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ABSTRACT The unprecedented proliferation of Unmanned Aerial Vehicles (UAVs), and SwarmUnmanned
Aerial Vehicles (SUAVs) have garnered considerable attention from industry and academia owing to their
extensive landscape of applications from disaster relief towards smart agriculture. However, flying several
UAVs at once poses many challenges to safely and efficiently localizing and monitoring them. Further, they
need to maintain their formation distance to avoid collision between team members and any environmental
obstacles. Besides, SUAVs aremainly equippedwith an on-board Global Positioning System (GPS) receivers
to obtain their positions, but they are not accurate enough and suffer from several vulnerabilities that restrict
their applications. Thus, in GPS-denied situations, the acquisition of the positions of UAVs can be assisted by
alternative technologies and solutions. This paper is one of the foremost in-depth works that present the topic
of localization of SUAVs from various perspectives including current research challenges on positioning
systems, telecommunication, and path planning, along with future opportunities on automated delivery
services such as medicine, remote inspection of industrial sites, and precision agriculture.

INDEX TERMS SwarmUAVs, localization techniques, path planning, communication technologies, survey,
SUAV flight coordination.

I. INTRODUCTION
The UAVs revolution forested new opportunities involving
different sectors ranging from the aviation industry to pub-
lic entertainment. According to the study conducted by
PWC [1], estimated that the UAV market will be worth
approximately $43 billion in 2026. This booming sector is
spurred by the rapid progress in UAV technologies and the
continued improvements in wireless communication which
led to a significant decrease in the unit cost of the UAV.
Thereby, they become an attractive way to undertake sev-
eral challenging missions, in particular when they form a
swarm. Thus, considerable research efforts have been devoted
to SUAVs, both in industry and academia [2], [3]. Nowa-
days, SUAVs are being used for countless applications (see
Figure 1) such as tracking targets in military missions [4],
delivery and load transport [5], smart health, agricultural
management, and real-time monitoring in mobile or large
scale environments [6], [7], and so on.
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An increase in the on-air collisions has been reported
recently due to the human error. As such, nowadays, collu-
sion possibility of the UAVs is even getting higher, not only
due to the sporadic individual hobby flights, but also due
to the increased number of professional flock/swarm flights.
Unprecedentedly crowded airspace for UAVs and SUAVs is
due to this increase in the number of UAVs that exist in
per km3 [8], [9].

Therefore, flying multiple UAVs in a tight collaborative
flock improves robustness and safety (Collision avoidance
via collaborative action), by delivering many tasks that a
single UAV cannot, as well as better decision making to fulfill
their missions [3]. The success of UAVs in search and rescue
missions executed by SwedishMaritime and Coast Guard has
been mentioned in [10] due to installed thermal imaging and
reliable navigation systems onboard. Meanwhile, in certain
specific circumstances such as assistance in search and rescue
missions when a natural disaster occurs, it is essential to know
the location of UAVs with the utmost accuracy. However, the
process of localization of UAVs and SUAVs depends on the
application requirements and has to deal with additional
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FIGURE 1. Examples of SUAVs applications.

constraints and controversies such as the velocity, height,
flight level of the UAV, and the air traffic density, the limited
energy autonomy and payload, as well as restricted com-
putational capacity, the stabilization, calibration problems,
the weather conditions, and noisy measurements, to name
a few.

This paper is one of the foremost comprehensive reviews
that focuses on current localization schemes and technologies
in the context of SUAVs. It covers the major aspects of this
challenging topic by examining existing work on the local-
ization techniques of SUAVs. Open issues and possible direc-
tions for future research are also pointed out. In the following,
related surveys are reviewed, and the key contributions are
outlined.

A. RELEVANT SURVEYS VS. CONTRIBUTIONS
OF THIS PAPER
To justify the relevance and contribution of this work, it is
worthwhile checking the pertinent work proposed over the
last five years in the literature as summarized in Table 1,
with their details in the following, which also allows having a
broader knowledge in the specific field of UAVs and SUAVs:

Chmaj et al. [4] investigated the application of distributed
processing for SUAVs. They focused on computer engineer-
ing aspects for the implementation of collaboration mech-
anisms between UAVs, and their used communication and
distributed processing principles. Hayat et al. [11], discussed
the requirements of UAVs for civil applications in terms

of communication and networking. The survey presented
in [6], studied the technological and social implications
of FANET. Motlagh et al. [12], conducted a comprehensive
survey of current research progress on UAV-based Internet
object services. Wang et al. [13] surveyed distributed gate-
way selection schemes and cloud-based stability control
strategies. Kanell et al. [14], focused on the current state-of-
the-art of computer vision for UAVs. Besides, the authors
discussed open challenges and future research directions.
Lu et al. [15], conducted a comprehensive review of vision-
based methods for UAVs across three main aspects: local-
ization and mapping, obstacle avoidance, and trajectory
planning. Furthermore, the authors identified the main chal-
lenges to be faced and presented future research directions.
Chung et al. [2] studied modeling, control, planning, sens-
ing, and implementation of SUAVs, with an emphasis on
SUAVs flying in a 3-D world. The work in Li et al. [16]
presented communication technologies used in UAV sys-
tems, including 3G/4G/5G, along with recent advances and
future trends. The survey presented in [18] investigated the
functionality of SUAVs and outlined their possible future
research challenges. Mozaffari et al. [19], provided a tuto-
rial and a comprehensive guide to harnessing the potential
of UAVs for wireless networks. In addition, it introduced
UAV three-dimensional deployment, their channel model-
ing, several validating models with their results, and out-
standing challenges and open issues. Alwateer et al. [5],
addressed the use of UAVs for location-based services while
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TABLE 1. Relevant surveys and magazines on SUAVs.

