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ABSTRACT State-of-the-art deep survival prediction approaches expand network parameters to accom-
modate performance over a fine discretization of output time. For medical applications where data are
limited, the regression-based Deepsurv approach is more advantageous because its continuous output design
limits unnecessary network parameters. Despite the practical advantage, the typical network lacks control
over the feature distribution causing the network to be more prone to noisy information and occasional
poor prediction performance. We propose a novel projection loss as a regularizing objective to improve the
time-to-event Deepsurv model. The loss formulation maximizes the lower bound of the multiple-correlation
coefficient between the network’s features and the desired hazard value. Reducing the loss also theoretically
lowers the upper bound on the likelihood of discordant pair and improves C-index performance. We observe
superior performances and robustness of regularized Deepsurv over many state-of-the-art approaches in our
experiments with five public medical datasets and two cross-cohort validation tasks.

INDEX TERMS Machine learning, pattern recognition, supervised learning, medical expert systems,
biomedical computing.

I. INTRODUCTION
Survival analysis, also known as time-to-event analysis, is a
crucial task in medical prognosis and risk assessment. Fun-
damentally, the objective is to create a predictive function
mapping from relevant input data to time until event occur-
rence, or ‘‘hitting time.’’ A wide range of medical applica-
tions is enabled once the hitting times are predicted [14].
Unlike the typical regression tasks, the model has to account
for right-censored outcomes (e.g., unknown time-to-death
due to patients dropping out of studies.) The problem has
been widely investigated in the Statistics community [18].
The typical approaches are developed from regression mod-
els with the additional consideration of outcome censoring.
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For example, Cox proportional hazard model (CPH) [5] and
Survival Support Vector Machine (SVM) [20] are formulated
from linear-based regressors, which allow applications of
classical regularization and analysis, such as L-1 and L-2
norm, into the learning. Survival Tree [21] and Survival For-
est [22] are early attempts to utilize non-linear regressors for
the survival task.

Recent approaches utilize deep learning architectures for
the prediction (‘‘deep survival’’). The introduction of deep
survival networks not only opens opportunities for devel-
oping non-linear prediction models but also allows predic-
tion using other data forms instead of handcrafted features,
such as medical 3D-MRI scans, and sequence data for sur-
vival tasks [3], [7], [19]. Without the tedious work of defin-
ing relevant features, recent emphases of many works have
shifted toward identifying relevant data and developments of
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suitable deep survival network architectures. Our study
focuses on the development of deep survival approaches
that have previously adapted to data forms without chang-
ing objective functions or introducing drastic preprocessing
steps.

A prominent trend in developing deep survival approaches
is discretizing possible survival outcomes for classification
architecture in modeling hitting time distribution. The strat-
egy trains deep networks to classify or maximize likelihoods
corresponding to pre-defined intervals of discretized hitting
time. Variations of the networks are differently characterized
based on assumptions and outcomes about censored data. For
example, partial-logistic regression [1] and NNet-survival [6]
are feed-forward classification networks trained by increas-
ing likelihood over output nodes corresponding to the period
after censoring with the assumption that the unobserved event
is likely to occur after the censored time point. The survival
probability mass function (PMF) network [10] is trained to
output a discretized cumulative density function of survival
time instead of the likelihood of occurrence. DeepHit [12]
is the state-of-the-art method that combines the discretized
density training similar to that of the PMF with a multi-task
network for the prediction. Notice that these discrete-time
network can adapt to new input forms by simply changing the
input layer architecture (e.g., Convolutional Neural Network
[3], [40].) The drawback of this approach is the requirement
of hitting time discretization, which inconveniently intro-
duces a trade-off between the number of parameters and
the granularity of output time. Specifically, fine-grain dis-
cretization helps the network distinguish cases with slight
differences in hitting time at the price ofmore network param-
eters. Optimally discretizing the data for the deep-learning
approach is non-trivial and requires consensus between engi-
neers and medical experts. On the broader picture, the medi-
cal context often involves the lack of gold-standard outcomes
and several difficulties in data acquisition, including privacy
laws, lack of patient enrollment on research studies, and low
frequency of events. Training a large-scale neural network
under these data circumstances often causes overfitting and
poor prediction performance. Unlike some other domains,
solving the insufficient data using data augmentation is also
limited as the learning from invalid data introduces risk in
subsequent medical practice. The discretization leads to more
difficulties in network design and training.

In Contrast to the discretization strategy, regression-based
networks avoid unnecessary difficulties by modeling the hit-
ting time density with continuous hazard output. By mapping
the input to a single-dimension hazard value instead of a
discrete outcome, the architecture development allows more
flexible control over the number of parameters regardless of
the survival outcome range, which is favorable in the small-
data medical context. Variations of the regression networks
are defined on how the output values relate to survival likeli-
hood. Deepsurv [9] is a well-established network under this
approach with the assumption of proportional hazards such
that the difference between survival likelihood for a given

time is proportional to the difference in feature or hazard val-
ues. The model is developed with intuitions behind the Cox
proportional hazard (CPH) model, a widely applied statistical
method for survival analysis. The Cox-time network [11]
improves this approach by dropping the CPH’s proportion-
ality assumption. Many survival prediction works adapted
the regression approach for various health-related data
[7], [19]. There are also hybrid regression approaches, such
as Survival-net [3], that train the network to classify censored
and uncensored data before using the features from penulti-
mate layers for survival regressions. However, the regression-
based and the hybrid networks have inferior performance to
many discretized networks, as reported in [6], [10], and [12].

Inspired by the advantages offered by the deep survival
regression approach, we investigate the lack of feature dis-
tribution control during the regular Deepsurv training that
exposes the network to suboptimal performance. Our contri-
butions in this work are three-fold.
• Theoretical foundation to enhance network on the per-
spective of representation learning without scaling the
number of network parameters.

• The projection loss regularization based on the theory.
The regularization loss is applicable to survival predic-
tion on various input forms implying that the proposed
improvements are applicable to the other networks with
similar organizations to Deepsurv, such as DeepCon-
vSurv [19] networks, which we used in our experiments.

• Demonstration of the improvement generality through
experiments on many expert-defined medical prognosis
datasets derived from clinical outcomes, histology, cel-
lularity, immune markers, and volumetric imaging.

Unlike many previous deep survivals works, we present
thorough qualitative and quantitative investigations covering
both theorems and empirical experiments. We also set up
experiments tomimic cross-cohort validations, a crucial prac-
tice in developing practical medical decision support systems.
Our experiments also show that the regularized Deepsurv out-
perform discrete-time state-of-the-art baselines in the small-
data medical context.

It is noteworthy that the discrete-time and regression-based
survival approaches focused in this study are not the entire
spectrum of deep learning techniques for survival analysis.
We consider approaches under a similar medical context and
experimented with small-sample survival datasets. To con-
sider applicable approaches to various data forms, we exclude
networks that are difficult to adjust to new forms of data
(e.g., focusing on specific modality [33] or specific archi-
tecture [34], and relying on time-varying information [35])
because there are increasingly diverse types of input for
survival prediction. Because medical data are difficult to
model, we also avoid approaches that attempt to model the
distribution of data or distribution of outcome or outcome
censoring (e.g., sampling from generative modeling [36],
Perturbation [37], assuming distributions of outcome [38],
and training with artificial target responses [39]) because
data modeling and augmentation are difficult to validate and
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introduce risks of learning from invalid data. Deepsurv and
our baselines under our investigations fit all these criteria.
We discuss the advantages of Deepsurv over the other base-
lines in further sections.

