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In this review, we discuss the calculation of the B⟶ P, V form factors within the framework of the light-cone sum rules with the
light-cone distribution amplitudes of the B-meson. A detailed introduction to the definition, scale evolution, and
phenomenological models of the B-meson distribution amplitudes is presented. We show two equivalent approaches of
calculating the next-to-leading order QCD corrections to the sum rules for the form factors, i.e., the method of regions and the
step-by-step matching in the soft-collinear effective theory. The power suppressed corrections to the B⟶ P, V form factors
especially the contributions from the higher-twist B-meson distribution amplitudes are displayed. We also present numerical
results of the form factors including both the QCD and the power corrections, and phenomenological applications of the
predicted form factors such as the determination of the CKM matrix element jVubj.

1. Introduction

The decays of Bq mesons (q = d, s) have been playing a cru-
cial role in the determination of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements as well as the understand-
ing of the QCD dynamics in the heavy-light meson system.
The heavy-to-light transition form factors are essential
ingredients in the semileptonic decays B⟶Mℓν (M stands
for vector (V) or pseudoscalar (P) meson), in the flavor-
changing-neutral-current (FCNC) processes B⟶Mℓ+ℓ−ð
ν�νÞ and B⟶ Vγ, and in the nonleptonic B-meson decays.
In the small recoil region, the heavy-to-light form factors
can be determined from the experiments or calculated by
the nonperturbative approach, among which the lattice
QCD simulation which is based on the first principle of
QCD is regarded to give the most reliable predictions. At
small hadronic recoil, the lattice QCD calculations of B
⟶ π, K , Bs ⟶ K form factors have been performed
[1–3] using the gauge-field ensembles with (2 + 1)-flavor lat-
tice configurations. In addition, the Flavor Lattice Average
Group (FLAG) has given the results of these form factors
with an extrapolation to the whole kinematic region from
the small hadronic recoil region of the light meson [4].

The unquenched lattice QCD calculations of B⟶ K∗ form
factors have been performed [5, 6] by employing the gauge-
field ensembles with an improved staggered quark action
from the MILC Collaboration [7].

Due to the limited computing capability, the lattice sim-
ulation cannot be applied to the large recoil region directly.
In the framework of the QCD factorization, the heavy-to-
light form factors at large recoil contain both the soft contri-
bution satisfying the large-recoil symmetry relations and the
hard spectator scattering effect violating the symmetry rela-
tions at leading power in Λ/mQ [8]. The soft-collinear effec-
tive theory (SCET) provides a more transparent insight on
the factorization property of heavy-to-light form factors by
integrating out the hard and hard-collinear fluctuations step
by step. Implementing the first-step matching procedure for
the QCD current �ψΓi Q will give rise to the so-called A0
-type and B1-type SCETI operators [9–11], both of which
can contribute to heavy-to-light form factors at leading
power in Λ/mQ. The matrix elements of the A0-type opera-
tor are nonfactorizable due to the emergence of endpoint
divergences in the convolution integrals of the jet functions
from the matching between SCETI and SCETII and the
light-cone distribution amplitudes (LCDAs). By contrast,
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the matrix elements of the B1-type SCETI operators can be
further factorized into convolutions of the jet functions
and the LCDAs [11]. Since the latter one is suppressed by
the strong coupling constant, the heavy-to-light form factors
are dominated by the soft form factor in the QCD factoriza-
tion. An alternative approach to compute the heavy-to-light
form factors is based upon the transverse-momentum-
dependent (TMD) factorization for hard processes, where
the on-shell Sudakov form factor [12] arises from the resum-
mation of large logarithmic terms that can effectively sup-
press the region with small transverse momentum [13]. In
the TMD factorization approach (also called the PQCD
approach), the endpoint singularity will be regularized by
the transverse momentum; then, the form factors are pertur-
bative calculable. The B⟶ π form factors within the
PQCD approach have been pushed to OðαsÞ for twist-2
[14, 15] and twist-3 [16] contributions of pion LCDAs.
However, the infrared subtractions beyond the leading order
in αs [17] are much more complex than that in the QCD fac-
torization and a complete understanding of the TMD factori-
zation for exclusive processes with large momentum transfer
has not been achieved to date on the conceptual side.

The lattice QCD simulation for the heavy-to-light form
factors is valid in the small recoil region; its predictions need
to be extrapolated to the whole kinematic region from the
small hadronic recoil of the light meson through special
models. The extrapolation-model dependence will produce
unavoidable uncertainties in the determination of observa-
tions, especially at large recoil. Therefore, to obtain the q2

(invariant mass of lepton pair in the semileptonic decays)
dependence of the form factors with high accuracy, it is
important to compute the form factors in the large hadronic
recoil region directly. The light-cone sum rule (LCSR)
approach, which is a combination of the SVZ sum rules with
the QCD theory of hard exclusive processes, provides an
appropriate method to evaluate the form factors at large
recoil. According to the correlation functions employed in
the calculation, two different frameworks of LCSR, i.e., LCSR
with the light-meson LCDAs [18–25] and LCSR with the B
-meson LCDAs (we will also call this the B-meson LCSR)
[26–29], have been established. The advantage of LCSR with
light-meson LCDAs is that it can be applied to a larger
region of the square of the momentum transfer and also
the LCDAs of the light meson are better determined than
that of the B-meson. Meanwhile, the B-meson LCSR has its
unique advantage that the input LCDAs are universal for
all the B⟶M form factors, and the theoretical uncertainty
can be sizeably reduced in the calculation of ratios of the
form factors. The LCSR for the SCETI matrix elements
entering the QCD factorization formulae of heavy-to-light
B-meson decay form factors, which is also called the SCET
improved sum rules, has been achieved [30, 31] employing
the vacuum-to-B-meson correlation functions. To improve
the accuracy of the B⟶ PðP = π, K ,DÞ form factors, the
next-to-leading order (NLO) corrections to the correlation
functions in the strong coupling αs have been performed in
[32–35], where the factorization formulae for the correlation
functions were established with the diagrammatic approach

and the strategy of regions [36, 37]. With a similar method,
the baryonic transition Λb ⟶Λ form factors have also
been investigated [38]. The B⟶ V form factors have also
been evaluated with the SCET improved sum rules, and
the NLO correction to the hard-collinear function is per-
formed [39]. Except for the QCD corrections, the power
suppressed contributions also play an important role in the
precise calculation of the heavy-to-light form factors. Since
it is a notoriously difficult task to perform a complete power
expansion on a physical amplitude, one has to deal with
some special kinds of power corrections with respect to the
leading power contribution so far. The power suppressed
contributions from the high-twist LCDAs of B-meson to
the B⟶ P and B⟶V form factors were calculated in
[35, 39, 40].

The fundamental nonperturbative inputs in the B-meson
LCSR are the LCDAs of the B-meson. Since they are nonper-
turbative in nature, the hard effect must be integrated out in
the definition of the LCDAs. Therefore, one has to employ
the effective bottom quark field in the heavy quark effective
theory (HQET) to construct the matrix elements of the non-
local operators [41]. As a soft objective, the B-meson LCDAs
do not have a definite twist in principle, while when entering
a process with large momentum transfer and thus only one
of the light-cone components of the momentum of the soft
light quark would be picked up, the twist of the B-meson
LCDAs makes sense. The scale dependence of the LCDAs
of the B-meson can be obtained by the renormalization
group (RG) equation approach, and the RG equation for
the leading-twist LCDA has been derived at two-loop level
[42, 43], and the one-loop level evolution equations for
higher-twist LCDAs are also known [44]. The evolution
behavior of the LCDAs can provide constraints on the
model of the LCDAs; in addition, it also plays an important
role in proving the factorization-scale independence of the
factorization formula.

The plan of this review is as follows. In Section 2, we will
discuss the LCDAs of the B-meson, including the definition,
the evolution behavior, and the phenomenological models of
the leading-twist and higher-twist LCDAs. In Sections 3 and
4, we will introduce the LCSR with B-meson LCDAs,
emphasizing the two equivalent methods to evaluate the
QCD corrections to the correlation functions, i.e., the
method of regions and the matching between the SCETI
and SCETII. In Section 5, we will discuss the power sup-
pressed contributions to the heavy-to-light form factors with
LCSR, concentrating on the contributions from high-twist B
-meson LCDAs. In Section 6, we will present some numeri-
cal results of the form factors and the phenomenological
applications. We summarize in the last section.

2. The Light-Cone Distribution Amplitudes of
the B-Meson

2.1. Definition of the Leading-Twist B-Meson LCDAs. The B
-meson LCDAs are among the most important ingredients
of the QCD factorization formula for exclusive B decays.
Before talking about the heavy-to-light form factors, we
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would like to introduce the LCDAs of the B-meson. The
two-particle LCDAs of the B-meson in the HQET can be
obtained from the coordinate-space matrix elements [41]:

0 �qβ xð Þ x, 0½ �hαv 0ð Þ
��� ����B vð Þ

D E
= −

i~f B μð ÞmB

4
1 + υ
2

2Φ+ t, x2
À Á

+
Φ− t, x2
À Á

−Φ+ t, x2
À Á

t
x

� �� �αβ
,

ð1Þ

where t = v · x. The LCDAs Φ±ðt, x2Þ can be expanded
around x2 = 0. In the limit x2 ⟶ 0, we assume t⟶ z = n
· x/2; then, the B-meson LCDAs in the momentum space
are defined through the Fourier transformation:

ϕ± ωð Þ =
ð
dz
2π

eiωz Φ± zð Þ,

Φ± zð Þ ≡Φ± z, 0ð Þ:
ð2Þ

For convenience, we introduce two light-like vectors n
and �n satisfying n · �n = 2, n2 = �n2 = 0. Any four-vector kμ

can be expressed as kμ = n · k �nμ/2 + �n · k nμ/2 + kμ⊥.
When the LCDAs of the B-meson are applied in the cal-

culation of B-meson decay processes, the momentum space
projector is usually required. To obtain the projector, we
adopt the reference frame satisfying v = ðn + �nÞ/2 and
assume �n · x≪ x⊥ ≪ n · x, thus x ≃ z�n + x⊥, then

Φ+ t, x2
À Á

+
Φ− t, x2
À Á

−Φ+ t, x2
À Á

t
x ≃Φ+ zð Þn +Φ− zð Þ�n

+
Φ− zð Þ −Φ+ zð Þ

z
x⊥:

ð3Þ

After the Fourier transform, the projector of B-meson
LCDAs is obtained as [8]

with k is the momentum of the antilight quark in the B
-meson.

The LCDAs Φ± defined above do not contribute at the
same power in the QCD factorizations of the heavy hadron
decay processes, since they do not have the same collinear
twist (in the following, we call “twist” for short). The twist
t and conformal spin j of the light quark and gluon fields
are given by the usual expressions [45]:

t = d − s,

j =
1
2

d + sð Þ,
ð5Þ

where d is the canonical dimension and s is the spin projec-
tion on the light cone. The twist and conformal spin are
closely related to the collinear subgroup of the conformal
group. The collinear subgroup of the conformal group is
locally equivalent to the SLð2, RÞ group. The subgroup con-
tains four generators, namely, P+,M−+,D, and K−, where P+
and M−+ are the projections of the generator of the Poincare
group pμ,Mνμ on the light cone, D is the generator of dilata-
tion, and K− is the generator of the special conformal trans-
formation along the light cone [45]. Specifically, if we write
the light-like vector x = αn, then the dilatation indicates the
transform α⟶ α′ = λα, and for the special conformal
transformation,

α⟶ α′ = aα + b
cα + d

,

ad − bc = 1:
ð6Þ

The four generators of the collinear subgroup of the con-
formal group can be rearranged to form the algebra of SLð
2, RÞ, i.e.,

J+ = J1 + iJ2 = −iP+,

J− = J1 − iJ2 =
i
2

� �
K−,

J0 =
i
2

� �
D +M∓ð Þ,

E =
i
2

� �
D−M−+ð Þ,

ð7Þ

with

J0, J∓½ � = ∓J∓,

J−, J+½ � = −2J0:
ð8Þ

For the quantized field ΦðαÞ, we have

J+,Φ αð Þ½ � = −∂αΦ αð Þ,
J−,Φ αð Þ½ � = α2∂α + 2jα

À Á
Φ αð Þ,

J0,Φ αð Þ½ � = α∂α + jð ÞΦ αð Þ,

E,Φ αð Þ½ � = 1
2

ℓ − sð ÞΦ αð Þ:

ð9Þ

For a spinor field Ψ, the projectors Ψ+ = ðn�n/4ÞΨ and
Ψ− = ð�nn/4ÞΨ have definite twist, namely, t½Ψ±� = ±1. In an

MB ωð Þ = −
i~f B μð ÞmB

4
1 + v
2

ϕ+ ωð Þn + ϕ− ωð Þ�n −
ðω
0
dη ϕ− ηð Þ − ϕ+ ηð Þ½ �γμ⊥

∂
∂kμ⊥

� �� �
γ5, ð4Þ
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appropriate reference frame, Ψ± only have two nonzero
components; thus, it is more convenient to define these fields
with two-component spinors. Any light-like vector can be
represented by a product of two spinors. One can write

nα _α = nμσ
μ
α _α = λα�λ _α,

�nα _α = �nμσ
μ
α _α = μα�μ _α,

ð10Þ

where for the auxiliary λ and μ spinors, �λ = λ†, �μ = μ† which
satisfy ðλ μÞ = λαμα = 2, ð�μ �λÞ = �μ _α

�λ
_α = 2. The “+” and “–”

fields are defined as

χ+ = λ
αψα,

�ψ+ = �λ
_α
ψ _α,

f ++ = λ
αλβ f αβ,

f ± = λ
αμβ f αβ,

�f ++ = �λ
_α�λ

_β�f _α _β,

ð11Þ

etc. The Dirac (antiquark) spinors

q =
ψα

�χ
_β

 !
,

�q = χβ, �ψ _α

� � ð12Þ

are written in terms of the following two component fields:

λμð Þχα = μαχ+ − λαχ−,
�μ�λ
À Á

�ψ _α = �μ _α�ψ+ − �λ _α�ψ−:
ð13Þ

The large component of the heavy quark field in the
HQET satisfies vhv = hv ; then,

h+ = −�h−,

h− = �h+:
ð14Þ

The gluon strength tensor Fμν can be decomposed as

Fαβ, _α _β = σ
μ
α _ασ

ν
β _β
Fμν = 2 ϵ _α _β f αβ − ϵαβ�f _α _β

� �
,

i~Fαβ, _α _β = σ
μ
α _ασ

ν
β _β
i~Fμν = 2 ϵ _α _β f αβ + ϵαβ�f _α _β

� �
:

ð15Þ

Here, f αβ and �f _α _β are chiral and antichiral symmetric

tensors, f ∗ = �f , which belong to ð1, 0Þ and ð0, 1Þ representa-
tions of the Lorentz group, respectively. It is easy to see that
the twist of the field ψ+ and χ+ is 1, the twist of ψ− and χ− is
2, and we assign the twist of h± to be 1. Employing the rele-
vant operators with definite twist in spinor notation, one

obtains

~f B μð ÞmBΦ+ zð Þ = i 0 �ψ+ zð Þh+ 0ð Þ − χ+ zð Þ�h+ 0ð Þ�� ���B vð Þ
 �
,

~f B μð ÞmBΦ− zð Þ = i 0 �ψ− zð Þh− 0ð Þ − χ− zð Þ�h− 0ð Þ�� ���B vð Þ
 �
:

ð16Þ

2.2. Evolution of the Leading-Twist B-Meson LCDA. At lead-
ing power, only ϕ+ðωÞ is relevant in the factorization for-
mula of various B-meson decay processes, and the RG
equation of ϕ+ðωÞ up to the leading-logarithmic (LL) accu-
racy is the well-known Lange-Neubert (LN) equation [42],
which reads

d
d ln μ

ϕ+ ω, μð Þ = −
ð∞
0
dω′Γ+ ω, ω′, μ

� �
ϕ+ ω′, μ
� �

, ð17Þ

where μ is the renormalization scale. The anomalous dimen-
sions are

Γ+ ω, ω′, μ
� �

= Γcusp ln
μ

ω
+ γ+

� �
δ ω − ω′
� �

+ ωΓcuspΓ ω, ω′
� �

,

Γ 0ð Þ
cusp = 4CF ,

Γ 1ð Þ
cusp = 4CF

67
3

− π2 −
10
9

nf

� �
,

γ
0ð Þ
+ = −2CF ,

Γ ω, ω′
� �

= −
θ ω′ − ω
� �

ω′ ω′ − ω
� � +

θ ω − ω′
� �
ω ω − ω′
� �

24 35
+

,

ð∞
0
dy f x, yð Þ½ �+g yð Þ =

ð∞
0
dy f x, yð Þ g yð Þ − g xð Þ½ �,

ð18Þ

where the anomalous dimensions are expanded in the same
way as

γ+ = 〠
n=0
γ

nð Þ
+ an+1, with a =

αs
4π

: ð19Þ

Since the evolution equation of the leading-twist B
-meson LCDA is the integrodifferential equation, it is diffi-
cult to obtain the solution directly. A commonly used
method is to simplify the evolution equation by an integral
transformation. There exist several kinds of integral trans-
formations which are helpful to work out the solution of
the evolution equation. It was found that the evolution ker-
nel is diagonalized when it is transformed into the so-called
“dual” space [46]. The leading-twist LCDA in the dual space
can be obtained by

ρ+ ω′, μ
� �

=
ð∞
0

dω
ω

ffiffiffiffiffi
ω

ω′

r
J1 2

ffiffiffiffiffi
ω

ω′

r� �
ϕ+ ω, μð Þ, ð20Þ
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which satisfies an ordinary differential equation:

d
d ln μ

ρ+ ω′, μ
� �

= − Γcusp ln
μ

e−2γEω′
+ γ+

� �
ρ+ ω′, μ
� �

:

ð21Þ

The evolution equation can also be calculated in the
position space, where it takes the form [47]

d
d ln μ

Φ+ z, μð Þ = − Γcusp ln iz~μð Þ + ~γ+
Â Ã

Φ+ z, μð Þ

− Γcusp

ð1
0
du

�u
u
Φ+ z, μð Þ −Φ+ �uz, μð Þ½ �,

ð22Þ

where ~μ = μeγE , �u = 1 − u, and ~γð0Þ+ = 2CF . This equation can
be related to the LN equation by a Fourier transform. Per-
forming the Mellin transformation to the evolution equation
in the position space [47, 48]:

φ+ j, μð Þ = 1
2πi

ð−i∞
−i0

dz
z

iz~μð Þ−jΦ+ z, μð Þ, ð23Þ

the evolution equation can also be diagonalized and easily
solved. The different kinds of integral transform mentioned
above are equivalent, and the LCDAs ϕ+ðωÞ, Φ+ðzÞ, φ+ðjÞ,
and ρ+ðω′Þ are different expressions of an identical objec-
tive. Because the momentum space and the position space
are related through a standard Fourier transformation, we

are able to derive

φ+ j, μð Þ = Γ −jð Þ
2πi

ð∞
0
dω

ω

~μ

� �j

ϕ+ ω, μð Þ,

φ+ j, μð Þ = ~μ

2πi
Γ 2 + jð Þ

ð∞
0

dω′
ω′

ρ+ ω′, μ
� � ~μ

ω′

� �−1−j
:

ð24Þ

At the one-loop level, the most convenient method is to
work in the dual space since the Bessel function is the eigen-
function of the LN kernel, which is confirmed in [49, 50].
The LN kernel can be expressed as a logarithm of the gener-
ator of special conformal transformations along the light
cone. When the eigenfunction of the generator is trans-
formed to the momentum space, it is simply the Bessel func-
tion in (20).

The two-loop level anomalous dimension of the B
-meson LCDA was first calculated in the coordinate space
in [43]

d
d ln μ

Φ+ z, μð Þ = − Γcusp ln iz~μð Þ + ~γ+
Â Ã

Φ+ z, μð Þ

− Γcusp

ð1
0
du

�u
u
1 + ah uð Þ½ � Φ+ z, μð Þ −Φ+ �uz, μð Þ½ �,

ð25Þ

where

This equation has also been transformed into the
momentum space in [51], resulting in the two-loop level
LN equation (17) with the integral kernel modified as

Γ+ ω, ω′, μ
� �

= Γcusp ln
μ

ω
+ γ+

� �
δ ω − ω′
� �

+ ωΓcusp Γ ω, ω′
� �

+ bγ+ ω, ω′
� �

:
ð27Þ

The anomalous dimensions up to two loops are

γ+ = ~γ+ − Γcusp 1 − a β0 1 −
π2

6

� �
− CF 3 −

π2

6

� �� �� �
,

bγ+ ω, ω′
� �

= −a 4CF

ωθ ω′ − ω
� �

ω′ ω′ − ω
� � h

ω

ω′

� �
:

ð28Þ

~γ
1ð Þ
+ = CF 4CF 2 + π2 − 6 ζ3

À Á
+
662
9

−
35
6
π2 − 18 ζ3 − nf

80
27

−
1
9
π2

� �� �
,

Γ 2ð Þ
cusp = CF 1470 −

536π2

3
+
44π4

5
+ 264ζ3 + nf −

1276
9

+
80π2

9
−
208
3
ζ3

� �
−
16
27

n2f

� �
,

h uð Þ = ln �u 11 −
2
3
nf + 2CF ln �u −

1 + �u
�u

ln u −
3
2

� �� �
:

ð26Þ
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The advantage of solving the evolution equation at the
two-loop level in the dual space does not hold since the
two-loop evolution kernel is not diagonal in this space. On
the contrary, the elegant form of the RG equation in the
Mellin space is maintained:

d
d ln μ

+V+ j, αsð Þ
� �

φ+ j, μð Þ = 0, ð29Þ

with

V+ j, αsð Þ = j − ~γ+ + Γcusp ψ j + 2ð Þ − ψ 2ð Þ + ϑ jð Þ½ �, ð30Þ

where

The solution in the Mellin space is then obtained
directly [48]

φ+ j μð Þ, αs μð Þ, μð Þ = φ+ j μ0ð Þ, αs μ0ð Þ, μ0ð Þ exp

Á −
ðμ
μ0

ds
s
V+ j sð Þ, αs sð Þ½ �

( )
:
ð32Þ

In a recent paper [52], an alternative approach to solv-
ing the evolution equation at two-loop level was proposed.
The essential idea of this approach is to perform a Laplace
transformation to the B-meson LCDA:

eϕ+ η, μð Þ =
ð∞
0

dω
ω

ω

�ω

� �−η
ϕ+ ω, μð Þ, ð33Þ

where �ω is a fixed reference scale, which can be used to
eliminate the logarithmic moment σ1 in the factorization
formula of B⟶ γℓ�νℓ. We note that the LCDA φ+ðjÞ is
related to eϕ+ðηÞ through [53]

φ+ j, μð Þ = Γ −jð Þ
2πi

eγEμ
�ω

eγEμ

� �j+1eϕ+ −j − 1, μð Þ: ð34Þ

Then, one could derive the RG equation for eϕ+ and
solve the evolution equation directly [52, 53].

2.3. Higher-Twist B-Meson LCDAs. Power corrections to the
B-meson decay processes are of great importance, and
higher-twist B-meson LCDAs provide one kind of impor-
tant power suppressed contributions. The LCDA ϕ−
defined in the previous subsection is of twist-3, and it is

suppressed due to different components of the quark field
in the definition of LCDAs. Besides, the additional gluon
or quark fields will also give rise to higher-twist LCDAs.
Compared with two-particle LCDAs, the three-particle
quark-gluon LCDAs are more numerous. There exist eight
independent Lorentz structures [54], and they can be
defined as

0 �q �nz1ð Þ �nz1, �nz2½ �gGμν �nz2ð Þ �nz2, 0½ �Γhv 0ð Þ�� ���B vð Þ
 �
==

1
2
~f B μð ÞmBTr γ5ΓP+ vμγν − vνγμ

� �
ΨA −ΨV½ �

hn
− iσμνΨV − �nμvν − �nνvμ

À Á
XA + �nμγν − �nνγμ

� �
W + YA½ �

− iϵμναβ�n
αvβγ5~XA + iϵμναβ�n

αγβγ5~YA − �nμvν − �nνvμ
À Á

�nW

+ �nμγν − �nνγμ
� �

�n Z
i
g z1, z2 ; μð Þ,

ð35Þ

where the totally antisymmetric tensor ε0123 = 1, the covar-
iant derivative is defined as Dμ = ∂μ − igAμ, and the dual

gluon strength tensor is ~Gμν = ð1/2ÞϵμναβGαβ. The momen-
tum space distributions are defined through Fourier trans-
formations:

ΨA z1, z2ð Þ =
ð∞
0
dω1

ð∞
0
dω2 e

−iω1z1−iω2z2 ψA ω1, ω2ð Þ, ð36Þ

and similarly for the other functions. The LCDAs defined
above do not have definite twist. In order to construct the
LCDAs with definite twist, one can take advantage of the

ϑ jð Þ = a β0 − 3CFð Þ ψ′ j + 2ð Þ − ψ′ 2ð Þ
� �

+ 2CF
1

j + 1ð Þ3 + ψ′ j + 2ð Þ ψ j + 2ð Þ − ψ 1ð Þð Þ + ψ′ j + 1ð Þ ψ j + 1ð Þ − ψ 1ð Þð Þ − π2

6

 !( )
:

ð31Þ
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two-component spinors as follows:

2~f B μð ÞmBΦ3 z1, z2 ; μð Þ
= − 0 χ+ z1ð Þ�f ++ z2ð Þh+ 0ð Þ+�ψ+ z1ð Þf ++ z2ð Þ�h+ 0ð Þ�� ���B vð Þ
 �

,

2~f B μð ÞmBΦ4 z1, z2 ; μð Þ
= 0 χ− z1ð Þf ++ z2ð Þh− 0ð Þ+�ψ− z1ð Þ�f ++ z2ð Þ�h− 0ð Þ�� ���B vð Þ
 �

,

~f B μð ÞmB Ψ4 + ~Ψ4

h i
z1, z2 ; μð Þ

= − 0 χ+ z1ð Þf +− z2ð Þh− 0ð Þ+�ψ+ z1ð Þ�f +− z2ð Þ�h− 0ð Þ�� ���B vð Þ
 �
,

~f B μð ÞmB Ψ4 − ~Ψ4

h i
z1, z2 ; μð Þ

= − 0 χ+ z1ð Þ�f +− z2ð Þh− 0ð Þ+�ψ+ z1ð Þf +− z2ð Þ�h− 0ð Þ�� ���B vð Þ
 �
,

2~f B μð ÞmBΦ5 z1, z2 ; μð Þ
= 0 χ+ z1ð Þf −− z2ð Þh+ 0ð Þ+�ψ+ z1ð Þ�f −− z2ð Þ�h+ 0ð Þ�� ���B vð Þ
 �

,

~f B μð ÞmB Ψ5 + ~Ψ5

h i
z1, z2 ; μð Þ

= 0 χ− z1ð Þf +− z2ð Þh+ 0ð Þ+�ψ− z1ð Þ�f +− z2ð Þ�h+ 0ð Þ�� ���B vð Þ
 �
,

~f B μð ÞmB Ψ5 − ~Ψ5

h i
z1, z2 ; μð Þ

= 0 χ− z1ð Þ�f +− z2ð Þh+ 0ð Þ+�ψ− z1ð Þf +− z2ð Þ�h+ 0ð Þ�� ���B vð Þ
 �
,

2~f B μð ÞmBΦ6 z1, z2 ; μð Þ
= 0 χ− z1ð Þ�f −− z2ð Þh− 0ð Þ+�ψ− z1ð Þf −− z2ð Þ�h− 0ð Þ�� ���B vð Þ
 �

,
ð37Þ

where f αβ and �f _α _β are chiral and antichiral symmetric ten-

sors, and the twist of their light-cone components satisfies:
t½ f ++� = t½�f ++� = 1, t½ f +−� = t½�f +−� = 2, and t½ f −−� = t½�f −−� =
3. This eight invariant function is related to the B-meson
higher-twist LCDAs:

Φ3 =ΨA −ΨV ,

Φ4 =ΨA +ΨV ,

Ψ4 =ΨA + XV ,
~Ψ4 =ΦA − ~XA,

Ψ5 = −ΨA + XA − 2YA,

Φ5 =ΨA +ΨV + 2YA − 2~YA + 2W,
~Ψ5 = −ΨV − ~XA + 2~YA,

Φ6 =ΨA −ΨV + 2YA + 2~YA + 2W − 4Z:

ð38Þ

Except for the higher Fock state, the higher twist also
arises from the nonvanishing parton transverse momenta
(or virtuality). The twist-4 and twist-5 two-particle B

-meson LCDAs can be defined as

0 �q xð ÞΓ x, 0½ �hv 0ð Þj j�B vð Þ
 �
= −

i
2
~f B μð ÞmBTr γ5ΓP+½ �

ð∞
0
dωe−iω vxð Þ ϕ+ ωð Þ + x2g+ ωð Þ

È É
+

i
4
~f B μð ÞmBTr γ5ΓP+ x½ � 1

vx

Â
ð∞
0
dωe−iω vxð Þ ϕ+ − ϕ−½ � ωð Þ + x2 g+ − g−½ � ωð ÞÈ É

,

ð39Þ

where we have to assume jx2j≪ 1/Λ2
QCD; thus, (39) can be

understood as a light-cone expansion to the tree-level
accuracy. This definition contains the constraintsð∞

0
dω ϕ+ ωð Þ − ϕ− ωð Þ½ � = 0,

ð∞
0
dω g+ ωð Þ − g− ωð Þ½ � = 0: ð40Þ

From QCD equation of motion (EOM), one can derive
the following relations among the LCDAs [55] (the last
two relations in (41a) follow from the expressions given
in [55] by simple algebra).

z
d
dz

+ 1
� �

Φ− zð Þ =Φ+ zð Þ + 2z2
ð1
0
uduΦ3 z, uzð Þ,

2z2G+ zð Þ = − z
d
dz

−
1
2
+ iz�Λ

� �
Φ+ zð Þ − 1

2
Φ− zð Þ

− z2
ð1
0
�uduΨ4 z, uzð Þ ≡ 2z2Ĝ+ zð Þ − z2

ð1
0
�uduΨ4 z, uzð Þ,

2z2G− zð Þ = − z
d
dz

−
1
2
+ iz�Λ

� �
Φ− zð Þ − 1

2
Φ+ zð Þ

− z2
ð1
0
�uduΨ5 z, uzð Þ ≡ 2z2Ĝ− zð Þ − z2

ð1
0
�uduΨ5 z, uzð Þ,

Φ− zð Þ = z
d
dz

+ 1 + 2iz �Λ
� �

Φ+ zð Þ + 2z2
ð1
0
du uΦ4 z, uzð Þ +Ψ4 z, uzð Þ½ �,

ð41aÞ

where

G± z, μð Þ =
ð∞
0
dω e−iωzg± ω, μð Þ,

�Λ =mB −mb:

ð42Þ

With the above relations, one can calculate the LCDAs G±
with the leading-twist and three-particle higher-twist LCDAs.