highlighting issues related to the context of their opera-
tions. Zeng et al. [17], focused on the applicability of UAVs
in 5G mobile networks. The authors provided a discus-
sion centered on UAV-assisted wireless communications and
cellular-connected UAVs. Shakhatreh et al. [20] analyzed the
current civil applications of UAVs and their major challenges.
In [21], a detailed review of all relevant research in which
ML techniques have been used in UAV-based communi-
cations. In particular, a classification of these techniques
according to the communication and network aspects in
which they are implemented was given. Moreover, various
research challenges related to each of the relevant areas
were raised. In 2020, Boursianis et al. [7], reported the latest
research on the application of UAVs and IoT technologies
in smart agriculture. It also briefly outlines the key role
of UAVs in various scenarios by describing the framework
of the AREThOU5A project as a use case. The work pre-
sented in [22], provided a review on swarm robotic behav-
iors and their applications. Current research platforms and
industrial applications were described. Oubbati et al. [23]
surveyed applications and future trends in softwarization of
UAV networks (seeks answers to this specific question to be
exact: How complicated tasks are handled by advanced soft-
ware?). Coppola et al. [3] discussed the fundamental chal-
lenges that must be tackled to successfully develop swarms
of micro air vehicles (MAV) for real-world operations.
They also reviewed the requirements for conception, local-
ization, and proper functioning of MAV. The work pre-
sented in [24] reviewed research conducted on imagery data
acquired byUAVs for remote sensing purposes based onDeep

Learning (DL) models. For this, they studied the differ-
ent types of sensors and their applications, as well as the
fundamentals of DL models and their application to solve
classification, object detection, and semantic segmentation
problems in the field of remote sensing. Shahzadi et al. [25]
highlighted the concept of 5G and beyond wireless commu-
nication, and illustrated recent research that focuses on UAV
placement and the allocation of resources in UAV-assisted
wireless communication. The work presented in [26] spotted
the light on the role of AI methods to improve the perfor-
mance of UAV networks. It covered the UAV swarm forma-
tionmethods and presented a detailed overview ofAI-enabled
routing protocols, as well as the tools, public datasets, and
remote experimentation infrastructure used to test these rout-
ing protocols. The authors in [27] review the use of UAVs
in the sugarcane industry monitoring and management and
discuss advantages and drawbacks of their use. Meanwhile,
the paper [28] is restricted in presenting UAV use for agri-
cultural purposes. It also examined the application of SLAM
methods for precision agriculture practices in the greenhouse.
Khelifi and Butun have presented the basic concepts of SUAV
localization in [29]. They provide a limited overview of the
localization techniques and systems used by SUAVs and their
functioning principles. Therefore, this paper comes to com-
plement the survey established in [29] by presenting a wide
selection of papers, especially those from the last three years,
so that all new developments in the literature are presented,
compared, and discussed. In addition, this paper provides
preliminaries of localization and path planning, which do not
exist in [29]. Furthermore, the communication technologies
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used in SUAV are also presented. Additionally, another set of
outstanding issues related to new trends and future research
directions are highlighted.

B. MAIN CONTRIBUTIONS OF THIS PAPER
AND STRUCTURE
By no means, researchers in the UAV field lack a body of
literature as a quite good number of survey articles have been
presented in this area, but without covering deeply the state of
the art of SUAVs for localization purposes. However, there is
a clear need for a good summary with a current state of the art
of SUAVs that surround the major localization aspects which
are of prime importance in realizing real-world scenarios.
This paper can help researchers and newcomers to enhance
and broaden their overview of the field.

The contributions treated in this work are summarized as
follows:
• Localization technologies, navigation and path planning
systems for UAVs and SUAVs are briefly reviewed.

• State-of-the-art of localization/positioning SUAVs is
presented.

• The challenges faced by SUAVs and future research
directions are described.

1) ARTICLE ORGANIZATION
The rest of this paper is organized as follows: Section II
presents a brief introduction of the principles of localization
in UAV/SUAV. It further provides an overview of localiza-
tion technologies of SUAVs and the existing path planning
methods. Section III reviews the state-of-the-art localiza-
tion systems and their potential for SUAVs. Future research
directions are outlined in Section IV. Finally, the paper is
concluded in Section V.

II. BACKGROUND
Before analyzing different localization systems used in
SUAVs, it is important to first understand the basic concepts
and conventional techniques of localization as well as the
most popular wireless technologies used in the localization
process. Also, when talking about localization it is very
relevant to differentiate it from navigation and path plan-
ning methods, which will also be explained briefly in the
following.

A. PRELIMINARIES OF LOCALIZATION
Localization specifies the system for calculating the position
of an object. Any position is systematically associated with a
reference system [30]. The process of obtaining the position
or location is called positioning and/or geo-referencing [31].
However, a distinction is sometimes made between posi-
tioning and localization. Positioning refers to the process of
determining the position of the object. Therefore, localization
relates to the estimation of the position of this object by
the reference system such as the infrastructure [11], [32].
In the context of SUAVs, the process of estimation of the
position is used to localize a target or another UAV [19], [3].

