),mrrh
ry ,λl

=
∑
λp∈Λ

b
sp
mrrh
0 ,mrrh

ry ,λp
= 0,

which means that mrrh will not have a radius other than rx. This ensures that the radius of

each MRR remains the same in this topology.

5.1.6. Expected Value Maximization

The expected transmission efficiency in dB at the drop port of each mrrh ∈ MRR can be

denoted as E[H
(mi,sj),mrrh
drop ]dB and modeled from the selected radius and wavelength using the

following constraint:

E[H
(mi,sj),mrrh
drop ]dB =

∑
rx∈R

∑
λl∈Λ

(
b
(mi,sj),mrrh
rx,λl

× E[Hdrop(Rx, λl)]dB

)
. (5.7)
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Similarly, the expected transmission efficiency of signal (mi, sj) at the through port of mrrh ∈
MRR can be denoted as E[H

(mi,sj),mrrh
through ]dB and expressed with the following constraint:

E[H
(mi,sj),mrrh
through ]dB =

∑
rx∈R

∑
λl∈Λ

(
b
(mi,sj),mrrh
rx,λl

× E[Hthrough(Rx, λl)]dB

)
, (5.8)

where Rx ∼ N(rx, σ
2). Since the constraint in Equation (5.4) ensures that only one radius

and wavelength combination is selected, this summation will have only one non-zero term and

practically takes the expected transmission efficiency corresponding to the selected radius and

wavelength for the given MRR at the drop and through port.

Using Theorem 3.8, the expected transmission efficiency in dB of signal (mi, sj) can be denoted

as E[H(mi,sj)]dB and is constrained by the following:

E[H(mi,sj)]dB =
∑

mrrh∈MRRdrop
(mi,sj)

E[H
(mi,sj),mrrh
drop ]dB

+
∑

mrrf∈MRRthrough
(mi,sj)

E[H
(mi,sj),mrrh
through ]dB

+ c(mi,sj) · (1− cl)dB, (5.9)

where c(mi,sj) represents the number of waveguide crossing and cl is the crossing coefficient.

Based on the above constraints, the worst-case expected transmission efficiency in dB of all

signals, denoted as E[Hworst]dB, is modeled with the following constraint:

∀(mi, sj) ∈ SP : E[Hworst]dB ≤ E[H(mi,sj)]dB (5.10)

This constraint ensures that for each signal (mi, sj) in the set of all possible signals SP, the

worst-case expected transmission efficiency, E[Hworst]dB, must be less than or equal to the

expected transmission efficiency of each signal in the topology.

Thus, the optimization model can be formulated as follows:

Maximize: E[Hworst]dB,

Subject to: (5.3)− (5.10).
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5.2. Simulated Annealing

Since the integer linear programming problem is proved to be an NP-hard problem, finding

the exact solution in finite time becomes extremely difficult as the problem size increases. On

the contrary, metaheuristic algorithms have been widely used for their ability to quickly give

high-quality, feasible solutions. In the context of global optimization, relying only on local

optimization does not guarantee that a globally optimal solution will be found. Simulated

annealing, a type of metaheuristic algorithm, addresses this issue. It’s a random optimization

method that not only accepts solutions with better objective function values but also incorpo-

rates a probabilistic mechanism to accept solutions with worse objective function values. In

the course of this process, the probability of accepting worse solutions is gradually decreased

to zero. This allows the search process to escape local minima and fully explore the global

solution space. As stated in (Dekkers & Aarts 1991), this algorithm converges asymptotically

to the global optimum.

The implementation of the algorithm requires the following parameters:

Tinit: The initial temperature.

Tcurrent: The current temperature in the annealing schedule.

Tstop: The stopping temperature.

α : The cooling rate.

Paccept: The acceptance probability.

Niter: The total number of iterations performed by the algorithm. Each iteration represents

a complete cycle of the optimization process.

Vneigh: The set of neighboring solutions.

Ninit: The number of initial solutions.

Vinit: The set of Initial solutions.

Nno improve: The monitor for stagnation in the optimization process.

In (Dekkers & Aarts 1991), the classic implementation of the simulated annealing algorithm is

laid out as follows:
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Step 1: The initial solution, Vinit, is set together with the initial temperature, Tinit. The current

temperature is then assigned as Tcurrent = Tinit.

Step 2: For each initial solution, the following steps are repeated until the stopping condition is

met:

• A neighboring solution is generated from the set Vneigh of the current solution.

• The objective function for this neighboring solution is evaluated.

