
FT-MUX: A Fault-Tolerant Microfluidic Multiplexer Design

Mengchu Li
TU Munich

mengchu.li@tum.de

Jiahui Peng
TU Munich

jiahui.peng@tum.de

Tsun-Ming Tseng
TU Munich

tsun-ming.tseng@tum.de

Ulf Schlichtmann
TU Munich

ulf.schlichtmann@tum.de

Abstract—Continuous-flow microfluidic chips are multilayered
miniaturized platforms to manipulate small volumes of fluids
with valves. There are two types of channels on a chip: flow
channels for the reaction of fluids, and control channels for
the actuation of valves. Multiplexers (MUXes) are essential
microfluidic components for individually addressing many flow
channels with few control channels. As the integration scale of
microfluidic chips increases, the reliability of MUXes becomes a
critical concern, as a single defective control channel in a MUX
will affect a large part of the flow channels addressed by the
MUX. This paper formally analyzes and identifies the design rules
for a MUX to tolerate n defective control channels, and model
the fault-tolerant MUX (FT-MUX) design problem as a binary
constant weight code problem to minimize resource overheads.
We demonstrate that FT-MUX improves resource efficiency by up
to hundreds of times compared to the conventional fault-tolerant
design method. Besides, given no less than 10 control channels,
FT-MUX tolerates at least one defective control channel and
addresses even more flow channels with equal or fewer resources
than a standard MUX. The advantages become more significant
as the integration scale increases.

I. INTRODUCTION

Microfluidic technology enables the manufacturing of
miniaturized devices, also known as microfluidic chips, that
manipulate fluids at the nanoliter scale or below, exhibiting
advantages in automation, rapid execution, better sensitivity,
less waste, etc. In particular, the fabrication of valves using
multilayer soft lithography [1] allows for the creation of
microfluidic large-scale integration (mLSI) chips [2]. Such a
chip consists of a flow layer (integrated) with flow channels for
the storage and transportation of fluid samples and reagents,
and a control layer (integrated) with control channels for the
actuation of valves to manipulate the fluids. Nowadays, it is
common to have hundreds to thousands of flow channels on
a single small chip for high-throughput parallel applications
such as drug screening [3], cell-isolation [4], cell-culture [5],
cell-analysis [6], etc. To independently address many flow
channels with an affordable number of control inputs, mi-
crofluidic multiplexers (MUXes) have become indispensable
for large-scale microfluidic applications [7].

A standard microfluidic multiplexer (MUX) [8] can inde-
pendently address up to n flow channels with 2 log2(n) control
channels, as shown in Fig. 1. To that end, each control channel
is responsible for the pressure supply to valves on at least ⌊n

2 ⌋
flow channels. Compared to flow channels, control channels
have smaller feature sizes and are thus more prone to de-
fects [9]. If a control channel in a standard MUX is defective,
at least half of the flow channels addressed by the MUX

Fig. 1. A standard MUX to address 16 flow channels (colored in blue)
with 8 control channels (colored in green). The pressure states in pressurized/
depressurized control channels are denoted as 1 and 0, respectively. Valves
are widened control channel segments. A pressurized valve blocks the flow
channel underneath. Every two control channels form a pair representing one
bit of a flow channel index: pressure states (0, 1) and (1, 0) represent bit ‘1’
and ‘0’, respectively. E.g., configuring the control channels to pressure states
(0, 1) (0, 1) (0, 1) (1, 0) constructs a unique flow path from the fluid inlet
to flow channel 14 (1110). Figure adapted from [2].

will be affected, leading to waste of samples and reagents,
contamination of products, or even disposal of the whole chip.
As the integration scale of microfluidic chips increases, the
reliability of MUXes becomes a critical concern [10].

Efforts have been made in the past to improve the reliability
of MUXes from two aspects:

1) Reduce the likelihood of defects. Q. Wang et al. pro-
posed to optimize the switching order of valves to
reduce the switching frequency of a MUX [11], and S.
Liang et al. proposed a novel MUX design with certain
valves and channels merged together [12]. However, as
the number of control channels in the MUX increases,
defects are almost inevitable, as reported in [12]. Since
the proposed methods do not tolerate faults, once a
defect happens, many flow channels will be affected,
leading to significant waste.