2.4. The Phenomenological Models. Different from the
LCDAs of light mesons, which can be expanded in terms of
Gagenbauer polynomials and the corresponding Gagenbauer
moments can be calculated by Lattice or QCD sum rules since
they are determined by the matrix elements of local operators,
the LCDAs of the B meson are more difficult to be modeled.
The evolution of the B-meson can provide some model-
independent constraints to the behavior of the leading-twist
LCDA of the B-meson. In the large ω region, the operator

7Advances in High Energy Physics
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product expansion (OPE) can be employed to explore the
model-independent properties of the LCDA. The method is
to calculate the first several moments of the distribution
amplitude, derive its asymptotic behavior, and study its prop-
erties under RG evolution; then, the constraints on the LCDAs
can be found. The result indicates that at large ω, the LCDA
falls off faster than 1/ω. In the low ω region, the behavior of
the LCDA cannot be constrained by the perturbative QCD
and only can be modeled with a nonperturbative method. In
practice, the B-meson LCDA is usually applied to the decay
processes of the B meson; therefore, the spectator is regarded
as a soft quark, and low ω region behavior is more important.
Hereafter, we introduce some commonly used models.

The asymptotic behavior of the LCDAs at the small
quark and glue momenta is relative to the conformal spins
of the quark and gluon field:

ϕ ω1, ω2ð Þ ~ ω2j1−1
1 ω

2j2−1
2 , ϕ ∈ ϕ3, ϕ4, ψ4 ⋯f g: ð43Þ

This relation can be obtained from the correlation func-
tion of the light-ray operators and suitable local current [56].
Several models for the two-particle and three-particle LCDAs
to the twist-four accuracy have been given with a more general
ansatz in [57], such as the exponential model, the free parton
model, and the local duality model. Similarly, we can obtain
all the LCDA models in accord with the correct low-
momentum behavior [56] and EOM constrains (tree level):

ϕ+ ωð Þ = ωf ωð Þ,

ϕ− ωð Þ =
ð∞
ω

dρf ρð Þ + 1
6
ϰ λ2E − λ

2
H

À Á
Á ω2 f ′ ωð Þ + 4ωf ωð Þ − 2

ð∞
ω

dρf ρð Þ
� �

,

g− ωð Þ =
1
4

ð∞
ω

dx x − ωð Þ ϕ+ ωð Þ − ϕ− ωð Þ½ � − 2 �Λ − x
À Á

ϕ− ωð Þ

−
1
2

ðω
0
dω1

ð∞
ω−ω1

dω2
1
ω2

1 −
ω − ω1
ω2

� �
ψ5 ω1, ω2ð Þ,

ϕ3 ω1, ω2ð Þ = −
1
2
ϰ λ2E − λ

2
H

À Á
ω1ω

2
2 f ′ ω1 + ω2ð Þ,

ϕ4 ω1, ω2ð Þ = 1
2
ϰ λ2E + λ

2
H

À Á
ω2
2 f ω1 + ω2ð Þ,

ψ4 ω1, ω2ð Þ = ϰλ2Eω1ω2 f ω1 + ω2ð Þ,

ϕ5 ω1, ω2ð Þ = ϰ λ2E + λ
2
H

À Á
ω1

ð∞
ω1+ω2

dωf ωð Þ,

ψ5 ω1, ω2ð Þ = ϰλ2Eω2

ð∞
ω1+ω2

dωf ωð Þ,

~ψ5 ω1, ω2ð Þ = ϰλ2Hω2

ð∞
ω1+ω2

dωf ωð Þ,

ϕ6 ω1, ω2ð Þ = ϰ λ2E − λ
2
H

À Áð∞
ω1+ω2

dω
ð∞
ω

dω′ f ω′
� �

,

ð44Þ

where the normalization constant

ϰ−1 = 1
2

ð∞
0
ω3 f ωð Þdω: ð45Þ

It is clear that this model is in agreement with the local
duality model and the exponential model in [35]. The param-
eters λE and λH in HQET are defined as the hadronic matrix
element for both the light and the heavy quarks with EOM
constraints:

0 �qgsGμνΓhv
�� ���B vð Þ
 �
= −

~f BmB

6
Tr

1 + v
2

iσμνλ
2
H + vμγν − vνγμ

� �
λ2H − λ2E
À Áh i

γ5Γ

� �
:

ð46Þ

The renormalization scale dependence of λE and λH can
be obtained by solving the RG equation at the one-loop order:

λ2E μð Þ
λ2H μð Þ

 !
= V̂ αs μð Þ

αs μ0ð Þ
� �γ 0ð Þ

i / 2β0ð Þ
" #

diag

V∧−1 λ2E μ0ð Þ
λ2H μ0ð Þ

 !
:

ð47Þ

Here, we employ the three-parameter model of ϕ+ðω, μ0Þ
= ωf3pðω, μ0Þ where

f3p ω, μ0ð Þ = Γ βð Þ
Γ αð Þ

1
ω2
0
e−ω/ω0U β − α, 3 − α,

ω

ω0

� �
: ð48Þ

The three parameters α, β, and ω0 determine the model of
B-meson LCDAs at the initial scale μ = 1:0GeV. The values of
the logarithmic moments λB, bσ1, and bσ2 are needed, which
are defined as [57]

bσn μð Þ =
ð∞
0
dω

λB
ω

lnn
λBe

−γE

ω
ϕ+ ω, μð Þ, ð49Þ

where λB is defined by bσ0 = 1. In the terms of the three param-
eters ω0, α, andβ, we obtain with a short calculation

λB = α − 1β − 1ω0,

bσ1 = ψ β − 1ð Þ − ψ α − 1ð Þ + ln
α − 1
β − 1

� �
,

bσ2 = π26 + ψ β − 1ð Þ − ψ α − 1ð Þ + ln
α − 1
β − 1

� �� �2
− ψ′ β − 1ð Þ − ψ′ α − 1ð Þ
h i

:

ð50Þ

3. LCSR with B-Meson LCDAs

The LCSR with B-meson LCDAs is widely employed to cal-
culate the heavy-to-light form factors which receive the well-
known end-point divergence in the QCD factorization.
Starting from the QCD two-point correlation functions at
the Euclidean space, the B-meson LCSR can avoid the end-

8 Advances in High Energy Physics
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point divergence with the help of the dispersion relation, the
Borel transformation, and the quark-hadron duality. The
heavy-to-light form factors can also be calculated with the
SCET improved LCSR. In the following, we will calculate
the B⟶ P form factors and the B⟶V form factors with
the B-meson LCSR and the SCET improved LCSR,
respectively.

3.1. The Heavy-to-Light Form Factors. The form factors for
the B-meson decays into a pseudoscalar meson are defined
by the matrix elements of the weak transition current sand-
wiched between the B-meson and a pseudoscalar meson
states, i.e.,

P pð Þ �q γμbj j�B pBð Þ

 �

= f +B⟶P q2
À Á

pμB + pμ −
m2

B −m2
P

q2
qμ

� �
+ f 0B⟶P q2

À Á m2
B −m2

P

q2
qμ,

P pð Þ �qσμνqνbj j�B pBð Þ

 �

=
if TB⟶P q2

À Á
mB +mP

q2 pμB + pμ
À Á

− m2
B −m2

P

À Á
qμ

Â Ã
,

ð51Þ

where mB and mP are, respectively, the masses of the B
meson and the pseudoscalar meson and the momentum
transfer q = pB − p. The relevant form factors for B decays
into vector mesons are defined as

V p, ε∗ð Þ �qγμbj j�B pBð Þ

 �

=
2iV q2
À Á

mB +mV
ϵμνρσε∗ν pρpB,σ,

V p, ε∗ð Þ �qγμγ5bj j�B pBð Þ

 �

= 2mVA0 q2
À Á ε∗ · q

q2
qμ

+ mB +mVð ÞA1 q2
À Á

ε∗μ −
ε∗ · q
q2

qμ
� �

− A2 q2
À Á ε∗ · q

mB +mV
pμB + pμ −

m2
B −m2

V

q2
qμ

� �
,

V p, ε∗ð Þ ∣ �qσμνqνb ∣ �B pBð Þ

 �

= 2T1 q2
À Á

εμνρσε∗ν pB,ρpσ,

V p, ε∗ð Þ ∣ �qσμνγ5qνb ∣ �B pBð Þ

 �

= −ið ÞT2 q2
À Á

m2
B −m2

V

À Á
ε∗μ − ε∗ · qð Þ pμB + pμ

À ÁÂ Ã
+ −ið ÞT3 q2

À Á
ε∗ · qð Þ qμ −

q2

m2
B −m2

V

pμB + pμ
À Á� �

,

ð52Þ

where mV (ε) is the mass (polarisation vector) of the vector
meson and we use the sign convention ε0123 = 1. At maximal
hadronic recoil q2 = 0, there exist three relations for the

above-mentioned B⟶M form factors in QCD:

f +B⟶P 0ð Þ = f 0B⟶P 0ð Þ,
mB +mV

2mV
A1 0ð Þ − mB −mV

2mV
A2 0ð Þ = A0 0ð Þ,

T1 0ð Þ = T2 0ð Þ,

ð53Þ

which are free of both radiative and power corrections.

3.2. The B⟶ P Form Factors with LCSR. In this subsection,
we intend to obtain the light-cone sum rules for the B⟶ P
form factors at the leading power in 1/mb and leading order
in αs. In order to obtain the light-cone sum rules for B⟶ P
form factors, we use the following vacuum-to-B-meson cor-
relation function:

Πμ n · p, �n · pð Þ =
ð
d4x eip·x 0 T �d xð Þnγ5 q xð Þ, �q 0ð ÞΓμ b 0ð ÞÈ É�� ���B pBð Þ


 �
=

Π n · p, �n · pð Þ nμ + ~Π n · p, �n · pð Þ�nμ, Γμ = γμ,

ΠT n · p, �n · pð Þ �n · q nμ − n · q �nμ
Â Ã

, Γμ = σμνqν,

8<:
ð54Þ

where the Lorentz structure Γμ stands for the two different
b⟶ q weak currents in QCD. In the center-of-mass frame,
the B-meson momentum pB = p + q =mBv, where p and q
stand for the momentum of the light-meson and the weak
current. At large recoil n · p ~mb, we work with p2 < 0 in
order that the correlation function can be calculated pertur-
batively. We take �n standing for the direction of p and use
the following power counting with the representation of q
~ ðn · q, �n · q, q⊥Þ:

pB ~mb 1, 1, 1ð Þ, p ~mb 1, λ2, λ
À Á

, k ~mb λ
2, λ2, λ2

À Á
,
ð55Þ

where the power counting parameter λ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛQCD/mb

p
, k is

the momentum of the light-quark in the B meson, and mb
is the b-quark mass. For the interpolation current, we
employ �dðxÞ nγ5 qðxÞ so that we can obtain the leading
power contribution to the form factors directly.

To guarantee the validity of the light-cone OPE, one
must prove the light-cone dominance of the correlation
functions. In the correlation functions, we have assumed
that the four-momentum p is spacelike, p2 < 0, and suffi-
ciently large: P2 = −p2 ≫Λ2

QCD; in addition, the ratio ξ =
2p · k/P2 ~Oð1Þ; then, x2 ~ 1/P2 must be satisfied under
the condition that the exponent eipx does not oscillate
strongly. This leads to a constraint on region of the q2

which is accessible to OPE on the light-cone in the B

9Advances in High Energy Physics
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⟶ P transitions

0 ≤ q2 <m2
b −

mbP
2

ΛQCD
: ð56Þ

The light-cone dominance of the correlation function
allows one to contract the q and �q fields and use the
free-quark propagator SqðxÞ = −ih0 ∣ qðxÞ�qð0Þ ∣ 0i as a
leading-order approximation. Then, the correlation func-
tion can be written by

Πμ n · p, �n · pð Þ =
ð
d4xeip·x nγ5Sq xð ÞΓμ

Â Ã
αβ

0 �d xð Þαhv 0ð Þβ
��� ����B vð Þ

D E
,

ð57Þ

where the heavy quark field has been expanded using
HQET and only the large component has been kept. If
one expands the bilocal operator �dðxÞαhvð0Þβ in the small
x region, an infinite series of matrix elements of local
operators are required for the vacuum-B-meson amplitude.
Instead, one has to retain the matrix element of the non-
local operator, which introduces the LCDAs of the B
-meson. The detailed discussion on the B-meson LCDAs
has been done in the previous section.