• If the neighboring solution is better than the current solution, it will be accepted

as the new current solution. However, if the neighbor solution is inferior to the

current solution, it can still be accepted as the new current solution with probabil-

ity Paccept = exp(−∆f/Tcurrent), where ∆f is the difference between the objective

function values of the neighbor solution and the current solution.

Step 3: The temperature Tcurrent is decreased according to the cooling rate, α.

Step 4: The best solution found is returned once the stopping condition is met.

In this classic simulated annealing process, the algorithm uses a temperature-dependent it-

erative process that simulates the cooling process in metallurgical annealing. This includes

a defined acceptance mechanism that probabilistically accepts sub-optimal solutions with an

acceptance probability of Paccept = exp(−∆f/Tcurrent). This probability decreases as the dif-

ference increases and also as the current temperature decreases. In contrast to the setting of

the acceptance probability in the classical algorithm, in this work, the setting of the acceptance

probability is related to the current expected transmission efficiency value as well as the current

temperature, based on the property that the transmission efficiency takes values between [0,1].

Next, I will explain how this algorithm can be specifically applied to the optimization problem

in this work.
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5.2.1. Preparation of Initial Solutions

Initial solution generation is the starting point of the algorithm. This process consists of

assigning a random radius to each MRR and a wavelength to each signal, then generating

the initial solution set based on the number of initial solutions. It begins by introducing the

parameters required for the optimization process:

v ∈ Vinit: A single initial solution, represented as a vector, where each element specifies the

radius for each MRR and the wavelength used for data transmission in each signal path.

From the available wavelength options, I filter the wavelengths that can be transmitted with

high efficiency to reach the “drop” and “through” ports of an MRR with a given radius without

process variation, and categorize these wavelengths into two sets:

Λdrop,rx : The set of wavelengths selected from the available wavelength options that satisfy

the condition Hdrop(rx, λl) ≥ p for a given MRR with radius rx, where p ∈ [0, 1] represents

the criteria for filtering high efficiency.

Λthrough,ry : The set of wavelengths from the available wavelength options that satisfy the

condition Hthrough(ry, λl) ≥ q for a given MRR with radius ry, where q ∈ [0, 1] represents the

criteria for filtering high efficiency.

The following are the steps involved in the preparation of the initial solutions for the simulated

annealing algorithm tailored to the optimization problem in this work:

Step 1: Depending on the number of initial solutions Ninit specified in the input, a random radius

is assigned to each MRR in each initial solution.

Step 2: To speed up the optimization, the signal wavelengths can be selected based on given MRR

radii. The purpose of the selection is to allow the signal to be efficiently transmitted to

the drop port of the drop MRR and the through port of the through MRR. Therefore,

it is possible to create a set of wavelengths Λ(mi,sj) as candidate wavelengths for each

signal. The selection process can be decomposed into three cases:

• The transmission path of signal (mi, sj) contains only drop MRRs: The wavelength
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set is defined as Λ(mi,sj) =
⋂
mrrh∈MRRdrop

(mi,sj)

Λdrop,rx , where rx is the radius of

mrrh.

• The transmission path of signal (mi, sj) contains only through MRRs: The wave-

length set is defined as Λ(mi,sj) =
⋂
mrrf∈MRRthrough

(mi,sj)

Λthrough,ry , where ry is the

radius of mrrf .

• The transmission path of signal (mi, sj) contains drop and through MRRs: The set is

defined as Λ(mi,sj) =

(⋂
mrrh∈MRRdrop

(mi,sj)

Λdrop,rx

)
∩
(⋂

mrrf∈MRRthrough
(mi,sj)

Λthrough,ry

)
.

If Λ(mi,sj) = ∅, then Λ(mi,sj) =
⋂
mrrh∈MRRdrop

(mi,sj)

Λdrop,rx , where rx is the radius of

mrrh and ry is the radius of mrrf .

Step 3: For each signal (mi, sj), the wavelengths in Λ(mi,sj) are iterated. Based on the current

configuration of each MRR and the given standard deviation, the expected transmission

efficiency of signal (mi, sj) on each wavelength is calculated using Definition 3.6, then the

wavelength that maximizes the expected transmission efficiency is selected as the initial

wavelength for signal (mi, sj).

These steps complete the configuration of the initial solutions. Each initial solution now has a

radius assigned to each MRR and a wavelength selected for each signal.