In general, the estimation is based on the analysis of ameasur-
able quantity with a corresponding model of the system, that
describes the relation of this quantity compared to the desired
one [32]. Various approaches are proposed in the literature to
formulate the estimation problem and the observation model.
All these approaches aim to extract as much information as
possible from the available observations to raise the localiza-
tion accuracy [3], [11], [19]. This latter refers to the accuracy
of the position estimate concerning the actual position by
describing the consistency of the estimate. It depends on the
range measurement errors, the calibration of the UAV noise,
its position in the network, the effects of random actions,
imprecise models, and environmental conditions [29], [32].
Thereby, to measure the distance between the target and
the receiver different methods have been proposed in the
literature [30], [32]. For instance, Received Signal Strength
(RSS) [30], Time Difference of Arrival (TDoA) [30], Time
of arrival (ToA) [33], Time of Flight (ToF) [34], Angle of
Arrival (AoA) [35], antenna array systems [36], [37], trilat-
eration [35], triangulation [35], hyperbolic [32], hybrid [32],
etc. Several previous articles already contain detailed descrip-
tions of these methods and their characteristics; please refer
to these articles for more details [30], [32], [35].

B. LOCALIZATION TECHNOLOGIES
To understand how the localization systems work, it is very
valuable to firstly describe the mainly used technologies in
this process. Currently, there are numerous wireless localiza-
tion technologies used by the UAVs/SUAVs, depending on
their environment type:

Inertial Navigation System (INS) [38] is an earlier navi-
gation system that operates offline and has a triggered initial
precise position; the following positions are calculated from
that initial position by using a 3-axis accelerometer [39]. INS
was followed by Global Navigation Satellite System (GNSS)
later on [40], [41]. As mentioned in [41], GNSS is the most
accurate positioning system that is used on earth today. It is
not only utilized for the navigation and positioning of the
UAVs but also by almost any kind of moving vehicle for the
same purposes. There are various types as it is contributed
and used by various countries from all over the world, such as
the Global Positioning System (GPS) [41]. GPS is a satellite-
based navigation system that is employed in a wide range of
applications from mapping and vehicle navigation to survey-
ing. It is the most popular and worldwide known system [41].

Before GPS systems were out there, cellular systems were
being used for localization purposes [39]. Especially, cellular
systems of all generations 2G, 3G, 4G, 5G because they
provide higher data rates, more connectivity, better coverage
and a wider range of services [5], [41]. In addition, they are
very well suited with the triangulation method, as cellular
towers can serve as fixed positioned beacons for the target
location to be calculated [39].

Usage of gravitational fields in the localization and naviga-
tion purposes has been successfully used in the past. In [42],
the feasibility of using prior gravity anomaly measurements
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that are nautical mile apart for underwater simultaneous
localization and mapping are shown. According to authors’
finding, the prior gravity anomaly measurements, coupled
with the developed tools (such as using particle filters),
provided guidance to select optimal areas and missions
for the AUV (autonomous underwater vehicles) could tran-
sit through towards minimal localization error at the goal
location.

In the recent past, aerial navigation by magnetic map
matching has been demonstrated as a viable GNSS-
alternative navigation technique. Real-world demonstrations
have shown the accuracy of 10s of meters over hour-long
flights, but these flights required accurate magnetic maps
which are not always available. Magnetic map availability
and resolution varies all around the globe. Removing the
dependency on prior survey maps is really important as it
extends the benefits of aerial magnetic navigation to small
unmanned aerial vehicles (sUAV) at lower altitudes where
magnetic maps are especially under sampled or unavailable.
For instance, in [43], a simultaneous localization and map-
ping (SLAM) algorithm is introduced which uses scalar mag-
neticmeasurements to constrain a drifting INS. The algorithm
was then demonstrated on real magnetic navigation flight
test data with a successful demonstration accuracy (1̃0s of
meters) during a 100-minute flight without the use of a prior
magnetic map.

In another work [44], authors have shown another usage
of magnetic anomalies for indoor positioning algorithms,
by presenting a publicly available dataset for the evaluations.
The dataset includes Inertial Measurement Unit (IMU) and
magnetometer measurements along with ground truth posi-
tion measurements with an accuracy of cms.

Another interesting communication technology is Opti-
cal wireless communications (OWC) [39]. It used the spec-
trum of the light which requires direct Line-of-Sight (LoS)
for communication. Hence, limited by the physical (terrain,
landscape, etc.) and natural (fog, rain, etc.) obstacles. For
instance, Infra-Red (IR) [45], Laser scanner or LIght Detec-
tion And Ranging (LIDAR) [45] which is mostly used in
automated collision avoidance systems. It allows measuring
distances by illuminating the target with laser light and then
measuring the reflection with a sensor. Some other technolo-
gies used Radio Frequency (RF) [39], [45] such as Ultra-
Wide Band (UWB), Radio Frequency Identification (RFID),
Bluetooth, Wireless Fidelity (Wi-Fi), ZigBee/Z-Wave, and
Low Power Wide Area Network (LPWAN). UWB is a radio
technology that exploits a very low energy level for short-
range, high-bandwidth communications over a large por-
tion of the radio spectrum. It has traditional applications
in non-cooperative radar imaging, as well as most recent
applications, span target sensor data collection, and precision
locating towards tracking applications. Owing to its very
short pulse duration, UWB is a promising technology for ultra
low power, precise ranging, and positioning applications.
Since GNSS signals are mostly blocked and useless indoors,
RFID has been offered to solve indoor localization [39] while

FIGURE 2. An example of simple path planing.