We will use the calculation of the form factors f +B⟶P and
f 0B⟶P as an illustration of the LCSR approach. With Γμ = γμ,
the correlation function is then expressed in terms of the
convolution of the hard scattering kernel and the LCDAs
of the B meson, and at tree level, the result reads

~Π n · p, �n · pð Þ = ~f B μð ÞmB

ð∞
0
dω

ϕ− ωð Þ
ω − �n · p − i 0

,

Π n · p, �n · pð Þ = 0:
ð58Þ

In order to arrive at the sum rules, one has to express this
result in terms of the dispersion integral with respect to �n · p:

~ΠQCD n · p, �n · pð Þ =
ð∞
0

dω′
ω′ − �n · p

Imω′ ~Π n · p, ω′
� �

, ð59Þ

and Πðn · p, ω′Þ should also be expressed in the dispersion
form. The relative hadronic representation of the vacuum-
to-B-meson correlation function and the decay constant of
the pseudoscalar meson are given by

Πhad
μ PB, pð Þ =

0 �dnγ5q
�� ��P pð Þ
 �

P pð Þ �qγμb
��� ����B pBð Þ

D E
m2

P − p2
+ continuum

=
f PmB

2 m2
P/n · p − �n · p

À Á �nμ
n · p
mB

f +B⟶P q2
À Á

+ f 0B⟶P q2
À Á� ��

+ nμ
mB

n · p −mB

n · p
mB

f +B⟶P q2
À Á

− f 0B⟶P q2
À Á� ��

ð60Þ

+
ð∞
ωP
s

dω′
ω′ − �n · p − i0

ρhadn n · p, ω′
� �

nμ + ρhad�n n · p, ω′
� �

�nμ
h i

,

ð61Þ

where we have used the definitions of the form factors (51)
and the light-meson decay constant

0 �dnγ5q
�� ��P pð Þ
 �

= in · pf P: ð62Þ

The parameter ωP
s = sP0 /n · p ~ λ

2 corresponds to the
hadronic threshold of the light-meson channel. Taking
advantage of the parton-hadron duality assumption, one
can relate the result from the parton level calculation to
the parametrization in the hadronic level:

ð∞
ωP
s

dω′
ω′ − �n · p

ρhad�n n · p, ω′
� �

=
ð∞
ωP
s

dω′
ω′ − �n · p

Imω′
~Π n · p, ω′
� �

:

ð63Þ

A similar relation also holds for ρhadn ðn · p, ω′Þ and Πðn
· p, ω′Þ. Then, we should perform the Borel transformation
with respect to the variable �n · p to both the hadronic and
partonic representation of the correlation [58]:

ΠB ωMð Þ ≡ BωM
Π �n · pð Þ = lim

−�n·p,r⟶∞

−�n·p/r=ωM −�n · pð Þr+1
r!

d
d�n · p

� �r

Π �n · pð Þ:

ð64Þ

With the above procedures, one can obtain the sum rules
for the form factors

f +B⟶P q2
À Á

=
~f B μð ÞmB

f P n · p
exp m2

Pn · pω
P
M

Â ÃðωP
s

0
dω′e−ω′/ωP

M ϕ− ω′
� �

,

f 0B⟶P q2
À Á

=
n · p
mB

f +B⟶P q2
À Á

,

ð65Þ

where the Borel mass ωP
M =M2

P/n · p ~ λ
2. At tree level as

well as leading power, the scalar correlation functions Πð
q2Þ vanishes, which exhibits the large recoil symmetry of
the form factors. The tensor form factor can also be calcu-
lated in the same method by using the correlation function
with Γμ = σμνqν.

3.3. The B⟶V Form Factors with SCET Improved LCSR.
In this subsection, we will calculate the B⟶V form fac-
tors with the SCET improved LCSR. First, we match QCD
onto SCET where the heavy-to-light form factors are given

10 Advances in High Energy Physics
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by [9, 11, 59]

�qΓi bð Þ 0ð Þ =
ð
dŝ〠

j

~C
A0ð Þ
ij ŝð ÞO A0ð Þ

j s ; 0ð Þ

+
ð
dŝ〠

j

~C
A1ð Þ
ijμ ŝð ÞO A1ð Þμ

j s ; 0ð Þ

+
ð
dŝ1

ð
dŝ2〠

j

~C
B1ð Þ
ijμ ŝ1, ŝ2ð ÞO B1ð Þμ

j s1, s2 ; 0ð Þ+⋯:

ð66Þ

The hard matching coefficients for both the A0-type
and B1-type SCET currents have been computed at one-
loop accuracy [60–62]. The seven QCD B⟶ V form fac-
tors are expressed in terms of the four “effective” form
factors in SCET at leading power in the heavy quark
expansion [63]:

V p, ε∗ð Þ �ξWc

� �
γ5hv

��� ����B vð Þ
D E

= −n · p ε∗ · vð Þξ∥ n · pð Þ,

V p, ε∗ð Þ �ξWc

� �
γ5γμ⊥hv

��� ����B vð Þ
D E

= −n · p ε∗μ − ε
∗ · v�nμ

� �
ξ⊥ n · pð Þ,

V p, ε∗ð Þ �ξWc

� �
γ5 W†

c iDc⊥Wc

À Á
rnð Þhv

��� ����B vð Þ
D E

= −n · pmbε
∗ · v
ð1
0
dτeiτ n·p rΞ∥ τ, n · pð Þ,

V p, ε∗ð Þ �ξWc

� �
γ5γμ⊥ W†

c iDc⊥Wc

À Á
rnð Þhv

��� ����B vð Þ
D E

= −n · pmb ε∗μ − ε
∗ · v�nμ

� �ð1
0
dτeiτn·prΞ⊥ τ, n · pð Þ,

ð67Þ

where the light-cone Wilson line is introduced to restore
the collinear gauge invariance [11, 64]:

Wc xð Þ = P exp igs

ð0
−∞

ds n · Ac x + s nð Þ
� �

: ð68Þ

The relation between the QCD form factors and the
SCET form factors are [63]

f iB⟶V n · pð Þ = C A0ð Þ
i n · pð Þξa n · pð Þ

+
ð
dτC B1ð Þ

i τ, n · pð ÞΞa τ, n · pð Þ,  a = ∥,⊥ð Þ,

ð69Þ

where

mB

mB +mV
V n · pð Þ = C A0ð Þ

V
n · p
mb

, μ
� �

ξ⊥ n · pð Þ

+
ð1
0
dτC B1ð Þ

V
n · p τ
mb

,
n · pτ
mb

, μ
� �

Ξ⊥ τ, n · pð Þ,

2mV

n · p
A0 n · pð Þ = C A0ð Þ

f0

n · p
mb

, μ
� �

ξ∥ n · pð Þ

+
ð1
0
dτC B1ð Þ

f0

n · p�τ
mb

,
n · pτ
mb

, μ
� �

Ξ∥ τ, n · pð Þ,

mB +mV

n · p
A1 n · pð Þ = C A0ð Þ

V
n · p
mb

, μ
� �

ξ⊥ n · pð Þ

+
ð1
0
dτC B1ð Þ

V
n · p�τ
mb

,
n · pτ
mb

, μ
� �

Ξ⊥ τ, n · pð Þ,

mB +mV

n · p
A1 n · pð Þ − mB −mV

mB
A2 n · pð Þ

= C A0ð Þ
f +

n · p
mb

, μ
� �

ξ∥ n · pð Þ

+
ð1
0
dτC B1ð Þ

f +

n · p�τ
mb

,
n · pτ
mb

, μ
� �

Ξ∥ τ, n · pð Þ,

T1 n · pð Þ = C A0ð Þ
T1

n · p
mb

, μ
� �

ξ⊥ n · pð Þ

+
ð1
0
dτC B1ð Þ

T1

n · p �τ
mb

,
n · p τ
mb

, μ
� �

Ξ⊥ τ, n · pð Þ,

mB

n · p
T2 n · pð Þ = C A0ð Þ

T1

n · p
mb

, μ
� �

ξ⊥ n · pð Þ

+
ð1
0
dτC B1ð Þ

T1

n · p �τ
mb

,
n · p τ
mb

, μ
� �

Ξ⊥ τ, n · pð Þ,

mB

n · p
T2 n · pð Þ − T3 n · pð Þ = C A0ð Þ

f T

n · p
mb

, μ
� �

ξ∥ n · pð Þ

+
ð1
0
dτC B1ð Þ

f T

n · p �τ
mb

,
n · p τ
mb

, μ
� �

Ξ∥ τ, n · pð Þ:

ð70Þ

The coefficient functions CðA0Þij and CðB1Þijμ are obtained
from the Fourier transformations of the position-space

coefficient functions ~C
ðA0Þ
ij and ~C

ðB1Þ
ijμ [11]. It is evident that

only five independent combinations of A0- and B1-type
SCET operators appear in the factorization formulae for
the seven different B⟶V form factors, implying the
two additional relations [8, 65]:

mB

mB +mV
V n · pð Þ = mB +mV

n · p
A1 n · pð Þ,

T1 n · pð Þ = mB

n · p
T2 n · pð Þ,

ð71Þ

which are fulfilled to all orders in perturbative expansion
at leading power in Λ/mb.

With the relations between the form factors at hand, we
only need to calculate the SCET form factors ξi and Ξi. We
will use the calculation of the SCET form factor ξ∥ðn · pÞ as
an example to illustrate the application of SCET improved

11Advances in High Energy Physics
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LCSR. In the SCET sum rules, the correlation function is
constructed with fields in the SCET. We start with the the
vacuum-to-B-meson correlation function:

Πν,∥ p, qð Þ =
ð
d4x eip·x 0 T jν xð Þ, �ξWc

� �
0ð Þγ5 hv 0ð Þ

n o��� ����B vð Þ
D E

,

ð72Þ

where the local QCD current jν interpolates current for
the longitudinal polarization state of the collinear vector
meson [10]:

jν xð Þ = �q′ xð Þγνq xð Þ = j 0ð Þξξ,ν + j 1ð Þξξ,⊥ν + j 2ð Þξqs ,∥ν + j 2ð Þξqs ,⊥ν+⋯, ð73Þ

where the explicit expressions of the effective currents are
given by

j 0ð Þξξ,ν = �ξ
n
2
ξ�nν,

j 1ð Þξξ,⊥ν = �ξγν⊥
1

in ·Dc
iDc⊥

n
2
ξ + �ξiDc⊥

1
in ·Dc

γν⊥
n
2
ξ,

j 2ð Þξqs ,∥ν =
�ξWc

n
2
Y†
s qs + �qsYs

n
2
W†

cξ
� �

�nν,

j 2ð Þξqs ,⊥ν =
�ξWcγ⊥νY

†
s qs + �qsYsγ⊥νW

†
cξ,

ð74Þ

where the collinear Wilson line defined in (68) and the
following soft Wilson line

Ys xð Þ = P exp igs

ð0
−∞

ds �n ·As x + s�nð Þ
� �

, ð75Þ

is introduced to keep the current gauge invariance. It is
then straightforward to write down the leading-power con-
tribution to the correlation function at tree level:

Πν,∥ p, qð Þ =
~f B μð ÞmB

2

ð∞
0
dω

1
�n · p − ω + i0

ϕ− ω, μð Þ�nν ð76Þ

Now, we apply the standard method of sum rules and
match the spectral representation of the factorization for-
mula (76) with the corresponding hadronic dispersion
relation:

Πhad
ν,∥ p, qð Þ = −

f V ,∥ mV

m2
V /n · p − �n · p − i0

n · p2mVð Þ2 ξ∥ n · pð Þ
�
+
ð∞
ωV
s

dω′
ω′ − �n · p − i0

ρhad∥ n · p, ω′
� �#

�nν,

ð77Þ

to obtain the SCET form factor ξ∥ðn · pÞ

ξ∥ n · pð Þ = 2
~f B μð Þ
f V ,∥

mB mV

n · pð Þ2
ðωV

s

0
dω′ exp −

n · pω′ −m2
V

n · pωV
M

" #
ϕ− ω′, μ
� �

:

ð78Þ

The scale-independent longitudinal decay constant of
the vector meson is defined as follows:

cV V p, ε∗ð Þ ∣ jν ∣ 0h i = −i f V ,∥ mV ε
∗
ν pð Þ: ð79Þ

The other SCET form factors ξi and Ξi can be calcu-
lated with the same procedure from different SCET corre-
lation functions (72).

4. QCD Corrections to the BÀ!M Form Factors

In this section, we will show the calculation of the QCD cor-
rections to the B⟶M form factors. First, we calculate the
NLO correction to the B⟶ P form factors with traditional
LCSR with B-meson LCDAs. Then, we provide the NLO
computation of the B⟶V form factors with SCET
improved LCSR.

4.1. The B⟶ P Form Factors with B-Meson LCSR. The
objective of this section is to establish the factorization for-
mulae for Πμðn · p, �n · pÞ in (54) at the one-loop level. In
the previous section, we have seen that the correlation func-
tion can be factorized into the hard scattering part and the
LCDAs of the Bmeson. Since the B-meson LCDA is nonper-
turbative, what we need is to find the QCD correction to the
hard scattering part. The correlator Πμ,b�d with free partonic
states can be expanded as

Πμ,b�d =Π 0ð Þ
μ +Π 1ð Þ

μ +⋯ =Φb�q ⊗ T =Φ 0ð Þ
b�q ⊗ T 0ð Þ

+ Φ
0ð Þ
b�q ⊗ T 1ð Þ +Φ 1ð Þ

b�q ⊗ T 0ð Þ
h i

+⋯,
ð80Þ

where ⊗ denotes the convolution in the variable ω′, and
Tð1Þ is the one-loop level hard scattering kernel; it is then
determined by the matching condition:

Φ
0ð Þ
b�q ⊗ T 1ð Þ =Π 1ð Þ

μ −Φ 1ð Þ
b�q ⊗ T 0ð Þ, ð81Þ

where the second term serves as the infrared (soft) subtraction.
We will demonstrate that the soft divergence will be
completely absorbed into the B-meson LCDA and that there
is no leading contribution to the correlation function from
the collinear region (with the momentum scaling lμ ~ ð1, λ4,
λ2Þ), which confirms the factorization at one-loop level. As a
result, the hard-scattering kernel T can be contributed only
from hard and/or hard-collinear regions at leading power in
Λ/mb. We will evaluate the master formula of Tð1Þ in (81) dia-
gram by diagram. There exist two typical perturbative scales,
namely, the hard scale mb and the hard-collinear scaleffiffiffiffiffiffiffiffiffiffi

mbΛ
p

; therefore, the hard scattering part can be further fac-
torized into the hard function and the jet function. It is more
convenient to apply the method of regions [36] to compute
the loop integrals in order to obtain the hard coefficient func-
tion (C) and the jet function (J) simultaneously. C and J must
be well defined in dimensional regularization. This guarantees
that we can adopt dimensional regularization to evaluate the
leading-power contributions of Πμ,b�q without introducing an

12 Advances in High Energy Physics
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additional “analytical” regulator. In the following, we will cal-
culate the contribution in Figure 1(a) in detail and present the
final results for the other diagram directly.

4.1.1. Weak Vertex Diagram. The contribution to Πð1Þμ
from the QCD correction to the weak vertex (Figure 1
(a)) is

where D = 4 − 2 ε. For the following scalar integral:

I1 =
ð
d l½ � 1

p − k + lð Þ2 + i0
Â Ã

mbv + lð Þ2 −m2
b + i0

Â Ã
l2 + i0
Â Ã ,

ð83Þ

the power counting of I1 is I1 ~ λ
0 for the three leading

regions (the hard, hard-collinear, and soft regions); thus,
only the leading-power contributions of the numerator in

(82) need to be kept for a given region. We define the inte-
gration measure as

d l½ � ≡ 4πð Þ2
i

μ2 eγE

4π

� �ε dD l

2πð ÞD
: ð84Þ

Inserting the partonic light-cone projector yields the

hard contribution of Πð1Þμ,weak at leading power

db

q p

B

𝜐

(a) (b)

(c) (d)

Figure 1: Diagrammatic representation of the correlation function Πμðn · p, �n · pÞ at OðαsÞ. Figure 1 is reproduced from [32].