5.2.2. Optimization Process

Following the preparation of the initial solution, the optimization process begins. During each

iteration of the optimization process, a solution is generated based on the outcome of the

previous iteration. Solutions from previous iterations are labeled as old, while those generated

in the current iteration are labeled as new. The following steps explain the process in detail:

Step 1: Based on the current solutions, the radius of each MRR is denoted by rmrrh,old,k and the

wavelength for signal (mi, sj) is represented by λ(mi,sj),old,k, where k represents the k-th

solution. The expected transmission efficiency of each signal for each solution is evaluated

using Definition 3.6. Thus, the signal with the lowest expected transmission efficiency

can be determined. This signal is denoted as spworst,old,k and its expected transmission
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efficiency is denoted as E[Hworst,old,k].

Step 2: The MRR with the lowest expected transmission efficiency in the transmission path of

spworst,old,k is found and denoted as mrrworst,k. A new radius for mrrworst,k is chosen

randomly from the radii options.

Step 3: All signals whose transmission paths contain mrrworst,k are identified and denoted as a set

SPmrrworst,k
. Based on the new radius of mrrworst,k, following the same methodology as

Step 2 and Step 3 in the Section 5.2.1, new wavelengths are assigned to these signals in

SPmrrworst,k
. The radius of mrrworst,k is denoted by rmrrworst,k,new and the new wavelength

for signals of SPmrrworst,k
is represented by λ(mx,sy),new,k, where (mx, sy) ∈ SPmrrworst,k

.

Step 4: The expected transmission efficiency of each signal can be determined based on the new

MRR radii and signal wavelengths. The signal with the new lowest expected transmission

efficiency of k-th solution is expressed as spworst,new,k. Its expected transmission efficiency

is denoted by E[Hworst,new,k].

Step 5: E[Hworst,new,k] is compared with E[Hworst,old,k], and the results are evaluated in two cases:

• If E[Hworst,new,k] > E[Hworst,old,k], the radius solution rmrrworst,k,old is set to the

same as rmrrworst,k,new
, the wavelength solution λ(mx,sy),old,k is set to the same as

λ(mx,sy),new,k and E[Hworst,old,k] is set to the same as E[Hworst,new,k].

• If E[Hworst, new,k] ≤ E[Hworst, old,k], the new solution is accepted with a probability

given by:

Paccept,k = E[Hworst,new,k]× Tcurrent. (5.11)

If accepted, the radius solution rmrrworst,k,old is set to the same as rmrrworst,k,new, the

wavelength solution λ(mx,sy),old,k is set to the same as λ(mx,sy),new,k and E[Hworst,old,k]

is set to the same as E[Hworst,new,k]. If not accepted, the radius solution rmrrworst,k,old,

the wavelength solution λ(mx,sy),old,k, and the worst expected transmission efficiency

E[Hworst,old,k] do not change.

Step 6: After each iteration, the E[Hworst,old,k] values of all solutions are compared. The highest
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expected transmission efficiency of all solutions is denoted as E[Hworst]. After a certain

number of iterations, a part of the solutions with lower E[Hworst,old,k] are discarded,

while those with higher E[Hworst,old,k] are further optimized. This enables that in the

early stages of optimization, the algorithm performs a global search to explore a wide

range of possible solutions. In the later stages, the algorithm performs a local search on

solutions with better E[Hworst,old,k], which improves computational efficiency.

Step 7: The number of iterations is increased by one. The current temperature Tcurrent is lowered

based on the cooling schedule α. As the temperature decreases, the probability of ac-

cepting a worse solution also decreases, so the algorithm tends to perform a local search

to find the local optimum. If the stopping condition has not been reached, the algorithm

returns to Step 1. If the stopping condition is achieved, the process is terminated.

Step 8: The E[Hworst]dB is calculated based on the E[Hworst] using Definition 3.9.

In Step 5 of the optimization process, the probability of accepting a worse solution is deter-

mined by the new worst expected transmission efficiency, which ranges from 0 to 1, and the

current temperature. Both the initial temperature and the cooling rate are set to be less than

1, ensuring that the current temperature and the acceptance probability also range from 0 to 1.

In the initial stages of optimization, with a high current temperature, there’s a relatively high

probability of accepting a new solution, even if its worst transmission efficiency value is lower.

This avoids limiting the search to the vicinity of the old solution and allows a global search. In

the later stages of optimization, when the new expected transmission efficiency is lower, and

the temperature is decreased, the acceptance probability is also lower. Then, the algorithm

avoids accepting the new, worse solution and focuses on local search with the neighborhood

of the old solution. Since the solution in the later stages tends to be relatively better, they

provide an efficient starting point for local search, thus avoiding redundant optimization efforts

on a worse solution. In summary, this strategy ensures global exploration of the optimization

space early in the process while increasing efficiency in the later stages.