II. PARAMETRIC SURVIVAL REGRESSION
Let {(I1, δ1, t1) , (I2, δ2, t2) , . . . , (IN , δN , tN )} be the dataset
for survival analysis where Ii is input data for case i, ti is
the latest elapsed time recorded for the case, and N is the
total number of data cases. δi indicates whether the outcome
event of case i is observed where δi = 0 means that the case
outcome is censored after ti, and δi = 1 means that the event
takes place at time ti. The general goal is to model survival
function S (t) = P(T ≥ t) where S(t) value is the probability
of hitting time happening after time t . The model can be
parameterized such that adjusting parameters gives flexibility
in learning to predict new cases.

A. COX PROPORTIONAL HAZARD REGRESSION
One of the earliest methods for the parametric approach is
Cox proportional hazard regression. Cox proportional haz-
ard (CPH) model define S(t) as

S (t) = exp(−H0(t)exp(X · β)), (1)

where X is a vector of input covariates or features extracted
from I , and β is the vector of CPH regression parameters.
h0 (t) and H0 (t) are baseline hazard function and cumulative
baseline hazard function. h0 (t) is often constructed using the
Breslow estimator [13]. The cumulative hazard function is
defined as

H0 (t) =
∫ t

0
h0(u)du (2)

Along with S (t), the method also defines hazard function
h(t,X ) as

h (t,X) = h0 (t) exp (X · β) (3)

Notice that taking a ratio between h (t,X1) and h (t,X2)
cancels out h0(t), resulting in exp((X i−Xj) · β). This built-in
model property without h0(t) is referred to as the proportional
hazard assumption.

Without hitting time censoring, β can be obtained with
a least-squares approach explored in [8] by rearranging the
target variable as a linear function with an X ·β term.With the
censoring, however, the regression exploits the proportional
hazard assumption and be solved by minimizing the negative
log-partial-likelihood (NLPL) loss objective formed by all
comparable pairs of Xi and Xj. The NLPL loss is defined as

LNLPL (β) = −
N∑
i=1

δi

Xi · β − log

∑
j∈Ri

exp
(
Xj · β

),
(4)

where Rj =
{
∀i, ti > tj

}
is a set of data case indices that are

still at risk at time tj. Even though the loss itself is convex,
it has no lower bound and causes ‖β‖ to be unnecessarily

large or difficult to obtain after optimization runs, especially
when the amount of data is less than that of parameters.
Therefore, the training often reduces the loss with norm-
based regularizations, such as Ridge, Lasso, or their varia-
tions and combinations [23], to avoid the degenerate solution
and to select suitable features for improving performance.

Regardless of regularization methods, β̂ is a β estimate
obtain from minimizing the loss. The loss prefers that the
score term Xi · β̂ should be higher than Xj · β̂ corresponding
to an event at the time later than ti. Minimizing the loss is
the attempt to make all pairwise comparisons of X · β̂ as
concordant with the risk ordering as possible. Specifically,
the goal is to make Xi · β̂ > Xj · β̂ if ti < tj when case j
is not censored. X · β̂ is often referred to as hazard score
or risk value and used instead of h(t,X ) for performance
evaluation. One performance measure of survival regression
is the concordance index [17] or C-Index. For CPH, the
measure can be calculated using X · β̂ as

C =
1
P

∑
i:δi=1

∑
j:tj>ti

I
[
Xi · β̂ > Xj · β̂

]
, (5)

whereP is the total number of comparable pairs in the dataset.
i : δi = 1 represents any index i belongs to the set where the
δi = 1 or not censored. j : tj > ti means any index j belongs to
the set where recorded time tj > ti. I is an indicator function.
The measure gauges the proportion of pairs with concordance
between the event times and hazard scores, (i.e., the higher
hazard score corresponds to the shorter event time within the
pair.) Notice that the predicted hazard score X ·β is subject to
uncertainty and error. C value closer to 1.0 means less error
such that the predicted score mostly following the expected
ordering.

B. DEEPSURV NETWORK
Deepsurv network uses a similar formulation for S(t) as the
CPH model. However, the approach replaces X · β with
the output from the deep neural network. Specifically, the
Deepsurv define the hazard score or risk score value as
g (I |θ, βnet) = f (I |θ )·βnet or Xnet ·βnet and the loss in Eq. (4)
become

LNLPL (θ, βnet)

=−

N∑
i=1

δi

g (Ii|θ, βnet)−log
∑
j∈Ri

exp
(
g
(
Ij|θ, βnet

))
=−

N∑
i=1

δi

f (Ii|θ) · βnet−log
∑
j∈Ri

exp
(
f
(
Ij|θ

)
· βnet

)
(6)

where θ is a parameter set for Deepsurv network until the
penultimate layer f (I |θ ), and βnet is the last layer’s parameter
of the network. Notice that the output f (I |θ ) is a feature vector
from the network. Its linear combination with βnet is the risk
score g (I |θ, βnet). From the perspective of deep representa-
tion learning, the network simultaneously digests a new set
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of covariates Xnet = f (I |θ ) and regression parameters βnet as
they are tuned in an end-to-end manner with a gradient-based
backpropagation. Adjusting f (I |θ ) as opposed to a manually
defined X gives flexibility in lowering NLPL.

Despite the network being relatively dated since its first
conception compared to other deep learning alternatives,
the major advantage of the approach is its ability to cope
with wide ranges of outcome value without increasing
network parameters while allowing flexibility of adjusting
the neural network architectures with modern mechanisms
(e.g., batch-normalization) to improve prediction perfor-
mance [27]. Moreover, network variations can be created by
changing to accommodate other forms of input data, such as
a convolutional neural network for images input [19], and
a recurrent neural network or similar mechanism for time-
dependent data [32]. With the benefits, Deepsurv remains
widely employed recently to make survival predictions under
small-sample medical and health-related contexts [28]–[31].

III. PROPOSED METHOD
We propose applying regularization to NLPL loss for the
Deepsurv network. The regularization is designed to induce
a correlation between features from the Deepsurv network
and the desired hazard value trend as well as to reduce the
probability of lower C-Index values caused by noise from the
network’s features. This section will first discuss the moti-
vation and the quality measure that reveals the drawback of
training the Deepsurv network under NLPL loss. Afterward,
details on the regularization as well as its theoretical support
are provided.

A. IMPROVING QUALITY MEASUREMENT OF DEEPSURV
FEATURE
Our regularization objective is to ensure that the Deepsurv
learns suitable feature distribution for Xnet = f (I |θ ) during
the optimization of pairwise concordance. Intuitively, a good
set of features lead to well-perform β estimation and a higher
C-Index. For the typical CPH model, poor feature quality is
the most likely cause of underperformance because optimiz-
ing β is simpler with the convex loss. For Deepsurv, however,
the loss function provides no explicit goal on improving the
feature. Consequently, it is unclear during training whether
Xnet , β, or the other aspects of the network architecture cause
poor performance in models with inferior C-index. To clarify
such questions, we seek to include the suitability of Xnet into
the objective function to ensure that the best β for Xnet is
easier to obtain, and efforts could be put elsewhere to improve
the performance.