Π
1ð Þ
μ,weak =

g2s CF

2 �n · p − ωð Þ
ð

dDl

2πð ÞD
1

p − k + lð Þ2 + i0
Â Ã

mbv + lð Þ2 −m2
b + i0

Â Ã
l2 + i0
Â Ã �d kð Þnγ5�nγρ np − k + lð Þγμ mbv + l +mbð Þγρhv,

ð82Þ

Π
1ð Þ,h
μ,weak = ig2

s CF
~f B μð ÞmB

ϕ−b�q ωð Þ
�n · p − ω

ð
dDl

2πð ÞD
1

l2 + n · p �n · l + i0
Â Ã

l2 + 2mb v · l + i0
Â Ã

l2 + i0
Â Ã

× �nμ 2mbn · p + lð Þ + D − 2ð Þl2⊥
Â Ã

− nμ D − 2ð Þ �n · lð Þ2È É
,

ð85Þ

13Advances in High Energy Physics
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where the superscript “h” denotes the hard contribution and
we adopt the conventions

l2⊥ ≡ gμν⊥ lμ lν, gμν⊥ ≡ gμν −
nμ�nν

2
−
nν�nμ

2
: ð86Þ

The loop integrals can be evaluated directly, and we
obtain

Π
1ð Þ,h
μ,weak =

αsCF

4π
~f B μð ÞmB%

ð∞
0
dω

ϕ−b�q ωð Þ
�n · p − ω

�nμ
1Ð 2 +

1Ð 2 ln
μ

n · p
+ 1

� �"(

+ 2 ln2
μ

n · p
+ 2 ln

μ

mb
− ln2r − 2Li2 −

�r
r

� �
+
2 − r
r − 1

ln r + π2

12
+ 3
�
+ nμ

1
r − 1

1 + r
�r
ln r

� �� �
g,

ð87Þ

with r = n · p/mb and �r = 1 − r.
Along the same vein, one can identify the hard-collinear

contribution of Πð1Þμ,weak at leading power

Π
1ð Þ,hc
μ,weak = ig2

s CF
~f B μð ÞmB

ϕ−b�q ωð Þ
�n · p − ω

Á
ð

dD l

2πð ÞD
2mb n · p + lð Þ

n · p + lð Þ�n · p − k + lð Þ + l2⊥ + i0
Â Ã

mb n · l + i0½ � l2 + i0
Â Ã ,
ð88Þ

where the superscript “hc” indicates the hard-collinear con-
tribution and the propagators have been expanded systema-
tically in the hard-collinear region. Evaluating the integrals
yields

Π
1ð Þ,hc
μ,weak =

αsCF

4π
~f B μð ÞmB

ð∞
0
dω

ϕ−b�q ωð Þ
ω − �n · p

�nμ

Á 2Ð 2 +
2Ð ln

μ2

n · p ω − �n · pð Þ + 1
� �

+ ln2
μ2

n · p ω − �n · pð Þ

"

+ 2 ln
μ2

n · p ω − �n · pð Þ −
π2

6
+ 4
�
:

ð89Þ

Applying the method of regions we extract the soft con-

tribution of Πð1Þμ,weak

Π
1ð Þ,s
μ,weak =

g2
s CF

2 �n · p − ωð Þ
ð∞
0

dω
�n · p − ω

Á
ð

dDl

2πð ÞD
1

�n · p − k + lð Þ + i0½ � v · l + i0½ � l2 + i0
Â Ã �d kð Þnγ5�nγμhv

=
αsCF

4π
~f B μð ÞmB

ð∞
0
dω

ϕ−b�d ωð Þ
�n · p − ω

�nμ

Á 1Ð 2 +
2Ð ln

μ

ω − �n · p
+ 2 ln2

μ

ω − �n · p
+
3π2

4

" #
,

ð90Þ

where the superscript “s” represents the soft contribution.

Now, we compute the corresponding infrared subtrac-

tion term Φð1Þ
b�d,a ⊗ Tð0Þ as displayed in Figure 2(a). With the

Wilson-line Feynman rules, we obtain

Φ
αβ, 1ð Þ
b�q,a ω, ω′

� �
= i g2s CF

ð
dD l

2πð ÞD
δ ω′ − ω − �n · l
� �

− δ ω′ − ω
� �

�n · l + i0½ � v · l + i0½ � l2 + i0
Â Ã �d kð Þα hvβ,

ð91Þ

from which we can derive the soft subtraction term

Φ
1ð Þ
b�q,a ⊗ T 0ð Þ =

g2s CF

2 �n · p − ωð Þ
ð

dDl

2πð ÞD
�d kð Þnγ5�nγμhv

�n · p − k + lð Þ + i0½ � v · l + i0½ � l2 + i0
Â Ã :
ð92Þ

We then conclude that

Π
1ð Þ,s
μ,weak =Φ

1ð Þ
b�q,a ⊗ T 0ð Þ, ð93Þ

at leading power in Λ/mb, which is an essential point to
prove factorization of the correlation function Πμ.

4.1.2. Interpolation Current Vertex Diagram. Now, we turn
to compute the QCD correction to the interpolation cur-
rent vertex (Figure 1(b)). The soft region contribution
will generate a scaleless integral which vanishes in
dimensional regularization, and the hard region induces
a power-suppression factor λ from the spinor structure.
Therefore, the contribution from the hard-collinear
region will be the same as the full QCD result. It is then
straightforward to obtain the contribution of the current
vertex:

Π
1ð Þ
μ,P =Π

1ð Þ,hc
μ,P =

αsCF

4π
~f B μð ÞmB%

Á
ð∞
0
dω

1
�n · p − ω

nμϕ
+
b�q ωð Þ

�n · p − ω
ω

ln
�n · p − ω
�n · p

� �
+ �nμϕ

−
b�q ωð Þ

�
Á 1Ð + ln −

μ2

p2

� �� � 2�n · p
ω

ln
�n · p − ω
�n · p

+ 1
� �

�n · p
ω

ln
�n · p − ω
�n · p

�
Á ln

�n · p − ω
�n · p

+
2ω
�n · p

− 4
� �

+ 4
�
g:

ð94Þ

The soft contribution of Πð1Þμ,P vanishes in dimensional
regularization; it can be proved that the precise cancel-

ation of Πð1Þ,sμ,P and Φð1Þb�q,b ⊗ Tð0Þ from Figure 2(b) is inde-
pendent of regularization schemes.
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4.1.3. Wave Function Renormalization. The self-energy cor-
rection to the intermediate quark propagator (Figure 1(c))
is free of soft and collinear divergences and a straightforward
calculation gives

Π
1ð Þ
μ,wf c =

αsCF

4π
~f B μð ÞmB

ð∞
0
dω

ϕ−b�q ωð Þ
�n · p − ω

�nμ

Á 1Ð + ln
μ2

n · p ω − �n · pð Þ + 1
� �

:

ð95Þ

For the external quark fields, the wave function renor-
malization of a massless quark does not contribute to the
matching coefficient when dimensional regularization is
applied to regularize both ultraviolet and infrared diver-
gences, i.e.,

Π
1ð Þ
μ,dwf −Φ

1ð Þ
b�q,dwf ⊗ T 0ð Þ = 0: ð96Þ

The wave function renormalization of the b-quark is
actually the match coefficient between the full QCD and
HQET:

Π
1ð Þ
μ,bwf −Φ

1ð Þ
b�q,bwf ⊗ T 0ð Þ = −

αsCF

8π
3Ð + 3 ln

μ2

m2
b

+ 4
� �

Π 0ð Þ
μ :

ð97Þ

4.1.4. Box Diagram. The one-loop contribution to Πμ from
the box diagram (Figure 1(d)) receives leading-power contri-
bution from both the hard-collinear and the soft regions.

Evaluating the hard-collinear contribution of Πð1Þμ,box yields

Π
1ð Þ,hc
μ,box =

αsCF

4π
~f B μð Þ

ð∞
0
dω

mB

ω
�nμ

Á ϕ+b�q ωð Þ r ln 1 + ηð Þ½ � − 2ϕ−b�q ωð Þ ln 1 + ηð Þ
n
×

1Ð + ln
μ2

n · p ω − �n · pð Þ +
1
2
ln 1 + ηð Þ + 1

� ��
,

ð98Þ

with η = −ω/�n · p.
Extracting the soft contribution of Πð1Þμ,box with the

method of regions gives

Π
1ð Þ,s
μ,box = −

g2s CF

2

ð
dDl

2πð ÞD
�d kð Þv k − lð Þnγ5�nγμhv

v · l + i0½ � �n · p − k + lð Þ + i0½ � k − lð Þ2 + i0
Â Ã

l2 + i0
Â Ã :
ð99Þ

Now, we compute the corresponding NLO contribution
to the partonic LCDA (Figure 2(c)):

Φ
αβ, 1ð Þ
b�q,c ω, ω′

� �
= −ig2

s CF

Á
ð

dDl

2πð ÞD
δ ω′ − ω + �n · l
� �

l − kð Þ2 + i0
Â Ã

v · l + i0½ � l2 + i0
Â Ã �d kð Þv l − kð ÞÂ Ã

α
hv½ �β,

ð100Þ

d
–

b𝜐

(a) (b)

(c)

Figure 2: One-loop diagrams for the B-meson LCDA. The figure is reproduced from [32].
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from which one can deduce the soft subtraction term

Φ
1ð Þ
b�q,c ⊗ T 0ð Þ

=
g2
s CF

2

ð
dDl

2πð ÞD
�d kð Þv l − kð Þnγ5�nγμhv

v · l + i0½ � �n · p − k + lð Þ + i0½ � l − kð Þ2 + i0
Â Ã

l2 + i0
Â Ã ,
ð101Þ

which cancels out the soft contribution of the correlation

function Πð1Þ,sμ,box completely. The absence of such soft contri-
bution to the perturbative matching coefficient is particu-
larly important for the box diagram, since the relevant
loop integrals in the soft region depend on two components
of the soft spectator momentum �n · k and v · k, and the light-
cone OPE fails in the soft region.

After the results of all the diagrams obtained, the one-
loop hard-scattering kernel of the correlation function Πμ

can be readily computed from the matching condition in
(81) by collecting different pieces together

Φ
0ð Þ
b�q ⊗ T 1ð Þ = Π

1ð Þ
μ,weak +Π

1ð Þ
μ,P +Π

1ð Þ
μ,wf c +Π

1ð Þ
μ,box +Π

1ð Þ
μ,bwf +Π

1ð Þ
μ,dwf

h i
− Φ

1ð Þ
b�q,a +Φ

1ð Þ
b�q,b +Φ

1ð Þ
b�q,c +Φ

1ð Þ
b�q,bwf +Φ

1ð Þ
b�q,dwf

h i
⊗ T 0ð Þ

= Π
1ð Þ,h
μ,weak + Π

1ð Þ
μ,bwf −Φ

1ð Þ
b�q,bwf

� �h i
+ Π

1ð Þ,hc
μ,weak +Π

1ð Þ,hc
μ,P +Π 1ð Þ,hc

μ,wf c +Π
1ð Þ,hc
μ,box

h i
,

ð102Þ

where the one-loop level hard function and the jet function
can be extracted from the first and second square brackets
of the second equality, respectively. Finally, the factorization
formulae of Π and ~Π are given by

Π = ~f B μð ÞmB〠
k=±

C kð Þ n · p, μð Þ
ð∞
0

dω
ω − �n · p

J kð Þ μ2

n · pω
,
ω

�n · p

� �
ϕk ω, μð Þ,

~Π = ~f B μð ÞmB〠
k=±

~C
kð Þ

n · p, μð Þ
ð∞
0

dω
ω − �n · p

~J
kð Þ μ2

n · pω
,
ω

�n · p

� �
ϕk ω, μð Þ,

ð103Þ

at leading power in Λ/mb, where we keep the factorization-
scale dependence explicitly, the hard coefficient functions
are given by

C +ð Þ = ~C
+ð Þ = 1,

C −ð Þ = aCF
1
�r

r
�r
ln r + 1

h i
,

~C
−ð Þ = 1 − aCF 2 ln2

μ

n · p
+ 5 ln

μ

mb

�
− ln2r − 2Li2 −

�r
r

� �
+
2 − r
r − 1

ln r +
π2

12
+ 5
�
,

ð104Þ

and the jet functions are

J +ð Þ =
1
r
~J

+ð Þ = aCF 1 −
�n · p
ω

� �
ln 1 −

ω

�n · p

� �
,

J −ð Þ = 1,

~J
−ð Þ = 1 + aCF ln2 μ2

n · p ω − �n · pð Þ
�

− 2 ln
�n · p − ω
�n · p

ln
μ2

n · p ω − �n · pð Þ − ln2
�n · p − ω
�n · p

− 1 +
2�n · p
ω

� �
ln

�n · p − ω
�n · p

−
π2

6
− 1
�
:

ð105Þ

From the one-loop calculation, one can obtain the
anomalous dimensions of the hard function, the jet func-
tion, and the soft contribution; then, the factorization-
scale independence of Π and ~Π can be demonstrated
explicitly. It is straightforward to write down the following
evolution equations:

d
d ln μ

~C
−ð Þ

n · p, μð Þ = −aCF Γ 0ð Þ
cusp ln

μ

n · p
+ 5

� �
~C

−ð Þ
n · p, μð Þ,

ð106Þ

d
d ln μ

~J
−ð Þ μ2

n · pω
,
ω

�n · p

� �
= aCF Γ 0ð Þ

cusp ln
μ2

n · pω

� �
~J

−ð Þ μ2

n · pω
,
ω

�n · p

� �
+ aCF

ð∞
0
dω′ωΓ ω, ω′, μ

� �
~J

−ð Þ μ2

n · pω′
,
ω′
�n · p

 !
,

ð107Þ

d
d ln μ

~f B μð Þϕ− ω, μð Þ
h i

= −aCF Γ 0ð Þ
cusp ln

μ

ω
− 5

h i
~f B μð Þϕ− ω, μð Þ
h i

− aCF

ð∞
0
dω′ωΓ ω, ω′, μ

� �
~f B μð Þϕ− ω′, μ

� �h i
,

ð108Þ

where the evolution kernel in the last equation is actually
the LN kernel (except for the anomalous dimension of
the decay constant ~f B) for ϕ−, and Γ has been given in
the previous section. The renormalization kernel of ϕ−ðω
, μÞ at one-loop level was first computed in [66] and then
confirmed in [67]. With the evolution equations displayed
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above, it is evident that

d
d ln μ

Π n · p, �n · pð Þ, ~Π n · p, �n · pð ÞÂ Ã
=O α2s
À Á

: ð109Þ

One cannot avoid the large logarithms of order ln ð
mb/ΛÞ in the hard functions, the jet functions, ~f BðμÞ,
and the B-meson LCDAs concurrently by choosing a com-
mon value of μ, and the large logarithms have to be
resummed by solving the three RG equations shown
above. The solution to the RG equation of the LCDA
has been discussed detailed in the previous section; in
addition, the hadronic scale entering the initial conditions
of the B-meson LCDAs μ0 ≈ 1:0GeV is quite close to the
hard-collinear scale μhc ≃

ffiffiffiffiffiffiffiffiffiffi
mbΛ

p
≈ 1:5GeV; it is not

important phenomenologically to sum logarithms of μhc/
μ0 [68]. To achieve NLL resummation of large logarithms

in the hard coefficient ~C
ð−Þ

, we need to generalize the RG
equation (106) to

d
d ln μ

~C
−ð Þ

n · p, μð Þ = −Γcusp αsð Þ ln
μ

n · p
+ γ αsð Þ

� �
~C

−ð Þ
n · p, μð Þ,

d
d ln μ

~f B μð Þ = γhl αsð Þ ~f B μð Þ:

ð110Þ

The cusp anomalous dimension at the three-loop order
and the remaining anomalous dimension γðαsÞ determin-
ing renormalization of the SCET heavy-to-light current
at two loops will enter U1ðn · p, μh1, μÞ at NLL accuracy.