In Step 7, two stopping conditions are set:

• The first condition is that when the maximum iteration count Niter is reached.

• The second stopping condition is that if E[Hworst] of all solutions does not change after
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several consecutive iterations.

5.2.3. Algorithm Summary

The optimization process improves the solution by adjusting the MRR radii and the signal

wavelengths. This algorithm accepts worse solutions with a certain probability while incorpo-

rating stopping conditions and allows a wide range of solution space exploration to maximize

the worst expected transmission efficiency over all signals on a global scale.

Finally, the optimization objective of this algorithm can be formulated as:

Maximize: E[Hworst]dB.
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This chapter details the experimental setup and presents a comprehensive analysis of the

results.

6.1. Inputs and Parameter Settings

This approach is implemented in C++ on a computer equipped with an Apple M1 Pro 10-core

CPU and applied to two WRONoC topologies of different scales: Light (Zheng et al. 2021)

and Snake (Ramini et al. 2013).

Assume that all MRRs in a given topology suffer from the same process variation. The abso-

lute standard deviations are set to 1 nm, 2 nm, 5 nm, and 10 nm, while the relative standard

deviations are set to 0.01%, 0.02%, 0.05%, and 0.1% of each radius option. When there is no

process variation, the standard deviation is set to 0.

To compute the expected transmission efficiency for various radius-wavelength combinations

under different standard deviations, I use the same setup as for the empirical analysis in

Chapter 4. The cross-coupling coefficient k is set to 0.4. This value then determines the self-

coupling coefficient t, which is calculated via the relation t =
√

1− k2 =
√

0.84. I divide the

domains of the expected value functions into 1000 equal intervals and use the Riemann sum

method for approximation. The crossing loss coefficient is set to 0.009168 for the experiments

of the integer linear programming model and the simulated annealing algorithm.

To solve the integer linear programming model, I use an optimization solver called Gurobi (Gurobi

Optimization, LLC 2023). As described in (Li, Tseng, Tala & Schlichtmann 2020), I evaluate

the transmission efficiency at the drop port for radius values from 5 µm to 30 µm in steps

of 0.25 µm and for wavelengths from 1500 nm to 1600 nm in steps of 0.8 nm. Any radius-
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wavelength combination yielding a transmission efficiency greater than 0.995 at the drop port

is selected. As a result, I select 38 radii and 33 wavelengths as input options for the ILP model

and test the model in the Light 4×3 and Snake 4×4 topologies. When the network topologies

are extended to Light 8× 7 and Snake 8× 8, the solver cannot complete the solution within 10

hours using the current radius and wavelength options. Therefore, to solve the problem on a

larger scale, I further expand the range of radii, wavelengths, and topology scales and conduct

an experiment using the simulated annealing algorithm.

In the simulated annealing experiment, as described in (Li, Tseng, Tala & Schlichtmann 2020),

I specify the radius range from 5 µm to 30 µm with a smaller increment of 0.025 µm for a total

of 1001 different radius options. I define a band of available wavelengths between 1500 nm

and 1600 nm with a smaller increment of 0.1 nm, providing 1001 different wavelength options.

These settings allow the calculation of the expected values of the transmission efficiency at the

drop port and through port for each of the 1002001 radius-wavelength combinations at each

standard deviation setting. Storing the calculated expected value allows direct access to the

expected values in the optimization process, eliminating the need for repetitive calculations.

The parameters of the simulated annealing algorithm and their corresponding values are shown

in Table 6.1.

Table 6.1.: Simulated annealing parameters

Parameter Description Value

Tinit Initial temperature 1
Ninit Number of initial solutions 100
α Cooling rate 0.99
p Selection criteria for Λdrop,rx 0.85
q Selection criteria for Λthrough,ry 0.85
Nno improve Consecutive number of no improvement 1000
Niter Maximum number of iterations 3000

Specifically, I define Nno improve to be 1000. I start counting the consecutive iterations where

no better solution is found from zero, so when the count reaches Nno improve, it actually means

that consecutive 1001 iterations have been completed without any improvement, and the search

will terminate early. Since this number coincides with the number of radius options, it can

be assumed that the algorithm has probably found an optimal solution or is stuck in a local

optimum. It is time-consuming and inefficient to continue randomly finding a new radius for
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the MRR with the worst performance.

The number of initial solutions Ninit is set to 100. The purpose of this is to provide more

starting points for the search, expand the search space, and reduce the randomness of the final

solution. Given that the initial solutions in the algorithm are generated randomly, to ensure

the fairness of the experiment, I utilize the same set of 100 initial solutions for optimization

under all standard deviations.