2) Tolerate defects by introducing backups. W. Huang et
al. proposed an approach to introduce redundant com-
ponents considering a given set of fault scenarios [13],
and Y. Zhu et al. proposed an approach to synthesize
application-specific MUXes with duplicated valves and
backup paths to actuate the valves [14]. However, the
performances of both approaches heavily depend on
the given applications and are thus, in general, not
predictable.

Besides, state-of-the-art methods mostly assume that defects
happen at individual valves without influencing other valves

along the same control channel, which is not the case. Specif-
ically, microfluidic chips suffer two major types of defects:
blockage and leakage [15]. Blockage means a channel is
disconnected such that pressure cannot pass through, and the
risk of blockage inversely correlates with the feature size.
Since valves are widened segments of control channels, block-
age defects are more likely at the thinner parts of a control
channel instead of valves. When a control channel is blocked,
all valves along the channel cannot be properly pressurized.
On the other hand, leakage means two control channels are
unintentionally connected such that both channels share the
same pressure states. When a control channel leaks to another,
pressurizing/depressurizing one channel will also inevitably
close/open all valves in the other channel. As conclusion, a
defective valve in the MUX implies the malfunctions of all
valves along a defective control channel. Thus, a fault-tolerant
MUX design should target defective control channels rather
than defective valves.

In this paper, we propose a rule for designing a fault-tolerant
microfluidic multiplexer (FT-MUX) to tolerate n defective
control channels with minimal resource overheads. We further
model the FT-MUX design problem as a binary constant
weight code problem, and proposes a graph model to solve it
as an independent vertex set problem. We demonstrate that FT-
MUX improves resource efficiency by up to hundreds of times
compared to the conventional fault-tolerant design method.
Besides, given no less than 10 control channels, FT-MUX
tolerates at least one defective control channel and addresses
even more flow channels with equal or fewer resources than
a standard MUX. The performance advantages become more
significant as the integration scale increases, showing that
FT-MUX provides an efficient and reliable solution for fluid
multiplexing in large-scale microfluidic applications.

II. BACKGROUND

A. General Design Rules for MUXes

A MUX is a matrix of binary valve patterns on overlapped
control and flow channels. Given a MUX, we consider every
control channel as a row of the matrix, with the topmost
control channel as the first row, and every flow channel as
a column of the matrix, with the leftmost flow channel as the
first column. We denote the entry in the ith row and jth column
of the matrix as ‘0’ or ‘1’, depending on whether there is no
or one valve at the intersection of the ith control channel and
the jth flow channel, respectively. Thus, the matrix column
representing flow channel 14 of the standard MUX in Fig. 1
can be read as 10101001 (see captions of Fig. 1), referred to
as the code of flow channel 14.

To construct a flow path from a universal fluid inlet to a
flow channel f , one needs to pressurize any control channel
that does not have a valve on its intersection with f , and
depressurize any control channel that has a valve on its
intersection with f . In other words, to address a flow channel
f , if the jth bit of the code of f is ‘0’, the jth control channel
should be pressurized, and if the j′

th bit of the code of f is ‘1’,
the j′

th control channel should be depressurized. Thus, flow

channel 14 in Fig. 1 can be addressed by setting the pressure
states in the control channels to 1̄0̄1̄0̄1̄0̄0̄1̄, i.e., 01010110,
referred to as the control pattern of flow channel 14, where
‘1’ or ‘0’ in the ith bit represents that the ith control channel
needs to be pressurized or depressurized, respectively.

To ensure that every flow channel can be independently
addressed by the MUX, i.e., fluids can flow from a universal
fluid inlet to an arbitrary flow channel without contaminating
other flow channels, the design of a MUX must obey the
following rule:

Rule 1: The control pattern of an arbitrary flow channel
f pressurizes at least one valve on every flow channel other
than f .