The manifest expressions of γðiÞ, γðiÞhl , and βi can be found
in [68] and references therein (note that there is a factor

CF difference of our conventions of ΓðiÞcusp and γðiÞ com-
pared with [68]); the evolution function U1ðn · p, μh1, μÞ
can be read from (A.3) in [68] with the replacement rules
Eγ ⟶ n · p/2 and μh ⟶ μh1. Because the hard scale μh1

~ n · p in the hard function ~C
ð−Þðn · p, μÞ differs from the

one μh2 ~mb in ~f BðμÞ, the resulting evolution functions
due to running of the renormalization scale from μh1(μh2
) to μhc in ~C

ð−Þðn · p, μÞ (~f BðμÞ) are

~C
−ð Þ

n · p, μð Þ =U1 n · p, μh1, μð Þ~C −ð Þ
n · p, μh1ð Þ,

~f B μð Þ =U2 μh2, μð Þ~f B μh2ð Þ:
ð111Þ

The final factorization formulae of Π and ~Π with RG

improvement at NLL accuracy can be written as

Π =mB U2 μh2, μð Þ~f BðÞ
h i

μh2ð Þ
ð∞
0

dω
ω − �n · p

J +ð Þ μ2

n · pω
,
ω

�n · p

� �
ϕ+ ω, μð Þ

+mB U2 μh2, μð Þ~f B μh2ð Þ
h i

C −ð Þ n · p, μð Þ
ð∞
0

dω
ω − �n · p

ϕ− ω, μð Þ,

~Π =mB U2 μh2, μð Þ~f B μh2ð Þ
h ið∞

0

dω
ω − �n · p

~J
+ð Þ μ2

n · pω
,
ω

�n · p

� �
ϕ+ ω, μð Þ

+mB U1 n · p, μh1, μð ÞU2 μh2, μð Þ½ � ~f B μh2ð Þ~C −ð Þ
n · p, μh1ð Þ

h i
×
ð∞
0

dω
ω − �n · p

~J
−ð Þ μ2

n · pω
,
ω

�n · p

� �
ϕ− ω, μð Þ,

ð112Þ

where μ should be taken as a hard-collinear scale of orderffiffiffiffiffiffiffiffiffiffi
mbΛ

p
.

Since the one-loop partonic level result of the correlation
function has been obtained, we are ready to construct the
sum rules of f +B⟶Pðq2Þ and f 0B⟶Pðq2Þ including the radia-
tive corrections at OðαsÞ. To achieve this target, one must
express the one-loop correlation function in terms of the dis-
persion integral. Using the quark-hadron duality assump-
tion and the Borel transform, we obtain the form factors
for the B⟶ π transition:

f πe
−m2

π/ n·pωπMð Þ n · p
mB

f +B⟶π q2
À Á

, f 0B⟶π q2
À Á� �

= U2 μh2, μð Þ~f B μh2ð Þ
h iðωπs

0
dω′e−ω′/ωπM

× rϕ+B,eff ω′, μ
� �

+ U1 n · p, μh1, μð Þ~C −ð Þ
n · p, μh1ð Þ

h i
ϕ−B,eff

h
Â ω′, μ
� �

±
n · p −mB

mB
ϕ+B,eff ω′, μ

� �
+ C −ð Þ n · p, μð Þϕ− ω′, μ

� �� ��
,

ð113Þ

where the functions ϕ±B,ef f ðω′, μÞ are defined as

ϕ+B,eff ω′, μ
� �

= a CF

ð∞
ω′

dω
ω
ϕ+ ω, μð Þ,

ϕ−B,eff ω′, μ
� �

= ϕ− ω′, μ
� �

+ aCF

ðω′
0
dω

2
ω − ω′

ln μ2

n · pω′
− 2 ln ω′ − ω

ω′

 !" #
⊕

ϕ− ω, μð Þ
(

−
ð∞
ω′
dω ln2

μ2

n · pω′
− 2 ln

μ2

n · pω′
+ 3

� �
ln
ω − ω′
ω′

"

+ 2 ln
ω

ω′
+
π2

6
− 1
�
dϕ− ω, μð Þ

dω
g:

ð114Þ

The other B⟶ P form factors could be calculated in the
same way.
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4.2. The B⟶ V Form Factors with SCET Improved LCSR.
In this subsection, we will calculate the NLO corrections to
the SCET form factors ξi and Ξi. The computation of the
form factor ξ∥ will be presented in detail; the calculation of
the other form factors, which can be derived in a similar pro-
cedure, will be neglected.

We start with the SCET vacuum-to-B-meson correlation
function (72):

Πν,∥ p, qð Þ =
ð
d4xeip·x 0 T jν xð Þ, �ξWc

� �
0ð Þγ5hv 0ð Þ

n o��� ����B vð Þ
D E

:

ð115Þ

It is straightforward to write down the leading-power
contribution to the correlation function:

Πν,∥ p, qð Þ =
ð
d4xeip·x 0 T j 2ð Þξqs ,∥ν xð Þ, �ξWc

� �
0ð Þγ5hv 0ð Þ

n o��� ����B vð Þ
D E

+
ð
d4xeip·x

ð
d4y 0 T j 0ð Þξξ,ν xð Þ, iL 2ð Þ

ξqs
yð Þ,

n���D
Á �ξWc

� �
0ð Þγ5hv 0ð Þ

o
j�B vð Þi+

ð
d4xeip·x

ð
d4y

Á
ð
d4z 0 T j 0ð Þξξ,ν xð Þ, iL 1ð Þ

ξqs
yð Þ, iL 1ð Þ

ξm zð Þ,
n���D

Á �ξWc

� �
0ð Þγ5hv 0ð Þ

o
j�B vð Þi ≡ΠA

ν,∥ p, qð Þ
+ΠB

ν,∥ p, qð Þ +ΠC
ν,∥ p, qð Þ,

ð116Þ

where the third term ΠC
ν,∥ takes into account the light-quark

mass effect. The multipole expanded SCET Lagrangian up to
the Oðλ2Þ accuracy [64] has been derived with the position-
space formalism [10]:

L
0ð Þ
ξ = �ξ i�n ⋅D + iD⊥cð Þ n2 ξ,

L
1ð Þ
ξm =m�ξ iD⊥c,

1
in ⋅Dc

� �
n
2
ξ,

L
2ð Þ
ξm = −m2�ξ

1
in ⋅Dc

n
2
ξ,

L
1ð Þ
ξqs

= �qsW
†
c iD⊥c, ξ − �ξiD

 
⊥cWcqs,

L
2ð Þ
ξqs

= �qsW
†
c i�n ⋅D + iD⊥c,

1
in ⋅Dc

iD⊥c

� �
n
2
ξ − �ξ

n
2

Á i�n ⋅D
 
+ iD
 
⊥c,

1

in ⋅D
 
c

iD
 
⊥c

 !
Wcqs

+ �qsD
 μ

s x⊥μW
†
c iD⊥cξ − �ξiD

 
⊥cWcx⊥μD

μ
s qs:

ð117Þ

In the following, we aim at calculating the jet function in
the following factorization formula Πi

ν,∥ as defined in (116)

onto SCETII:

Πi
ν,∥ p, qð Þ =

~f B μð ÞmB

2
〠
m=±

ð∞
0
dω Ji∥,m

Á μ2

n · pω
,
ω

�n · p

� �
ϕm ω, μð Þ�nν, i = A, B, Cð Þ,

ð118Þ

at the one-loop accuracy.
Firstly, we calculate the jet function JAk,m entering the

SCET factorization formula (118) by investigating the fol-
lowing matrix element:

FA
∥ =

ð
d4xeip⋅x 0 T �qs xð ÞYs

n
2
W†

cξ xð Þ, �ξWc

� �
0ð Þγ5hv 0ð Þ

n o��� ����qs kð ÞhvD E
:

ð119Þ

At tree level, we have

FA
∥,LO = −

i

�n · p − ω′ + i0
∗ O∥,− ω, ω′

� �D E 0ð Þ
, ð120Þ

where the light-cone matrix element hO∥,−ðω, ω′Þi is defined
as

Okk,− ω, ω′
� �D E

= 0 Okk,− ω′
� ���� ����qs kð ÞhvD E

= �qs kð Þ
n
2
γ5hvδ ω − ω′

� �
+O αsð Þ,

ð121Þ

and the HQET operator O∥,∓ðω′Þ in the momentum space
reads

O ,∓k ω′
� �

=
1
2π

ð
dteitω′ �qsYsð Þ t�nð Þγ5

n
2
,
�n
2

� �
Y†
s hv

À Á
0ð Þ:

ð122Þ

Remembering the definition of the LCDA ϕ−, we can
obtain the jet functions at tree level as follows:

JA, 0ð Þ∥,− =
1

�n · p − ω′ + i0
,

JA, 0ð Þ∥,+ = 0:
ð123Þ

We proceed to determine the NLO contribution to the
jet function JAk,±; the corresponding one-loop SCETI dia-
grams are presented in Figure 3 with the subleading power
SCET Feynman rules collected in [69]. The self-energy cor-
rection to the hard-collinear quark propagator displayed in
Figure 3(a) can be readily written as [38]

FA, að Þ
∥,NLO = −αsCF4π

1
ε
+ ln

μ2

n · p ω − �n · pð Þ − i0
+1

� �
FA
∥,LO:

ð124Þ
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Diagram (c) of Figure 3 yields vanishing contribution due
to n2 = 0where n is from theWilson line. One can further ver-
ify that the hard-collinear corrections displayed in the dia-
grams (b) and (d) of Figure 3 give rise to the identical results:

FA, bð Þ
∥,NLO = FA, dð Þ

∥,NLO = −
2g2

s CF

�n ⋅ p − ω
�qs kð Þ

n
2
γ5hv

×
ð

dDl

2πð ÞD
n ⋅ p + lð Þ

n ⋅ p + lð Þ�n: p − k + lð Þ + l2⊥ + i0
Â Ã

n ⋅ l + i0½ � l2 + i0
Â Ã ,
ð125Þ

which can be evaluated straightforwardly with dimensional
regularization scheme

FA, bð Þ
,NLOk = FA, dð Þ

,NLOk =
αsCF

2π
1
ε2

+
1
ε

ln
μ2

n · p ω − �n · pð Þ + 1
� ��

+
1
2

ln2
μ2

n · p ω − �n · pð Þ + ln
μ2

n · p ω − �n · pð Þ −
π2

12
+2
�
FA
∥,LO:

ð126Þ

Adding up different pieces together leads to the jet func-
tions at the one-loop accuracy:

JA,−k = JA, 0ð Þ,−k 1 + aCF
4
ε2

+
1
ε

4 ln
μ2

n · p ω − �n · pð Þ + 3
� ���

+ 2 ln2
μ2

n · p ω − �n · pð Þ + 3 ln
μ2

n · p ω − �n · pð Þ
−
π2

3
+ 7
�
g,JA,+k = 0,

ð127Þ

which are in precise agreement with the results presented
in [31].

The jet function JBk,± and JCk,± appear only at loop level,
and they can be determined with a similar method with
JAk,±. JBk,± and JCk,± can be obtained through diagrams in
Figure 4 and the diagram in Figure 5 with the SCET Feyn-
man rules, respectively. We collect the corresponding jet
functions here:

JB,−k = aCF J
A, 0ð Þ
,−k

Á −
2
ε2

+
1
ε

−2 ln
μ2

n · p ω − �n · pð Þ
� �

− 2 ln 1 + ηð Þ − 3
� ��

− ln2
μ2

n · p ω − �n · pð Þ
� �

+ ln

Á μ2

n · p ω − �n · pð Þ
� �

−2 ln 1 + ηð Þ − 3½ � − ln2 1 + ηð Þ

+
2
η
− 1

� �
ln 1 + ηð Þ + π2

6
− 8
�
,JB,+k = 0,JC,+k

= −a CF J
A, 0ð Þ
,−k

m
ω

ln
�n · p − ω
�n · p

� �
,JC,−k = 0:

ð128Þ

Plugging the obtained jet functions into the factorization
formula (118) and employing the decomposition of Πν,k
defined in (116) yields

Πν,k p, qð Þ =
~f B μð ÞmB

2

ð∞
0

dω
�n · p − ω + i0

Á 1+aCF Ĵ
A0ð Þ
,−k

μ2

n · pω
,
ω

�n · p

� �� �
ϕ− ω, μð Þ

�
+ aCF Ĵ

mð Þ
,+k

μ2

n · pω
,
ω

�n · p

� �� �
ϕ+ ω, μð Þ

�
�nν,

ð129Þ

jξqs,

(2)
ν

O(A0)

Lξ
(0)

Lξ
(0)

qs
–

h𝜐

(a)

O(A0)

Lξ
(0)

qs
–

h𝜐

jξqs,

(2)
ν

(b)

O(A0)
h𝜐

qs
–

jξqs,

(2)
ν

(c)

O(A0)

Lξ
(0)

h𝜐

qs
–

jξqs,

(2)
ν

(d)

Figure 3: Diagrammatic representation of the vacuum-to-B-meson correlation functionΠA
ν,∥ðp, qÞ defined with the A0-type SCET operator

OðA0Þk = ð�ξWcÞγ5hv and the power suppressed interpolating current jð2Þξqs ,∥ν at one loop.
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where the normalized one-loop jet functions Ĵ
ðA0Þ
k,− and Ĵ

ðmÞ
k,+

read

Ĵ
A0ð Þ
,−k = ln2

μ2

n · p ω − �n · pð Þ
� �

− 2 ln
μ2

n · p ω − �n · pð Þ
� �

ln 1 + ηð Þ

− ln2 1 + ηð Þ + 2
η
− 1

� �
ln 1 + ηð Þ − π2

6
− 1,

Ĵ
mð Þ
,+k = −

m
ω

ln
�n · p − ω
�n · p

� �
:

ð130Þ

To construct the SCET sum rules for the effective form
factor ξ∥ðn · pÞ, we write the correlation function as a disper-
sion integral:

Πν,k p, qð Þ = −
~f B μð ÞmB

2

Á
ð∞
0

dω′
ω′ − �n · p − i0

ϕ−B,eff ω′, μ
� �

+ ϕ+B,m ω′, μ
� �h i

�nν,

ð131Þ

where the effective B-meson “distribution amplitudes” are
identical to that used in the B⟶ P form factors. After apply-
ing the NLL resummation to the decay constants ~f B, we derive

ξ∥ n · pð Þ = 2
U2 μh2, μð Þ ~f B μh2ð Þf V ,kmB mV

n · pð Þ2

×
ðωV

s

0
dω′ exp −

n · pω′ −m2
V

n · pωV
M

" #
Á ϕ−B,eff ω′, μ

� �
+ ϕ+B,m ω′, μ

� �h i
:

ð132Þ

The calculations of the other ξ⊥, Ξ∥, and Ξ⊥ are similar but
lengthy, see [39] for the details. We will not show the results of
these three form factors here.