Despite the Deepsurv network being a non-linear regres-
sion approach, the risk score output Xnet · βnet at the last
layer is linear in nature. For linear predictions in general, the
multiple-correlation coefficient R is a suitability measure for
the feature. However, the typical calculation of R requires
knowing the exact values of the target prediction variable,
which are not available in our case due to censoring. We pro-
pose an alternative measure3 as the substitute measure R for

the feature quality goal. 3 is defined as

3 =

√√√√Var
(
Xnet ·

⇀

βnet

)
Var (Xnet)

(7)

⇀

βnet is a directional unit vector calculated from normalizing
the βnet vector of parameters. Var is variance calculated
from random variables in the parenthesis. We further simplify
the calculation in Eq. (7) with principal component analysis
(PCA), resulting in the following

3 =

√√√√√∑p
i=1 λi

(
⇀

W i ·
⇀

βnet

)
+∑p

i=1 λi
(8)

where each
⇀

W i and λi are eigen vector of the principal com-
ponents (PCs) and its corresponding eigenvalue. The PCs are
the result of applying PCA to the interested data of which p
is the total number of dimensions.

⇀

W i is a directional unit
vector calculated from normalizing Wi. The numerator is
the summation of variance captured in the direction of

⇀

βnet
proportional to the directional similarity between the PCs
and βnet . The operator (_)+ is the element-wise absolute
value to prevent any negative cosine value. The measure is
bounded in the range of [0, 1]. According to Eq. (7), the 3
value close to 0 means the network captures only a minor
fraction of the total data variance for the prediction, which
could entail more noises and ungeneralizable data trends.
On the other hand, the value close to 1 implies utilizing
a significant part of the variance for the prediction. Even
though the fraction of variance does not directly lead to poor
C-index performance, it semantically hints at the magnitude
of feature information that supports

⇀

βnet and the efficiency of
the prediction.

The purpose of 3 is two-fold. The first purpose is
to establish that maximizing 3 increases the multiple-
correlation coefficient and decreases the discordance prob-
ability. We provide theoretical discussions on the derivation
of measure 3 in Section III-C. In brief summary, the theory
reveals that 3 ∝ bRc and 32

∝
1

dP(disc)e where bRc is
the lower bound on the multiple-correlation coefficient and
dP(disc)e is the upper bound on discordant pairs occurring
probability. These properties are the foundation of our loss
formulation. The second purpose is to gauge relative changes
in the relevant feature distribution across many regulariza-
tion strategies. Even though 3 is relative to a lower bound
measure and does not imply poor prediction quality, it is
calculated from distributional variance measures, directly
reflecting the feature distribution changes. It is surmisable
that different regularization strategies alter the network’s fea-
tures, although the effect is unclear and difficult to gauge
through C-index performance. Thus, we use 3 to observe
whether there is feature training emphasis among regular-
ization strategies and to inspect whether the feature change
improves C-index performances.
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B. PROJECTION LOSS REGULARIZATION
To increase 3, we propose the following regularization term
in addition to the NLPL loss

LNLPL_reg (θ, βnet)
= LNLPL (θ, βnet)

+wreg
1
N

N∑
i=1

{(
‖f (Ii|θ)‖2 · ‖βnet‖2

)2
−(f (Ii|θ)·βnet)2

}
(9)

where wreg is the weight of our proposed regularization term
and LNLPL (θ, βnet) is the NLPL loss in Eq. (6). The loss in
Eq. (9) is the primary objective function for our regularized
Deepsurv network. With geometrical consideration, the loss
is equivalent to the following rearrangement

LNLPLreg (θ, βnet)

= LNLPL (θ, βnet)

+wreg
1
N

N∑
i=1

{(
‖f (Ii|θ )‖2 · ‖βnet‖2

)2
·

(
1− cos2 α

)}
LNLPLreg (θ, βnet)

= LNLPL (θ, βnet)

+wreg
1
N

N∑
i=1

{(
‖f (Ii|θ )‖2 · ‖βnet‖2 · sin α

)2} (10)

where α is an angle formed by βnet and a features vector fi =
f (Ii|θ ). The ‖f (Ii|θ )‖2 · ‖βnet‖2 · sin α is the magnitude of an
fi component that is perpendicular to the βnet .
The regularization aims to simultaneously control

both the distribution of fi and the βnet . By decreasing(
‖f (Ii|θ)‖2 · ‖βnet‖2

)2 and increasing (f (Ii|θ) · βnet)2, the
loss reduces the perpendicular components, which has a
similar effect to geometrical projection and makes f (Ii|θ ) or
Xnet more distributed along the direction of βnet . The effect
is illustrated graphically in Fig 1. In other words, the regu-
larization reduces feature variance that does not contribute to

the hazard score and improves the Var
(
X ·

⇀

β
)
/Var (X) term

value on 3.
The proposed loss force of the Deepsurv network training

to filter out the irrelevant information from the input I , and
effectively predict with information in βnet and Xnet that mat-
ter to the hazard score. It is noteworthy that the loss does not
limit its applicability to only the typical Deepsurv network.
The proposed method applies to any network designs with
outputs with βnet and Xnet , especially network with variations
of f (Ii|θ ) explained in section II-B trained with NLPL. How-
ever, the proposed loss is not without a drawback. If the loss
value is reduced to 0, then that potentially makes ‖βnet‖ = 0
and renders the prediction useless. Thus, the strength of the
regularization wreg must not overwhelm the main objective
of minimizing LNLPL. The projection loss is proposed as a
complementary objective such that it means to be reduced but
not entirely minimized.

FIGURE 1. Geometric view of representation space. fi is the
penultimate-layer features f (Ii |θ) from the Deepsurv network. Projection
loss regularization prevents the diverging by anchoring the feature
toward linear βnet plain.

C. IMPROVE MULTIPLE-CORRELATION COEFFICENT AND
REDUCE DISCORDANCE FROM NOISE
This section establishes the theoretical foundation and deriva-
tion of the proposed method. Our development strategy
is to simply find the lower bound on the coefficient R
or measure R2 then seek to maximize them as the sec-
ondary learning objective for the Deepsurv network. How-
ever, we discover that maximizing the lower bound also
lowers the upper bound of the discordance pair occurrence
likelihood. In this section, we first state our assumptions
surrounding our investigations. Then we provide statements,
propositions, and theorems that we used to derive 3 and
the projection loss. Finally, we discuss the theorem on how
our method reduces the upper bound on the discordance
probability.

Consider a simplified survival regression problem in which
all survival outcomes are available. Without the censoring,
the simplified problem is to derive suitable hazard values
and regress for the prediction model. Reference [8] explored
the problem by deriving desired hazard value d and the
linear prediction model where d = log (H0 (t)) = X ·β∗ + e.
The formulation converts the problem into a least-square
estimation of β using X − d covariance. Notice that d can
be re-centered and re-scaled to eliminate the intercept and
derive a valid estimation of β∗. The evaluation with the

C-Index mostly concerns
⇀

β
∗

and the ordering of X ·β∗ such
that estimates of β∗ in different magnitudes result in the
same performance level. In survival prediction, it is com-
mon to assume that probability distributions of the outcome
and the censoring are independent. If the model can capture
the general trends and distribution of patient survival, the
model from uncensored data can still be used to predict the
censored cases. The relationship between the features and
survival outcome would then apply to the censored cases
as well.

We then made the following assumptions.

• First, we assume that
⇀

β
∗

≈

⇀

β̂ such that the NLPL
solution β̂ is a valid answer for the least-square β∗

formulations that capture the underlying patient survival
trend.

