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Rational curves on lattice-polarised K3 surfaces

Xi Chen, Frank Gounelas and Christian Liedtke

Abstract

Fix a K3 lattice Λ of rank 2 and a big and nef divisor L ∈ Λ that is suitably positive. We
prove that the generic Λ-polarised K3 surface has an integral nodal rational curve in the
linear system |L|, in particular strengthening previous work of the first-named author.
The technique is by degeneration and also works for many lattices of higher rank.

1. Introduction

In [Che99], the first-named author proved the existence of integral nodal rational curves in |nL|
on a generic K3 surface with Picard group generated by L for all n > 0 and L2 > 4. In this paper,
we follow a similar strategy and prove the following (see Section 3 for a more precise statement).

Theorem A. Let a, b ∈ Z and d ∈ Z>0 satisfy 4bd − a2 < 0, and let Λ be a lattice of rank 2
with intersection matrix [

2d a
a 2b

]
.

Fixing L ∈ Λ with L2 > 0, let MΛ be the moduli space of Λ-polarised K3 surfaces such that L
is ample on a general X ∈ MΛ. Then there exists a Zariski-open dense subset UL of MΛ such
that there is an integral nodal rational curve in |L| on X ∈ UL if L is the sum of three ample
divisors on X.

The method of proof of Theorem A is a sequence of two degenerations. One first proceeds
by degenerating to a smooth K3 surface of higher Picard rank that contains several (−2)-curves.
The main technical difficulty is that one must distinguish between rank 2 lattices of even and
odd discriminant, and each case requires a different degeneration, which significantly adds to the
length of the argument. In particular, we prove that any rank 2 K3 lattice embeds primitively
into one of the lattices
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of size r1 × r1 and r2 × r2 for some r1 6 7 and r2 6 5, respectively.
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To prove the existence of integral nodal rational curves in |L| for L a big and nef class in one
of the above two matrices, we degenerate further, like in [Che99], to unions of smooth rational
surfaces à la Ciliberto–Lopez–Miranda. One now constructs reducible, limiting rational curves
with prescribed singularities in such log K3 surfaces, in the sense of Iitaka [Iit79], which now
deform out to integral and nodal rational curves on the general K3 with lattice as above.

The technique in fact works to produce many nodal rational curves for a general K3 with
Picard lattice which embeds into one of the lattices in (1.0.1). At the end of this paper, we show
how this can work for the two special rank 4 lattices of Nikulin [Nik87], for which the K3 in
question has finite automorphism group and is not elliptic.

The above results will be used in a follow-up paper [CGL19], whose main result completes
the project (initiated by Bogomolov–Mumford) of showing that every complex projective K3
surface contains infinitely many rational curves. More specifically, Theorem A will be used in
two ways in [CGL19]. First, it will be used in the proof of regeneration theorem: Given a family
of K3 surface X/B, if there is an integral rational curve C on a fibre Xb, then there is a curve C ′

on Xb such that the union C ∪ C ′ can be deformed to an integral rational curve on a general
fibre of X/B. Second, combined with a technique called marked point trick, Theorem A will be
generalised to every K3 surface of Picard rank 2 as long as L is indivisible in Λ.

Notation. A K3 surface X will be a geometrically integral, smooth, proper and separated scheme
of relative dimension 2 over the complex numbers, so that ωX ∼= OX and H1(X,OX) = 0. Let S
be a connected base scheme. Then a morphism

f : X S

is a smooth family of surfaces if f is a smooth and proper morphism of algebraic spaces of
relative dimension 2 whose geometric fibres are irreducible. In particular, a family of K3 surfaces
is a family of surfaces where every fibre is a K3 surface as above. We say that a property holds for
a general point in a set if it holds for all points of a Zariski-open subset, whereas a very general
point will be one in the complement of countably many Zariski-closed subsets.

2. Degenerations of type II

In this section, we discuss degenerations of K3 surfaces that are of type II in the sense of
Kulikov [Kul77]; see also [Per77, PP81]. We will need these degenerations in order to produce
nodal rational curves in the next section.

Definition 2.1. A degeneration of type II (in the sense of Kulikov) of K3 surfaces is a flat and
proper family π : X → S, where S is the spectrum of a discrete valuation ring with residue field
C and where the geometric generic fibre X η is a K3 surface and the special fibre X0 is a union
Y1 ∪ Y2 ∪ · · · ∪ Ym such that

(1) each Yi is a smooth surface for all i;

(2) Yi∩Yj = ∅ for |i−j| 6= 0, 1 and Yi and Yi+1 meet transversally along a smooth elliptic curve
Di, where all Di are isomorphic to a fixed smooth elliptic curve D;

(3) we have anti-canonical divisors E1 and Em−1 in Y1 and Ym;

(4) each Yi for 1 < i < m is a ruled surface over D.

It follows from item (3) that Y1 and Ym are rational surfaces. We note that the chain
Y2 ∪ · · · ∪ Ym−1 of ruled surfaces can be contracted to a family X ′ → S that has the same
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generic fibre but whose special fibre has the form X ′
0 := Y ′1 ∪Y ′2 , where Y ′1 and Y ′2 are smooth ra-

tional surfaces meeting transversally along a smooth anti-canonical curve D. In this case, (Y ′i , D),
for i = 1, 2 are two genuine log K3 surfaces.

Conversely, given a union of Y1 ∪ Y2 of two smooth rational surfaces meeting transversely
along a smooth anti-canonical curve D, one may ask whether it can be deformed to a K3 surface.
We refer the interested reader to [CLM93], where this question is studied.

More generally, let Y = Y1 ∪ Y2 be the union of two smooth projective varieties meeting
transversely along a smooth hypersurface D in each Yi. That is, étale locally around D, the
union is given by xy = 0. In particular, Y is reducible. The Picard group Pic(Y ) is given by the
exact sequence

0 Pic(D) Pic(Y1)⊕ Pic(Y2) Pic(Y ) 0 ,
ı∗1−ı∗2

where ıi : D ↪→ Yi denotes the embedding of D into Yi for i = 1, 2. In other words, an invertible
sheaf L on Y is given by a pair of invertible sheaves Li ∈ Pic(Yi) satisfying

ı∗1L1
∼= ı∗2L2 . (2.0.1)

(For the reader that wants to avoid this descent construction, we have an alternative realisation
of Y given below.) In particular, Y is projective if and only if there exists an ample invertible
sheaf L ∈ Pic(Y ) if and only if there exists a pair of ample invertible sheaves Li on Yi that satis-
fies (2.0.1). If such an L exists, then we can embed Y into some Pn via |L ⊗m| for m sufficiently
large.

Alternatively, we may start with two smooth projective varieties Y1 and Y2, embeddings
ıi : D ↪→ Yi of a smooth hypersurface D in Yi and two ample line bundles Li ∈ Pic(Yi) satis-
fying (2.0.1) for i = 1, 2. Let us choose m sufficiently large such that the L ⊗m

i are very ample
and the maps H0

(
Yi,L

⊗m
i

)
→ H0

(
D,L ⊗m

i

)
are surjective for i = 1, 2. We choose a basis

{(s1j , s2j) : j = 0, 1, . . . , n} for the kernel of the map

H0(Y1,L1)⊕H0(Y2,L2) H0(D, ı∗1L1) H0(D, ı∗2L2)
ı∗1−ı∗2

and define the maps φi : Yi → Pn to be (si0, si1, . . . , sin) for i = 1, 2. Then we see that Y =
φ1(Y1) ∪ φ2(Y2) is the union of two smooth projective varieties meeting along φ1(D) = φ2(D)
such that φi,∗TD,p = φ1,∗TY1,p∩φ2,∗TY2,p for the tangent spaces of Yi and D at p ∈ D, as subspaces
of TPn,φ(p).

The first-order embedded deformations of Y ⊂ P := Pn are classified by H0(Y,NY ), where NY

denotes the normal sheaf of Y ⊂ P . We note that these deformations of Y preserve the line
bundle L ⊗m. We want to deform Y to a smooth variety, that is, to “smooth” out D, which is
the singular locus of Y . This is governed by the map

H0(Y,NY ) H0
(
Y, T 1

Y

)
, (2.0.2)

where T 1
Y is the sheaf of OY -modules

T 1
Y := Ext(ΩY ,OY ) ∼= ND/Y1 ⊗ND/Y2 ,

where ND/Yi denotes the normal bundle of D in Yi. A general deformation of Y ⊂ P smooths
out D if the embedded deformations of Y ⊂ P are unobstructed and if the image of the
map (2.0.2) is base-point-free on D.

Let X ⊂ P × ∆ be a deformation of Y given by some ξ ∈ H0(Y,NY ) with X0 = Y ,
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where ∆ = {|t| < 1} is the unit disk. Then X is singular along the vanishing locus z(ρ(ξ)) of
ρ(ξ), where ρ is the map (2.0.2). If z(ρ(ξ)) is smooth as a closed subscheme of D, then X has
singularities of type

C[[x1, x2, . . . , xn, t]]/(x1x2 − tx3)

at z(ρ(ξ)) and hence the generic fibre Xη is smooth. So a general deformation of Y ⊂ P smooths
out D under the above hypotheses.

A general deformation of Y ⊂ P , a priori, only preserves L ⊗m. For the above family X ,
the restriction of H = OX (1) to Y is obviously L ⊗m. On the other hand, in our application,
H2(Y,Z) is always torsion-free; by the Mayer–Vietoris sequence, this is guaranteed if H1(Yi) = 0
and H1(D,Z) and H2(Yi,Z) are torsion-free. By deformation retraction, H2(X ,Z) ∼= H2(Y,Z) is
torsion-free. Consequently, (1/m)c1(H ) ∈ H2(X ,Z), and L extends to a line bundle on X . In
conclusion, a general deformation of Y preserves L if H2(Y,Z) is torsion-free.

Moreover, if we construct Y with arbitrary Picard rank r := ρ(Y ), we can deform Y to
preserve Pic(Y ) as follows. We choose very ample line bundles H1, . . . ,Hr on Y which generate
PicQ(Y ) and embed Y into P = Pn1×Pn2×· · ·×Pnr via the complete linear systems |Hi|. If the
embedded deformations of Y ⊂ P smooth out D, we can deform Y to a smooth variety while
preserving PicQ(Y ). In addition, as commented above, if H2(Y,Z) is torsion-free, then Pic(Y ) is
preserved when Y deforms in P . Using the techniques in [CLM93, Section 1], we can prove the
following theorem on the deformation of Y ⊂ P .

Theorem 2.2 (Ciliberto–Lopez–Miranda + ε). Let Y = Y1 ∪ Y2 be a union of two smooth
projective varieties meeting transversely along a smooth hypersurface D in Yi. Suppose that Y
is embedded into P = Pn1 × Pn2 × · · · × Pnr by very ample line bundles H1, . . . ,Hr ∈ Pic(Y )
satisfying that H1, . . . ,Hr are linearly independent in H1,1(Y1).

(1) The sheaf T 1
Y is isomorphic to the cokernel of the inclusion NYi → NY ⊗ OYi for i = 1, 2;

that is, the sequence

0 NYi NY

∣∣
Yi

T 1
Y 0 (2.0.3)

is exact for i = 1, 2.

(2) We have H1(Y,NY ) = 0, and the map (2.0.2) is surjective if

H1(Yi,Hj) = H1(Y1,Hj(−D)) = 0 ,

H1(ND/Y2) = H1(ND/Y1 ⊗ND/Y2) = 0 , (2.0.4)

H2(OYi) = H2(TYi) = H2(TY1(−D)) = 0 ,

for i = 1, 2 and j = 1, 2, . . . , r and, moreover,

either H2(OY1(−D)) = 0 , or KY1 +D = 0 and dimY = 2 . (2.0.5)

Proof. In [CLM93], this was proved for r = 1 and dimY = 2.

We basically follow the same argument as in [CLM93]: the exactness of (2.0.3) is a consequence
of the commutative diagram

TP

∣∣∣
Yi

NYi 0

TP

∣∣∣
Yi

NY

∣∣∣
Yi

T 1
Y 0 ,
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which shows that coker (NYi → NY ⊗OYi) surjects onto T 1
Y . And since coker (NYi → NY ⊗OYi)

and T 1
Y are line bundles supported on D, the surjection must be an isomorphism and we ob-

tain (2.0.3).

To prove H1(Y,NY ) = 0 and the surjectivity of (2.0.2), we combine (2.0.3) with the exact
sequence

0 NY ⊗OY1(−D) NY NY ⊗OY2 0 .

With these two exact sequences, it suffices to prove

H1(NY1(−D)) = H1(NY1) = H1(NY2) = H1(ND/Y2) = H1
(
T 1
Y

)
= 0 .

The vanishing of these cohomological groups mostly follows from (2.0.4). Let us say something
about H1(NY1(−D)) = 0.