The standard MUX obeys the rule by assigning a unique
⌈log2(n)⌉-bit index 1 to each of n flow channels and repre-
senting each bit of the index with binary strings 01 or 10 to
construct the code of that flow channel. Thus, if the indices of
two flow channels f and f ′ differ in the jth bit, the valve on
the intersection between the jth pair of control channels and
f must have a different pressure state than the valve on the
intersection between the jth pair of control channels and f ′.
Since the indices of any two flow channels must differ by at
least one bit, the control pattern of f pressurizes at least one
valve on f ′. E.g., the index of flow channel 15 (1111) differs
from flow channel 14 (1110) in the last bit, and therefore, the
control pattern of flow channel 14 pressurizes the last valve
on flow channel 15, as shown in Fig. 1.

S. Liang et al. further proposed not to pair up the control
channels and concluded the following rule to fully exploit the
binary coding capacity of MUXes [12]:

Rule 2: The maximal coding capacity of a MUX consisting
of n control channels is Cn

⌊n
2 ⌋, which can be achieved by

enumerating all n-bit binary strings with ⌊n
2 ⌋ ‘1’-bits.

E.g., the maximal coding capacity of a MUX consisting of 4
control channels is C4

2 = 4!
2!·(4−2)! = 6, which can be achieved

by enumerating all 4-bit binary strings with two ‘1’-bits, i.e.,
0011, 0101, 1001, 1010, 1100, 0110.

B. Control-Channel Defects in MUXes

Microfluidic chips suffer two major types of defects: block-
age and leakage. Valves on a blocked control channel cannot
be pressurized and thus lose their functions, and valves on
a pair of leaky control channels cannot be independently
pressurized but have to share the same pressure states. A
defective control channel in a standard MUX will affect
50% − 100% of the flow channels addressed by the MUX,
depending on the type and position of the defect.

Fig. 2(a) shows the working mechanism of a standard MUX
that addresses 8 flow channels with 6 control channels.

• If there is a blockage defect, half of the flow channels
addressed by the MUX will be affected. Specifically,
suppose that the jth control channel is blocked. Any
flow channel with a ‘1’ in the jth bit of its code will
be affected. For example, the first control channel in the

1Note that “index” is a term only used in standard MUXes.

Fig. 2. A standard MUX (a) without defects; (b) with one blockage defect;
(c) with a leakage defect between two control channels representing the same
bit of the flow channel index; (d) with a leakage defect between two control
channels representing different bits of the flow channel index.

standard MUX shown in Fig. 2(b) is blocked. As a result,
flow channels, the indices of which start with a ‘0’, i.e.,
the codes of which start with 10, will be affected. Such
channels include flow channels 0 (000), 1 (001), 2 (010),
and 3 (011). E.g., fluids cannot flow from the fluid inlet
to flow channel 2 without contaminating flow channel 6
since the control pattern of flow channel 2 can no longer
pressurize any valve on control channel 6.

• If there is a leakage defect between a pair of control
channels representing the same bit of the flow channel
index, all flow channels addressed by the MUX will be
affected. Specifically, suppose that the jth pair of control
channels leak with each other. Pressurizing either of them
will block all flow channels addressed by the MUX,
and depressurizing both of them will prevent two flow
channels, the binary indices of which differ only in the
jth bit, from being addressed independently. E.g., the first
pair of control channels in the standard MUX shown in
Fig. 2(c) leak with each other. As a result, flow channels
2 (010) and 6 (110), the binary indices of which only
differ in the first bit, cannot be independently addressed.

• If there is a leakage defect between a pair of control
channels representing different bits of the flow channel
index, half of the flow channels addressed by the MUX
will be affected. Specifically, suppose that the two leaky
control channels represent the jth

1 and jth
2 bits of the flow

channel index. Any flow channel with the same value
in the jth

1 and jth
2 bits of its index will be affected. For

example, the second and third control channels in the
standard MUX shown in Fig. 2(d) leak with each other.
As a result, flow channels, the first two bits of the indices
of which are 00 or 11, will be affected. Such channels
include flow channels 0 (000), 1 (001), 6 (110) and 7
(111). E.g., fluids cannot flow from the fluid inlet to flow
channel 1 without contaminating flow channel 3 since the
control pattern of flow channel 1 can no longer pressurize
any valve on control channel 3.