From the 50th to the 140th iteration in the simulated annealing algorithm, five poor-quality

solutions are discarded every ten iterations. Thus, after the 140th iteration, only five high-

quality solutions continue to be optimized until the algorithm reaches its stopping conditions.

This strategy improves the overall efficiency of the optimization process because it globally

explores solutions in the early stages of optimization and then focuses on high-quality solutions

for local optimization in the later stages.

Two experimental designs are set up for comparative analysis. The first design is called the

nominal design. It is optimized under condition where process variation is not considered

(i.e., σ = 0). The goal of this design is to maximize the worst-case transmission efficiency

of the signal, where the MRRs in the topology are not affected by process variation, and to

optimize the selection of MRR radii and signal wavelengths. The second design is called the

variation-aware design. It takes process variation (i.e., σ 6= 0) into account. The goal is

to maximize the worst-case expected transmission efficiency of the signal, where the MRRs

in the topology are affected by process variation, and to optimize the selection of MRR radii

and signal wavelengths for a given standard deviation. The worst-case expected transmission

efficiency of the signal under the variation-aware design for a given standard deviation is defined

as the worst-case expected transmission efficiency under the variation-aware design

with a given standard deviation.

The MRR radii and signal wavelengths from the nominal design are then used to calculate the

expected transmission efficiency of signals passing through MRRs affected by a given standard

deviation. This means that the configurations obtained from the nominal designs are used to

test performance under process variation. The minimum expected transmission efficiency of

the signal under the nominal design for a given standard deviation is defined as the worst-case

expected transmission efficiency under the nominal design with a given standard

deviation. It is then calculated and denoted by “Nom. E” in Tables 6.2 to 6.4. This is then
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compared to the worst-case expected transmission efficiency of the signal from the variation-

aware design under the same standard deviation condition, termed “Opt. E” in Tables 6.2 –

6.4.

The purpose of this comparison is to determine which design performs better in terms of the

expected transmission efficiency of the signal when subjected to different process variations.

6.2. Results Analysis

Upon the completion of the optimization process, the radii of MRRs are categorized for result

presentation and analysis. Specifically, radii ranging from 5 µm to 17.5 µm are classified as

small radii, denoted by “S-M”, and those ranging from 17.525 µm to 30 µm as large radii,

denoted by “L-M”. The basis for this categorization is that 17.5 units serve as the median

radius value.

I also recorded the time required for optimization by both the integer linear programming

solver and the simulated annealing algorithm, denoted as “Opt. T.”, as well as the time to set

the initial solutions, denoted as “Init. T.”.

The inputs and results of the integer linear programming model can be found in Table 6.2, and

the comprehensive input features and optimization results of the simulated annealing algorithm

are presented in Table 6.3 and Table 6.4.

When comparing the optimized expected transmission efficiencies of the simulated annealing

algorithm with those of the integer linear programming model under identical topology sizes

and standard deviation conditions, it is observed that the difference between them is not signif-

icant. In most cases, the simulated annealing approach provides superior optimized expected

transmission efficiencies due to the wider range of optimization options available. This im-

plies that the results obtained by applying the simulated annealing algorithm in larger-scale

scenarios can be considered credible and reliable.
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Table 6.2.: Integer linear programming results under Light and Snake

T S |SP| |MRR| Init. T. σ Nom. E Opt. E S-M. L-M. Opt. T.

Light 4×3 12 4 0 s

0 −0.23 dB 100% 0% 10.43 s
1 nm −0.71 dB −0.71 dB 25% 75% 28.32 s
2 nm −1.51 dB −1.51 dB 25% 75% 12.90 s
5 nm −3.6 dB −3.59 dB 100% 0% 9.82 s
10 nm −5.87 dB −5.84 dB 25% 75% 37.73 s
0.01% −1.86 dB −0.43 dB 100% 0% 5.33 s
0.02% −3.52 dB −0.8 dB 100% 0% 6.43 s
0.05% −6.56 dB −2.12 dB 100% 0% 5.74 s
0.1% −9.56 dB −3.89 dB 100% 0% 3.65 s