If H2(OY1(−D)) = 0, then the vanishing of H1(NY1(−D)) follows from (2.0.4) and the exact
sequences

0 TY1 TP ⊗OY1 NY1 0 ,

0 O⊕rY1
r∑
i=1

H
⊕(ni+1)
i TP ⊗OY1 0 .

If we instead have KY1 + D = 0 and dimY = 2 in (2.0.5), then the vanishing of H1(NY1(−D))
follows from (2.0.4) and the injectivity of the map

H1(ΩP ) H1(ΩY1)

H1(TP ⊗KY1)∨ H1(TY1 ⊗KY1)∨

H1(TP ⊗OY1(−D))∨ H1(TY1(−D))∨ ,

where the injectivity of H1(ΩP )→ H1(ΩY1) is a consequence of the hypothesis that H1, . . . ,Hr

are linearly independent in H1,1(Y1).

If Y = Y1 ∪ Y2 is a degeneration of type II of K3 surfaces with Yi Fano varieties (that is,
del Pezzo surfaces) for i = 1, 2, then the hypotheses (2.0.4) and (2.0.5) are clearly satisfied. In
this case, Y can be deformed to a smooth projective K3 surface of Picard rank r = ρ(Y ). Thus,
we conclude the following.

Theorem 2.3. Let Y = Y1 ∪ Y2 be the union of two smooth rational surfaces Yi meeting trans-
versely along a smooth anti-canonical curve D in Yi for i = 1, 2 satisfying that

deg ND/Y1 + deg ND/Y2 = K2
Y1 +K2

Y2 > 1 and

deg ND/Y2 = K2
Y2 > 1 .

Suppose that there exist L1,L2, . . . ,Lr ∈ Pic(Y ) such that the Li are linearly independent
in H2(Y1) and the subgroup of Pic(Y ) generated by the Li contains an ample line bundle on Y .
Then Y can be deformed to a projective K3 surface of Picard rank r. More precisely, there exists
a flat projective family π : X → SpecC[[t]] such that its central fibre is X0 = Y , its generic
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fibre Xη is a projective K3 surface of Picard rank r and the image of Pic(X )→ Pic(Y ) contains
L1,L2, . . . ,Lr.

Proof. Let us choose sufficiently ample H1,H2, . . . ,Hr ∈ Pic(Y ) such that

SpanQ{L1,L2, . . . ,Lr} = SpanQ{H1,H2, . . . ,Hr}

in Pic(Y ). We embed Y into P = Pn1 × Pn2 × · · · × Pnr by |Hi|. By Theorem 2.2, the embedded
deformations of Y ⊂ P are unobstructed, and a general deformation Y ′ ⊂ P of Y smooths
out D; hence Y ′ is a projective K3 surface of Picard rank at least r. To see that ρ(Y ′) = r, we
compute h0(NY ) = 20 − r + h0(TP ) and conclude that the image of H0(NY ) → Ext(ΩY ,OY )
has dimension at least 20− r.

Let X ⊂ P × C[[t]] be the family given by a general deformation of Y ⊂ P . Then for ev-
ery Li, the line bundle miLi lies in the image of Pic(X ) → Pic(Y ) for some integer mi 6= 0;
since H2(Y,Z) is torsion-free, Li lies in the image of Pic(X )→ Pic(Y ) for i = 1, 2, . . . , r.

Let X be the family given by a general deformation of Y in Theorem 2.3. Then X has
rational double points at x1, x2, . . . , xs ∈ D for s = K2

Y1
+K2

Y2
, which are the vanishing locus of

a section in H0(T 1
Y ). Clearly, the xi satisfy

OD(x1 + x2 + · · ·+ xs) = ND/Y1 ⊗ND/Y2 = OD(−KY1 −KY2) . (2.0.6)

For a general deformation of Y , the points x1, x2, . . . , xs are s general points with only the
relation (2.0.6) on D.

Even if Y is not projective, we can still deform Y to a K3 surface, although the resulting
family is obviously non-projective. The issue of projectivity is purely technical.

Theorem 2.4. Keep the hypotheses of Theorem 2.3, except that instead of assuming that the
subgroup of Pic(Y ) generated by the Li contains an ample line bundle and K2

Y1
+ K2

Y2
> 1,

we assume that K2
Y1

+ K2
Y2

> 2. Then Y can be deformed to a projective K3 surface of Picard
rank r + 1. More precisely, there exists a flat proper (possibly non-projective) family π : X →
SpecC[[t]] such that its central fibre is X0 = Y , its generic fibre Xη is a projective K3 surface
of Picard rank r + 1 and the image of Pic(X )→ Pic(Y ) contains L1,L2, . . . ,Lr.

Proof. We choose an ample line bundle M1 on Y1 and an ample line bundle M2 on Y2. Let
mi = MiD on Yi for i = 1, 2 and m = gcd(m1,m2). Let a1 and a2 be positive integers such that
a1m1 − a2m2 = m, and let p be a point on D such that

OD(a1M1) = OD(a2M2)⊗OD(mp) .

Let us choose Mi and p such that OD(2p) 6= OD
(
−K2

Y1
− K2

Y2

)
. Let Ŷ1 be the blowup of Y1

at p. We can construct a union of Ŷ = Ŷ1 ∪ Y2 meeting transversely along D such that there is
a morphism ϕ : Ŷ → Y such that ϕ|

Ŷ1
is the blowup map Ŷ1 → Y1 and ϕ|Y2 = id.

For a1 sufficiently large, a1ϕ
∗M1 −mE is ample on Ŷ1, where E is the exceptional divisor

of Ŷ1 → Y1. Therefore, there exists an ample line bundle M̂ on Ŷ whose restriction to Ŷ1 is
a1ϕ

∗M1 −mE and whose restriction to Y2 is a2ϕ
∗M2.

Applying Theorem 2.3 to Ŷ with M̂, ϕ∗L1, ϕ
∗L2, . . . , ϕ

∗Lr, we obtain a flat projective family
Y → SpecC[[t]] such that Y0 = Ŷ , that Yη is a K3 surface of Picard rank r + 1 and that the

image of Pic
(
Y
)
→ Pic

(
Ŷ
)

contains M̂, ϕ∗L1, ϕ
∗L2, . . . , ϕ

∗Lr.

For a general choice of Y , it has at worst rational double points on D satisfying (2.0.6). We
may assume that Y is smooth along E. As a complex manifold, Y admits a small contraction
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of E. Let us still use ϕ to denote this map:

Y X

SpecC[[t]] .

ϕ

Clearly, X0 = Y and Xη is a projective K3 surface of Picard rank r + 1, while X is flat and
proper but possibly non-projective over SpecC[[t]]. The image of Pic(X ) → Pic(Y ) contains
L1,L2, . . . ,Lr.

In this paper, we mainly use this degeneration to construct rational curves on generic K3
surfaces. Let π : X → SpecC[[t]] be the family constructed in Theorems 2.3 and 2.4. Suppose
that X has rational double points x1, x2, . . . , xs on D satisfying (2.0.6). We are going to find
integral (nodal) rational curves in |L | on Xη for some L ∈ Pic(X ). In order to do that, we
construct some Γ ∈ |L | on X0 = Y , which we call “limiting rational curves” and show that Γ
can be deformed to an integral (nodal) rational curve on Xη.

We consider Γ = f∗C as the image of a stable map f : C → Y . Instead of deforming Γ, we
try to deform the map f . Actually, we can construct “deformable” stable maps f : C → Y of
arbitrary genus g, up to the arithmetic genus of L , as follows:

• Let h0(Xη,L ) = h0(Y,L ), where H0(Y,L ) is the kernel of the map

H0(Y1,L1)⊕H0(Y2,L2) H0(D,L1)

H0(D,L2)

(γ1,γ2)→γ1−γ2

with Li the restriction of L on Yi for i = 1, 2.

• Take D 6⊂ Γ ∈ PH0(Y,L ).

• The map f sends each irreducible component G ⊂ C birationally onto its image:

f∗G = f(G) for all irreducible components G ⊂ C . (2.0.7)

• Let C× be the set of points of C lying on two distinct components of C. Then

for each p ∈ G1 ∩G2 ⊂ C× , f(p) ∈ D\{x1, x2, . . . , xs} ,
f(G1) ⊂ Y1 , f(G2) ⊂ Y2 ,

fG1 = f |G1 : G1 → Y1 , fG2 = f |G2 : G2 → Y2

and vp(f
∗
G1
D) = vp(f

∗
G2
D) ,

(2.0.8)

where G1 and G2 are two irreducible components of C meeting at p and vp(f
∗
Gi
D) is the

multiplicity of p in f∗Gi
D.

• Outside of f(C×), the curves Γ and D only meet at x1, x2, . . . , xs. More precisely,

for each q ∈ f−1(D)\C× , f(q) ∈ {x1, x2, . . . , xs} ,
fG = f |G : G→ Yi and vq(f

∗
GD) = 1 ,

(2.0.9)

where G is the irreducible component of C containing q.

Using the deformation theory of curves on X as explained in [Che99], we can deform f to the
generic fibre Xη. The above statement includes several improvements over [Che99]. For example,
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we do not assume that f∗Ci has simple tangency with D in (2.0.8). The difficulties caused by
loosening these restrictions on Γ can be overcome by studying the deformation of the stable map
f : C →X instead of the deformation of Γ ⊂X , which is carried out in the same way as in the
case that X is a smooth family of K3 surfaces. On the other hand, these assumptions do not
guarantee that Γ can be deformed to a nodal curve on Xη; for that to happen, we do need the
same restrictions on Γ as in [Che99].

We will make one more improvement over [Che99]. Instead of only considering |L |, we will
also consider the “twisted” linear series |L + mY1| on X . Note that X is smooth outside of
xj so Y1 is a Cartier divisor on X ◦ = X \{xj}; the linear system |L + mY1| is interpreted as
PH0(X ◦,L +mY1). The restrictions of L +mY1 to the Yi are

(L +mY1)|Y1 = L1 −mD and (L +mY1)|Y2 = L2 +mD ,

respectively, where the Li are the restrictions of L to Yi for i = 1, 2. Although m can be chosen
to be an arbitrary integer, we take m > 0 for simplicity.

The restriction of γ ∈ H0(L + mY1) to Y consists of γ1 ∈ H0(L1 − mD) on Y1 and γ2 ∈
H0(L2 +mD) on Y2. Furthermore, the image of the restriction

H0(X ◦,L +mY1) H0(Y2\{xi},L2 +mD) H0(Y2,L2 +mD)

is actually contained in the subspace

H0(OY2(L2 +mD)⊗OY2(−mx1 −mx2 − · · · −mxs)) ,

where OY2(−xj) is the ideal sheaf of the point xj and OY2(−mxj) is the mth symmetric product
of OY2(−xj) for j = 1, 2, . . . , s. That is,

γ2 ∈ H0

(
OY2

(
L2 +mD −m

∑
xj

))
.

This is easy to see after we resolve the double points of X by blowing it up along Y2. In
summary, the restriction of H0(L + mY1) to Y lies in the kernel, denoted by H0(Y,L + mY1),
of the map

H0(OY1(L1 −mD))⊕H0(OY2(L2 +mD −m
∑
xj))

H0(OD(L2 +mD −m
∑
xj)) H0(OD(L1 −mD))

sending (γ1, γ2) to γ1 − γ2. We summarise the above discussion in the following theorem.

Theorem 2.5. Let π : X → B = SpecC[[t]] be a flat proper family of surfaces whose generic
fibre Xη is a K3 surface and whose central fibre X0 = Y = Y1 ∪ Y2 is the union of two smooth
rational surfaces Yi meeting transversely along a smooth anti-canonical curve D in Yi for i = 1, 2.
Suppose that X is smooth outside of the s distinct points x1, x2, . . . , xs ∈ D satisfying (2.0.6).
Let L ∈ Pic(X ), let f : C → Y be a stable map of genus g, and let m be a non-negative integer
satisfying

h0(Xη,L ) = h0(Y,L +mY1) ,

D 6⊂ Γ = f∗C ∈ PH0(Y,L +mY1)

and (2.0.7)–(2.0.9). Then after a finite base change, there exists a family of stable maps
φ : C /B → X /B such that φ0 = f and φ∗Cη is an integral curve of geometric genus g in
|L | on Xη.
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If fG◦ν : Ĝ→ Yi is an immersion for the normalisation ν : Ĝ→ G of every component G ⊂ C,
that is,

T
Ĝ

f∗GTYi
(fG◦ν)∗

is injective for every irreducible component G ⊂ C ,

fG = f |G : G→ Yiand normalisation ν : Ĝ→ G ,

(2.0.10)

then φη : Cη →Xη is an immersion.

If in addition to (2.0.7)–(2.0.10), we assume that f∗Ci has normal crossings on Yi\D for
Ci = f−1(Yi) and i = 1, 2, f(p1) 6= f(p2) for all p1 6= p2 ∈ C× and f(G1) and f(G2) meet
transversely at x1, x2, . . . , xs on Yi for all pairs of distinct components Gj with f(Gj) ⊂ Yi, then
φ∗Cη is nodal.