Similarly, a defective control channel in the novel MUX
design proposed in [12], referred to as CoMUX, will affect
50% − 100% of the flow channels addressed by the MUX,
leading to the complete waste of the reagents, samples, and
chip area. Besides, the risk of defects increases with the
integration scale of the chip. More damage is expected if
there are more defective control channels in the MUX. Thus,
the design of a fault-tolerant MUX with minimal resource
overhead is essential.

III. PROBLEM FORMULATION

Input:
• The number of control channels in the MUX, denoted as

n.
• The number of control channel defects that should be

tolerated by the MUX, denoted as k.
Output:

• A fault-tolerant MUX design consisting of n control
channels to independently address every flow channel in
the MUX regardless of k control channel defects.

Objective:
• Maximize the number of flow channels addressed by the

fault-tolerant MUX.

IV. METHOD

A. Designs Rules for Fault-Tolerant MUXes

For convenience, we denote the code of a flow channel f as
cf . As mentioned in Section II-A, a MUX design must obey
Rule 1:

Rule 1: The control pattern of an arbitrary flow channel
f pressurizes at least one valve on every flow channel other
than f .

To develop the design rule for a fault-tolerant MUX, we
first transform Rule 1 to the following equivalent statement:

Rule 1∗: For any two flow channels f and f ′, cf and c′f
must differ by at least two bits, among which there are at least
one bit at which cf takes ‘1’ and c′f takes ‘0’ and one bit at
which cf takes ‘0’ and c′f takes ‘1’.

Proof of the equivalence:
• ‘⇒’: Suppose that the control pattern of f pressurizes the

valve on the intersection between the jth control channel
and f ′. The jth bits of cf and cf ′ must be 0 and 1,
respectively. Similarly, suppose that the control pattern
of f ′ pressurizes the valve on the intersection between
the j′

th control channel and f . The j′
th bits of cf and cf ′

must be 1 and 0, respectively. Thus, Rule 1∗ is satisfied.
• ‘⇐’: Suppose that the jth and j′

th bits of cf and cf ′

are 01 and 10, respectively. The control pattern of f
pressurizes the valve on the intersection between the jth

control channel and f ′. Thus, Rule 1 is satisfied.
Next, we propose the following rule for designing a MUX

that tolerates one blockage or leakage defect:
Rule 3: For any two flow channels f and f ′, cf and c′f must

differ by at least four bits, among which there are at least two

bits at which cf takes ‘1’ and c′f takes ‘0’ and two bits at
which cf takes ‘0’ and c′f takes ‘1’.

In the following, we prove that if a MUX satisfies Rule 3, it
satisfies Rule 1∗ even when there is one blockage or leakage
defect.

• Suppose that there is a blockage defect on the jth control
channel. Valves along the jth control channel cannot be
pressurized and should thus be ignored, i.e., the jth bits
of all codes should be regarded as 0. In this case, at least
three bits of cf and c′f remain different. Thus, Rule 1∗

is satisfied.
• Suppose that there is a leakage defect between the jth

and j′
th control channels. Pressurizing one channel will

close all valves along the other channel. In other words, to
address a certain flow channel, if either the jth or the j′

th

control channel is required to be depressurized, both the
jth and the j′

th control channels must be depressurized.
Thus, if either the jth or the j′

th bit of a code is ‘1’, the
other bit of the code should also be regarded as ‘1’. We
denote the jth and j′

th bits of a code cf as sf , where ‘s’
stands for ‘subset’, and the jth and j′

th bits of another
code cf ′ as sf ′ , with sf , sf ′ ∈ {00, 01, 10, 11}:

– If sf , sf ′ ∈ {00, 11}, the leakage does not affect cf
and c′f . Thus, Rule 1∗ is satisfied.

– If sf ∈ {10, 01} and sf ′ = 00 or vice versa, due to
the leakage, sf should be regarded as 11. Thus, one
more bit of cf and c′f becomes different, and Rule
1∗ is satisfied.