Bluetooth uses a 2.4 GHz radio frequency band and various
applications of it can be found in the smart home, health, and
sports industry.

As mentioned in [46], Bluetooth technology is employed
by a UAV system to operate in short-range wireless for exe-
cuting some tasks it is developed. The goal was to achieve
an autonomous flight that is capable of carrying on different
flight missions. Wi-Fi is an IEEE 802.11 based wireless
network technology [39] used in-flight control of UAVs and
real-time data transmission (such as photo, video, GPS data,
etc.) between UAVs and devices on the ground. ZigBee/
Z-Wave is a low-energy wireless protocol based on IEEE
802.15.4 standard commonly used in home/office automa-
tion, medical, and industrial applications that have low data
rate transmission, require long battery life, and need secure
networking [39].

Meanwhile, to further increase the positioning accuracy of
UAVs, alternative solutions that exploit existing radio trans-
missions such as WiFi, ultra-wideband (UWB), or cellular
networks for trilateration or triangulation with antenna arrays
should be considered [37]. These advanced solutions signif-
icantly improve the accuracy of the localization system and
reduce the required infrastructure [47].

In general, existing technologies yield advantages and
restrictions. Thus, it is difficult to create cost-effective yet
efficient localization solutions using a standalone technol-
ogy [32]. Given the complementary characteristics of these
various technologies, the integration of multiple technologies
at once is becoming a trend to achieve reliable, continuous,
accurate, and fault-free localization.

C. NAVIGATION AND PATH PLANNING METHODS
Navigation is defined as the process of guiding a user or an
object to a target, usually by following a predefined path.
For this, it is necessary to continuously repeat the process of
localization and provide directions to follow a path or reach
the target. Therefore, path planning in the context of UAVs
is considered as following a trajectory (markers) in the air by
flying from one position to another (see Figure 2).
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Most methods of path planning use algorithms created for
the decomposition of an area of interest to assess the one that
should be used to give the optimal solution to determine the
actual position. In particular, in applications of monitoring
hazardous environments, distributed tracking and detection
are mainly typical SUAV tasks. However, to ensure safe
mission accomplishment, SUAVs need to plan their paths
properly. They have to avoid collisions with surrounding
obstacles by maintaining a formation distance between each
UAV of the team. Additionally, they compute their positions
and orientations relative to each other according to global
or local information and/or throughout a reference map.
Besides, navigation depends on the availability of the envi-
ronment map and it only starts once the map is built. Hence,
it is necessary to use the location information correctly to
assess the positions of UAVs while following a safe and quick
free-collision flight path to reach the target positions.

Some pioneeringmethods such as RRT [48] andRRT∗ [49]
use re-planning algorithms to avoid obstacle-filled and
complex environments. While these methods can achieve
safe and fast planning paths, they are too slow and very
time-consuming. Hence, UAV flight path delay is a major
constraint that requires real-time planning. Furthermore,
planning paths for a large team of UAVs is highly compu-
tational and time-demanding. If the path planning is based
on local information and an estimation of the status of UAVs
to dynamically plan the trajectory, this is a local path plan-
ning [15]. In contrast, planning a global path implies the
localization of the source and destination of the target in a
built-up map to calculate an initial path. Consequently, global
path planning involves the use of a static map while for
local path planning a dynamic real-time map is constructed.
This local dynamic map (LDM) contains several layers of
information that can be used to auto-adapt the location and
improve the efficiency of maintaining this specific dynamic
flight path. Therefore, some works rely on estimating the
motion of UAVs to build the map by using only data from
onboard visual sensors such as cameras, LiDAR sensors, 3D
sensors, and so on [15].While others opt for the Simultaneous
Localization andMapping (SLAM) approach [50]. The latter,
allows a UAV to localize itself in an unknown environment by
merging different sources of information while moving and at
the same time building a map without any prior information.

Recently, machine learning (ML)/artificial intelligence
(AI) based approaches have been an attractive tool for UAVs
path planning [51]. They have a great ability to handle the
uncertainty present in the environment with low computa-
tional complexity [52]. In addition, ML/AI methods provide
an adaptive structure that is easy to implement and which
is suitable for SUAVs collision-free paths to safely reach
their mission goals as they efficiently model this complex
optimization problem.

In summary, as SUAVs become more autonomous, they
have to figure out feasible paths for the whole swarm to
operate at high levels of autonomy and without any human
interaction.

III. STATE OF THE ART LOCALIZATION SYSTEMS AND
THEIR POTENTIAL FOR SUAVS
Many excellent studies and papers have been published to
tackle the localization of SUAVs issues. In this section, state-
of-the-art research efforts in this field are presented. Exist-
ing approaches and the most popular localization techniques
are reviewed according to two main categories namely: the
positioning techniques, and the communication architectures.
Further, scalability is the key milestone towards the applica-
tion of SUAVs in large-scale networks. As such, this paper
elaborated aforementioned important aspects in each cate-
gory that is presented.