3. Nodal rational curves on generic K3 surfaces

In this section, we use degenerations of type II of K3 surfaces as considered in the previous
section to construct nodal rational curves on generic surfaces inside moduli spaces of Λ-polarised
K3 surfaces, generalising a result of the first-named author [Che99] to the higher-rank case
(cf. [KLV21] for similar type II degenerations from higher-rank lattices).

Theorem 3.1. Let Λ be a lattice of rank 2 with intersection matrix[
2d a
a 2b

]
(3.0.1)

for some a, b ∈ Z and d ∈ Z+ satisfying 4bd−a2 < 0. Let MΛ be the moduli space of Λ-polarised
complex K3 surfaces and L ∈ Λ such that L is big and nef on a general K3 surface X ∈ MΛ.
Then there exists an open and dense subset U ⊆ MΛ (with respect to the Zariski topology),
depending on L, such that on every K3 surface X ∈ U , the complete linear series |L| contains
an integral nodal rational curve if one of the following holds:

A1. The determinant det(Λ) is even.

A2. We have L = L1 + L2 + L3 for some Li ∈ Λ satisfying LLi > 0 and L2
i > 0 for i = 1, 2, 3.

A3. We have L = L1 + L2 for some Li ∈ Λ satisfying LLi > 0 for i = 1, 2, L2
1 > 0, L2

2 = −2,
L1 6∈ 2Λ, L1 − L2 6∈ nΛ for all n ∈ Z and n > 2, and L2

1 + 2L1L2 > 18.

Remark 3.2. Every even lattice of signature (1, 1) (the signature is dictated by the Hodge index
theorem) is of the form (3.0.1). For some special lattices of rank 2, namely where a is even and
b = 0, the above is due to Lewis and the first-named author [CL13].

Of course, the existence of rational curves on general K3 surfaces of Picard rank 2 implies the
same on general K3 surfaces of Picard rank 1. More precisely, Theorem 3.1 implies the existence
of nodal rational curves in |nL| on a general K3 surface with Picard lattice

[
2d
]

for all n ∈ Z+.
This is due to the first-named author when d > 2; see [Che99]. Theorem 3.1 also resolves the
case d = 1 in Picard rank 1.

Case A3 is a technical extension required for the main theorem of [CGL19] so can be ignored
by the casual reader.

3.1 The proof of Theorem 3.1

We prove the theorem in three steps:
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(1) First, we embed a rank 2 K3 lattice (3.0.1) into that of a K3 surface with many (−2)-curves:
When det(Λ) is even, that is, a is even in (3.0.1), we embed Λ into a lattice with intersection
matrix 

2
−2

−2
. . .

−2


(r+1)×(r+1)

(3.1.1)

for some r 6 6. When det(Λ) is odd, that is, a is odd in (3.0.1), we embed Λ into a lattice
with intersection matrix 

0 1
1 −2

−2
. . .

−2


(r+1)×(r+1)

(3.1.2)

for some r 6 4. The existence of the embedding is itself a purely arithmetic problem. How-
ever, for our purposes, we also require the embedding to have the additional property that
the image of a “designated” ample divisor L remains (at least) big and nef, that is, preserves
a given polarisation. This introduces some extra complexity.

(2) Second, we use the degeneration of K3 surfaces in Section 2 to show the existence of nodal
rational curves in almost all big and nef linear systems on a general K3 surface with Picard
lattice (3.1.1) or (3.1.2).

(3) Third and finally, we deform a K3 surface X0 with Picard lattice (3.1.1) or (3.1.2) to K3
surfaces Xη with Picard lattice (3.0.1) such that a nodal rational curve on X0 deforms to
a nodal rational curve on Xη.

In summary, our argument involves two degenerations: the degeneration of K3 surfaces of
Picard rank 2 to K3 surfaces with Picard lattices (3.1.1) or (3.1.2) and the degeneration of the
latter to unions of rational surfaces.

In order to embed the lattice (3.0.1) to (3.1.1) or (3.1.2), we will make use of the classical
result of Lagrange that every non-negative integer can be written as the square sum of four
integers and that of Legendre that every non-negative integer not of the form 4a(8b+ 7) can be
written as the square sum of three integers. However, in order to obtain a primitive embedding,
as we will see, we require these integers to be coprime. This is not possible in general, but we
can choose these integers such that their greatest common divisor is a power of 2, a fact not in
the standard formulation of these two theorems but implied by Dirichlet’s proof of Legendre’s
theorem. So let us restate their theorems as follows.
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Theorem (Lagrange–Legendre–Dirichlet). Every positive integer n not of the form 4a(8b + 7)
for any a, b ∈ N1 can be written as

n = m2
1 +m2

2 +m2
3 (3.1.3)

for some m1,m2,m3 ∈ N with gcd(m1,m2,m3) = 2l, where l ∈ N satisfies 4l | n and 4l+1 - n. As
a consequence, every positive integer n can be written as

n = m2
1 +m2

2 +m2
3 +m2

4

for some m1,m2,m3,m4 ∈ N with gcd(m1,m2,m3,m4) = 2l, where l ∈ N satisfies 22l+1 | n and
22l+3 - n. Furthermore, every positive integer can be written as the square sum of five coprime
integers.

Dirichlet’s proof of Legendre’s 3-square. Let us outline Dirichlet’s proof. It is enough to prove
(3.1.3) for n ≡ 1, 2, 3, 5, 6 (mod 8). The key is to find a ternary quadratic form

F (x, y, z) =
[
x y z

]
A

xy
z


such that A is a 3× 3 positive definite symmetric integral matrix with det(A) = 1 and F (x, y, z)
= n has an integral solution (x0, y0, z0). If we can find such an A, then there exists a matrix
P ∈ SL3(Z) such that A = P TP , and hencem1

m2

m3

 = P

x0

y0

z0

 (3.1.4)

is a solution of (3.1.3) with gcd(m1,m2,m3) = gcd(x0, y0, z0). It turns out that we can choose

A =

a11 a12 1
a12 a22 0
1 0 n


with integers aij satisfying

a11 > 0 , d = a11a22 − a2
12 > 0 and a22 = dn− 1 . (3.1.5)

The corresponding F (x, y, z) = n has an obvious solution (x, y, z) = (0, 0, 1). So the mi given
by (3.1.4) are coprime, as required.

To find aij satisfying (3.1.5), we use the quadratic reciprocity law and Dirichlet’s theorem on
arithmetic progressions. We will skip this part of the proof.

We start with the embedding of the lattice (3.0.1) into (3.1.1) when det(Λ) is even. In the
following, by a primitive lattice embedding, we mean an injective lattice homomorphism with
torsion-free cokernel.

Lemma 3.3. For every even lattice Λ of rank 2, even determinant and signature (1, 1), there
exists a positive integer r 6 6 such that Λ can be primitively embedded into a lattice Σr with
intersection matrix (3.1.1).

1We use N for the set of non-negative integers.
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Proof. Such a lattice Λ has intersection matrix[
2a 2m
2m 2b

]
(3.1.6)

for some integers a, b, m satisfying m2 > ab. We claim that there exists a basis of Λ such that
a > 0, m > 0 and b < 0 in (3.1.6). It is easy to make a > 0 and m > 0. If b < 0, we are done.
Otherwise, let us consider all bases of Λ whose intersection matrix (3.1.6) satisfies a > 0, m > 0
and b > 0. Let us choose a basis {F1, F2} among these bases that minimises the trace 2(a+ b) of
the matrix (3.1.6). Without loss of generality, let us assume that b > a > 0. Since m2 > ab, we
have m > a = F 2

1 . Then the intersection matrix of {F1, F2 − F1} is[
2a 2(m− a)

2(m− a) 2a+ 2b− 4m

]
with b > a + b − 2m. By our choice of {F1, F2}, we must have 2a + 2b − 4m < 0, which proves
our claim.

Let us assume that Λ is generated by F1 and F2 such that

F 2
1 = 2a > 0 , F1F2 = 2m > 0 and F 2

2 = 2b < 0 .

When 2 - a, we let

σ(F1) =
a+ 1

2
(A− E6) + E6 , σ(F2) = m(A− E6)−

5∑
i=1

miEi

with −b =
∑5

i=1m
2
i and gcd(m1,m2,m3,m4,m5) = 1 be the embedding σ : Λ ↪→ Σ6, where

A,E1, E2, . . . , Er are the generators of Σr with intersection matrix (3.1.1).

When 2 | a, we let

σ(F1) =
a+ 2

2
(A− E6)− E1 + E6 , σ(F2) = (m+m1)(A− E6)−

5∑
i=1

miEi

with −b =
∑5

i=1m
2
i and gcd(m1,m2,m3,m4,m5) = 1.

Remark 3.4. A K3 surface X with Picard lattice (3.1.1) can be realised as a double cover ϕ : X →
S, where S is a del Pezzo surface of degree 9−r and ϕ is ramified along a general curve in |−2KS |.

We have the pullback map ϕ∗ : Pic(S) ∼−→ Pic(X) on the Picard groups such that (ϕ∗L)2 =
2L2 for all L ∈ Pic(S). Therefore, ϕ∗ induces an isomorphism of nef cones of S and X. Recall
that the effective cone of curves on S is generated by (−1)-curves for 2 6 r 6 8. Correspondingly,
the effective cone of curves on X is generated by (−2)-curves. It is also useful to us that there
are lattice automorphisms σi1i2i3 of Pic(X) given by

σi1i2i3(A) = 2A− Ei1 − Ei2 − Ei3 ,
σi1i2i3(Ei1) = A− Ei2 − Ei3 ,
σi1i2i3(Ei2) = A− Ei3 − Ei1 ,
σi1i2i3(Ei3) = A− Ei1 − Ei2 ,
σi1i2i3(Ei) = Ei when i 6= i1, i2, i3

for 1 6 i1 < i2 < i3 6 r. These are induced by the Cremona (or quadratic) transformations
of Pic(S). Together with the symmetric group acting on {Ei}, the σi1i2i3 generate the subgroup

Aut(Pic(X))+ ⊂ Aut(Pic(X))
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that preserves the nef cone of X. The action of Aut(Pic(X))+ on the set of (−2)-curves on X is
transitive for 2 6 r 6 8.

Although it is possible to construct many rational curves on X using this double cover
[BHT11], it is very hard to construct rational curves of every ample class in this way. Namely,
we cannot prove Theorem 3.1 in its full generality along this line of argument.

Remark 3.5. The bound r 6 6 in Lemma 3.3 is optimal. For example, in the case 8 | a, b = 0
and 4 | m in (3.1.6), a primitive embedding σ : Λ ↪→ Σr must be of the form

σ(F1) = mr(A− Er) +mEr −
r−1∑
i=1

miEi , σ(F2) = A− Er

with 2mmr − m2 − a =
∑r−1

i=1 m
2
i and gcd(m1,m2, . . . ,mr−1) = 1 after composing σ with an

action of Aut(Σr). Since 8 |
(
m2 + 2mmr − a

)
, we have the inequality gcd(m1,m2, . . . ,mr−1)

6= 1 if r 6 5. So we need r = 6.

On the other hand, there are situations when we can embed Λ into Σ5. For example, when
8 - b, we can always write −b as the square sum of four coprime integers. So the construction in
the proof works for r = 5 when 8 - b.

Next, let us embed the lattice (3.0.1) into (3.1.2) when det(Λ) is odd.

Lemma 3.6. Every even lattice Λ of rank 2, odd determinant and signature (1, 1) can be primi-
tively embedded into a lattice Σr with intersection matrix (3.1.2) for some r 6 4.

Proof. As in the proof of Lemma 3.3, we can find a basis {F1, F2} of Λ such that

F 2
1 = 2a > 0 , F1F2 = m > 0 and F 2

2 = 2b < 0

for some integers a, b, m with 2 - m. We can always find an m1 ∈ Z+ such that (m−bm1)m1 > a
and (m− bm1)m1 − a is not in the form of 4α(8β + 7) for any α, β ∈ N. Then we let

σ(F1) = (m− bm1)A+m1(A+ E1)−
4∑
i=2

miEi , σ(F2) = bA+ (A+ E1)

with (m − bm1)m1 − a =
∑4

i=2m
2
i and gcd(m2,m3,m4) = 2l, where A,E1, E2, . . . , Er are the

generators of Σr with intersection matrix (3.1.2).

Remark 3.7. Let X be a K3 surface with Picard lattice (3.1.2). We claim that the effective cone
of X is generated by the (−2)-curves

Ei and Pj = A− Ej for 1 6 i 6 r and 2 6 j 6 r (3.1.7)

and L = dA+m1E1 −
∑r

i=2miEi is nef if and only if LEi > 0 and LPj > 0 or, equivalently,

d > 2m1 > 4mj > 0 for 2 6 j 6 r (3.1.8)

when 2 6 r 6 5.