– If sf ∈ {10, 01} and sf ′ = 11 or vice versa, due
to the leakage, sf should be regarded as 11. Thus,
at least three bits of cf and c′f remain different, and
Rule 1∗ is satisfied.

– If sf = 01 and sf ′ = 10 or vice versa, due to the
leakage, both sf and sf ′ should be regarded as 11.
Thus, at least two bits of cf and c′f remain different,
and among the remaining different bits, there are still
at least one bit at which cf takes ‘1’ and c′f takes
‘0’ and one bit at which cf takes ‘0’ and c′f takes
‘1’, i.e., Rule 1∗ is satisfied.

– If sf = sf ′ , the leakage does not affect the bit
differences between cf and c′f . Thus, Rule 1∗ is
satisfied.

We further generalize Rule 3 as follows for designing a
MUX that tolerates k blockage or leakage defects:

Rule 4: For any two flow channels f and f ′, cf and c′f must
differ by at least 2(k+1) bits, among which there are at least
k + 1 bits at which cf takes ‘1’ and c′f takes ‘0’ and k + 1
bits at which cf takes ‘0’ and c′f takes ‘1’.

The proof can be easily derived using the same strategy as
above.

B. Binary Constant Weight Code Model

To maximize the number of flow channels addressed by the
fault-tolerant MUX, we model the fault-tolerant MUX design
problem as a binary constant weight code problem.

In coding theory, a binary constant weight code with pa-
rameters n, w, d is a set C of binary words of length n and
Hamming weight w such that the Hamming distance between
any two binary words in C is at least d [16]. Specifically, a
binary word of length n is a string of n bits; the Hamming
weight of a binary word is the number of ‘1’-bits in the binary
word; and the Hamming distance between two binary words
of equal length is the number of bits at which the two words
take different values.

According to Rule 2, the largest set of codes of flow
channels in a MUX consisting of n control channels, denoted
as Mn, can be achieved by enumerating all n-bit binary strings
with ⌊n

2 ⌋ ‘1’-bits. Since a fault-tolerant MUX is a MUX with
additional constraints on the selection of codes, the largest
set of codes of the flow channels in a fault-tolerant MUX
consisting of n control channels should be a subset of Mn.
Thus, we derive the following statement:

To maximize the coding capacity of a fault-tolerant MUX
consisting of n control channels, the code of every flow
channel in the MUX should be a binary word of length n
and Hamming weight ⌊n

2 ⌋.
We also observed that for two binary words w1 and w2

of the same length and Hamming weight, if the Hamming
distance between w1 and w2 is 2k, there must be exactly k
bits at which w1 takes ‘1’ and w2 takes ‘0’ and k bits at which
w1 takes ‘0’ and w2 takes ‘1’. Thus, given the same length
and Hamming weight of the codes of all flow channels in a
MUX, Rule 4 can be simplified as:

Rule 4∗: For any two flow channels f and f ′, the Hamming
distance between cf and c′f must be larger than or equal to
2(k + 1).

Therefore, the problem described in Section III can be mod-
eled as the following binary constant weight code problem:

Finding a largest possible binary constant weight code with
length n, weight ⌊n

2 ⌋, and Hamming distance 2(k + 1).
The binary constant weight code problem has been exten-

sively studied in the field of information theory [17], [18].
Some upper bounds and lower bounds of the maximum size
of a binary constant weight code can be computed [19], but
it is generally difficult to find the largest possible code for
most parameters. To approximate the theoretical upper bounds,
we propose a graph model and transform the binary constant
weight code problem into an independent vertex set problem.

Given n control channels and k to be tolerated defects, we
build a graph G = (V,E), in which each vertex v ∈ V repre-
sents a binary word of length n and Hamming weight ⌊n

2 ⌋. If
the Hamming distance between the binary words represented
by any two vertices v1 and v2 is smaller than 2(k + 1), we
add an edge (v1, v2) ∈ E. Therefore, any independent vertex
set of the graph represents a binary constant weight code with
length n, weight ⌊n

2 ⌋, and Hamming distance 2(k + 1). The
problem of finding the largest possible binary constant weight
code is thus equivalent to finding the maximum independent
vertex set in graph G.