A. THE POSITIONING TECHNIQUES
Flying a swarm of UAVs simultaneously implies the strict
requirement to maintain a safe and controlled formation
distance between them during their missions. For this,
they must continuously adapt and estimate their positions
according to the flight conditions and the surrounding envi-
ronment [4], [11]. Therefore, such constraints introduce
significant challenges that complicate their localization pro-
cess and that of the targets as well [3], [19]. Also, a distinction
must be made between absolute localization (i.e., relative to a
map) and relative localization (i.e., relative to other drones in
the swarm) during the position calculation process. In what
follows, several prospective techniques used in the literature
on UAV swarm localization are briefly outlined while the
state of the art related to the use of these techniques to com-
pute their positions are highlighted. Additionally, five classes
are identified: Computer vision, measurement requirements,
Cooperative localization, Intelligent localization, and Place-
based localization techniques.

1) COMPUTER VISION TECHNIQUES
Computer vision techniques remain one of themost important
and challenging methods in the literature; Please refer to
[14], [15], which are useful surveys on computer vision-based
systems for mobile robotics and UAVs.

Meanwhile, the fast growth and the proliferation of exter-
nal cameras, all types of sensors, and other embedded UAV
systems have led to greater volumes of real-time aerial images
and information under different environmental conditions
(see Figure 3). Consequently, a significant enhancement in
the estimation of the UAVs’ positions and mapping has been
demonstrated.

Further, according to the purposes of UAVs swarm tasks,
two main classes of computer vision can be distinguished
depending on their environment. The first is where the envi-
ronment is to be explored such as target recognition, nav-
igation, coverage, and mapping. The second is only to be
traversed or exploited. For example, crossing an obstacle field
with a prescribed goal or desired formation [2].

However, the scalability of methods in these categories
is limited by the computational power, the quality of
the onboard sensors and cameras, as well as the energy
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FIGURE 3. Computer vision system bricks.

consumption of the UAVs. Thus, such vision-based tech-
niques pose a high computational complexity to communicate
and collect information and measurements needed to perform
their assigned tasks.

Tang et al. in [53] proposed a vision-aided flocking system
for multiple UAVs which is based on LiDAR sensors and
installed onboard cameras. It is one of the recent works that
addressed the issue of the GPS-denied environment. This
system tracks and collects the information and, through the
SLAM techniques, it can learn and explore the environment.
Using a UAV platform, Zhao et al. in [54] presented a
real-time vision system for autonomous cargo transfer. They
employ robust algorithms for ellipse detection and tracking
and single-circle-based position estimation. However, one
limitation of this approach is that it relies on some stan-
dard shapes as backup reference points for detecting targets,
which makes it difficult to be extended to large uncontrolled
environments, and thus limits its scalability. So far, model-
ing the visual world and performing its three-dimensional
reconstruction in all its rich complexity is far from being an
easy task. Consequently, this subject has been a hot spot for
research and continues to attract attention.

2) MEASUREMENT REQUIREMENTS
Most of the current and ongoing techniques emerging from
the UAV swarm localization literature can be classified
according to their data measurement requirements into two
main categories, namely range-based and range-free.

In range-based localization schemes, SUAVs use the con-
nectivity information from the UAVs and/or anchor-related
data to estimate their positions. They have very accurate posi-
tion determination because they require complex equipment
to obtain angle and/or distance measurements [55]. Unlike
range-based schemes, range-free approaches consume less
energy and computing capacity. They are less complex to
implement. Hence, they are more attractive but less accurate
as they provide relative positions. In addition, they are more
robust and scalable as they do not require a high computation
load.

So far, the positions of the UAVs are considered known
and it might be thought that it is unnecessary to calculate
them since they can be measured directly using onboard INS
devices and Global Positioning Systems (GPS) [56]. The
integration of INSmeasurements with the utmost localization
technique GPS as well as updated velocity measurements,
allows accurate positions. These positions can not be acquired
in areas where the GPS signal is obscured [57]. Therefore,
alternative solutions can be considered. For example, the use
of visual localization based on optical flow technologies or
visual recognition pastern [58]. These solutions eliminate
the requirement of using any external localization system.
Saska et al. in [59] investigate the self-stabilization of SUAVs
by using a visual system in an indoor and outdoor envi-
ronment, and without recourse to a GPS. Rubenstein et al.
in [60] employed anchors in a large swarm of autonomous
robots to infer their locations. They selected four robots

65212 VOLUME 10, 2022



M. Khelifi, I. Butun: Localization in Unprecedentedly Crowded Airspace for UAVs and SUAVs

as anchors (robots that know their locations) to which the
others are relatively localized by using the trilateration of
infrared signals. In [61], Ledergerber et al. study the use of
a UWB localization system by a set of anchors that peri-
odically send signals to UAVs. The latter are localized to
the signals received from the anchors through TOA (Time
Of Arrival) or TDOA (Time Difference Of Arrival). In [62],
a distributed collaborative autonomous generation (DCAG)
technique based on the deep neural network (DNN) is pro-
posed to localize the target by using the UAV swarms. Thanks
to AOA (angle of arrival) measurements that depend on the
target-receiver distance, they adjust heading angles for opti-
mal swarm deployment. Moreover, this sophisticated mecha-
nism increases the network complexity and leads to a high
computational cost. Among many range-based techniques,
received signal strength RSS is one of the cheapest ways to
measure the distance. In addition, several alternatives based
on antenna arrays to traditional positioning techniques have
recently been explored [37], [63], [64]. For instance, the work
presented in [63] used the target guiding technology based
on region division for search and rescue purposes. It used
wireless sniffers to collect RSSI and AOA from a target,
while the AOA data is obtained through an antenna array
method. Stojkoska et al. in [65] combine Multi-dimensional
Scaling (MDS) method and Weighted Centroid Localiza-
tion (WCL) to convert the RSS signals between the-mini
UAV into distances. The localization accuracy claimed in
this work is less than 5% of the radio range in a non-complex
environment. In [66], the authors explored the use of Wi-Fi
RSS to estimate the distance between UAVs by using a Boid-
based flocking model.