Snake 4×4 16 12 0 s

0 −0.42 dB 41.7% 58.3% 3919.83 s
1 nm −0.92 dB −0.91 dB 58.3% 41.7% 6776.72 s
2 nm −1.73 dB −1.69 dB 58.3% 41.7% 6828.35 s
5 nm −3.85 dB −3.75 dB 25% 75% 2059.63 s
10 nm −6.3 dB −6.02 dB 25% 75% 2213.59 s
0.01% −2.44 dB −0.72 dB 100% 0% 7247.73 s
0.02% −4.28 dB −1.17 dB 100% 0% 1396.88 s
0.05% −7.75 dB −2.61 dB 100% 0% 1095.46 s
0.1% −10.62 dB −4.62 dB 100% 0% 972.36 s

T: the topology type.
S: the scale of the given topology.
|SP|: the number of signals in the selected topology.
|MRR|: the number of MRRs present in the selected topology.
Init. T.: the time duration for configuring the initial solutions.
σ: the standard deviation.
Nom. E: the value E[Hworst]dB optimized under nominal design with the given standard deviation.
Opt. E: the value E[Hworst]dB optimized under variation-aware design with the given standard deviation.
S-M.: the proportion of small MRRs.
L-M.: the proportion of large MRRs.
Opt. T. : the optimization time.

6.2.1. Trend of Expected Values

The observations from the experimental results indicate that the worst-case expected trans-

mission efficiency of nominal design and variation-aware designs tends to decrease gradually

with increasing standard deviation within the same scale of the same topology. This trend is

due to the increasing standard deviation, causing the expected transmission spectrum peaks

at the MRR drop port to gradually decrease and broaden. Correspondingly, the troughs at

the through port also increase and broaden. As a result, the expected transmission efficiency

decreases as the signal passes through the MRR.

Under the same standard deviation condition, the results of both experiments show that as the

number of signals and MRRs in the topology increases, the optimized worst-case expectation
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Table 6.3.: Simulated annealing results under Light
T S |SP| |MRR| Init. T. σ Nom. E Opt. E S-M. L-M. Opt. T.

Light

4×3 12 4 2.85 s

0 −0.23 dB 75% 25% 31.45 s
1 nm −0.77 dB −0.7 dB 0% 100% 39.54 s
2 nm −1.63 dB −1.49 dB 45% 55% 46.58 s
5 nm −3.79 dB −3.55 dB 25% 75% 39.04 s
10 nm −6.09 dB −5.78 dB 0% 100% 36.44 s
0.01% −2.15 dB −0.4 dB 100% 0% 28.84 s
0.02% −3.96 dB −0.72 dB 100% 0% 36 s
0.05% −7.14 dB −1.93 dB 100% 0% 38.88 s
0.1% −9.96 dB −3.62 dB 100% 0% 46.4 s

8×7 56 24 19.46 s

0 −0.85 dB 45.83% 54.17% 137.62 s
1 nm −1.33 dB −1.37 dB 37.5% 62.5% 138.27 s
2 nm −2.16 dB −2.22 dB 58.33% 41.67% 191.98 s
5 nm −4.48 dB −4.32 dB 41.67% 58.33% 224.12 s
10 nm −7.31 dB −6.87 dB 50% 50% 225.48 s
0.01% −2.82 dB −1.22 dB 100% 0% 213.13 s
0.02% −4.7 dB −1.65 dB 100% 0% 210.06 s
0.05% −8.39 dB −3.21 dB 100% 0% 141.82 s
0.1% −11.99 dB −5.26 dB 100% 0% 226.06 s

16×15 240 112 119.07 s

0 −2.87 dB 41.96% 58.04% 652.6 s
1 nm −3.36 dB −3.61 dB 47.32% 52.68% 997.52 s
2 nm −4.32 dB −4.55 dB 44.64% 55.36% 999.73 s
5 nm −7.65 dB −7.51 dB 41.07% 58.93% 647.31 s
10 nm −12.22 dB −11.73 dB 41.07% 58.93% 669.24 s
0.01% −4.91 dB −4.1 dB 68.75% 31.25% 910.19 s
0.02% −7.35 dB −5.01 dB 89.29% 10.71% 1000.61 s
0.05% −12.69 dB −7.79 dB 97.32% 2.68% 1004.05 s
0.1% −17.44 dB −11.14 dB 98.21% 1.79% 1006.02 s

T: the topology type.
S: the scale of the given topology.
|SP|: the number of signals in the selected topology.
|MRR|: the number of MRRs present in the selected topology.
Init. T.: the average time duration for configuring the initial solutions.
σ: the standard deviation.
Nom. E: the value E[Hworst]dB optimized under nominal design with the given standard deviation.
Opt. E: the value E[Hworst]dB optimized under variation-aware design with the given standard deviation.
S-M.: the proportion of small MRRs.
L-M.: the proportion of large MRRs.
Opt. T. : the optimization time.

decreases accordingly. This is due to the signal passing through more MRRs, resulting in more

insertion loss. When the MRR suffers a process variation, the signal also passes through with

more expected insertion loss. This further reduces the expected transmission efficiency of the

signal.
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Table 6.4.: Simulated annealing results under Snake
T S |SP| |MRR| Init. T. σ Nom. E Opt. E S-M. L-M. Opt. T.