• Second, magnitudes of d and β∗ are small such
that Var (X) ≥ Var (d) ≥ ‖β∗‖2 where Var (X)
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is total variance in the features. This assumption is
in-line with many regularizations approach for survival
prediction [23] and regression in general, which try
to keep parameters small and simple for better gen-
eralization. It also implies that d can be rescaled
(e.g., z-normalization) such that Var (X) ≥ Var (d) even
if the variance is originally more significant than that of
input features.

• Third, the noise term in d ≈ X · β∗ + e is a zero-
mean error term independent of the covariates X . This
assumption is a general assumption of linear prediction,
implying that the prediction error is the primary source
of discordance.

With the assumptions, we state the following statements and
propositions.

Statement 1: β∗ = 6−1XX ·CXd where6
−1
XX is the inverse of

covariance matrix from covariates X , and CXd is a vector of
Cov (X , d).

Statement 2: Multiple correlation coefficient is the
square root of R2 = ρTXdP

−1
XXρXd where P−1XX is the

inverse of the Corr (X ,X) correlation matrix, and ρXd =
Corr (X , d) = CXd

σXσd
.

Statement 1 is the standard closed-form solution for the
least-square regression, which can be done when all the
desired values are known. In statistical literature, Statement 2
defines the calculation of R. We use these statements to posit
the following propositions.

Proposition 3: Given E [d] = 0, E [e] = 0, and
z-normalized X , the coefficient R2 = Var(XT ·d)

Var(XT ·d)+Var(e)
.

Proof: With z-normalization, we can consider all
elements of σX vector equal to 1 and 6−1XX = P−1XX .
R2 can then be rearranged according to the above
statements as

R2 =
[
CXd
σd

]T
6−1XX

[
CXd
σd

]
=

[
CT
Xd · β

∗

σ 2
d

]

=

(
E
[
XT · d

]
− E

[
XT
]
E [d]

)
·β∗

E
[
d2
]
− (E [d])2

(11)

Consider the following facts. E [d] = 0. Each element of
vector E [X ] is 0 due to the z-normalization. Also, the linear
formulation states that d = X · β∗ + e. Then,

R2 =
E
[
XT · (X · β∗ + e)

]
·β∗

E
[
(X · β∗ + e)2

]
=

E
[
(X · β∗)2

]
+ E [X · e] · β∗

E
[
(X · β∗)2

]
+ 2E [(X · β∗)]E [e]+ E

[
e2
] (12)

According to the third assumption, the noise term e
is independent of X . Thus, E [X · e] = E [X ]E [e]

and E [e] = 0. Then,

R2 =
E
[
(X · β∗)2

]
+ E [X ]E [e] · β∗

E
[
(X · β∗)2

]
+ 2E [(X · β∗)]E [e]+ E

[
e2
]

=

E
[
(X · β∗)2

]
E
[
(X · β∗)2

]
+ E

[
e2
] (13)

Given that E [X ] = 0 and E [e] = 0. Then,

R2 =
E
[
(X · β∗)2

]
−
(
E
[
(X · β∗)

])2
E
[
(X · β∗)2

]
− (E [(X · β∗)])2 + E

[
e2
]
− (E [e])2

R2 =
Var (X · β∗)

Var (X · β∗)+ Var (e)
(14)

Thus, the equality above proves the proposition. �
Proposition 4: Given zero-centered rescaled d such that

Var (X) ≥ Var (d), then Var(X )
Var(X ·β∗) ≥

Var(e)
Var(X ·β∗) + 1.

Proof: consider the formulation d = X ·β∗ + e. As d is
a random variable. The variance of d can be calculated as

Var (d) = Var
(
X ·β∗ + e

)
Var (d) = Var

(
X ·β∗

)
+ Var (e)+ 2Cov

(
X ·β∗, e

)
(15)

Consider Var (X) ≥ Var (d) and Cov (X ·β∗, e) = 0 from the
second and the third assumptions respectively. Then,

Var (d) = Var
(
X ·β∗

)
+ Var (e)

Var (X) ≥ Var
(
X ·β∗

)
+ Var (e)

Var (X)
Var (X ·β∗)

≥
Var (e)

Var (X ·β∗)
+ 1 (16)

Thus, the equality above proves the proposition. �
These statements and propositions give some clues on how

to grasp the value of R from the available data. The apparent
difficulty is d is not entirely available due to censoring.
Therefore, we derive a corollary to proposition 3 and the

theorem 6 to establish relationships between X,
⇀

β
∗

, and the
lower bound on R.

Corollary 5: Given E [d] = 0, E [e] = 0, and

z-normalized X , then R ≥ R2 ≥
E
[
(X ·β∗)

2
]

E
[
(‖X‖2‖β∗‖2)

2
]
+E[e2]

.

The corollary is merely a derivation from Eq. (13) with
Cauchy-Schwarz inequality in the denominator. Specifically,
the dot product (X · β∗)2 ≤ ‖X‖22 ‖β

∗‖
2
2. As R is bounded in

range [0,1], then R ≥ R2.

Theorem 6: Given z-normalizedX ,R ≥ ‖β∗‖2

√
Var(X ·

⇀
β
∗

)
Var(X )

Proof: Consider Eq. (14) in Proposition 3. The equation
can be re-arranged as

1
R2
=

Var (X · β∗)+ Var (e)
Var (X · β∗)

1
R2
= 1+

Var (e)
Var (X · β∗)

Var (e)
Var (X · β∗)

=
1
R2
− 1 (17)
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Plugging in the value in Eq. (17) into Eq. (16) in Proposi-
tion 4 leads to the following

Var (X)
Var (X ·β∗)

≥
1
R2
+ 1− 1

Var (X)
Var (X ·β∗)

≥
1
R2

R2 ≥
Var (X ·β∗)
Var (X)

(18)

Let
⇀

β
∗

be a unit vector representing the direction of β∗. Then,

R2 ≥
Var

(
X ·

⇀

β
∗

‖β∗‖2

)
Var (X)

R2 ≥
Var

(
X ·

⇀

β
∗)
‖β∗‖22

Var (X)

R ≥
∥∥β∗∥∥2

√√√√Var
(
X ·

⇀

β
∗)

Var (X)
(19)

Thus, the equality above proves the theorem. �
Both Corollary 5 and Theorem 6 give helpful information

about the lower bound of R related to X · β∗,in which we use
them to derive 3 and the projection loss. We substitute the

direction
⇀

β
∗

with
⇀

β̂ from the NLPL formulation due to the
first assumption. The Deepsurv formulation substitute X and
⇀

β
∗

withXnet and
⇀

βnet . Therefore, the fraction of variance term
can be substitute with3 defined in Eq. (7). Eq. (19) establish
the lower bound bRc that

bRc = c3

bRc ∝ 3 (20)

and vice versa,

3 ∝ bRc (21)

where c = ‖β∗‖2 is from by solving for β∗ using d or
its scaled version according to the second assumption. The
purpose of this relationship between bRc and 3 is not to
measure the exact value of bRc via 3 because ‖β∗‖2 is
unknown due to the d censoring. The property shows that
maximizing 3 is equivalent to maximizing the lower bound
bRc and encourages using 3 as the feature quality measure.