3) COOPERATIVE LOCALIZATION METHODS
The use of cooperative localization (CL) in mobile robotics
has attracted considerable interest over the last decade [67].
They have been widely studied in UAV networks as the basic
concept behind CL is to employ multiple UAVs as a team
to help them find their positions and orientations relative to
each other [68]. This team collaboration improves the accu-
racy of localization by combining different measurements
derived from various estimations of positions. However, the
methods by which the measurements are combined, collected
and shared between UAVs vary based on the controller pro-
cessing [69]. Therefore, these promising techniques can be
classified into centralized where a single unit controls all the
swarm as one system [3] and distributed in which each UAV
independently computes its location, as shown in Figure 4.

Several localization approaches are presented in the liter-
ature for SUAVs that apply CL. One of the relevant works
was proposed for a team of cooperative robots in [70].
The authors used a combination of the Maximum Likeli-
hood Estimation (MLE) method and numerical optimization
to improve robot localization using information from rel-
ative observations among the team. In [71], [72] methods
based on Extended Kalman Filter (EKF) were introduced.
The approach in [71] fuses proprioceptive and exteroceptive

FIGURE 4. The cooperative localization architecture. A: Centralized
method; B: Distributed method.

measurements contained in the relative observations between
robots. In [72], the authors employ a distributed Consensus
Extended KFs (CEKF) for position and velocity state esti-
mation of SUAV. The approach was tested on a swarm of
five aircraft equipped with heterogeneous onboard sensors.
Nerurkar et al. [73] proposed an algorithm that distributes
the computations among the team of robots and constructs a
distributed MAP-based CL. However this approach requires
synchronous communication among the robot team whereas,
this may not be possible in harsh environments where they
must tolerate communication failures. The consensus theory,
according to which a team of UAVs controls the processing
system in a distributed way to converge towards a common
agreement and value, was introduced in [74]. In [74], decen-
tralized sliding mode controllers (SMCs) which allow the
members of SUAVs to reach a consensus in altitude, handing,
and angles were designed. The work proposed in [75] tackled
the problem of formation keeping by applying the back-
stepping and graph theory methods in cooperative control
between UAVs. Although this approach allows rapid dynamic
response and low tracking error when tracking the virtual
leader, it only takes into account the formation system of the
UAVs from their take-off to their assembly process, without
addressing the formation vortex effect, the desired mission
goal, the shape and the quality of each UAV.

As stressed in [76], when it comes to the large-scale net-
works with limited centralization ability, it is not possible to
employ a centralized entity to perform joint real-time decision
making for the entire network. This introduces the scalabil-
ity challenges, while multi-agent reinforcement shows the
opportunity to cope with theses challenges and extend the
intelligent algorithm to cooperative large-scale network.

4) INTELLIGENT LOCALIZATION STRATEGIES
Artificial intelligence (AI)-based localization techniques
using machine learning (ML) are key enabler approaches for
providing SUAVs and target positions. Such methods are able
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of learning environmental properties and quickly adjusting
the behavior of SUAVs. Although, their high mobility, they
can autonomously enhance their performances with AI/ML
methods to provide more accurate estimates of their posi-
tions. Yet, even though they provide huge benefits, a criti-
cal constraint of these techniques is the arduous adaptation
process to dynamic conditions, as they have to handle the
growing amount of all training data which highly affects
their scalability. Added to that, these methods increase the
computational complexity and cannot be executed on board
due to the limited computational capacity to learn the model
and decide the appropriate policy actions.

The localization problem is formulated as a multidi-
mensional optimization problem that can be solved using
numerous ML techniques [3], [30]. To date, evolutionary and
bio-inspired AI methods are the most studied techniques in
the literature [21], as illustrated in Figure 5 (the plotted data
is collected from [77]).

FIGURE 5. AI/ML algorithms used in UAV research.

Furthermore, the localization of UAVs is generally related
to the target tracking with a predefined deployment and/or the
optimal one by a designed path planning. Thus, many works
have investigated the use of AI/ML in path planning. In the
following, some relevant AI/ML-based UAV swarm contri-
butions are described. In [78], the authors analyze how UAVs
perform their task by combining PSO with the Hungarian
algorithm. The latter is used to quickly solve the assignment
problem, while PSO is adopted to iteratively compute the
optimal relative position relationship, whereby each target
position is assigned to a UAV. In [79], the authors merged
direct and indirect Reinforcement Learning (RL) estimates
by applying a consensus-based fusion method to generate
the relative positions in two dimensions. Their proposed RL
estimation was applied to propose a distributed formation
control. The work presented in [80] focused on the vision-
based collision avoidance for UAVs. The proposed system
distributed calculations among multiple UAVs to perform
object tracking, detection and collision avoidance. It uses
deep CNNs to fuse the images from the UAVs’ cameras.

Then, it built a recurrent neural network (RNN) to obtain
high-level image features for object tracking and to extract
low-level image features for noise. Opromolla et al. in [58],
used a machine learning framework that exploited SUAVs in
mission-critical scenarios. This framework is based on the
You Only Look Once (YOLO) object detection system [81],
which is a DL-and visual-based detection/tracking system.
It used training knowledge to predict the expected position of
a nearby UAV and allows vision-based detection to focus on
the expected region, which simplifies the task. Please refer to
this survey [82] for more other optimization algorithms based
on AI/machine learning techniques.