Clearly, all curves in (3.1.7) are (−2)-curves, and the inequalities in (3.1.8) are necessary
for L = dA + m1E1 −

∑
miEi to be nef. On the other hand, (3.1.8) guarantees that L2 > 0.

Therefore, X does not contain (−2)-curves other than those in (3.1.7), and the inequalities
in (3.1.8) are also sufficient for L to be nef.

Neither of Lemmas 3.3 and 3.6 produces an embedding σ preserving a given polarisation L.
It turns out that we can always compose an existing σ : Λ ↪→ Σ with a lattice automorphism
α ∈ Aut(Σ) such that α ◦ σ(L) is big and nef.
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Lemma 3.8. Suppose that there exists a primitive embedding Λ ↪→ Σ between K3 Picard lat-
tices Λ and Σ. Then for each L ∈ Λ with L2 > 0, there is a primitive embedding σ : Λ ↪→ Σ such
that σ(L) is big and nef on X, when Σ is identified with the Picard lattice of a projective K3
surface X. Moreover, fixing another class C ∈ Λ, we can choose σ such that σ(NL − C) is big
and nef on X for N sufficiently large.

Proof. Fixing an ample divisor D on X, we consider all primitive embeddings σ : Λ ↪→ Σ satisfy-
ing σ(L).D > 0. We choose σ among these embeddings such that σ(L).D achieves the minimum.
So σ(L) is pseudo-effective. By the Zariski decomposition, we can write

σ(L) = P +N ,

where P is a nef Q-divisor, N is a Q-effective divisor whose components have negative self-
intersection matrix and PN = 0. If σ(L) is nef, that is, σ(L) = P , we are done. Otherwise, there
exists an integral curve R ⊂ X such that σ(L).R < 0. Then R ⊂ supp(N) is a (−2)-curve on X.

We let α : Σ→ Σ be the group homomorphism given by

α(F ) = F + (F.R)R

for F ∈ Σ. Note that α2 = id and (α(F ))2 = F 2 for all F ∈ Σ. So α is a lattice automorphism.

Let σ̂ = α ◦ σ. Since σ̂(L).P = P 2 > 0 and L2 > 0, the divisor σ̂(L) is big and hence
σ̂(L).D > 0. On the other hand, since σ(L).R < 0,

σ̂(L).D = σ(L).D + (σ(L).R)RD < σ(L).D ,

which contradicts our hypothesis that σ minimises σ(L).D. So σ(L) = P is big and nef.

Let E = σ(C), and let R1, R2, . . . , Rl be the integral curves on X such that PRi = 0 for
i = 1, 2, . . . , l. Let us consider the set

Π =
{
ξ : Λ ↪→ Σ primitive embedding

∣∣ ξ(L) = P and

ξ(C) = E +m1R1 +m2R2 + · · ·+mlRl for some mi ∈ Z
}
.

Since R1, R2, . . . , Rl have negative definite self-intersection, there are only finitely many (m1,m2,
. . . ,ml) ∈ Zl satisfying

(E +m1R1 +m2R2 + · · ·+mlRl)
2 = E2 .

Therefore, there exists a ξ ∈ Π maximising ξ(C).D. We claim that ξ(C).Ri 6 0. Otherwise,
suppose that ξ(C).R > 0 for some R = Ri. Then ξ̂ = α ◦ ξ ∈ Π and

ξ̂(C).D = ξ(C).D + (ξ(C).R)RD > ξ(C).D ,

which contradicts our choice of ξ. Therefore, ξ(C).R > 0 for all integral curves R with PR = 0.
Replacing σ with ξ, we see that σ(NL− C) is big and nef for N sufficiently large.

Now we have embedded the lattice (3.0.1) into (3.1.1) or (3.1.2). Next, we want to prove the
existence of nodal rational curves on K3 surfaces with Picard lattices (3.1.1) and (3.1.2). Here
we use the type II degeneration of K3 surfaces introduced in Section 2. It turns out that in order
to produce rational curves on a general K3 surface, we need to construct rational curves on a log
K3 surface with some tangency conditions. More precisely, we want to find rational curves on a
del Pezzo surface satisfying some tangency conditions with a fixed anti-canonical curve.

Definition 3.9. For a Cartier divisor A on a projective surface X, we use the notation VA,g to
denote the Severi variety of integral curves of geometric genus g in |A|. For a curve D ⊂ X and
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a zero cycle α = m1p1 +m2p2 + · · ·+mlpl ∈ Z0(D), we use the notation VA,g,D,α to denote the
subvariety of VA,g consisting of integral curves C ∈ |A| of genus g with the properties that C
meets D properly and that there exist qi ∈ ν−1(pi) and ni > mi such that q1, q2, . . . , ql are distinct
and ν∗D = niqi when ν is restricted to the open neighbourhoods of pi and qi for i = 1, 2, . . . , l,
where ν : Ĉ → X is the normalisation of C, m1,m2, . . . ,ml ∈ N and p1, p2, . . . , pl are points on D
such that D is locally Cartier at each pi.

The variety VA,g,D,m1p1+m2p2+···+mlpl parametrises the curves of fixed tangencies with D. We
can also define the subvariety of VA,g of curves of moving tangencies with D by letting some of
the pi move. For example, with p1, p2, . . . , ps moving, these curves are parametrised by⋃

(p1,p2,...,ps)∈(Ds)∗

VA,g,D,m1p1+m2p2+···+mlpl ,

where (Ds)∗ is the open set of Ds = D×s of points pi 6= pj for 1 6 i < j 6 l. In the following, we
write A > B or B 6 A if A−B is effective.

Theorem 3.10. Let X be a smooth projective complex rational surface containing a smooth
anti-canonical curve D ∈ |−KX |. Let A1, A2, . . . , An be divisors on X such that

• AiD > 1 and A1D > 2,

• (A1 +A2 + · · ·+Aj)Aj+1 > 1 and

• VAi,0 6= ∅

for i = 1, 2, . . . , n and j = 1, . . . , n − 1. Then for A = A1 + A2 + · · · + An, all distinct points
p1, p2, . . . , pl on D satisfying

there does not exist an integral curve B ⊂ X such that A > B and

B ∩D ⊂ {p1, p2, . . . , pl}
(3.1.9)

and all m1,m2, . . . ,ml ∈ N satisfying m =
∑
mi 6 AD − 1, there exists an effective divisor G

on X such that DG = 0 and

VA−G,0,D,m1p1+m2p2+···+mlpl 6= ∅ .

Moreover, for V = VA−G,0,D,m1p1+m2p2+···+mlpl and a general member C in V , the following
hold:

(1) We have dimV = AD −m− 1.

(2) If m 6 AD − 2, the normalisation ν : Ĉ → X of C induces an injection ν∗ : T
Ĉ
→ ν∗TX ,

and (CD)pi = mi for i = 1, 2, . . . , l.

(3) If m = AD − 1, item (2) holds for p1 ∈ D general.

(4) If m 6 AD − 3, the curve C meets a fixed reduced curve F ⊂ X transversely outside of
{p1, p2, . . . , pl}.

(5) If m = AD − 3 + s for some s ∈ N, item (4) holds for p1, p2, . . . , ps ∈ D general and
m1,m2, . . . ,ms ∈ Z+.

(6) If m 6 AD − 4, all singularities of C are of type C[[x, y]]/(xa − ya), that is, ordinary.

(7) If m = AD − 4 + s for some s ∈ N, item (6) holds for p1, p2, . . . , ps ∈ D general and
m1,m2, . . . ,ms ∈ Z+.

(8) If m 6 AD − 5, the curve C is nodal.
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(9) If m = AD − 5 + s for some s ∈ N, item (8) holds for p1, p2, . . . , ps ∈ D general and
m1,m2, . . . ,ms ∈ Z+.

Proof. By the standard deformation theory of curves on surfaces [HM98, § 3.B], the variety VAi,0

has the expected dimension AiD−1. Since dimVA1,0 = A1D−1 > 1, a general member C1 ∈ VA1,0

meets a fixed reduced curve F ⊂ X transversely (see, for example, [Ded20, Theorem 1.4.1]). In
particular, for a fixed C2 ∈ VA2,0, the curve C2 meets the normalisation of C1 transversely. Let
us consider C = C1 ∪ C2 and the stable map ν : Cν → X that normalises all singularities of
C except one point among C1 ∩ C2. The deformation space of the genus 0 stable map ν has
dimension at least

−KX(C1 + C2) + dimX − 3 = D(A1 +A2)− 1 ,

which is simply the virtual dimension of the moduli space of rational stable maps to X. We give
a quick proof of this fact in this case for lack of a precise reference. Suppose that Cν = Cν1 ∪Cν2 ,
where the Cνi are the normalisations of the Ci. Let p = Cν1 ∩ Cν2 , and let φ : Cν → X × P1

be the morphism whose restrictions to Cνi are the maps ν × φi, where the φi : C
ν
i → P1 are

isomorphisms satisfying φ1(p) = φ2(p). For a general choice of φ1 and φ2, the morphism φ is a
closed embedding. So the deformation space of φ is the same as the embedded deformation space
of Γ = φ(Cν) in X × P1. Since Γ is a local complete intersection in X × P1, its normal sheaf is
locally free and its deformation space in X × P1 has dimension at least

h0
((
IΓ/I

2
Γ

)∨)− h1
((
IΓ/I

2
Γ

)∨)
= −KX×P1 .Γ = −KX(C1 + C2) + 4 ,

where IΓ is the ideal sheaf of Γ in X × P1 and the first equality comes from adjunction and the
Riemann–Roch theorem. Among these deformations, those with πX ◦ φ constant have dimen-
sion 5, where πX : X × P1 → X is the projection to X. So we arrive at the above lower bound
for dim Def(ν).

On the other hand, we have

dimVA1,0 + dimVA2,0 = (A1 +A2)D − 2 .

Hence C deforms to an integral rational curve in |A1 +A2|. Consequently, VA1+A2,0 is non-empty
of the expected dimension dimVA1+A2,0 = (A1 +A2)D− 1. We may continue to apply the same
argument to C12 ∪ C3, where C12 is a general member of VA1+A2,0 and C3 ∈ VA3,0. Eventually,
we conclude that VA,0 is non-empty of the expected dimension AD − 1.

Next let us prove VA−G,0,D,m1p1+m2p2+···+mlpl 6= ∅ by induction on m. There is nothing to do
when m = 0. Suppose that

V = VA−G,0,D,m1p1+m2p2+···+mlpl 6= ∅

for some m 6 AD − 2. It suffices to show that

VA−G−G′,0,D,(m1+1)p1+m2p2+···+mlpl 6= ∅ (3.1.10)

for some G′ > 0 and DG′ = 0.

Note that V has the expected dimension AD−m− 1. Let V be the closure of V in |A−G|.
Let g : Γ ↪→ V be an integral projective curve passing through a general point of VA−G,0,D,mp.
After a finite base change, there exists a family f : C → X of stable maps of genus 0 over Γ such
that f∗Cb = g(b) for every point b ∈ Γ. We may also choose f such that f−1(D) is a union of
sections over Γ and some “vertical” components. That is,

f∗D = m1P1 +m2P2 + · · ·+mlPl + n1Q1 + n2Q2 + · · ·+ naQa +W ,
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where the Pi and Qj are sections of π : C → Γ, f(Pi) = pi and π∗W = 0. Since all components
of Cb are rational and D is a smooth elliptic curve, f∗W = 0.

On the other hand, every connected component of f−1(D) must dominate D. Since f∗P1 = 0,
the section P1 must lie on the same connected component as some Qj . Therefore, there exists
a W ′ ⊂ W such that P1 ∪W ′ ∪Qj is connected. So P1 and Qj are joined by a chain of compo-
nents contained in f−1(p1) ∩ Cb for some point b ∈ Γ. In an open neighbourhood U ⊂ Cb of the
connected component of f−1(p1) ∩ Cb containing P1 ∩ Cb, we have

(f∗U.D)p1 > m1 + 1 .

Let us write

f∗Cb = µ1C1 + µ2C2 + · · ·+ µrCr +G′ , (3.1.11)

where G′ is supported on the components of f∗Cb that are disjoint from D and the Cj are the
components satisfying Cj ∈ VCj ,0,D,αj for effective 0-cycles αj on D satisfying

suppαj ⊂ {p1, p2, . . . , pl} and
r∑
j=1

µjαj > (m1 + 1)p1 +m2p2 + · · ·+mlpl .

Due to our choice of p1, p2, . . . , pl in (3.1.9), the points p1, p2, . . . , pl cannot be the only intersec-
tions between Cj and D. Therefore, degαj 6 CjD − 1.

Since Γ is an arbitrary curve in V passing through a general point of V , the above argument
shows that there is a codimension 1 subvariety Z of V parametrising the curves (3.1.11):

Z =

{
µ1C1 + µ2C2 + · · ·+ µrCr +G′ ∈ V : DG′ = 0,

Cj ∈ VCj ,0,D,αj , degαj 6 CjD − 1 for j = 1, 2, . . . , r,
r∑
j=1

µjαj > (m1 + 1)p1 +m2p2 + · · ·+mlpl

}
,

dimZ = dimV − 1 = AD −m− 2 .