Corollary 5 offers a simpler way to increase bRc. It suggests

a simultaneous decrease in E
[(
‖X‖2 ‖β

∗‖2
)2] and increase

in E
[
(X · β∗)2

]
, which we use in the projection loss for-

mulation in Eq. (9). For the formulation, we substitute the
constant β∗ with βnet to control the variance direction and
magnitude of βnet at the same time. Technically, the proposed
regularization improves 3 by increasing Var

(
Xnet ·

⇀

βnet

)
and reduceVar (Xnet) that does not contribute to hazard score.
Because many parts of the derivation use z-normalization

to ensure the zero-mean property, the theorem encourages
using batch-normalization on the penultimate layer at the

minimum. Therefore, we include batch-normalization as a
crucial part of our network designs and training approach due
to this theoretical insight.

There are valuable interpretations on improving R and
R2 through the proposed projection loss. Achieving good
C-index performance with βnet at a higher value of R means
that the network finds concrete Xnet that correlated well with
the desire hazard score even if complete knowledge of the
exact score d is not available. The higher value of R2 means
the βnet trend line has smaller fraction of unexplained vari-
ance, which implies that the network efficiently filters out
the irrelevant information from the input I and effectively
predicts with information in Xnet that really matters.

The minimizing projection loss not only forces the Deep-
surv network to digest better information from the input I .
We discover that it also reduces the discordance rate caused
by noise and improves C-index performance. Consider that
the desired hazard score variable d = X ·β+ e is the variable
that strictly follows the ordering. In other words, the linear
model inherently establishes that the error or noise term e
causes the discordance of some X · β pair comparisons such
that X · β = d − e and d − e diverge from the ordering of d ,
which follows the third assumption.

We establish the following proposition and corollary to
proposition 4 to show the foundation of our upper bound on
discordance probability.

Proposition 7: Given β∗, and (Xi, Xj) which are two
samples of random variables X , then the upper bound

P
((
ei − ej

)2
≥
(
Xi · β∗ − Xj · β∗

)2)
≤

E
[
(ei−ej)

2
]

(Xi·β∗−Xj·β∗)
2 .

Proof: Consider a random variable1e =
(
ei − ej

)2.
From the definition, 1e is non-negative. Then, the Markov
inequality defines an upper-bound probability related to the
quantity of 1e as

P (1e ≥ k) ≤
E [1e]
k

(22)

where k is a non-negative constant. As values of β∗, Xi, and
Xj are given, let k =

(
Xi · β∗ − Xj · β∗

)2. Then,
P
(
1e ≥

(
Xi · β∗ − Xj · β∗

)2)
≤

E [1e](
Xi · β∗ − Xj · β∗

)2
P
((
ei − ej

)2
≥
(
Xi · β∗ − Xj · β∗

)2)
≤

E
[(
ei − ej

)2](
Xi · β∗ − Xj · β∗

)2
(23)

Thus, the derivation of Eq. (20) proves the proposition. �
Corollary 8: Given zero-centered rescaled d such that

Var (X) ≥ Var (d), then Var(e)
Var(X ·β∗) ≤

Var(X)
Var(X ·β∗) − 1.

The corollary is a rearrangement of Eq. (16) in proposi-
tion 4. The equation focuses on the upper bound of noise
variance.

The stated propositions and corollary provide information
about the error term. Specifically, proposition 7 provide a
probability bound of events that the error difference exceeds
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TABLE 1. Summary of datasets in experiments.

that of the hazard score. Corollary 8 suggests a worse-case
quantity of error variance relative to variance in input data
and the predicted score. Then, we derive the discordance
probability in the predicted score as in the following theorem.

Theorem 9: Given β∗ and z-normalized X , then
P (discordantinX ·β∗) ≤ Var(X)

‖β∗‖22Var
(
X ·
⇀
β
∗
) − 1.

Proof: Let Xi,Xj and ei, ej be two random samples of
features X and the error noise e, respectively. We define
discordance events caused by the noise term as events where
the ordering of d = X ·β∗+e differs from that of the predicted
score X ·β∗ for any two pair of samples i, j. In other words,
orders for d and X ·β∗ should be equivalent if the magnitude
of the error term does not change the results of any pairwise
comparison. Consider the formulation of discordance events
as the following joint cases.

# (discd) = #
((
sign

(
Xi·β∗ − Xj·β∗

)
6= sign

(
ei − ej

))
∧
(∣∣ei − ej∣∣ ≥ ∣∣Xi·β∗ − Xj·β∗∣∣)) (24)

where # (discd) is the number of discordant events. The
function sign (k) = 1 if k ≥ 0, and sign (k) = −1 other-
wise. From the above definition, discordant pair occurs when
pairwise the comparison of signs between Xi·β∗, Xj·β∗ pair is
not the same as that of ei, ej pair and the noise pair magnitude
difference is significant enough to interfere with the order.
Otherwise, the comparison of Xi·β∗+ ei and Xj·β∗+ ej is the
same as that of Xi·β∗ and Xj·β∗. Eq. (24) further establishes
that

P (discd) = P
(
sign

(
1X ·β∗

)
6= sign (1e) , |1e| ≥

∣∣1X ·β∗
∣∣)

P (discd) ≤ P(|1e| ≥
∣∣1X ·β∗

∣∣)
P (discd) ≤ P

(
(1e)

2
≥
(
1X ·β∗

)2) (25)

where 1X ·β∗ = Xi·β∗ − Xj·β∗, and 1e = ei − ej. The
probability of (1e)

2
≥
(
1X ·β∗

)2 is a P (discd) upper bound.
Using proposition 7, Eq. (23) can be elaborated as

P (discd) ≤
E
[(
ei − ej

)2](
Xi · β∗ − Xj · β∗

)2
(
Xi · β∗ − Xj · β∗

)2
≤

E
[(
ei − ej

)2]
P (discd)

(26)

We seek to gauge overall quantity for any pair comparison.
Thus, we apply expectation on both sides of the inequality

E
[(
Xi · β∗ − Xj · β∗

)2]
≤ E

E
[(
ei − ej

)2]
P (discd)

 (27)

As P (discd) is an intrinsic constant on the population, the
expectation operator does not change its value. Likewise,

E
[(
ei − ej

)2] is a constant. Then,
E
[(
Xi · β∗ − Xj · β∗

)2]
≤

E
[(
ei − ej

)2]
P (discd)
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P (discd) ≤
E
[(
ei − ej

)2]
E
[(
Xi · β∗ − Xj · β∗

)2]
≤

E
[
e2i + e

2
j − 2eiej

]
E
[
(Xi ·β∗)2 +

(
Xj ·β∗

)2
−2 (Xi ·β∗)

(
Xj ·β∗

)]
(28)

Consider that Xi,Xj and ei, ej are randomly sampled from
same variables X and e, respectively. Therefore, Xi,Xj and
ei, ej are independent and identically distributed (iid). With
zero-mean noise according to the third assumption and
z-normalization X centered at zero means, then E [e] =
E [ei] = E

[
ej
]
= 0, E

[
X · β∗

]
= E

[
Xi · β∗

]
=

E
[
Xj · β∗

]
= 0, E

[
eiej

]
= E [ei]E

[
ej
]
= 0, and

E
[
(Xi · β∗)

(
Xj · β∗

)]
= E

[
(Xi · β∗)

]
E
[(
Xj · β∗

)]
= 0.