The maximum independent vertex set problem is a classic

Fig. 3. (a) Control pattern in case of a blockage defect. (b)(c) Control patterns
in case of a leakage defect.

NP-hard problem, for which there are numerous studies and
algorithms. In this work, we solve the problem with a simple
mixed integer linear programming model:

For every vertex v ∈ V , we introduce a binary variable
bv to represent whether v is in the target independent vertex
set. We then introduce the following constraint for each edge
(v1, v2) ∈ E:

bv1 + bv2 ≤ 1,

and set the objective function as:

Maximize:
∑
v∈V

bv.

C. Control Patterns of Fault Tolerant MUXes

Based on a binary constant weight code C with length n,
weight ⌊n

2 ⌋, and Hamming distance 2(k+1), we can design a
MUX that addresses |C| flow channels with n control channels
tolerating k defects, where |C| denotes the cardinality of set
C.

For example, Fig. 3 shows a MUX designed based on the
largest binary constant weight code with length 8, weight 4,
and Hamming distance 4, which addresses 14 flow channels
with 8 control channels tolerating one defect. The control
pattern to address an arbitrary flow channel with the fault-
tolerant MUX depends on the code of the flow channel and
the type of defect.

• If there is a blockage defect on any control channel,
the control pattern to address a flow channel remains
the complement of the code of that flow channel. E.g.

the second control channel of the fault-tolerant MUX
in Fig. 3(a) suffers a blockage defect. Nevertheless, the
control pattern to address flow channel 6 with code
10010110 remains 1̄0̄0̄1̄0̄1̄1̄0̄, i.e. 01101001. In fact,
since the second control channel cannot be properly
pressurized, we can also denote the second bit of the
control pattern as ‘X’, representing a don’t care term.

• If there is a leakage defect between the jth and j′
th

control channels, e.g. between the 3rd and the 4th control
channels, as shown in Fig. 3(b) and (c), there are two
cases:

– If the jth and j′
th bits of the code of the to-be-

addressed flow channel take the same value, i.e. 00 or
11, the control pattern remains the complement of the
code of that channel. E.g. as shown in Fig. 3(b), the
control pattern to address flow channel 2 with code
11000011 remains 1̄1̄0̄0̄0̄0̄1̄1̄, i.e. 00111100, since
the 3rd and the 4th bits of the code of channel 2 are
both ‘0’.

– If the jth and j′
th bits of the code of the to-be-

addressed flow channel take different values, i.e. 01
or 10, we change the jth and j′

th bits of the control
pattern to 00, and keep other bits of the control
pattern the complements of the code of that channel.
E.g. as shown in Fig. 3(c), the control pattern to
address flow channel 6 with code 10010110 becomes
1̄0̄000̄1̄1̄0̄, i.e. 01001001, since the 3rd and the 4th

bits of the code of channel 6 are ‘0’ and ‘1’,
respectively.

V. RESULTS

We compare our fault-tolerant MUX design, abbreviated as
FT-MUX, with two MUX designs: the mainstream design,
referred to as the standard MUX [8] and a novel design,
referred to as CoMUX [12]. Since the standard MUX and
CoMUX do not tolerate defects, we apply the conventional
fault-tolerant design method [13] to duplicate the control
channels and valves in these MUXes. Specifically, since it is
in general not possible to predict the position of defects, to
tolerate one or two defects, all control channels in a standard
MUX/CoMUX need to be doubled or tripled, respectively. We
denote MUXes that tolerate one or two defects by adding (I)
or (II) next to their names, respectively.