Since degαj 6 CjD−1, we obtain dimVCj ,0,D,αj 6 CjD−degαj−1. There are at most countably
many rational curves that are disjoint from D, so G′ is rigid. Therefore,

AD −m− 2 = dimZ 6
r∑
j=1

dimVCj ,0,D,αj

6
r∑
j=1

µj dimVCj ,0,D,αj =
r∑
j=1

µj(CjD − degαj − 1)

= AD −
r∑
j=1

µj degαj −
r∑
j=1

µj 6 AD −m− 1−
r∑
j=1

µj .

Then we must have
∑
µj = 1. That is,

∑
µjCj contains only one component C = C1 with

multiplicity one. Clearly,

C ∈ VA−G−G′,0,D,(m1+1)p1+m2p2+···+mlpl ,

and (3.1.10) follows. Once we have VA−G,0,D,m1p1+m2p2+···+mlpl 6= ∅, all the other statements
follow from the standard deformation theory of curves on surfaces [HM98, § 3.B].
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Corollary 3.11. Let X be a complex del Pezzo surface and D ∈ |−KX | be a smooth anti-
canonical curve on X. Then for all big and nef divisors A on X, all points p1, p2, . . . , pl ∈ D
satisfying (3.1.9) and all m1,m2, . . . ,ml ∈ N satisfying m =

∑
mi 6 AD − 1,

VA,0,D,m1p1+m2p2+···+mlpl 6= ∅ .

Proof. By Theorem 3.10, it suffices to show that VA,0 6= ∅. Note that D is ample and there does
not exist a G > 0 with G 6= 0 and DG = 0.

It should be a well-known fact that every big and nef complete linear series on a del Pezzo
surface contains an integral rational curve, but we include a simple argument proving this. It
suffices to write A = A1 + A2 + · · · + An such that AiD > 1, A1D > 2 and VAi,0 6= ∅ as in
Theorem 3.10.

We may assume that A is ample. Otherwise, we simply blow down the (−1)-curves disjoint
from A to obtain f : X → Y . Then f∗A is ample on Y and A = f∗(f∗A).

Let Λ, E1, E2, . . . , Er be the effective divisors generating Pic(X) with Λ2 = 1, ΛEi = 0 and
E2
i = −1 for i = 1, 2, . . . , r. When r = 0, we have A = dΛ for some d ∈ Z+ with ΛD = 3 and

VΛ,0 6= ∅, obviously. So VA,0 6= ∅. When r = 1, we have A = dΛ +m(Λ−E1) for some d,m ∈ Z+

with VΛ,0 6= ∅ and VΛ−E1,0 6= ∅. So VA,0 6= ∅. When r > 2, the effective cone of curves of X is
generated by (−1)-curves on X. Therefore, there exists an m ∈ Z+ such that A −mD = G is
nef while A− (m+ 1)D is not. It is not hard to see that VD,0 6= ∅.

If G2 > 0, then by our choice of m, we have GR = 0 for some (−1)-curve R. We can blow
down the (−1)-curves disjoint from G to obtain an f : X → Y such that f∗G is ample and
G = f∗(f∗G). So by induction on rank Pic(X), we conclude that VG,0 6= ∅. Obviously, GD > 2
by the Hodge index theorem. Therefore, VA,0 6= ∅.

If G 6= 0 and G2 = 0, then G = aF for some indivisible F ∈ Pic(X) with F base-point-free
and F 2 = 0. It is not hard to see that VF,0 6= ∅ and FD = 2. Therefore, VA,0 6= ∅.

If G = 0 and D2 > 2, we can again derive VA,0 6= ∅ from VD,0 6= ∅. So the only case left is
that A = mD and D2 = 1, that is, r = 8 and A = −mKX for some m > 2. In this case, we can
write

2D =

(
3Λ− 2E1 −

7∑
i=2

Ei

)
︸ ︷︷ ︸

R1

+

(
3Λ−

7∑
i=2

Ei − 2E8

)
︸ ︷︷ ︸

R2

,

where R1 and R2 are (−1)-curves with R1R2 = 3. By deforming the union R1 ∪R2, we conclude
that V2D,0 6= ∅. Thus, VA,0 6= ∅.

The appearance of the effective divisor G in Theorem 3.10, which we will call a (−2)-tail,
is quite inconvenient for us. In the case that X is a del Pezzo surface, we automatically have
G = 0 due to the ampleness of −KX . However, we also need to apply the theorem to the case
that −KX is big and nef. Namely, we need to work with singular del Pezzo surfaces. In this
case, every connected component of G, if non-zero, is supported on a tree of smooth (−2)-curves.
Fortunately, the following proposition guarantees that (−2)-tails do not appear in the flat limits
of integral rational curves.

Proposition 3.12. Let X be a smooth proper family of surfaces over B = SpecC[[t]] and
f : C /B →X /B be a family of stable maps over B such that

• the geometric generic fibre C η of C /B is connected and smooth, and f maps C birationally
onto its image;
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• the image of the central fibre of C0 of C /B under f is

f∗C0 = C0 +m1C1 +m2C2 + · · ·+mrCr ,

where mi ∈ N, C1, C2, . . . , Cr are smooth rational curves satisfying C2
i 6 −2 and C1 +C2 +

· · ·+Cr has simple normal crossings and C0 is a (possibly reducible and non-reduced) curve
meeting C1 + C2 + · · ·+ Cr transversely on X = X0;

• each curve Ci deforms in the family X /B for i = 0, 1, . . . , r;

• C0 − f−1(C1 ∪ C2 ∪ · · · ∪ Cr) and C0 have the same arithmetic genus.

Then m1 = m2 = · · · = mr = 0.

Proof. Let M = C0− f−1(C1 ∪C2 ∪ · · · ∪Cr). The fact that M and C0 have the same arithmetic
genus is equivalent to the fact that every connected component T of f−1(C1 ∪ C2 ∪ · · · ∪ Cr) is
a tree of smooth rational curves and TM = 1.

Suppose that at least one of the mi is positive. We will construct a (possibly infinite) sequence
Γ0,Γ1, . . . ,Γn, . . . such that

• Γ0 = M and each Γi is either M or an irreducible component of C0 dominating one of
C1, C2, . . . , Cr;

• for each i ∈ N, we have Γi 6= Γi+1, and there exist a point p ∈ C1 ∪ C2 ∪ · · · ∪ Cr and a
connected component Ti of f−1(p) satisfying Ti ∩ Γi 6= ∅ and Ti ∩ Γi+1 6= ∅;

• Ti 6= Ti+1 for all i ∈ N;

• the sequence terminates at n > 2 if and only if Γn = M .

Once we have such a sequence, we must have Γi = Γj for some j − i > 2. Then it is easy
to see that the dual graph of C0 contains a path G1G2 . . . Gm such that G1, G2, . . . , Gm are
distinct components of C0 for some m > 2, Gi ⊂ C0 −M for 1 < i < m, Gj ∩ Gj+1 6= ∅ for
j = 1, 2, . . . ,m−1 and either G1G2 . . . Gm is a circuit, or G1 and Gm are two distinct components
of M . Either way, this contradicts the hypothesis that M and C0 have the same arithmetic genus.
So it suffices to produce the sequence {Γi} with the above properties.

Let C = Ca for some 1 6 a 6 r. Let X [1] be the blowup of X along C. The central fibre

of X
[1]

0 of X [1] over B is the union of the proper transform of X, which we still denote by X, and
the exceptional divisor R1 meeting transversely along X ∩R1 = D1. One of the key hypotheses
is that C deforms in the family X /B. So the normal bundle of C in X splits as

NC/X = NX/X

∣∣∣
C
⊕NC/X = OC ⊕OC(−na) ,

where C2 = C2
a = −na 6 −2. Consequently, R1

∼= Fna for na > 2. And since D2
1 = na on R1, the

divisor R1 contains a section D2 over C with D2
2 = −na and D1 ∩D2 = ∅.

We continue to blow up X [1] along D2 to obtain X [2]. Then the central fibre X
[2]

0 of X [2]/B
is the union X∪R1∪R2, where X is the proper transform of X ⊂X , the divisor R1 is the proper
transform of R1 ⊂ X [1], and R2 is the exceptional divisor, X and R1 meet transversely along
D1 = X ∩ R1, the divisors R1 and R2 meet transversely along D2 = R1 ∩ R2 and X ∩ R2 = ∅.
Here we again abuse the notation by using X,Ri, Dj for the subvarieties of all X [k]. Again, we
have R2

∼= Fna and a section D3 of R2/C with D2
3 = −na on R2 and D2 ∩ D3 = ∅. We may

continue to blow up X [2] along D3 to obtain X [3]. So we have a sequence of blowups

X = X [0] X [1] X [2] · · · X [l] , (3.1.12)
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where X
[l]

0 = X ∪R1 ∪R2 ∪ · · · ∪Rl, such that

• X is the proper transform of X = X0;

• Ri ∼= Fna for i = 1, 2, . . . , l;

• Ri ∩Rj = ∅ for 0 6 i < j − 1 6 l − 1 and R0 = X;

• Ri−1 and Ri meet transversely along Di = Ri−1 ∩Ri and D2
i = −na on Ri−1 and D2

i = na
on Ri for i = 1, 2, . . . , l.

Over a general point q ∈ C, the map f : C0 → X is finite and unramified onto its image if
C ⊂ f(C ). Therefore, the proper transform of f(C ) under X [l] → X does not contain Di for
i = 1, 2, . . . , l. And since f(C ) is irreducible and C0 6= C, for l large enough, the proper transform
of f(C ) does not contain Dl+1 either, where Dl+1 is the section of Rl/C with D2

l+1 = −na. Let

us choose l with this property and also lift f : C → X to a family f̂ : C → X [l] of stable maps
with the diagram

Ĉ X [l]

C X

f̂

ϕ

f

after a base change.

For every component Γ of C0 that dominates C via f , our choice of l implies that f̂
(
Γ̂
)

lies

in Ri for some 1 6 i 6 l and Di, Di+1 6⊂ f̂
(
Γ̂
)
, where Γ̂ ⊂ Ĉ0 is the proper transform of Γ

under ϕ. Let us define two things using f̂ :

(1) We define a partial order among the components of C0 that dominates C via f . Let Γ and Γ′

be two components of C0 dominating C. Let Γ̂ and Γ̂′ ⊂ Ĉ0 be their proper transforms
under ϕ. Suppose that f̂

(
Γ̂
)
⊂ Ri and f̂

(
Γ̂′
)
⊂ Rj for some 1 6 i, j 6 l. We say that Γ ≺ Γ′

or Γ′ � Γ if i < j and Γ ⊀ Γ′ or Γ′ � Γ if i > j.

(2) Let Γ be a component of C0 that dominates C via f and Γ̂ ⊂ Ĉ0 be its proper transform.
Suppose that f̂

(
Γ̂
)
⊂ Ri for some 1 6 i 6 l. We define ξΓ to be the effective 0-cycle on Γ

given by

ξΓ = ϕ∗
((
f̂∗Ri−1

)
.Γ̂
)
.

Note that f̂
(
Γ̂
)

is an integral curve on Ri ∼= Fna meeting Di−1 and Di properly. Therefore,
we have

deg ξΓ =
(
f̂∗Γ̂
)
.Ri−1 > na degΓ(f) > 2 degΓ(f) , (3.1.13)

where degΓ(f) is the degree of the map f : Γ→ C.

One of our basic tools is the following observation:

(∗) Let V ⊂X [l] be an étale/analytic/formal open neighbourhood of a point p ∈ Di =
Ri−1 ∩Ri for some 1 6 i 6 l such that

V ∼= C[[x, y, z, t]]/
(
xy − tm

)
.

Let U ⊂ Ĉ be a connected component of f̂−1(V ). We write

U0 = Wi−1 +Wi

with f̂(Wi−1) ⊂ Ri−1 and f̂(Wi) ⊂ Ri. Then

f̂∗Wi−1.Ri = f̂∗Wi.Ri−1 .
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We will construct the sequence {Γi} inductively such that for each i ∈ Z+, either Γi = M ,
or Γi dominates some Ca via f and

supp(ξΓi) 6⊂ Ti−1 . (3.1.14)

We have Γ0 = M . Let us first find Γ1. Since C0 is connected, there exist a point p ∈ C0∩Ca for
some 1 6 a 6 r, a connected component T0 of f−1(p) and a component Γ1 of C0 dominating Ca
such that T0 ∩ Γ0 6= ∅ and T0 ∩ Γ1 6= ∅. Since C0 meets Ca transversely at p, we must have

vq(ξΓ1) = 1

by (∗), where q = T0 ∩ Γ1 and vq(ξΓ1) is the multiplicity of q in the 0-cycle ξΓ1 . By (3.1.13), the
support supp(ξΓ1) contains at least another point q′ 6= q. So (3.1.14) holds for i = 1. We have
found Γ1 with the required property.