With these facts, Eq. (28) can be simplified as

P (discd)

≤

E
[
e2i
]
+ E

[
e2j
]
− 2E [ei]E

[
ej
]

E
[
(Xi ·β∗)2

]
+E

[(
Xj ·β∗

)2]
+2E [(Xi ·β∗)]E

[
Xj ·β∗

]
P (discd) ≤

2E
[
e2
]

2E
[
(X · β∗)2

]
P (discd) ≤

E
[
e2
]
− (E [e])2

E
[
(X · β∗)2

]
− (E [X · β∗])2

P (discd) ≤
Var (e)

Var (X · β∗)
(29)

Consider the upper bound in Corollary 8, Eq. (29) can be
re-arranged as

P (discd) ≤
Var (X)

Var (X ·β∗)
− 1

P (discd) ≤
Var (X)

Var
(
X ·

⇀

β
∗

‖β∗‖2

) − 1

P (discd)≤
Var (X)

E
[(
X ·β∗ ‖β∗‖2

)2]
−
(
E
[
X · β∗ ‖β∗‖2

])2 − 1

P (discd) ≤
Var (X)

‖β∗‖22 Var
(
X ·

⇀

β
∗) − 1 (30)

Therefore, Eq. (30) prove the theorem. �
From theorem 2, we establish that the upper bound of the

discordance probability dP (discd)e is inversely proportional

to the fraction of the X ·
⇀

β
∗

variance and the total variance

in X . For the Deepsurv network, X is Xnet , and
⇀

β
∗

is substi-
tuted with

⇀

βnet according to the second assumption. Eq. (30)
establish the upper bound that

dP (discd)e = c
1
32 − 1

dP (discd)e ∝
1
32 (31)

and vice versa,

32
∝

1
dP (discd)e

(32)

where c = 1/ ‖β∗‖22.The relationship further expands the
merit of increasing 3 such that maximizing 32 is equiv-
alent to minimizing the upper bound of the probability of
discordance pair in the predicted score. The theorem reveals
that our proposed regularization improves C-index perfor-
mance by increasing 32, which we investigate further in our
experiments.

IV. EXPERIMENTS
Our investigations through the experiments aim to address
the following aspect under the medical context with limited
sample size.
• Impact of the regularization on C-index performance.
• Effect of the regularization on the Deepsurv’s feature.
• Performance of the regularized model relative to that of
the State-of-the-art.

A. DATASETS
Table 1 gives an overview of the survival datasets on the
number of features and censoring. Our experiments employed
five public datasets and four in-house developed datasets.
We use two criteria in selecting the current public datasets in
our experiments. First, the survival datasets should be related
to healthcare, have limited sample sizes, and are highly cen-
sored. In this study, we posit that each dataset should have less
than 8,000 cases, and more than 40% are censored. Second,
the selected datasets have been previously used to demon-
strate the performance of the included baselines (e.g., when
the included baselines were proposed). Intuitively, we ensure
fair comparisons such that all baselines are expected to per-
form well on some datasets.

In brief details, Wisconsin Breast Cancer prognosis (Wis-
consin) is a dataset for breast cancer diagnosis which analyzes
digital images of cells taken from breast lumps to time recur-
rence of cancer. Expert-defined features were extracted from
cellular nuclei images. Each record represents follow-up data
for a cancer case. The censored case is defined by no recur-
rence during the follow-up period. The Molecular Taxonomy
of Breast Cancer International Consortium (METABRIC) is
a breast cancer survival prediction dataset based on gene
expressions and clinical features. The target variable is the
number of months until observed death. Rotterdam and
German Breast Cancer Study Group (GBSG) dataset con-
tains records of node-positive breast cancer patients with
features related to effects from chemotherapy and hormone
treatments. The recorded survival times are in the number
of months. National Wilm’s Tumor Study (NWTCO) [2] is
a dataset to study the relationship between tumor histology
on embryonal kidney cancer and treatment outcome. The fea-
tures are clinical and histological variables. All the cases are
associated with the time-to-death or survival time of patients.
Patients who survived over the follow-up period are censored.
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FIGURE 2. Example visualization in MRI dataset with segmented ROI
defined by expert. Top: samples from the UW cohort patients. Bottom:
samples from the Munich cohort patients.

Assay of Serum Free Light chain (FLCHAIN) is a dataset for
studying the prevalence of the monoclonal gammopathy of
undetermined significance (MGUS), an immune disregula-
tion condition.We employ the same pre-processing as in [11].
Notably, the censored patients either survived or dropped out
of the study during follow-up. The extracted variables are
conditions related to the ailment. Wisconsin data is available
at the UCI repository. METABRIC, GBSG, NWTCO, and
FLCHAIN datasets are available either in the R Survival
package or Pycox package.

We developed Sarcoma datasets from magnetic resonance
imaging (MRI) scans of patients with sarcoma soft-tissue
cancer. Soft tissue sarcoma is a heterogeneous cancer with
severe outcomes for many patients. Pre-treatment contrast-
enhanced T1-weighted 3D MRI scans were acquired from
two independent cohorts of patients diagnosed with biopsy-
proven soft tissue Sarcoma (STS) from the University of
Washington (UW cohort) and the Technical University of
Munich (Munich cohort). The acquisition was done with
the institutional picture archiving and communication sys-
tem (PACS) standard using a similar image matrix and res-
olutions to [15]. Using the similar protocol to [15], the
selected patients had high-risk STS of various histologies
of the extremity, trunk, or retroperitoneum. In both cohorts
of Sarcoma datasets, radiologist and radiation oncologist
experts manually segmented the gross tumor as ROI at the
fixed resolution of 1mm3, which later resampled into the size
of 64×64×64 voxels. The segmentation and resamplingwere
completed using MIM software (version 6.6, MIM Software
Inc., Cleveland, OH) for the UWcohort and iPlan RT (version
4.1.2, Brainlab, Munich, Germany) for the Munich cohort.
Fig. 2 visualizes some samples in our datasets.

Sarcoma-Rad-UW and Sarcoma-Rad-Munich are
radiomics features derived from theMRI scans describing the
tumor’s textural appearances from each cohort. The relation-
ship of these empirical image features sets to patient survival,
pathologic response, and tumor grade has been described
previously [15], [16], [24], [25]. The features are extracted
using the PORTS software package and extraction protocol as
in [15]. Sarcoma-3DMRI-UW and Sarcoma-3DMRI-Munich

data are bounded MRI scans from each corresponding insti-
tute. The scans were normalized as in [3]. Sarcoma-3DMRI is
not in the typical feature vector format. There have beenmany
successful explorations in predicting severity and patient
risk directly from 3D cancer scans [3], [19], [26]. We use
these datasets to demonstrate our regularization applicable
on DeepConvSurv network [19] and to perform comparisons
with many other deep survival baselines for end-to-end pre-
diction.More details are provided in experiment Section IV-D
test scenario three.

B. EFFECT ON C-INDEX PERFORMANCE
The first experiment demonstrated effects on the Deep-
surv network C-Index performance given different weights
wreg settings on Wisconsin, METABRIC, GBSG, NWTCO,
and FLCHAIN datasets. In all datasets, all features were
z-normalized before the experiments except for binary fea-
tures. We randomly split each dataset into 60% training,
20% validation, and 20% testing. Our Deepsurv network
architecture was (#feature-128-64) network which consisted
of 2 hidden layers of size 128 and 64 nodes followed
by a 1-nodes hazard output. Each of the hidden layers
used Leaky-Rectified Linear unit (L-ReLU), defined as
max(0.01X ,X ), followed by batch-normalization. In prior
experiments, we tried multiple activation functions and des-
ignated L-ReLU for its performance. We set wreg as 1× 10m

where integer m ∈ [−5, 5]. All the results were compared
with no regularization and norm-based Ridge and Lasso
regularization on βnet with the same regularization weight
range. We set Adam optimizer with a 0.01 learning rate in
all trainings. The networks were trained under loss function in
equation (6) until no improvement on validation performance
after 10 patience epochs from the best validation round. The
experiments were repeated 1000 times with different ran-
dom data splits. The estimated C-index from the testing set
was averaged across all the repetitions. Then, the averaged
C-index estimates were used to compare the performances
of different regularization strategies. Notice that the splitting
and result measurement reflect the scenario where the train-
ing, validation, and testing set belong to the identical distri-
butions from well-explored datasets. We applied the same
network architecture and the grid search on regularization
weights of all the compared strategies.