5) PLACE-BASED LOCALIZATION TECHNIQUES
Localization techniques can also be grouped into two major
categories due to where the localization takes place; indoor
vs. outdoor. The most distinguished among these is the usage
of GNSS aid during the localization of the outdoors for pre-
cise estimation. However, GNSS connectivity in congested
urban areas with a dense distribution of skyscrapers might be
challenging even for outdoor navigation. In the same man-
ner, localization is a real challenge for indoor environments.
Hence GNSS signals are blocked by the thick walls, concrete,
and steel, some other methods are used for indoor localiza-
tion. For outdoor localization, other than very well-known
techniques/technologies, some other methodologies are also
being proposed. For instance, Hoshiba et al. authors designed
and implemented a UAV-embedded microphone array system
for sound source localization in outdoor environments. The
concept is based on exploiting sound information as an aid
for localization of the UAVs in search and rescue activities to
compensate for poor visual information [83].

Indoor localization and navigation of UAVs constitute
a critical part of autonomous flight and automated visual
inspection of elements in continuously changing environ-
ments such as construction sites. In [84], Kayhani et al.
discussed the implementation and performance assessment
of an Extended Kalman Filter (EKF) for improving the esti-
mation process of a previously developed indoor localization
framework that has used visual markers.

To enhance the precision for indoor/outdoor localization
and navigation, usage of SUAVs in which UAVs share useful
information collaboratively, is a good candidate solution and
that offers flexible scalability. For instance, Misra et al. dis-
cussed a scheme in which the swarm of UAVs forms an aerial
IoT network [85]. In the proposal, UAVs opportunistically
share information whenever they are in the communication
range with each other to enhance overall consensus-ed data.

B. THE COMMUNICATION ARCHITECTURES
The use of SUAVs has spread to many applications and use-
cases such as in environmental monitoring (both for civilian
or military purposes), target tracking, medical applications,
disaster management [18], [20], [22]. Consequently, a variety
of localization approaches using different communication
architecture have been proposed to achieve different goals
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FIGURE 6. SUAV communication architecture.

(see Figure 6). In the following subsections, the major con-
tributions proposed in the literature related to this subject are
investigated.

1) INFRASTRUCTURE BASED SWARM
A flying ad hoc network (FANET) is a group of UAVs com-
municating with each other with no need for an access point.
At least one of the UAVs in FANET is connected to a ground
station or satellite for acting as a central authority to carry
out data offloading missions. UAVs in a FANET carry out
their missions without human help, just like an auto-piloted
vehicle. In recent years, many researchers have focused on
FANETs due to low-cost circuitry and lighter payload owing
to the ad-hoc networking. FANETs are being used in various
applications, such as military and civil applications, and dis-
aster monitoring (such as avalanches and wildfires) [86].

A WANET is a wireless ad-hoc network that doesn’t
depend on existing infrastructure to constitute the network.
As such, switches, routers, and access points are not needed
for the operation of an ad-hoc network. On contrary, nodes
establish connections dynamically due to dynamic routing
algorithms.

A FANET, is a flying WANET in which all UAVs are part
of a network of communications that is established between
the UAVs such as the wireless nodes in a WANET.

The utmost advantage of FANET is its autonomy
which is based upon distributed-decision making. Direct
(one-to-one) communication in between the UAVs allows

distributed-decision making. This also enables built-in auton-
omy as the entire swarm will not be dependent on a central
infrastructure-based decision engine to execute the preas-
signed tasks. Some disadvantages of FANET are size, weight,
and power-related implications.

Scalability of the FANETs can be managed automati-
cally and seamlessly due to ad-hoc nature of the network
configuration.

To establish a FANET, network hardware along with the
software is required to onboard each UAV. The distance over
which UAVs can reliably communicate with each other in a
FANET limits the networking-related implementation. The
re-configuration of the SUAV routing algorithms dynami-
cally is a challenging task as it might cause packet losses.
Therefore, finding ways of reliable FANET communication
is needed, especially for the critical SUAV applications in
which accuracy of the UAV telemetry data is important.
In this regard, Kim et al. [87] proposed a hybrid architec-
ture of an infrastructure-based network making use of cellu-
lar wireless communications infrastructure and establishing
network protocol between drones without the intervention
of a GCS.

Owing to the versatility of the UAVs, FANET is a promis-
ing technology for future networked systems. One example
of the versatility of the UAVs is the high mobility, which will
enable fast and frequent topological variations of the FANET
(this is one of the most distinguishing features of FANETs).
Henceforth, the topology management (suiting the path and
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TABLE 2. Qualitative comparison of SUAVs localization techniques.

on-wards movements of the UAVs) constitutes one of the
most critical issues in FANET [87].

C. SUMMARY
Table 2 summarizes the reviewed systems in the previous
section. It shows some of the key outstanding features pos-
sessed by the localization techniques of SUAVs. The latter is
comprehensively compared with respect to their features.