Suppose that we have found Γi. If Γi = M , the sequence terminates and we are done. Suppose
that Γi dominates Ca for some 1 6 a 6 r. By (3.1.14), there is a point q ∈ supp(ξΓi) such that
q 6∈ Ti−1. Let Ti be the connected component of f−1(f(q)) such that q = Ti ∩Γi. There are three
cases:

(1) We have M ∩ Ti 6= ∅. In this case, we simply let Γi+1 = M .

(2) There is a component Γ of C0 dominating Ca such that Γ∩ Ti 6= ∅ and Γ ≺ Γi. Then we let
Γi+1 = Γ since we have supp(ξΓ) 6⊂ Ti by (∗).

(3) Cases (1) and (2) both fail. By (∗), there must be a component G of C0 dominating Cb for
some 1 6 b 6= a 6 r such that G ∩ Ti 6= ∅. This case requires more effort.

Now let us deal with case (3). Since cases (1) and (2) both fail, M ∩ Ti = ∅ and for all
components Γ 6= Γi of C0 dominating Ca and satisfying Γ ∩ Ti 6= ∅, we have Γ ⊀ Γi.

Let P be the union of the components Γ of C0 dominating Ca and satisfying Γ∩ Ti 6= ∅, and
let Q be the union of the components G of C0 dominating Cb and satisfying G∩Ti 6= ∅. We let U
be an étale open neighbourhood of Ti in C and let fU be the restriction of f to U . Then by (∗),
we have

degP (fU ) 6 degQ(fU ) , (3.1.15)

where degP (fU ) and degQ(fU ) are the degrees of the maps

f : P ∩ U → Ca ∩ f(U) and f : Q ∩ U → Cb ∩ f(U) ,

respectively. We claim that there exists at least one component G ⊂ Q such that

supp(ξG) 6⊂ Ti . (3.1.16)

Otherwise, suppose that supp(ξG) ⊂ Ti for all components G ⊂ Q. And since G and Ti meet at
a unique point s, this implies that supp(ξG) consists of the single point s, the map f : G → Cb
is totally ramified at s and

vs(ξG) = deg ξG > 2 degG(f) (3.1.17)

by (3.1.13).

Then by (3.1.17) and by applying (∗) to the blowup sequence (3.1.12) over C = Cb, we
conclude that

degP (fU ) =
∑
G⊂Q
s=G∩Ti

vs(ξG) > 2 degQ(f) = 2 degQ(fU ) , (3.1.18)
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where degQ(f) = degQ(fU ) since the map f : G → Cb is totally ramified at G ∩ Ti for all
components G ⊂ Q. Clearly, (3.1.15) and (3.1.18) contradict each other. This proves (3.1.16) for
some component G ⊂ Q. So it suffices to take Γi+1 = G.

Corollary 3.13. Under the hypotheses of Theorem 3.10, we further assume that DP > 0 for
all nef and effective divisors P 6⊃ D. Then Theorem 3.10 holds for G = 0.

Proof. Let Σ be the union of all rational curves R ⊂ X such that DR = 0. We claim that Σ is
a union of smooth rational curves with negative definite self-intersection matrix.

Suppose that R1, R2, . . . , Rn ⊂ Σ are rational curves whose self-intersection matrix is not
negative definite. We may choose {R1, R2, . . . , Rn} such that every proper subset of {R1, R2, . . . ,
Rn} has negative definite self-intersection matrix. Since the self-intersection matrix of {R1, R2,
. . . , Rn} is not negative definite, we can find c1, c2, . . . , cn ∈ Z not all zero such that (c1R1 +
c2R2 + · · · + cnRn)2 > 0. We may choose ci such that at least one of the ci is positive. Let us
write

c1R1 + c2R2 + · · ·+ cnRn =
∑
ci>0

ciRi︸ ︷︷ ︸
A

−
∑
ci60

(−ci)Ri︸ ︷︷ ︸
B

.

We claim that B = 0; otherwise, A2 < 0, B2 < 0 and AB > 0 by our hypothesis on Ri and hence
(A − B)2 < 0. Therefore, B = 0 and c1, c2, . . . , cn > 0. In other words, there exists an effective
divisor A =

∑
ciRi supported on R1 + R2 + · · · + Rn such that A2 > 0. Let us choose A such

that B2 < 0 for all 0 < B < A. Clearly, A is nef; otherwise, ARi 6 −1 for some i and then

(A−Ri)2 = A2 − 2ARi +R2
i > A2 + 2− 2 = A2 > 0 .

So A is nef and hence DA > 0, which gives a contradiction.

In conclusion, all subsets {R1, R2, . . . , Rn} ⊂ Σ have negative definite self-intersection matri-
ces. This actually implies that Σ is a union of finitely many smooth rational (−2)-curves with
simple normal crossings.

In the proof of Theorem 3.10, the support of G′ in (3.1.11) is contained in Σ. Hence G′ = 0
by Proposition 3.12. Thus, Theorem 3.10 holds for G = 0.

Theorem 3.14. For a general complex K3 surface X with Picard lattice (3.1.1), r 6 8 and a big
and nef divisor L on X, there exists an integral rational curve C ∈ |L| such that the normalisation
ν : Ĉ → X of C induces an injection ν∗ : T

Ĉ
→ ν∗TX . In addition, if r 6 6, then C can be chosen

to be nodal.

Proof. We consider a type II degeneration Y = Y1 ∪ Y2, where the Yi are two del Pezzo surfaces
whose Picard groups are generated by effective divisors Ai, Ei1, Ei2, . . . , Eir with intersection
matrix 

1
−1

−1
. . .

−1


(r+1)×(r+1)

for i = 1, 2 and Y1 and Y2 meet transversely along a smooth anti-canonical curve D = Y1 ∩ Y2.
Let ıi : D ↪→ Yi be the inclusion. We further require

ı∗1(A1) = ı∗2(A2) and ı∗1E1j = ı∗2E2j (3.1.19)
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in Pic(D) for j = 1, 2, . . . , r.

For a general choice of such a Y , the relations from (3.1.19) are the only relations among
ı∗iAi and ı∗iEij in Pic(D). If these are satisfied, then Pic(Y ) is freely generated by A and Ej ,
for j = 1, 2, . . . , r, whose restrictions to Yi are Ai and Eij , respectively. By Theorem (2.3), the
surface Y can be deformed to a K3 surface with Picard lattice (3.1.1). Clearly, the Ej deform to
disjoint (−2)-curves, and A deforms to a big and nef divisor orthogonal to Ej correspondingly.

Let π : X → SpecC[[t]] be such a family with X0 = Y . Now we use A,E1, E2, . . . , Er to
denote the effective divisors on X whose restrictions to Yi are Ai, Ei1, Ei2, . . . , Eir, respectively,
for i = 1, 2. Meanwhile, the big and nef divisor L on the generic fibre Xη extends to a divisor,
which we still denote by L, on X . We let Li be the restriction of L to Yi for i = 1, 2.

Clearly, the 3-fold X has 18− 2r rational double points x1, x2, . . . , x18−2r on D satisfying

OD(x1 + x2 + · · ·+ x18−2r) = ND/Y1 ⊗ND/Y2

= OD(−KY1)⊗OD(−KY2)

= OD(6A− 2E1 − 2E2 − · · · − 2Er) ,

(3.1.20)

which is the only relation among x1, x2, . . . , x18−2r for a general choice of X .

To find a rational curve in |L| on the generic fibre Xη of X , it suffices to locate a “limiting
rational curve” Γ in |L| on X0.

Suppose that LD > 2. By Corollary 3.11, we have VLi,0,D,mp 6= ∅ for p ∈ D general and
m = LD − 1. And since x1 is a general point on D, we can find rational curves Γi ∈ |Li| for
i = 1, 2 such that Γi.D = x1 + mp on Yi, that Γi is smooth at p and that the normalisation
ν : Γ̂i → Yi of Γi induces an injection ν∗ : T

Γ̂i
→ ν∗TYi ; that is, ν is an immersion.

By Theorem 2.5, the union Γ = Γ1∪Γ2 can be deformed to a rational curve Cη on the generic

fibre Xη of X after a finite base change. The normalisation ν : Ĉη →Xη of Cη is an immersion
since the same holds for Γi, the point x1 ∈ Γ1 ∩Γ2 deforms to a node, and the point p ∈ Γ1 ∩Γ2

deforms to m− 1 nodes of Cη.

If LD = 1, this only happens when r = 8 and Li = −KYi = D. For a general del Pezzo
surface Yi of degree 1, there exists a nodal rational curve Γi in |−KYi | that meets D transversely
at a unique point p. Then it is easy to see that Γ = Γ1 ∪ Γ2 can be deformed to a nodal rational
curve Cη on the generic fibre Xη.

Suppose that r 6 6. By the Hodge index theorem, LD > 3.

If LD 6 4, it is easy to see that (KYi + Li)Li 6 0. Namely, the arithmetic genus of Li is at
most 1. Then a general member of VLi,0 must be nodal since its normalisation is an immersion. So
there is a nodal rational curve in |Li| passing through the a = LD−1 general points x1, x2, . . . , xa
on D. Thus, we may find Γ = Γ1 ∪ Γ2 such that Γi are nodal rational curves in |Li| satisfying

Γi.D = x1 + x2 + · · ·+ xa + p

on Yi for i = 1, 2. Then Γ = Γ1 ∪Γ2 can be deformed to a nodal rational curve Cη on the generic
fibre Xη.

If LD > 5, then by Theorem 3.10 and Corollary 3.11, we have VLi,0,D,mp 6= ∅, and a general
member of VLi,0,D,mp is nodal for m = LD − 4 and a general point p ∈ D. And since x1, x2, x3,
x4 are four general points on D by (3.1.20), we can find nodal rational curves Γi ∈ VLi,0,D,mp

such that

Γi.D = x1 + x2 + x3 + x4 +mp
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on Yi for i = 1, 2. Then Γ = Γ1 ∪Γ2 can be deformed to a nodal rational curve Cη on the generic
fibre Xη.

Theorem 3.15. Let X be a general complex K3 surface with Picard lattice (3.1.2) generated by
effective divisors A,E1, E2, . . . , Er for r 6 5, and let L be a big and nef divisor on X satisfying{

LA > 3 ,

LE5 6 2 if r = 5 .
(3.1.21)

Then there exists an integral nodal rational curve Γ ∈ |L|. Moreover, there exist integral nodal
rational curves P and Q in |A| and |4A+ 2E1−E2− · · ·−Er|, respectively, such that Γ +P +Q
has normal crossings on X.

Proof. By the description of the nef cone of X (see Remark 3.7) and (3.1.21), we have

L = dA+m1E1 −m2E2 − · · · −mrEr for d,m,mi ∈ N,
d > 2m1 > 4 max

26i6r
mi, and m1 > 3 ,

m5 6 1 if r = 5 .

(3.1.22)

We let Y1 be a smooth projective rational surface with Picard lattice

0 1
1 −2

−1
−1

. . .

−1


2r×2r

generated by effective divisors A1, B1, G1, G2, . . . , G2r−2 and let D be a smooth anti-canonical
curve on Y1. We further require

OD(A1) = OD(G1 +G2) = OD(G3 +G4) = · · · = OD(G2r−3 +G2r−2) .

Such a Y1 can be realised as the blowup of F2 at 2r − 2 points p1, p2, . . . , p2r−2 such that p2i−1

and p2i lie on the same fibre of F2 over P1 for i = 1, 2, . . . , r − 1.

We let Y2
∼= P1×P1 with Pic(Y2) generated by two rulings A2 and B2 and let D be a smooth

anti-canonical curve on Y2.

Let Y = Y1 ∪ Y2 be the union of Y1 and Y2 glued transversely along D satisfying

OD(ı∗1A1) = OD(ı∗2A2) ,

where ıi : D ↪→ Yi is the inclusion for i = 1, 2.

Note that such a Y = Y1∪Y2 is not projective. But we can deform it to a projective K3 surface
whose Picard lattice has rank r+2 and contains the lattice (3.1.2) as a primitive sublattice. That
is, there exists a flat and proper (but non-projective) family π : X → SpecC[[t]] of surfaces such
that X0 = Y and the generic fibre Xη of X is a K3 surface whose Picard lattice has rank r+ 2
and contains (3.1.2) as a primitive sublattice. This follows from Theorem 2.4.

There are effective divisors A,E1, E2, . . . , Er on X such that

OY1(A) = OY1(A1) , OY2(A) = OY2(A2) ,

OY1(E1) = OY1(B1) , OY2(E1) = OY2 ,
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OY1(Ei) = OY1(G2i−3 +G2i−2) , OY2(Ei) = OY2(A2) for i = 2, . . . , r .