To achieve the optimal code for our FT-MUX, we run
the mixed integer linear programming model on a computer
with two Xeon Gold 6126 2.6 GHz processors. We achieved
the optimal solutions, i.e. the largest possible codes, for FT-
MUX(I) and FT-MUX(II) with up to 12 control channels
within a few seconds. Given more than 12 control channels,
the model cannot guarantee the optimality of the solution. In
those cases, we adopt the constant weight code table published
in [20]. The results of the comparison are shown in Fig. 4.
Based on the comparison, we make the following conclusions:

• FT-MUX greatly improved the resource efficiency com-
pared to the conventional fault-tolerant design method.
In particular, the efficiency advantages increase with the

Fig. 4. Comparison of resource efficiency among (a) MUXes that tolerate
one defect; (b) MUXes that tolerate two defects.

integration scale. Given 12 control channels, FT-MUX(I)
addresses 6 and 16 times more flow channels than Co-
MUX(I) and standard MUX(I), respectively; and given
20 control channels, FT-MUX(I) addresses 53 and 420
times more flow channels than CoMUX(I) and standard
MUX(I), respectively.

• FT-MUX is the only reasonable MUX design to tolerate
more than one defect. In case two defects need to be
tolerated, with up to 18 control channels, CoMUX(II)
and standard MUX(II) require a similar or even larger
number of control channels than the to-be-addressed flow
channels, making the multiplexing meaningless. In the
meanwhile, FT-MUX(II) can still reliably address many
flow channels with only a few control channels.

Besides, given 24 control channels, FT-MUX(III) can toler-
ate three defects while addressing 2576 flow channels; and
given 32 control channels, FT-MUX(IV) can tolerate four
defects while addressing 3038 flow channels.

To demonstrate the efficiency of FT-MUXes, we also com-
pare them to the original design of the standard MUX without
fault-tolerant features. Fig. 5 shows the results of the com-
parison. Specifically, given no less than 10 control channels,
FT-MUX(I) tolerates one defect while addressing more flow
channels than a standard MUX that tolerates no defect; and
given no less than 22 control channels, FT-MUX(II) tolerates
two defects while addressing more flow channels than a
standard MUX that tolerates no defect. In other words, FT-
MUX significantly outperforms the standard MUX, not only
in reliability but also in resource efficiency.

Fig. 5. Comparison of resource efficiency between (a) FT-MUXes that tolerate
one defect and standard MUXes that tolerate no defect; (b) FT-MUXes that
tolerate two defects and standard MUXes that tolerate no defect.

It is worth mentioning that the original design of CoMUX
offers the largest coding capacity, i.e., addresses the most flow
channels with a given number of control channels. However,
as mentioned in Section II-B, a single control channel defect
in CoMUX will affect 33% - 50% of the flow channels
addressed by the MUX, leading to the waste of up to half
of the reagents, samples, and chip area. As the risk of defects
increases with the integration scale, the larger a microfluidic
design is, the more fault tolerance should be considered. For
large-scale designs, FT-MUX offers a more reliable and, thus,
better solution than CoMUX.

VI. CONCLUSION

Fluid multiplexing is one of the most important operations
on microfluidic chips. The reliability of fluid multiplexers, or
MUXes, has thus been drawing more and more attention in
recent years. This paper proposes the design rules for a fault-
tolerant MUX (FT-MUX) for the first time and models the FT-
MUX design problem as a constant weight code problem to
minimize resource overheads. We demonstrated that FT-MUX
significantly outperforms the state-of-the-art MUX designs
and fault-tolerant design methods. As the integration scale of
microfluidic chips increases, FT-MUX enables an efficient and
reliable solution to execute microfluidic applications.

ACKNOWLEDGMENT

This work is supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation, No. 515003344).

REFERENCES

[1] Marc A Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, and
Stephen R Quake. Monolithic microfabricated valves and pumps by
multilayer soft lithography. science, 288(5463):113–116, 2000.

[2] Jessica Melin and Stephen R Quake. Microfluidic large-scale integration:
the evolution of design rules for biological automation. Annu. Rev.
Biophys. Biomol. Struct., 36:213–231, 2007.

[3] Zhanhui Wang, Min-Cheol Kim, Manuel Marquez, and Todd Thorsen.
High-density microfluidic arrays for cell cytotoxicity analysis. Lab on
a Chip, 7(6):740–745, 2007.

[4] Klaus Eyer, Phillip Kuhn, Conni Hanke, and Petra S Dittrich. A
microchamber array for single cell isolation and analysis of intracellular
biomolecules. Lab on a Chip, 12(4):765–772, 2012.