Fig. 3 summarizes the results. Improvement in C-index per-
formance under our regularization method can be observed in
different magnitudes across the five datasets. In the smaller
Wisconsin, METABRIC, and GBSG datasets (<3000 cases),
all the regularization strategies with appropriate weight led
to better performance. For the larger datasets (approximately
4000-6000 cases), however, we observe that the norm-based
method performances were marginally worse than that of no
regularization, whereas our method was improved from the
no regularization baseline to a certain extent. It is also note-
worthy that the appropriate weight for our approach tends to
be more stable such that the peak C-Index performances were
from wreg values around [0.01, 1], whereas the suitable range
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FIGURE 3. C-Index performances on 5 datasets using different regularization strategies. From left to right: Wisconsin, Metabric, GBSG, NWTCO, and
FLCHAIN datasets, respectively. Square, triangle, and star markers denote entries from the proposed, Ridge, and Lasso strategies, respectively. The
dash lines represent performance from no regularization. The Horizontal axis represents value of wreg 1× 10m where integer m ∈ [−5,5]. The
vertical axis represents average C-Index value.

for other strategies varied depending on the dataset. Applying
too large wreg values can lead to poor performance worse
than that of no regularization. Nevertheless, the performance
trends show the potential of our proposed regularization on
improving the C-index.

C. EFFECT ON THE FEATURE DISTRIBUTION
The improved performance warranted deeper investigations
on the suitability between the learned feature and the hazard
direction, alongwith the effect of regularization on the feature
distribution. The second experiment repeated previous set-
tings with the highest performance from each regularization
strategy 1000 times in all datasets. In each run, 3 measures
were calculated to inspect whether there are increases from
any regularization strategies. The values were averaged and
then compared to observe the learned information from the
trained network in each setting. In addition to the measure,
testing X = f (I |θ ) and βnet of each strategy were extracted
from a data split with the highest C-Index. Then PCA dimen-
sional reduction was applied to reduce the dimension of Xnet
to 2 for visual comparison.

Table 2 presents average 3 and C-index measures. Due
to slight differences in C-index performances between some
strategies, 95% confidence interval halfwidths are provided
for all C-Index results. The unregularized Deepsurv resulted
in poor 3 and learned βnet such that a tiny fraction of the
variance contributed to the prediction. Even though low 3

does not necessarily result in a poor C-index, the network
could have done better optimization to digest input I for
relevant information. Otherwise, the network would predict
using less suitable βnet and more likely to capture noise
information. The results opened opportunity for the feature
control and selection.

Norm-based regularization had varying effects on 3 and
C-index performances. We observe increases in both 3 and
C-index performance onWisconsin,METABRIC, andGBSG
data. On the other hand, the norm-based strategies some-
what altered the 3 in NWTCO and FLCHAIN datasets,
which means the regularizations have some influence over
features distribution, not just the βnet parameter. However,
they offered no significant change on C-index, suggesting
failure to select well-perform features information on both
Xnet and βnet . Thus, norm-based strategies are less effective
for the Deepsurv network.

The proposed regularization remedies the problem by
allowing more control on the distribution of the learned
feature. Larger 3 values mean that the network learned to
encode more information from Xnet that the βnet line can
capture. Fig. 4 also elaborates our observations from Table 2.
The useful information that drives the prediction is the data
projected toward the βnet line, with less variation in the
other direction. Thus, network trainings with less effective
control cause more data to be distributed more perpendicular
to the line instead of the trend of increasing or decreas-
ing hazards. From this perspective, the proposed regular-
ization showed a more linearly oriented distribution toward
the hazard prediction. Better C-index performance across
all the datasets also supported the utility of our proposed
method.

D. PERFORMANCE COMPARISON WITH OTHER
STATE-OF-THE-ART APPROACHES
In the third experiment, we evaluate our proposed method
against other state-of-the-art approaches. The tests are under
3 increasingly difficult data scenarios relevant to the predic-
tion model development for medical prognosis and decision
making. We design experiments to inspect whether the pro-
posed method’s performance can generalize.

The first scenario is when expert-defined variables are
available, and distributions of training and testing datasets are
almost identical. This scenario is expected at the early-stage
model development to confirm that the prediction approach
holds sufficient predictive power under the available data.
The test is constructed to satisfy iid data environments such
that errors are mainly caused by prediction approaches rather
than the discrepancy between training and testing distri-
butions. We use well-established public datasets to further
ensure that tested models learn to predict only from the
relevant feature information. We employ 5 datasets from pre-
vious experiments with the same training/validation/testing
splits. For our proposed strategy, we tried various values of
wreg for each dataset among the [0.1, 1.0] interval. Then,
we select configurations with the best validation performance
and compare them with those of 6 deep learning and 4 non-
deep learning approaches. The deep learning baselines were
unregularized Deepsurv [9], Cox-time network [11], Survival
Net [3] with CPH model regression, NNet [6], PMF net-
work [10], and Deep Hit network [12]. All baselines used the

VOLUME 10, 2022 8015



P. Thammasorn et al.: Regularizing Deepsurv Network Using Projection Loss for Medical Risk Assessment

FIGURE 4. Scatterplots of the extracted feature X = f (I|θ) reduced with PCA to 2 dimensions. The horizontal and vertical axes are coordinate values
of first and second PCs respectively. The data markers are non-censored cases color-coded in heatmap style according to decreasing value of
non-censored event time. High-risk cases mark in red are data points closer to the minimum event time record. Low-risk cases marked in dark blue
are data points that occurred near the maximum of the record time. Red lines are projected βnet of each setting. From Left to Right: Wisconsin,
METABRIC, GBSG, NWTCO, and FLCHAIN datasets respectively. From Top to bottom: Proposed regularization, Ridge, Lasso, and no regularization
strategies.

TABLE 2. C-index performances comparison and the amount of the projected variance 3 contribute to the hazard prediction as the results of different
regularization strategies. 95% confidence interval halfwidths are provided to illustrate significant differences in performances.

same core network as in experiment 1 with different last lay-
ers and losses depends on their respective training strategies.
The non-deep learning baselines were a typical CPH model,
survival SVM with linear kernel [20], Survival Regression
Tree [21], and survival regression Forest [22]. For all base-
lines which require discretization of output time (NNet, PMF,
Deep Hit), we tried varying coarse discretization by doubly
increasing the grouping of survival time from 1 day, 2 days,
4 days, 8, days, and etc. After trials, we set the finest dis-
cretization defined as max(time) - min(time) + 1 because it
consistently outputted the best C-Index across many of the
discretization baselines.We designate the time data in the unit
of days forWisconsin, NWTCO, and FLCHAIN datasets, and
in the unit of months for METABRIC and GBSG datasets.