The 3-fold X has 18− 2r rational double points x1, x2, . . . , x18−2r on D satisfying

OD(x1 + x2 + · · ·+ x18−2r) = ND/Y1 ⊗ND/Y2

= OD(−KY1)⊗OD(−KY2)

= OD((7− r)A)⊗OD(2B2) ,

which is the only relation among x1, x2, . . . , x18−2r for a general choice of X .

Let L be the divisor on X defined by (3.1.22). As before, to prove the existence of rational
curves in |L| on the generic fibre Xη, it suffices to find a limiting rational curve in |L| on X0 = Y .
However, due to the fact that L is not big when restricted to Y2, we cannot construct such a curve
in |L| on Y . To overcome this, we need to work with the “twisted” linear series |L+ Y1| on X .

As explained in Section 2, the group H0(Y,L+ Y1) is the kernel of the map

H0(OY1(L1 −D))⊕H0(OY2(L2 +D −
∑
xj))

H0(OD(L2 +D −
∑
xj)) H0(OD(L1 −D))

sending (γ1, γ2) to γ1 − γ2, where the Li are the restrictions of L to Yi for i = 1, 2 and are given
explicitly by

L1 = L|Y1 = dA1 +m1B1 −
r∑
j=2

mj(G2j−3 +G2j−2) ,

L2 = L|Y2 =

(
d−

r∑
j=2

mj

)
A2 .

By a direct computation, we see that h0(Xη, L) = h0(Y,L+Y1). So every (γ1, γ2) in H0(Y, L+
Y1) can be deformed to a section in H0(L) on the generic fibre Xη. It suffices to find a limiting
rational curve Γ ⊂ Y cut out by such γi.

Without loss of generality, let us assume that m2 > · · · > mr. Suppose that mi = 0 for i > a
and mi > 0 for i 6 a. We have

L1 −D = (d− 4)A1 + (m1 − 2)B1 −
r∑
j=2

(mj − 1)(G2j−3 +G2j−2)

= M +

r∑
j=a+1

(G2j−3 +G2j−2) ,

L2 +D = (d+ 2−
r∑
j=2

mj)A2 + 2B2

for M = (d− 4)A1 + (m1 − 2)B1 −
a∑
j=2

(mj − 1)(G2j−3 +G2j−2) .

467



X. Chen, F. Gounelas and C. Liedtke

Since d− 4 > 2(m1 − 2) > 4(m2 − 1) > · · · > 4(ma − 1) by (3.1.22), we can write

M = (ma − 1)

(
2A1 +B1 −

a∑
j=2

G2j−3

)
+ (ma − 1)

(
2A1 +B1 −

a∑
j=2

G2j−2

)

+
a−1∑
i=2

(mi −mi+1)

(
2A1 +B1 −

i∑
j=2

G2j−3

)
+

a−1∑
i=2

(mi −mi+1)

(
2A1 +B1 −

i∑
j=2

G2j−2

)
+ (m1 − 2m2)(2A1 +B1) + (d− 2m1)A1

(3.1.23)
and conclude that VM,0 6= ∅. Similarly, VL2+D−cA2,0 6= ∅ for all c 6 4. We let

λ = min(4,MD − 1) and m = MD − λ .

If MD 6 4, it is easy to see by (3.1.23) that the arithmetic genus of M is at most 1.
So a general member of VM,0 is nodal, and there exists a nodal rational curve in |M | passing
through λ general points on D. If MD > 5, by Corollary 3.13,

VM,0,D,mp 6= ∅ and VL2+D−4A2,0,D,mp 6= ∅

and general members of VM,0,D,mp and VL2+D−4A2,0,D,mp are nodal for p ∈ D general. So we may
find a Γ ⊂ Y such that

Γ = Γ1 ∪ Γ2 ∪ · · · ∪ Γλ ∪ Γλ+1 ∪ Γλ+2 ∪ Γλ+3 ,

where

Γ1,Γ2, . . . ,Γλ,Γλ+2 ⊂ Y2 , Γλ+1,Γλ+3 ⊂ Y1 ,

Γλ+1 ∈ VM,0,D,mp , Γ1,Γ2, . . . ,Γλ ∈ |A2| ,
Γλ+2 ∈ VL2+D−λA2,0,D,mp ,

Γλ+3 = G2a−1 ∪G2a−2 ∪ · · · ∪G2r−3 ∪G2r−2 ,

Γ1.D = x1 + y1 , Γ2.D = x2 + y2 , . . . , Γλ.D = xλ + yλ ,

Γλ+1.D = y1 + y2 + · · ·+ yλ +mp ,

Γλ+2.D = mp+ w1 + w2 + · · ·+ w2r−2a + xλ+1 + xλ+2 + · · ·+ x18−2r ,

Γλ+3.D = w1 + w2 + · · ·+ w2r−2a .

Here we choose Γλ+1 and Γλ+2 to be the general members of VM,0,D,mp and VL2+D−λA2,0,D,mp,
respectively. So they are nodal, as explained above, in both cases MD 6 4 and MD > 5.
Therefore,

• Γλ+1 + Γλ+3 and Γ1 + Γ2 + · · ·+ Γλ + Γλ+2 have normal crossings on Yi,

• Γλ+1 + Γλ+3 and Γ1 + Γ2 + · · ·+ Γλ + Γλ+2 meet D transversely outside of p on Yi, and

• Γλ+1 + Γλ+3 and Γ1 + Γ2 + · · · + Γλ + Γλ+2 have simple tangencies with D at p on Yi for
i = 1, 2.

By Theorem 2.5, we see that Γ can be deformed to a nodal rational curve in |L| on Xη. To
construct a nodal rational curve in |A|, we let

P = P1 ∪ P2 ,

where

P1 ⊂ Y1 , P2 ⊂ Y2 , P1 ∈ |A1| , P2 ∈ |A2| , P1.D = xλ+1 + q , P2.D = xλ+1 + q .
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Again by Theorem 2.5, we see that P can be deformed to a nodal rational curve in |A| on Xη.
To construct a nodal rational curve in |4A+ 2E1 − E2 − · · · − Er|, we let

Q = Q1 ∪Q2 ∪ · · · ∪Q6−r

where

Q1 ⊂ Y1 , Q2, . . . , Q6−r ⊂ Y2 ,

Q1 ∈ |4A1 + 2B1 −G1 − · · · −G2r−2| , Q2 ∈ |A2| ,
Q1.D = s2 + s3 + · · ·+ s6−r ,

Q2.D = xλ+2 + s2 , Q3.D = xλ+3 + s3 , . . . , Q6−r.D = xλ+6−r + s6−r ,

where Q1 is a nodal rational curve in |4A1 + 2B1−G1−· · ·−G2r−2| passing through the general
points s2, . . . , s6−r. Again by Theorem 2.5, we see that Q can be deformed to a nodal rational
curve in |4A+ 2E1 − E2 − · · · − Er| on Xη.

Also it is easy to check that Γ + P + Q has normal crossings on Y1 and Y2, and p 6∈ P ∪Q.
So its deformation on Xη has normal crossings as well.

Now we have produced nodal rational curves on K3 surfaces with Picard lattices (3.1.1)
and (3.1.2). Theorem 3.1 follows more or less easily.

Proof of Theorem 3.1 when det(Λ) is even. Let Y be a general K3 surface with Picard latti-
ce (3.1.1) for r = 6. By Lemma 3.3 and 3.8, we can find a primitive lattice embedding σ : Λ ↪→
Pic(Y ) such that σ(L) is big and nef on Y . Then there is a nodal rational curve C ∈ |σ(L)| by
Theorem 3.14.

There is a smooth proper family π : X → SpecC[[t]] of K3 surfaces such that X0 = Y , the
fibre Xη has Picard lattice Λ and L extends to a divisor L on X with L0 = σ(L). Then C can
be deformed to a nodal rational curve in |L | on the generic fibre Xη of X .

Proof of Theorem 3.1 when det(Λ) is odd. We are going to prove the theorem under hypothe-
sis A2 or A3. Let Y be a general K3 surface with Picard lattice (3.1.2) for some r 6 5. In both
cases A2 and A3, it suffices to find a primitive lattice embedding σ : Λ ↪→ Pic(Y ) such that σ(L)
is big and nef on Y and {

σ(L).A > 3 ,

σ(L).E5 6 2 if r = 5 ,
(3.1.24)

where A,E1, E2, . . . , Er are the effective generators of Pic(Y ) with intersection matrix (3.1.2).

Suppose that L satisfies condition A2. By Lemmas 3.6 and 3.8, there is a primitive lattice
embedding σ : Λ ↪→ Pic(Y ) for r = 4 such that σ(L) is big and nef on Y . In this case, we have
L = L1 + L2 + L3 such that LLi > 0 and L2

i > 0 for i = 1, 2, 3. Let us write

σ(L) = σ(L1) + σ(L2) + σ(L3) = M1 +M2 +M3 (3.1.25)

for Mi = σ(Li). We claim that MiA > 1 for all nef divisors A 6= 0 on Y .

Since σ(L) is nef and σ(L).Mi = LLi > 0, we have h2(Mi) = h0(−Mi) = 0. Therefore, by the
Riemann–Roch theorem,

h0(Mi) = h1(Mi) +
M2
i

2
+ 2 >

L2
i

2
+ 2 > 2 .
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Hence the linear system |Mi| has a non-zero moving part. Let Γ be an irreducible component of
the moving part of |Mi|. Then

MiA > ΓA > 0 .

If ΓA > 0, then MiA > 0 follows. Otherwise, ΓA = 0. And since both Γ and A are nef, A2 = 0
and Γ is numerically equivalent to aA for some a ∈ Q+ by the Hodge index theorem. This holds
for all components Γ of the moving part of |Mi|. So we have

Mi ≡ aA+ F ,

where F is the fixed part of |Mi|. If FA > 0, we again have MiA > 0. Otherwise, FA = 0; then

F 2 = a2A2 + 2aAF + F 2 = (aA+ F )2 = M2
i > 0 .

Since F is effective and F 2 > 0, we again have h0(F ) > 2 by the Riemann–Roch theorem. This
contradicts the fact that F is the fixed part of |Mi|.

In conclusion, MiA > 1 for all nef divisors A 6= 0 on X and i = 1, 2, 3. By (3.1.25), we have
σ(L).A > 3. This proves (3.1.24) for case A2.

Suppose that L satisfies condition A3. In this case, L = L1 + L2 which LLi > 0, L2
1 > 0,

L2
2 = −2, L1 6∈ 2Λ, L1 − L2 6∈ nΛ for all n ∈ Z and n > 2, and

L2
1 + 2L1L2 > 18⇔ a+ b > 9 , (3.1.26)

where we let L2
1 = 2a and L1L2 = b.

Let us first assume that Λ = ZL1 ⊕ ZL2. In this case, we will use the numerical condi-
tion (3.1.26) to explicitly construct a primitive embedding σ : Λ ↪→ Pic(Y ) for r = 5 such that
σ(L) is a big and nef divisor on Y satisfying (3.1.24).

When b ≡ 0 (mod 3), we let
σ(L1) =

a+ 9 + δ

3
A+ 3E1 −

δ+2∑
i=3

Ei for δ = 3 + 3
⌊a

3

⌋
− a ,

σ(L2) =
b

3
A− E2 .

When b ≡ 1 (mod 3), we let
σ(L1) =

a+ 13 + δ

3
A+ 3E1 − 2E2 −

δ+2∑
i=3

Ei for δ = 2 + 3

⌊
a+ 1

3

⌋
− a ,

σ(L2) =
b− 4

3
A+ E2 .

When b ≡ 2 (mod 3), we let
σ(L1) =

a+ 10 + δ

3
A+ 3E1 − E2 −

δ+2∑
i=3

Ei for δ = 2 + 3

⌊
a+ 1

3

⌋
− a ,

σ(L2) =
b− 2

3
A+ E2 .

It is easy to check that σ(L) = σ(L1 + L2) is big and nef divisor on Y satisfying (3.1.24).
This settles the case Λ = ZL1 ⊕ ZL2.

Now assume that

Λ 6= ZL1 ⊕ ZL2 . (3.1.27)

470



Rational curves on lattice-polarised K3 surfaces

Let σ : Λ ↪→ Pic(Y ) be a primitive lattice embedding for r = 4 such that σ(L) is big and nef
on Y . It suffices to prove that σ(L).A > 3. We write

σ(L) = σ(L1 + L2) = M1 +M2

for Mi = σ(Li). Since LL1 > 0 and L2
1 > 0, we have M1A > 1 by the same argument as before.

Since LL2 > 0 and L2
2 = −2, the divisor M2 is effective by the Riemann–Roch theorem. So

M2A > 0. If M1A+M2A > 3, then σ(L).A > 3 and we are done. Otherwise, we have three cases:

• M1A = 1 and M2A = 0;

• M1A = 2 and M2A = 0;

• M1A = M2A = 1.

We will show that none of these cases are possible.