Snake

4×4 16 12 7.56 s

0 −0.42 dB 41.67% 58.33% 88.41 s
1 nm −0.97 dB −0.93 dB 33.33% 66.67% 90.57 s
2 nm −1.83 dB −1.72 dB 41.67% 58.33% 127.51 s
5 nm −4 dB −3.79 dB 33.33% 66.67% 85.2 s
10 nm −6.53 dB −6.08 dB 33.33% 66.67% 95.66 s
0.01% −2.47 dB −0.69 dB 100% 0% 93.96 s
0.02% −4.32 dB −1.04 dB 100% 0% 81.54 s
0.05% −7.7 dB −2.25 dB 100% 0% 104.21 s
0.1% −10.85 dB −4.05 dB 100% 0% 109.11 s

8×8 64 56 38.89 s

0 −1.58 dB 51.79% 48.21% 302.06 s
1 nm −2.06 dB −2.42 dB 35.71% 64.29% 423.6 s
2 nm −3.02 dB −3.3 dB 57.14% 42.86% 432.87 s
5 nm −5.84 dB −6.13 dB 51.79% 48.21% 357.65 s
10 nm −9.68 dB −9.56 dB 53.57% 46.43% 321.28 s
0.01% −3.61 dB −2.18 dB 83.93% 16.07% 504.8 s
0.02% −5.59 dB −3.18 dB 96.43% 3.57% 468.44 s
0.05% −10.14 dB −5.34 dB 100% 100% 484.37 s
0.1% −14.61 dB −8.55 dB 98.21% 1.79% 471.11 s

16×16 256 240 194.18 s

0 −6.49 dB 50% 50% 1565.6 s
1 nm −7.16 dB −6.97 dB 50% 50% 1968.02 s
2 nm −8.69 dB −9.44 dB 50.83% 49.17% 1488.81 s
5 nm −14.91 dB −15.32 dB 48.33% 51.67% 1437.91 s
10 nm −20.64 dB −20.62 dB 46.25% 53.75% 1028.56 s
0.01% −8.8 dB −7.9 dB 57.08% 42.92% 1945.66 s
0.02% −11.91 dB −10.43 dB 64.17% 35.83% 1856.6 s
0.05% −20.35 dB −16.37 dB 60.83% 39.17% 1650.99 s
0.1% −26.85 dB −20.51 dB 65.58% 35.42% 1650.92 s

T: the topology type.
S: the scale of the given topology.
|SP|: the number of signals in the selected topology.
|MRR|: the number of MRRs present in the selected topology.
Init. T.: the average time duration for configuring the initial solutions.
σ: the standard deviation.
Nom. E: the value E[Hworst]dB optimized under nominal design with the given standard deviation.
Opt. E: the value E[Hworst]dB optimized under variation-aware design with the given standard deviation.
S-M.: the proportion of small MRRs.
L-M.: the proportion of large MRRs.
Opt. T. : the optimization time.

6.2.2. Comparative Analysis

First, I compared the worst-case expected transmission efficiencies under both variation-aware

and nominal designs with absolute standard deviations. The worst-case expected transmission

efficiencies optimized under variation-aware designs are marginally greater for the small-scale

topologies of 4×3 and 4×4. For all other scales, the efficiencies under nominal designs are

consistently greater.
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In contrast, the worst-case expected transmission efficiencies under variation-aware designs

with relative standard deviations are consistently greater than those under nominal designs

with the same standard deviations. For the three scale sizes over two topologies, as the relative

standard deviation increases, the gap between the worst-case expected values optimized under

variation-aware designs and those optimized under nominal designs with the same relative

standard deviation also increases.

As visualized in Figure 6.1, as the relative standard deviation increases, the effects of optimiza-

tion under variation-aware design with relative standard deviation become more pronounced.

Specifically, when the relative standard deviation is 0.01%, this difference ranges from 0.81 dB

to 1.78 dB; when it is 0.02%, the difference ranges from 1.48 dB to 3.28 dB; when it is 0.05%,

the difference ranges from 4.44 dB to 5.45 dB; and when it is 0.1%, the difference ranges from

5.67 dB to 6.8 dB.