5. Power Corrections to the BÀ!M
Form Factors

In the previous sections, the form factors are calculated at
the leading power. The power suppressed contributions are
expected to be sizeable due to the finite bottom quark mass.
So far, the high twist contribution has been considered in
various works [35, 39, 40]. In this section, we will take the
scalar and vector B⟶ P form factors as an example and
investigate the contribution from both the two-particle and
three-particle B-meson LCDAs employing a complete
parametrization of the corresponding three-particle light-
cone matrix element and the EOM constraints of the
higher-twist LCDAs presented in [56].

To obtain the result from three-particle LCDAs, we
make use of the light-cone expansion of the quark propaga-
tor in the background gluon field [70]:

0 ∣ T �q xð Þ, q 0ð Þf g ∣ 0h i ⊃ i gs

ð∞
0
d4k 2πð Þ4 e−i k·x

ð1
0
du

Á u xμ γν
k2 −m2

q

−
k +mq

À Á
σμν

2 k2 −m2
q

� �2
264

375Gμν u xð Þ,
ð133Þ

L
ξqs

(2)

h
𝜐

q
s

–

O(A0)

j
ξξ,ν
(0)

(a)

q
s

–

L
ξ

(0)

O(A0)

h
𝜐

j
ξξ,ν

(0)

L
ξqs

(2)

(b)

Figure 4: Diagrammatic representation of the vacuum-to-B-meson correlation functionΠB
ν,kðp, qÞ defined with the A0-type SCET operator

OðA0Þ∥ = ð�ξWcÞγ5hv , the leading power interpolating current jð0Þξξ,ν, and the subleading power SCET Lagrangian Lð2Þξqs .

O(A0)

j
ξξ,ν
(0)

L
ξm
(1)

q
s

–

h
𝜐

L
ξqs

(1)

Figure 5: Diagrammatic representation of the vacuum-to-B-meson
correlation function ΠB

ν,kðp, qÞ defined with the A0-type SCET

operator OðA0Þk = ð�ξWcÞγ5hv , the leading power interpolating

current jð0Þξξ,ν and the subleading power SCET Lagrangians Lð1Þξqs and

Lð1Þξm .
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where we only keep the one-gluon part without the covari-
ant derivative of the Gμν terms. The tree-level diagram is dis-
played in Figure 6, and three-particle higher-twist
corrections to the vacuum-to-B-meson correlation function
(54) can be derived directly:

Π 3Pð Þ
μ n · p, �n · pð Þ = −

~f B μð ÞmB

n · p

ð∞
0
dω1

ð∞
0
dω2

ð1
0
du

1
�n · p − ω1 − uω2½ �2

× �nμ ρ
3Pð Þ
�n,LP +

mq

n · p
ρ

3Pð Þ
�n,NLP

� �
u, ω1, ω2, μð Þ

�
+ nμ ρ

3Pð Þ
n,LP +

mq

n · p
ρ

3Pð Þ
n,NLP

� �
u, ω1, ω2, μð Þ

�
,

ð134Þ

where the light-quark mass-dependent term of the three-
particle corrections have been taken into account, which
is suppressed by one power of Λ/mb. The explicit expres-

sions of ρð3PÞi,LP and ρð3PÞi,NLP (i = n, �n) can be found in [35].
The definition of three particle LCDAs in [56] is essential
in evaluating these results. Due to nonvanishing quark
transverse momentum, the higher-twist two-particle B
-meson LCDAs are related expressed in terms of the
three-particle configurations with the exact EOM, and
they must be taken into account simultaneously for con-
sistency. The calculation of the higher-twist two-particle
B-meson LCDAs is quite similar to the leading power
calculation.

Adding up the two-particle and three-particle higher-
twist corrections at tree level together and implementing
the standard strategy to construct the sum rules for
heavy-to-light form factors give rise to the following
expressions:

f P n · p2 exp −
m2

P

n · p
ωP
M

� �
f +,HT
B⟶P q2

À Á
+

mB

n · p
f 0,HT
B⟶P q2

À Á� �
= −

~f B μð ÞmB

n · p
e−ω

P
s /ωP

M H2PHT
�n,LP ωP

s , μ
À Án

+
ðωP

s

0
dω′ 1

ωP
M

e−ω′/ωM H2PHT
�n,LP ω′, μ

� �
+
ðωP

s

0
dω1

ð∞
ωP
s −ω1

dω2
ω2

e−ω
P
s /ωP

M H3PHT
�n,LP +mqn · pH3PHT

�n,NLP
Â Ã

Â ωP
s − ω1
ω2

, ω1, ω2, μ
� �

+
ðωP

s

0
dω′
ðω′
0
dω1

Â
ð∞
ω′−ω1

dω2
ω2

1
ωP
M

e−ω′/ω
P
M H3PHT

�n,LP +
mq

n · p
H3PHT

�n,NLP

� �
Â ω′ − ω1

ω2
, ω1, ω2, μ

 !)
,

ð135Þ

f P n · p2 exp −
m2

P

n · p
ωP
M

� �
mB

n · p −mB
f +,HT
B⟶P q2

À Á
−

mB

n · p
f 0,HT
B⟶P q2

À Á� �
= −

~f B μð ÞmB

n · p

ðωP
s

0
dω1

ð∞
ωP
s −ω1

dω2
ω2

e−ω
P
s /ωP

M H3PHT
n,LP +

mq

n · p
H3PHT

n,NLP

� �(

Â ωP
s − ω1
ω2

, ω1, ω2, μ
� �

+
ðωP

s

0
dω′

ðω′
0
dω1

ð∞
ω′−ω1

dω2
ω2

1
ωM

e−ω′/ω
P
M

Â H3PHT
n,LP +

mq

n · p
H3PHT

n,NLP

� �
ω′ − ω1
ω2

, ω1, ω2, μ
 !)

,

ð136Þ
where the nonvanishing spectral functions H2PHT

i,LP and
H3PHT

i,ðNÞLP (i = n, �n) are given by

H2PHT
�n,LP ω, μð Þ = 4 ĝ− ω, μð Þ,

H3PHT
n,LP u, ω1, ω2, μð Þ = 2 u − 1ð Þϕ4 ω1, ω2, μð Þ,

H3PHT
n,NLP u, ω1, ω2, μð Þ = ~ψ5 ω1, ω2, μð Þ − ψ5 ω1, ω2, μð Þ,

H3PHT
�n,LP u, ω1, ω2, μð Þ = ~ψ5 ω1, ω2, μð Þ − ψ5 ω1, ω2, μð Þ,

H3PHT
�n,NLP u, ω1, ω2, μð Þ = 2 ϕ6 ω1, ω2, μð Þ:

ð137Þ

It is evident that the two-particle higher-twist correc-
tions preserve the large-recoil symmetry relations of the
B⟶ P form factors and the three-particle higher-twist
contributions violate such relations already at tree level.

Employing the power counting scheme for the Borel
mass ωP

M and the threshold parameter ωP
s [32]:

ωP
s ~ ω

P
M ~O Λ2/mb

À Á
, ð138Þ

we can identify the scaling behaviors of the higher-twist

Figure 6: Diagrammatical representation of the three-particle
higher-twist corrections to the vacuum-to-B-meson correlation
function. The square box indicates the insertion of the weak
vertex �qΓμ b, and the waveline represents the interpolating

current �dn γ5 q for the light-pseudoscalar meson.
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corrections to B⟶ P form factors

f +,HT
B⟶P q2

À Á
~ f 0,HT

B⟶P q2
À Á

~O λ5
À Á

, ð139Þ

in the heavy quark limit, which is suppressed by one power
of Λ/mb compared with the leading-twist contribution. Col-
lecting different pieces together, the final expressions for the
LCSR of B⟶ P form factors at large hadronic recoil can be
written as

f +B⟶P q2
À Á

= f +,2PNLLB⟶P q2
À Á

+ f +,2PHT
B⟶P q2

À Á
+ f +,3PHT

B⟶P q2
À Á

,

f 0B⟶P q2
À Á

= f 0,2PNLLB⟶P q2
À Á

+ f 0,2PHT
B⟶P q2

À Á
+ f 0,3PHT

B⟶P q2
À Á

,
ð140Þ

where the manifest expressions of f i,2PNLLB⟶P ðq2Þ (i = +, 0)
include the light-quark mass effect, and the higher-twist cor-
rections f i,2PHT

B⟶P ðq2Þ and f i,3PHT
B⟶P ðq2Þ can be extracted from

(135) and (136).
The power suppressed contribution is from much more

sources than the high twist contribution considered here.
Various kinds of power suppressed contribution to the B
⟶ γνℓ [57, 71–73] and Bs ⟶ γγ [53] have been compre-
hensively studied, among which some kinds of sources can
also contribute to the heavy-to-light form factor. One exam-
ple is from heavy quark expansion, i.e.,

�qΓμb = e−imbv⋅x�qΓμ 1 +
iD
!

2mb

" #
hv+⋯, ð141Þ

where D
!μ

=Dμ − ðv ·DÞ vμ, and the b-quark mass mb is
defined in the pole-mass scheme in HQET. It is clear replac-
ing the first term in the square bracket with the second term
yields power suppressed contributions. In addition, the
power suppressed local and nonlocal contribution in hard-
collinear propagators might also play an important role. A
specific calculation of these contributions will be published
elsewhere.

6. Numerical Results

Having the sum rules for heavy-to-light form factors at
hand, we will proceed to perform the numerical analysis.
First, we will show the predictions of the form factors with
LCSR at large recoil. Then, we will explore some phenome-
nological implications of the form factors by extrapolating
the form factors to the entire physical region with the z
-series parametrization.

6.1. LCSR Predictions of the Form Factors. Prior to present-
ing the predictions of the semileptonic B⟶M decay form
factors, we need to determine the input parameter used in
the numerical analysis. Most importantly, the threshold

and the Borel parameters:

sP,V0 ≡ n · pωP,V
s ,

M2
P,V ≡ n · pωP,V

M ,
ð142Þ

should be extracted. The threshold parameter, which also
enters the QCD sum rules for the light-meson decay con-
stant, could be fixed by the sum rule calculation of the
light-meson decay constant [58]. The Borel mass is intro-
duced to suppress the continuum-state contributions; at
the same time, the LCSR requires a plain window of the
Borel mass inside which the form factor is stable. Then,
two requirements are employed to obtain the interval of
the Borel parameter [32]:

(i) The dependence of the form factor on the Borel mass
should be small

∂f B⟶P,V

∂ωP,V
M

≤ 0:35 ð143Þ

(ii) The continuum contribution in the dispersion inte-
gral of the correlation function should be smaller
than the light-meson channel contribution

ð∞
ωP,V
s

dω′e−ω′/ωP,V
M Imω′ Π, ~Π

È É
n · p, ω′
� �

<
ðωP,V

s

0
dω′e−ω′/ωP,V

M Imω′ Π, ~Π
È É

n · p, ω′
� � ð144Þ

In Figure 7, we show the Borel mass and the threshold
parameter dependence of the form factor f +B⟶π. From the
left figure, we see that the form factor has a stable window
with respect to the Borel mass. For the later convenience,
we collect the dominant inputs in Table 1 (see [81–83] for
a discussion about the flavor symmetry breaking effects of
the decay constants of pseudoscalar mesons).

Except for these parameters, we still need to determine
the inverse moment of the B meson λBðμ0Þ. The parameter
λBðμ0Þ could be calculated with nonperturbative HQET
sum rules [84] and could also be extracted indirectly from
B⟶ γℓν process [57, 71, 72, 85, 86]. While at present, we
are still lack of satisfied constraints of λBðμ0Þ. Following
the strategy displayed in [32], we will employ a fit approach
to determine λBðμ0Þ. For the B⟶ P form factors, matching
the LCSR calculation for the vector B⟶ π form factor at
q2 = 0 with the predictions from LCSR with pion LCDAs
f +B⟶πðq2 = 0Þ = 0:28 ± 0:03 [18, 20, 87] will provide one
with a suitable value of λBðμ0Þ. While for the B⟶V form
factors, λBðμ0Þ could be determined by matching the LCSR
prediction of the form factor VB⟶ρðq2 = 0Þ to that of the
improved NLO LCSR with the ρ-meson LCDAs [25].
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Performing such matching procedure, we obtain

λB μ0ð Þ =
285+27−23 MeV, B⟶ Pð Þ,
343+22−20 MeV, B⟶Vð Þ:

(
ð145Þ

It is interesting to notice that the extracted values of λB
ðμ0Þ for the B⟶V form factors are in a nice agreement
with that of the B⟶ P form factors and are also consistent
with the implications of experimental data for the two-body
charmless hadronic B-meson decays from the QCD factori-

zation approach [88]. The determined values of λB are also
compatible with the recent extracted values from the B
⟶ γℓ�νℓ process [89].

Employing the above-determined parameters, one can
explore the LCSR predictions of the B⟶M form factors
in the large-recoil region. As an illustration, we show the
breakdown of different contributions to the form factor
f +B⟶πðq2Þ in Figure 8. One can see from the figure that
higher-twist corrections to the form factor f +B⟶πðq2Þ are
dominated by the two-particle twist-five B-meson LCDA
ĝ−ðω, μÞ, which can shift the leading-power prediction by

S 0 = 0.65 GeV2 
π

S 0 = 0.70 GeV2 
π

S 0 = 0.75 GeV2 
π

1.0 1.1 1.2 1.3 1.4 1.5

0.0
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0.2

0.3

0.4

0.5

0.6

Mπ
2 (GeV2)

f
B
→
π

+
(0

)

0.66 0.68 0.70 0.72 0.74
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0.1

0.2

0.3

0.4
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0
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M = 1.25 GeV2
π

πM = 1.5 GeV2

2 
π
2 

2 

Sπ (GeV2)

f
B
→
π

+
(0

)
Figure 7: The Borel mass and threshold dependence of the form factor f +B⟶πð0Þ.

Table 1: The numerical values of the various input parameters employed in the theory predictions of the B⟶M form factors with B
-meson LCSR.