Intuitively, the fine-grain discretization assumed no prior
expert knowledge on time-to-event distribution such that
the discretization should not destroy comparability between
cases. Similar to the proposed strategy, all the deep learn-
ing baselines were repeatedly trained using Adam Optimizer
with the same learning rate and early stopping criteria. The
repeated evaluations compared average testing C-Index with
95% confidence interval (CI) under 1000 runs. Notice that
all networks had their number of parameters greater than the
number of data cases (�8000). The large numbers reflect
the usual scenario of limited data in survival analysis under
the medical setting.

The second scenario is when distributions of training
and testing sets are not necessarily identical. However, the
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features that encoded some expert knowledge are available.
Under practical circumstances, information learned from the
expert-provided features must be applicable for predicting
various new cases. This expectation is necessary and realis-
tic, especially when the survival model undergoes external
validation between different cohorts of patients (e.g., due to
differences in patient or tumor characteristics) from different
institutions. The test is designed to mimic the validation to
ensure that medical-decision making is based on generaliz-
able predictions. The proposed method and baselines were
trained and validated using Sarcoma-Rad-UW with random
80% training and 20% validation data split. Instead of the
same dataset, we tested the trained models on Sarcoma-
Rad-Munich data. The experiment repeated 1000 times with
different train-validate splits. All baselines from the first
scenario were also subject to this experiment with the same
architectural settings as in the first scenario. We then com-
pared C-Index performances with 95% CI on the testing set
across survival prediction models.

The third scenario is when training and testing data dis-
tributions are not identical, and expert-defined features are
unavailable. Unlike the second scenario, this scenario is more
difficult as there is no expert guidance on specific information
to capture from the raw data. The test is conducted to demon-
strate the proposed method’s applicability and to observe the
generalizability of various deep survival approaches under
non-typical input instead of the handcrafted feature vector.
The proposed method and baselines were trained and vali-
dated using the Sarcoma-3DMRI-UW dataset and tested on
the Sarcoma-3DMRI-Munich dataset. Similar to the second
scenario, the UW cohort cases were randomly split into 80%
train and 20% validate data. The experiment repeated 100
times with different train-validate splits. Due to no expert-
defined feature variables, non-deep learning baselines were
excluded for Sarcoma-3DMRI experiments. We used the
same deep learning baselines as the first and second sce-
narios with the core network replaced with a convolutional
neural network (CNN). CNN version of Deepsurv is also
called Deepconvsurv, which has been explored in [19]. The
CNN architecture setting was (img-conv16 conv32-conv64-
conv128-flatten-512-128) consisted of 4 convolution layers
with an increasing number of filters from 16-128 followed
by a feed-forward network with 2 hidden layers of size
512 and 128. All convolutional filters have a size of 3×3×3.
All convolutions and feed-forward layers used the L-ReLU
activations function and followed by batch normalization.
Random flipping augmentation was tried but later dropped
due to validity concerns and no significant improvement in all
baselines. All training used Adam optimizer with a learning
rate set to 0.0001. C-Index performances with 95% CI on the
testing set were compared.

Table 3 summarizes the result comparisons of the proposed
regularization with all the baselines. We observe that the
proposed method performed on par or better than state-of-
the-art methods and non-deep learning baselines in 4 out
of 5 datasets. The outperformance demonstrates that our

regularization applies well when data distributions are similar
across training, validation, and testing sets. It also shows
the utility of the proposed method that does not require
discretization of output time, which can be difficult to define
without expert knowledge. In larger GBSG NWTCO and
FLCHAIN datasets, inferior performances of NNet, PMF,
and Deep hit may be due to the simpler core network, unlike
bigger networks in their original works that greatly increase
the number of parameters in the networks. In a separate exper-
iment, we experienced increased performance using larger
networks with more time-consuming training. However, the
larger network performed poorly on the small Wisconsin
dataset. Interestingly, Deephit outperformed all other base-
lines in the METABRIC dataset despite being trained with
a relatively small amount of data and underperformances of
other discrete-time approaches. This discrepancy is a good
reminder that the approach is not a bad survival baseline
and should be considered in our following scenarios. Never-
theless, unregularized regression-based networks (Cox-time
and Deepsurv) mostly performed on par or better than many
discretization approaches at the current core network setting.
The underperformance demonstrates limitations of the dis-
cretization approach under the current network setting and
scenario.

Table 4 and Table 5 illustrate performances comparisons
using Sarcoma-Rad datasets, whose expert features guide the
predictionwhen training and testing datasets are not the same.
The proposed method outperformed both deep learning and
non-deep learning baselines, achieving the average C-Index
of 0.657. In this small dataset, NNet, PMF, and Survival Net
failed to outperformance many non-deep learning baselines,
suggesting that this approach could not learn generalizable
information for the prediction under such a data scenario.
DeepHit, Deepsurv, Cox-time, and the proposed networks
outperformed the non-deep learning baseline in this scenario.
Most of these well-perform networks are from the regression-
based approach.

Similar trends in performance also exist in experiments
with more difficult Sarcoma-3DMRI in which the training
and testing dataset may not have the same data distribution
and no expert variable to guide the prediction. In Table 6,
all the deep learning approaches had lower performances
without the expert information, especially DeepHit network
whose performance dropped the most from the previous sce-
nario. All the discrete-time baselines performed significantly
poorly compared to the regression-based networks. Despite
the weaker performance, the proposed method outperformed
the baselines with the average C-Index of 0.630.

Performance across all the scenarios show the utility of
our approach under small-data cross-cohort environments.
Even though it is arguable that improved performances under
the first scenario in Table 3 were marginal, the regulariza-
tion prevented significant performance drops due to data
changes in Table 5 and Table 6. The minor performance
decrease means that our regularized network was successful
in learning more generalizable predictions. The compatibility
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TABLE 3. C-index results comparison with states-of-the-art method in 5 datasets.

TABLE 4. Results comparison with non-deep learning survival prediction approaches in Sarcoma-Rad dataset.

TABLE 5. Projection loss regularized network comparison with states-of-the-art deep survival baselines in Sarcoma-Rad dataset.

TABLE 6. Projection loss regularized network comparison with states-of-the-art deep survival baselines in Sarcoma-3DMRI dataset.

between training data and network parameters sizes is the
primary factor in the failed generalization of unregularized
deep learning baselines. Unlike public datasets in previous
experiments, many real-world medical datasets such as our
Sarcoma datasets are small and highly censored, which is
detrimental to highly parameterized neural network training.
In such a scenario, it is more likely for larger discrete-
time networks to fail to generalize and capture proper infor-
mation for the cross-cohort prediction. On the other hand,
regression-based networks with fewer parameters outper-
formed the discretized alternatives, demonstrating the flexi-
bility and robustness of our regularization to generalize across
different data scenarios. It can be concluded that our reg-
ularized Deepsurv model further improves the regression-
based survival prediction performance, especially for small
datasets.

Nevertheless, this work focuses on C-index survival pre-
diction performance with one type of input and one outcome.
In real-world scenarios, there are needs for considering and
integrating multiple input types simultaneously into mak-
ing decisions, such as imaging scans to time-series signals.
Adapting the prediction network to these grand challenges is
the subject of our future work.

V. CONCLUSION
We successfully developed a novel regularization strategy
that theoretically upgrades features quality and practically
improves the robust performance of the Deepsurv network
for survival prediction. The experiment results demonstrate
the advantage of deep survival regression approaches over
discrete-time networks and the generalizability of our method
across datasets in medical applications. The success of our
work demonstrates that deep survival regression performance
can be further improved with applied insight from represen-
tation space instead of more parameterization and expansion
of deep neural network architectures.
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