[5] Nina Compera, Scott Atwell, Johannes Wirth, Christine von Törne,
Stefanie M Hauck, and Matthias Meier. Adipose microtissue-on-chip: a
3d cell culture platform for differentiation, stimulation, and proteomic
analysis of human adipocytes. Lab on a Chip, 22(17):3172–3186, 2022.

[6] Mohamed Ibrahim, Krishnendu Chakrabarty, and Ulf Schlichtmann.
Cosyn: Efficient single-cell analysis using a hybrid microfluidic plat-
form. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pages 1673–1678. IEEE, 2017.

[7] Tsun-Ming Tseng, Mengchu Li, Daniel Nestor Freitas, Amy Mongersun,
Ismail Emre Araci, Tsung-Yi Ho, and Ulf Schlichtmann. Columba s: A
scalable co-layout design automation tool for microfluidic large-scale
integration. In Proceedings of the 55th Annual Design Automation
Conference, pages 1–6, 2018.

[8] Todd Thorsen, Sebastian J Maerkl, and Stephen R Quake. Microfluidic
large-scale integration. Science, 298(5593):580–584, 2002.

[9] Mengchu Li, Yushen Zhang, Ju Young Lee, Hudson Gasvoda, Is-
mail Emre Araci, Tsun-Ming Tseng, and Ulf Schlichtmann. Integrated
test module design for microfluidic large-scale integration. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2022.

[10] Siyuan Liang, Meng Lian, Mengchu Li, Tsun-Ming Tseng, Ulf Schlicht-
mann, and Tsung-Yi Ho. Armm: Adaptive reliability quantification
model of microfluidic designs and its graph-transformer-based imple-
mentation. In 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 1–9. IEEE, 2023.

[11] Qin Wang, Shiliang Zuo, Hailong Yao, Tsung-Yi Ho, Bing Li, Ulf
Schlichtmann, and Yici Cai. Hamming-distance-based valve-switching
optimization for control-layer multiplexing in flow-based microfluidic
biochips. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 524–529. IEEE, 2017.

[12] Siyuan Liang, Mengchu Li, Tsun-Ming Tseng, Ulf Schlichtmann, and
Tsung-Yi Ho. Comux: Combinatorial-coding-based high-performance
microfluidic control multiplexer design. In Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design, pages
1–9, 2022.

[13] Wei-Lun Huang, Ankur Gupta, Sudip Roy, Tsung-Yi Ho, and Paul Pop.
Fast architecture-level synthesis of fault-tolerant flow-based microfluidic
biochips. In Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, pages 1667–1672. IEEE, 2017.

[14] Ying Zhu, Xing Huang, Bing Li, Tsung-Yi Ho, Qin Wang, Hailong
Yao, Robert Wille, and Ulf Schlichtmann. Multicontrol: Advanced
control-logic synthesis for flow-based microfluidic biochips. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39(10):2489–2502, 2019.

[15] Kai Hu, Feiqiao Yu, Tsung-Yi Ho, and Krishnendu Chakrabarty. Testing
of flow-based microfluidic biochips: Fault modeling, test generation,
and experimental demonstration. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 33(10):1463–1475, 2014.

[16] Kenneth S Suslick. Encyclopedia of physical science and technology.
Sonoluminescence and sonochemistry, 3rd edn. Elsevier Science Ltd,
Massachusetts, pages 1–20, 2001.

[17] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane, and W. D. Smith. A new
table of constant weight codes. IEEE Trans. Inf. Theory, 36:1334–1380,
1990.

[18] Derek H Smith, Lesley A Hughes, and Stephanie Perkins. A new table
of constant weight codes of length greater than 28. the electronic journal
of combinatorics, 13(1):A2, 2006.

[19] Selmer Johnson. A new upper bound for error-correcting codes. IRE
Transactions on Information Theory, 8(3):203–207, 1962.

[20] Bounds for binary constant weight codes.
https://www.win.tue.nl/ aeb/codes/Andw.html. Accessed: 2024-07-
05.