Parameter Value Ref. Parameter Value Ref.

ms 2GeVð Þ 93:8 ± 1:5 ± 1:9MeV [74] mb mbð Þ 4:193+0:022−0:035 GeV [75, 76]

μ 1:5 ± 0:5GeV μh1, μh2, νh mb
+mb
−mb/2

f B 192:0 ± 4:3MeV [77]

f π 130:2 ± 1:7MeV [74] f K 155:6 ± 0:4MeV [74]

f ρ,k 213 ± 5MeV [25] f ρ,⊥ 1GeVð Þ 160 ± 7MeV [25]

f ω,k 197 ± 8MeV [25] f ω,⊥ 1GeVð Þ 148 ± 13MeV [25]

f K∗ ,k 204 ± 7MeV [25] f K∗ ,⊥ 1GeVð Þ 159 ± 6MeV [25]

sπ0 0:70 ± 0:05GeV2 [32, 78] sK0 1:05 ± 0:05GeV2 [32, 78]

sρ,k0 1:5 ± 0:1GeV2 [27, 79] sρ,⊥0 1:2 ± 0:1GeV2 [80]

sω,k0 sρ,∥0 +m2
ω −m2

ρ [27, 79] sω,⊥0 sρ,⊥0 +m2
ω −m2

ρ [80]

sK
∗ ,k

0 sρ,∥0 +m2
K∗ −m2

ρ [27, 79] sK
∗ ,⊥

0 sρ,⊥0 +m2
K∗ −m2

ρ [80]

M2
π,K 1:25 ± 0:25GeV2 [32, 78] M2

ρ 1:5 ± 0:5GeV2 [79]

M2
ω M2

ρ +m2
ω −m2

ρ [79] M2
K∗ M2

ρ +m2
K∗ −m2

ρ [79]
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an amount of approximately ð20 ~ 30Þ%. Compared to the
two-particle higher-twist contribution, the three-particle
higher-twist contribution only generates a tiny contribution
on the form factor. We further find that the radiative correc-
tion can introduce about a Oð20%Þ reduction of the corre-

sponding LL prediction. We have also verified that such
observations also hold true for the other B⟶M form fac-
tors at large hadronic recoil.

6.2. Phenomenological Applications. It is well-known that the
light-cone operator-product expansion of the vacuum-to-B
-meson correlation function is only valid in the large-recoil
region [27, 32]. One then needs to extrapolate the LCSR pre-
dictions of B⟶M form factors at q2 ≤ 8GeV2 to the full
kinematic region with the z-series expansion. The parameter
z corresponds to a map of the entire cut q2-plane onto a unit
disk ∣zðq2, t0Þ ∣ ≤1:

z q2, t0
À Á

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t+ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t+ − t0
pffiffiffiffiffiffiffiffiffiffiffiffiffi

t+ − q2
p

+ ffiffiffiffiffiffiffiffiffiffiffiffiffi
t+ − t0
p : ð146Þ

Here, t+ = ðmB +mMÞ2 is determined by the threshold of
the lowest continuum state which can be generated by the
weak transition currents in QCD. The auxiliary parameter
t0, which determines the q2 point to be mapped onto the ori-
gin of the complex z plane, will be further chosen as [18, 35]

t0 = mB +mPð Þ ffiffiffiffiffiffi
mB
p + ffiffiffiffiffiffi

mP
pð Þ2, B⟶ P,

t0 = mB −mVð Þ2, B⟶V :
ð147Þ

We will use the simplified Bourrely-Caprini-Lellouch
(BCL) series expansion for the B⟶M form factors [90]
(see [91, 92] for an alternative parametrization and [20] for
more discussions for the B⟶ π form factors):

The expansion parameter is small in the entire region
jzðq2, t0Þj2 ≤ 0:04; the expansion could be truncated at cer-
tain N . We will truncate the z-series at N = 2 for the form
factors f +,TB⟶P and at N = 1 for all the other form factors
(see [93] for further discussions on the systematic truncation
uncertainties). The adopted values of the various resonance
masses from the Particle Data Group (PDG) [74] and from
the heavy-hadron chiral perturbation theory [94] are sum-
marized in Table 2.

Table 3 shows the numerical predictions of the form
factors f +,0B⟶π at q2 = 0GeV2. In this table, we display the
significant uncertainties from different input parameters.
One concludes from the table that the parameter λB intro-
duces an about 10% uncertainty to the form factors. The
fitted z-expansion parameters are also included in the
table.

Having at our disposal the theory predictions for B
⟶ π form factors, we proceed to explore

1.0

0.5

0.0

0 2 4 6 8
q2 (GeV2)

+, 2 PHT

+, 3 PHT

+, tot

+, 2 PNLL

+, 2 PLL

fB→π
+ (q2)

fB→π

fB→π

fB→π

fB→π

fB→π

Figure 8: The q2 dependence of the form factor f +B⟶πðq2Þ. The red
line represents the total contribution. The black, blue, green, and
yellow correspond to the LP contribution at LL, the LP
contribution at NLL, the two-particle higher-twist correction, and
the three-particle higher-twist correction, respectively.

f +,TB⟶P q2
À Á

= f +,TB⟶P 0ð Þ1 − q2

m2
B∗

sð Þ

1 + 〠
N−1

k=1
b+,Tk,P z q2, t0

À Ák − z 0, t0ð Þk − −1ð ÞN−k kN z q2, t0
À ÁN − z 0, t0ð ÞN

h i� �( )
, ð148Þ

f 0B⟶P q2
À Á

= f 0B⟶P 0ð Þ 1 + 〠
N

k=1
b0k,P z q2, t0

À Ák − z 0, t0ð Þk
� �( )

, ð149Þ

f iB⟶V q2
À Á

= f iB⟶V 0ð Þ1 − q2

m2
i,pole

1 + 〠
N

k=1
bik,V z q2, t0

À Ák − z 0, t0ð ÞK
h i( )

: ð150Þ
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phenomenological aspects of the semileptonic B⟶ πℓν
decays, which serves as the golden channel for the determi-
nation of CKM matrix element ∣Vub ∣ exclusively (see [95]

for the future advances of precision measurements of Belle
II). It is straightforward to write down the differential decay
rate for B⟶ πℓ�νℓ:

where λða, b, cÞ = a2 + b2 + c2 − 2 ab − 2 ac − 2 bc and the
three helicity amplitudes Hiðq2Þ (i = ±, 0) can be expressed
in terms of the semileptonic B⟶V form factors:

H± q2
À Á

= mB +mVð Þ A1 q2
À Á

∓
2mB ∣ p

!
V ∣

mB +mVð Þ2 V q2
À Á" #

,

H0 q2
À Á

=
mB +mV

2mV

ffiffiffiffiffi
q2

p m2
B −m2

V − q2
À Á

A1 q2
À Á

−
4m2

B p
!

V

��� ���2
mB +mVð Þ2 A2 q2

À Á264
375,

ð152Þ

with the momentum ∣p!V ∣ of the light-vector meson in the B
-meson rest frame given by ∣p!V ∣ = 12mB λ

1/2ðm2
B,m2

V , q2Þ.
Employing the experimental measurements of B⟶ πℓ

�νℓ [96, 97], and taking advantage of the measurements of
the partial branching fractions for B⟶ ρ ℓ �νℓ [97, 98] and
B⟶ ω ℓ �νℓ [96, 97], we can derive the following intervals

for exclusive ∣Vub ∣ :

Vubj jexc: = 3:23+0:66−0:48 th:
+0:11
−0:11

�� ��
exp:

� �
× 10−3, fromB⟶ πℓνℓ½ �,

Vubj jexc: = 3:05+0:67−0:52 th:
+0:19
−0:20

�� ��
exp:

� �
× 10−3, fromB⟶ ρℓνℓ½ �,

Vubj jexc: = 2:54+0:56−0:40 th:
+0:18
−0:19

�� ��
exp:

� �
× 10−3, fromB⟶ ωℓνℓ½ �:

ð153Þ

The total uncertainties are obtained by adding in quadra-
ture the separate uncertainties from individual variations of
all input parameters. Apparently, the extracted values of ∣Vub
∣ from B⟶V ℓ �νℓ decay are lower than that from the B
⟶ π ℓ �νℓ channel. We also note that the obtained values
from the B⟶ π ℓ �νℓ decay are in good agreements with the
results from B⟶Vℓ+ℓ− decays [25]. The values of ∣Vub ∣
from B⟶ π ℓ �νℓ decay are in agreement with the averaged
exclusive determinations presented in PDG [74], while the
central values of both determinations of jVubj from B⟶V

Table 2: The resonance masses with different quantum numbers entering the z-series expansions of the B⟶V form factors (149) where
A12 = ððmB +mVÞ/ðn · pÞÞA1 − ððmB −mVÞ/mBÞA2 and T23 = ðmB/ðn · pÞÞT2 − T3.

f iB⟶V q2
À Á

JP b⟶ d (in GeV) b⟶ s (in GeV)

V q2
À Á

, T1 q2
À Á

1− 5.325 5.415

A0 q2
À Á

0− 5.279 5.366

A1 q2
À Á

, A12 q2
À Á

, T2 q2
À Á

, T23 q2
À Á

1+ 5.724 5.829

Table 3: Theory predictions for the form factors f +,0B⟶πð0Þ and the corresponding z-expansion shape parameters b+,01,π with the dominant
uncertainties from variations of different input parameters.

Parameters Central value λB bσ1 μ M2
π sπ0

f +,0B⟶π 0ð Þ 0.280 −0:030
+0:031

−0:012
+0:013

+0:000
−0:032

+0:012
−0:017

+0:014
−0:014

b+1,π −2:77 +0:05
−0:02

+0:02
−0:01

+0:09
−0:16

+0:02
−0:03

+0:07
−0:07

b01,π −4:88 −0:10
+0:11

−0:04
+0:04

+0:17
−0:61

+0:04
−0:06

+0:11
−0:11

d Γ B⟶ πℓ�νℓð Þ
dq2

=
G2

F Vubj j2
192π3 m3

B

λ
3
2 m2

B,m
2
π, q

2À Á
1 −

m2
l

q2

� �2

1 +
m2

l

2q2

� �
f +B⟶π q2

À Á
∣ 2 +

3m2
l m2

B −m2
π

À Á2
λ m2

B,m2
π, q2

À Á
m2

l + 2 q2
À Á�����

�����f 0B⟶π q2
À Á�����

2" #
,

dΓ B⟶ V ℓ �νℓð Þ
dq2

=
G2

F Vubj j2
192π3 m3

B

q2

c2V
λ1/2 m2

B,m
2
V , q

2À Á
H0 q2
À Á�� ��2 + H+ q2

À Á�� ��2 + H− q2
À Á�� ��2n o

,

ð151Þ
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ℓ �νℓ are somewhat smaller than the corresponding result in
PDG [74]. We also observe that the obtained jVubj from the
B⟶ ω ℓ �νℓ process are significantly smaller than that from
the exclusive channel B⟶ ρ ℓ �νℓ as already observed in
[97]. All the three exclusively extracted values of jVubj from
the B⟶M ℓ �νℓ decays are significantly smaller than the
averaged inclusive determinations reported in [74]

Vubj jinc: = 4:49 ± 0:15+0:16−0:17 ± 0:17
À Á

× 10−3: ð154Þ

7. Summary

In this review, we have discussed the LCSR with B-meson
LCDAs and its application to calculating the B⟶ P and
B⟶ V form factors. The fundamental nonperturbative
inputs in this approach are the LCDAs of the B meson,
which are defined in terms of nonlocal operators including
the effective b-quark field and the soft light parton fields
sandwiched between the vacuum and the B-meson state.
At the one-loop level, the leading-twist B-meson LCDA sat-
isfies the LN equation, which can be simplified by some
kinds of integral transforms. The two-loop level evolution
equation of the leading-twist B-meson LCDA has also been
obtained. The evolution function is useful in the determina-
tion of the models of the LCDAs, especially the behavior at
the endpoint. The higher-twist B-meson LCDAs can be
introduced by adjusting the spinor structure, or adding an
additional gluon field, or taking the higher power contribu-
tion from the light-cone expansion. They can be studied
using a similar method as the leading-twist one.

We introduced the investigation of the B⟶M form
factors with the B-meson LCSR in detail. To obtain the
sum rules, one must start from the correlation function
which is defined as the vacuum-to-B-meson matrix element
of the time-ordered product of the weak current and the
interpolation current of the light meson. At the partonic
level, the correlation function can be factorized into the con-
volution of the hard function, the jet function, and the
LCDAs of the B meson. The short-distance hard function
and jet function can be calculated by choosing free partonic
external states. To evaluate the NLO corrections to the hard
function and the jet function, one might employ the method
of regions, i.e., the loop momentum was assigned to be hard,
collinear, and soft, respectively. The loop integral was calcu-
lated in different regions, and the hard function and jet func-
tion can be extracted directly. An alternative approach to
obtain the NLO hard function and jet function is to perform
the match from QCD first to SCET I and then to SCET II,
respectively. The most subtle place in the loop calculation
is the infrared subtraction, especially under the condition
that the evanescent operators took the place. The convolu-
tion of the hard function, the jet function, and the LCDAs
is independent of the factorization scale. However, the large
logarithmic terms need to be resummed with the RG equa-
tion approach. Having the hard function and the jet function
at hand, the correlation function can be expressed in terms
of the dispersion integral. After this, we employed the

quark-hadron duality assumption and the Borel transforma-
tion and then obtained the sum rules for the form factors.

We have discussed the power suppressed contributions
to the form factors. The higher-twist corrections to the form
factors from both the two-particle and three-particle B
-meson LCDAs were calculated at tree level. For the contri-
bution from three-particle B-meson LCDAs, we employed
the quark propagator in the background field. The quark-
mass-dependent term in the sum rules with three-particle
B-meson LCDAs is power suppressed, which is different
from the leading-twist contribution. Except for the high-
twist contribution, there exist more sources of power sup-
pressed contributions, such as the power suppressed contri-
bution from heavy quark expansion, the power suppressed
contribution from hard-collinear propagators, and the local
terms. The investigation of power suppressed contributions
is one of the main goals of future studies.

After employing appropriate input parameters, we eval-
uated the B⟶ P and B⟶V form factors numerically
within the momentum region 0 < q2 < 8GeV2 where the
LCSR with B-meson LCSR is applicable. Then, we extrapo-
lated the result to the whole physical region by the z-series
expansion. Applying the experimental measurements of the
B⟶ πℓ�νℓ process and taking advantage of the measure-
ments of the partial branching fractions for B⟶ ρ ℓ �νℓ
and B⟶ ω ℓ �νℓ decays, we obtained intervals for exclusive
jVubj. The extracted values of jVubj from B⟶V ℓ �νℓ decay
are lower than that from the B⟶ π ℓ �νℓ channel. The
values of jVubj from B⟶ π ℓ �νℓ decay are in agreement
with the averaged exclusive determinations presented in
PDG. All of the three exclusively extracted values of ∣Vub ∣
from the B⟶M ℓ �νℓ decays are significantly smaller than
the averaged inclusive determinations.
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