It is worth noting that when optimizing under variation-aware design with the relative standard

deviation, the tendency is to choose MRRs with small radii. This is because MRRs with small

radii exhibit less variation under relative standard deviations, which results in a slower decline

in the peak values of their expected transmission spectrum at the drop port. As the network

topology expands and the number of signals increases, the proportion of MRRs with large radii

selected by the variation-aware design also increases. This is due to the fact that MRRs with

large radii offer more resonant wavelengths, thereby accommodating a greater number of signal

transmission requirements.

6.2.3. Optimization Time

Only in the Light 4×3 topology is the optimization time for integer linear programming shorter

than that for simulated annealing. For topologies larger than Snake 4×4, the integer linear

programming model cannot be solved in less than 10 hours. It is worth noting that the integer

linear programming model has 38 radius options and 33 wavelength options. There are 1001

radius options, 1001 wavelength options, and larger topologies as the input options for the

simulated annealing algorithm. Next, I will provide a detailed analysis of the optimization

time for the simulated annealing algorithm.

In the simulated annealing experiment, it takes approximately 34 seconds to generate signal
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.1.: Comparison of worst-case transmission efficiencies optimized under variation-aware
design versus those under nominal design with relative standard deviations, using
simulated annealing (SA) and integer linear programming (ILP). (a) Light 4×3.
(b) Light 8×7. (c) Light 16×15. (d) Snake 4×4. (e) Snake 8×8. (f) Snake 16×16.

transmission efficiency values at both the drop and through ports of the MRR for a total of

1,002,001 data points covering 1,001 wavelengths and 1,001 radius options. It takes approx-
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imately 50 hours to calculate the expected transmission efficiency values for these 1,002,001

cases at both the drop and through ports of MRR for eight standard deviations. These are

one-time calculations and are not repeated in subsequent steps of the experiment. The time

taken to read the pre-stored data is fixed at approximately 37 seconds, with only minor fluc-

tuations within half a second observed across experiments. There is a variation in the time

taken to establish the initial solutions for each scale of topology. As the number of signals and

MRRs in the network topology increases, the time required to establish the initial solution also

increases. This is because the initial radii have to be set for more MRRs. Also, as communi-

cation requirements increase, the algorithm requires more wavelength searches to find optimal

wavelengths for each communication signal within the given initial solution radii.

For the same network topology and scale size, the time for optimization under nominal design

and under variation-aware design show minor differences. As the number of MRRs and signals

increases in the network topology, the optimization time increases accordingly. This is because

the time to select wavelengths for more signals based on the existing MRR radius configurations

increases. Then, given all the radii and existing wavelengths, the algorithm needs to calculate

the expected transmission efficiency for more signals and identifies the corresponding worst-

case expected transmission efficiency. These processes result in a corresponding increase in

optimization time.

In summary, under all circumstances, the optimization time can be controlled within 35 min-

utes, which confirms that the algorithm can find a design resistant to process variation within

an acceptable time.
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In this work, I present a stochastic optimization strategy that, by optimizing the MRR radii

parameters and wavelength usage design, maximizes the worst-case expected transmission ef-

ficiency of the signal within a given WRONoC topology under process variation conditions.

Compared to the optimization results under nominal design, my approach can improve the

worst-case expected transmission efficiency of the signal by up to 6.8 dB.

To realize this optimization, I first conducted a comprehensive analysis of the transmission

spectrum of MRRs with varying radii related to signals with different wavelengths. Based on

this, I built an analytical model using probability theory to accurately calculate the expected

transmission efficiency under the influence of process variation. I then constructed an integer

linear programming model based on the data generated by the expected transmission efficiency

model and validated the effectiveness of this optimization model through a series of small-scale

experiments. To expand the scale of optimization and shorten the optimization time, I further

developed a simulated annealing algorithm specifically for WRONoC. Experimental results

demonstrate the effectiveness of the simulated annealing algorithm in large-scale topologies

with millions of design options. These methods enhance the expected transmission efficiency

of the signal and thus provide more robustness of WRONoC under process variation.

My future work will extend along the following aspects:

First, I plan to incorporate the consideration of crosstalk into the optimization process. By

including the minimization of crosstalk and the improvement of signal-to-noise ratio in the

optimization objectives, I expect to further improve the performance and scalability of the

network.

Second, I aim to reduce the optimization time. For example, I may consider using heuristic

algorithms to generate a good initial solution, which can then be applied to an integer linear

programming model for accelerated precise computation.
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Finally, I intend to use photonic simulation tools for experimentation to evaluate my design.
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