IV. FUTURE RESEARCH DIRECTIONS
Even though the fast emergence of SUAVs in the military,
industrial and civilian applications and in many emerging
areas, their proficient use poses several challenges, especially
in their localization process. Although these emerging tech-
nologies bring new opportunities in many areas, significant
changes in the localization mechanisms of SUAVs are taking
place. In this section, a set of outstanding issues related to
new trends are summarized and discussed, as well as relevant
future research directions are highlighted.
• Resource Management in SUAVs Renewable ener-
gies and green communication are promising solutions
for power-supplying and energy-saving SUAVs, which

enables them to autonomously operate without any
assistance and physical intervention. This presents great
potential for their localization system as they provide
a self-sustainable ecosystem by harvesting energy from
the environment and continuously producing and sup-
plying power to their system [75]. Therefore, the auton-
omy of the UAVs is no longer hampered by their energy
suppliers and it is affordable to improve the localization
through additional hardware such as sensors, cameras,
etc. Hence, future research must be directed toward
efficiently managing the restricted UAV resources by
designing hardware and technologies that enhance their
endurance, recharging batteries and improved their
localization precision [88]. On the other hand, it is also
essential to find the best trade-off in energy consumption
between SUAV members to increase their flight time
with the aim to extract as much information as possible
from the available observations to raise their localization
accuracy.

• Localization over 6G, B5G, 5G and telemetry. The
proliferation of mobile services via B5G/5G/6G tech-
nologies will enable SUAVs to use localization via telco
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providers rather than GNSS [89]. Usage of telemetry
data will be also seamlessly possible for the GCS,
by the dual telecommunication channel provided by
the telco services [90]. Moreover, mmWave and tera-
hertz communication are new concepts that curtail the
spectrum problems and capacity limitations of current
communication. In the coming years, these emerging
technologies may make it possible to provide accurate
localization as they offer larger bandwidth and pervasive
high-speed access in complex environments. Therefore,
future SUAVs require to support all these leading-edge
technologies in the design of their localization systems
as they constitute the next generation of networks and
communication trends.

• Intelligent Mobile fog and edge computing (FEC). The
next-generation computer systems will support edge and
fog computing nearby the perimeters of the network to
enhance the user experience and decrease the round-trip
communication delay [91]. However, the influence of
edge/fog computing on localization has not been inves-
tigated. For SUAVs, this might be one of the nearest
ground stations or one of the UAVs with enhanced hard-
ware installed onboard in order to provide low-latency
location and localization solutions [92]. Therefore, there
is great industrial and academic potential to integrate
edge/fog computing in the localization of UAVs that
needs to be further investigated.

• SUAVs-enabled Internet-of-Everything (IoE). The
Internet of Everything (IoE) [93], [94] is a paradigm
on the cusp of revolutionizing the technological land-
scape. It enables the delivery of a wider range of infor-
mation by connecting many ubiquitous devices to the
Internet. Then, it uses artificial intelligence to analyze
the massive amount of collected data. For example, the
work presented in [95] reviews the use of UAVs for the
target localization and surveillance applications with-
out addressing the research tackling their integration in
the future of IoE. Therefore, the amalgamation of IoE
to enhance SUAVs localization systems is still in its
infancy and needs to be investigated.

• SUAVs-supported health andmedical services. The last
years have witnessed a continuous and rapid change
in the health sector. With the latest COVID-19 out-
break [96], real challenges were raised in terms of
exploiting the infrastructure, pandemics-based data, and
knowledge to counter this threat and help society to cope
with fall-back. For example, the paper [97] has examined
the relation between UAVs and multiple BANs in data
collection but has not involved the localization aspect
of UAVs in their work. Therefore, it is essential to con-
duct thorough research on the potential of integration
SUAVs for the delivery of medical supplies and patients
monitoring.

• Cyber-security and Blockchain. Cyber-security of
information systems has been a great concern in the
last decade. For instance, many IDS schemes have been

TABLE 3. List of abbreviations.

proposed not only for WSNs [98], but also for the recent
IoT networks [99]. SUAVs and their ground stations
constitute a flying IoT network, which is vulnerable to
various cyber-attacks such as DoS, jamming, network-
flooding, etc. Therefore, serious measures need to be
employed, using the aforementioned IDS for mitigation,
and intrusion preventionmechanisms like authentication
and access control. Moreover, as discussed in [100],
Blockchain systems are proposed as a security mecha-
nism to be employed by IoT aswell as in SUAV for local-
ization purposes. Thus, the application of Blockchain
security solutions to SUAVs is an open research area
to be investigated, especially for the localization and/or
logging of the flight paths.

V. CONCLUSION
In today’s automated and enhanced world, everything tech-
nological is becoming more autonomous and self-driven,
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applications can be thought of ranging from autonomous
cars/trucks to delivery drones. In the case of drones and
UAVs, when autonomous smart decision and mobility is
executed in flocks, it requires execution of commands in a
more coordinated and collaborative fashion. As an example,
this paper presents SUAVs; a flock of UAVs that are col-
laboratively moving and executing their preassigned tasks
for the goodness of humans. Furthermore, the paper presents
communication technologies that are aiding localization,
as well as path planning methods and an up-to-date overview
of research efforts on localization/positioning systems for
SUAVs. Finally, it highlights challenges, issues, and future
research directions.

Authors of this article project that SUAVs will be a key
tool in providing disrupting services and innovative solutions
for the benefit of mankind, such as from automated medicine
deliveries by the pharmacies towards providing remote fer-
mentation to the crops of precision agriculture.

APPENDIX
ABBREVIATIONS AND ACRONYMS
List of abbreviations are listed in Table 3.
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