Suppose that M1A = 1 and M2A = 0. Since M2 is effective, M2
2 = −2 and M2A = 0,

we necessarily have M2 = mA ± Ej for some 2 6 j 6 4. And since M1A = 1, it easy to
see that M1 and M2 generate a primitive sublattice of Pic(Y ). Then L1 and L2 generate Λ,
contradicting (3.1.27).

Suppose that M1A = 2 and M2A = 0. Again, we have M2 = mA±Ej . Then one of following
must hold:

(1) M1 and M2 generate a primitive sublattice of Pic(Y );

(2) M1 = 2D for some D ∈ Pic(Y ); or

(3) M1 −M2 = 2D for some D ∈ Pic(Y ).

As pointed out above, the first case is equivalent to Λ = ZL1 ⊕ ZL2, contradicting (3.1.27).
The second and third cases are equivalent to L1 ∈ 2Λ and L1 − L2 ∈ 2Λ, respectively, both
contradicting our hypotheses on Li.

Suppose that M1A = M2A = 1. Then

(1) either M1 and M2 generate a primitive sublattice of Pic(Y ), or

(2) M1 −M2 = nD for some D ∈ Pic(Y ), n ∈ Z and n > 2.

Again, the former contradicts (3.1.27) and the latter is equivalent to L1−L2 ∈ nΛ, contradicting
our hypotheses on Li. This finishes the argument for case A3.

In conclusion, we can find a primitive embedding σ : Λ ↪→ Pic(Y ) such that σ(L) satisfies the
hypotheses of Theorem 3.15. So there is a nodal rational curve C ∈ |σ(L)| on Y .

There is a smooth proper family π : X → SpecC[[t]] of K3 surfaces such that X0 = Y , that
Xη has Picard lattice Λ and that L extends to a divisor L on X with L0 = σ(L). Then C can
be deformed to a nodal rational curve in |L | on the generic fibre Xη of X .

3.2 Higher-rank lattices

It is natural to expect the above techniques to apply to various lattice of higher rank; for the
purposes of [CGL19], however, we will carry this out for the following two specific rank 4 lattices.

Theorem 3.16. Let Λ be one of the following lattices of rank 4:
2 −1 −1 −1
−1 −2 0 0
−1 0 −2 0
−1 0 0 −2

 , (3.2.1)
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12 −2 0 0
−2 −2 −1 0
0 −1 −2 −1
0 0 −1 −2

 . (3.2.2)

Then for a general K3 surface X with Pic(X) = Λ, there is an integral rational (respectively,
geometric genus 1) curve in |L| if L is a big and nef divisor L on X with the property that

L = L1 + L2 + L3 for some Li ∈ Λ satisfying that LLi > 0 and L2
i > 0 for i = 1, 2, 3 . (3.2.3)

Proof. We claim that there is a primitive embedding σ : Λ ↪→ Σr for Σr given by (3.1.2) and
r 6 5.

When Λ is (3.2.1), we let r = 4 and

σ(B) = 2A+ E1 ,

σ(C1) = −A+ E2 , σ(C2) = −A+ E3 , σ(C3) = −A+ E4 ,

where {B,C1, C2, C3} and {A,E1, . . . , Er} are the bases of Λ and Σr, respectively, with the
corresponding intersection matrices.

When Λ is (3.2.2), we let r = 5 and

σ(B) = 12A+ 6E1 − 4E2 − 3E3 − 2E4 − E5 ,

σ(C1) = A− E2 , σ(C2) = −E1 , σ(C3) = A− E3 .

This proves our claim. So there exists a flat proper family π : X → SpecC[[t]] of K3 surfaces
such that X0 is a general K3 surface with Picard lattice Σr, that Xη is a K3 surface with Picard
lattice Λ and that there is a divisor L on X with L0 = σ(L).

We may choose σ such that L0 = σ(L) is big and nef on X0. By the same argument as in
the proof of Theorem 3.1, we can show that

σ(Li).A > 1⇒ σ(L).A > 3⇔ L0A > 3

on X0 by (3.2.3).

When Λ is (3.2.1), we have r = 4. Then the existence of nodal rational curves in |L0| on X0

is directly given by Theorem 3.15. Therefore, there are integral rational (respectively, geometric
genus 1) curves in |L | on Xη.

When Λ is (3.2.2), we have r = 5. Theorem 3.15 only gives the existence of nodal rational
curves in |L0| if L0 additionally satisfies min26i65 L0Ei 6 2. So some extra work is needed.
Suppose that

L0 = dA+m1E1 −
5∑
i=2

miEi

for some d,mi ∈ Z. Without loss of generality, let us assume that m2 > m3 > m4 > m5. Since L0

is nef and L0A > 3, we have

d > 2m1 > 4m2 > 4m3 > 4m4 > 4m5 > 0 and m1 > 3 .

If m5 6 1, then there is a nodal rational curve in |L0| by Theorem 3.15, and we are done. Let
us assume that m5 > 2.
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We write

L0 = (d− 4m5 + 4)A+ (m1 − 2m5 + 2)E1 −
5∑
i=2

(mi −m5 + 1)Ei

+ (m5 − 1)

(
4A+ 2E1 −

5∑
i=2

Ei

)
= P + (m5 − 1)F

(3.2.4)

if m1 − 2m5 > 1 and

L0 = (d− 4m5)A+m5

(
4A+ 2E1 −

5∑
i=2

Ei

)
= (d− 4m5)A+m5F (3.2.5)

if m1 = 2m5, which implies m1 = 2m2 = 2m3 = 2m4 = 2m5.

Suppose that m1 − 2m5 > 1. That is, we have (3.2.4). Since P is big and nef and PA > 3,
there exists an integral rational (respectively, geometric genus 1) curve Γ ∈ |P | by Theorem 3.15.
There is also an integral nodal rational curve R ∈ |F | such that Γ and R meet transversely. As
F 2 = 0, the curve R has a unique node q. Let

Γ̂ ∪R1 ∪R2 ∪ · · · ∪Rm5−1 X0
f

be a stable map given as follows:

• f : Γ̂ → Γ and f : Ri → R are the normalisations of Γ and R, respectively, for i =
1, 2, . . . ,m5 − 1;

• Γ̂ and R1 meet at one point, Ri and Ri+1 meet at one point for i = 1, 2, . . . ,m5 − 2, and
there are no other intersections among Γ and Ri;

• f maps the point Γ̂ ∩R1 to one of the intersections in Γ ∩R, and it is a local isomorphism
at Γ̂ ∩R1 onto its image;

• f maps the point Ri ∩Ri+1 to the node q of R, and it is a local isomorphism at Ri ∩Ri+1

onto its image for i = 1, 2, . . . ,m5 − 2.

By a local isomorphism at Γ̂∩R1 and Ri ∩Ri+1, we mean that f maps an étale/analytic/formal
neighbourhood of the point on the curve isomorphically onto its image.

It is clear that f deforms in the expected dimension on X0. So it deforms to Xη. On the
other hand, the divisor class F does not deform in the family X over SpecC[[t]] since Xη is
not elliptic. Therefore, f extends to a family of stable maps to X over SpecC[[t]], still denoted
by f : C → X , such that Cη is smooth and f∗Cη is an integral rational (respectively, geometric
genus 1) curve on Xη. We are done.

Suppose that m1 = 2m5. That is, we have (3.2.5). There is a nodal rational curve D ∈ |A|
such that D and R meet transversely at two points. Clearly, D has a unique node p. Let

D1 ∪D2 ∪ · · · ∪Dd−4m5 ∪R1 ∪R2 ∪ · · · ∪Rm5 X0
f

be a stable map given as follows:

• f : Di → D and f : Rj → R are the normalisations of D and R, respectively, for i =
1, 2, . . . , d− 4m5 and j = 1, 2, . . . ,m5;

• Di and Di+1 meet at one point, Dd−4m5 and R1 meet at one point, Rj and Rj+1 meet at
one point for 1 6 i 6 d− 4m5 − 1 and 1 6 j 6 m5 − 1, and there are no other intersections
among Di and Rj ;
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• f maps the point Dd−4m5 ∩ R1 to one of the intersections in D ∩ R, and it is a local
isomorphism at Dd−4m5 ∩R1 onto its image;

• f maps the point Di ∩Di+1 to the node p of D, and it is a local isomorphism at Di ∩Di+1

onto its image for i = 1, 2, . . . , d− 4m5 − 1;

• f maps the point Rj ∩Rj+1 to the node q of R, and it is a local isomorphism at Rj ∩Rj+1

onto its image for j = 1, 2, . . . ,m5 − 1.

Again f deforms in the expected dimension on X0. So it deforms to Xη. On the other hand,
neither A nor F deforms in the family X over SpecC[[t]] since Xη is not elliptic. Therefore,
f extends to a family of stable maps to X over SpecC[[t]], still denoted by f : C → X , such
that Cη is smooth and f∗Cη is an integral rational curve on Xη.

To see that there is also an integral geometric genus 1 curve in |L | on Xη, we let s ∈ D ∩R
be the intersection such that s 6= f(Dd−4m5 ∩ R1). Obviously, there are points s′ ∈ Dd−4m5

and s′′ ∈ R1 such that f(s′) = f(s′′) = s. Therefore, f(Cη) has a singularity where it has two
branches. Then it is well known that f(Cη) can be deformed to an integral genus 1 curve on Xη

(see, for example, [CGL19, Lemma 6.5]) so we are done.

Acknowledgements

We thank D. Huybrechts, K. Ito, M. Kemeny, G. Martin and J. C. Ottem for discussions and
comments and in particular A. Knutsen for remarks and corrections.

References

BHT11 F. Bogomolov, B. Hassett and Y. Tschinkel, Constructing rational curves on K3 surfaces, Duke
Math. J. 157 (2011), no. 3, 535–550; doi:10.1215/00127094-1272930.

CGL19 X. Chen, F. Gounelas and C. Liedtke, Curves on K3 surfaces, Duke Math. Journal, to appear,
arXiv:1907.01207.

Che99 X. Chen, Rational curves on K3 surfaces, J. Algebraic Geom. 8 (1999), no. 2, 245–278.

CL13 X. Chen and J. D. Lewis, Density of rational curves on K3 surfaces, Math. Ann. 356 (2013),
no. 1, 331–354; doi:10.1007/s00208-012-0848-3.

CLM93 C. Ciliberto, A. Lopez and R. Miranda, Projective degenerations of K3 surfaces, Gaus-
sian maps, and Fano threefolds, Invent. Math. 114 (1993), no. 3, 641–667; doi:10.1007/

BF01232682.

Ded20 T. Dedieu, Geometry of logarithmic severi varieties at a general point, 2020, available at https:
//www.math.univ-toulouse.fr/~tdedieu/03-th-CH.pdf.

HM98 J. Harris and I. Morrison, Moduli of curves, Grad. Texts in Math., vol. 187 (Springer-Verlag,
New York, 1998); doi:10.1007/b98867.

Iit79 S. Iitaka, On logarithmic K3 surfaces, Osaka Math. J. 16 (1979), no. 3, 675–705.

KLV21 A. L. Knutsen, M. Lelli-Chiesa and A. Verra, Half Nikulin surfaces and moduli of Prym curves,
J. Inst. Math. Jussieu 20 (2021), no. 5, 1547–1584; doi:10.1017/S1474748019000574.

Kul77 V. S. Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Math. USSR Izv. 11 (1977),
957–989; doi:10.1070/IM1977v011n05ABEH001753.

Nik87 V. V. Nikulin, Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, Proc.
Intern. Congress of Math., Vols. 1, 2 (Berkeley, CA, 1986) (Amer. Math. Soc., Providence, RI,
1987), 654–671.

Per77 U. Persson, On degenerations of algebraic surfaces, Mem. Amer. Math. Soc. 11 (1977), no. 189;
doi:10.1090/memo/0189.

474

https://doi.org/10.1215/00127094-1272930
https://arxiv.org/abs/1907.01207
https://doi.org/10.1007/s00208-012-0848-3
https://doi.org/10.1007/BF01232682
https://doi.org/10.1007/BF01232682
https://www.math.univ-toulouse.fr/~tdedieu/03-th-CH.pdf
https://www.math.univ-toulouse.fr/~tdedieu/03-th-CH.pdf
https://doi.org/10.1007/b98867
https://doi.org/10.1017/S1474748019000574
https://doi.org/10.1070/IM1977v011n05ABEH001753
https://doi.org/10.1090/memo/0189


Rational curves on lattice-polarised K3 surfaces

PP81 U. Persson and H. Pinkham, Degeneration of surfaces with trivial canonical bundle, Ann. of
Math. 113 (1981), no. 1, 45–66; doi:10.2307/1971133.

Xi Chen xichen@math.ualberta.ca
632 Central Academic Building, University of Alberta, Edmonton, Alberta T6G 2G1, Canada

Frank Gounelas gounelas@mathematik.uni-goettingen.de
Georg-August-Universität Göttingen, Fakultät für Mathematik und Informatik, Bunsenstr. 3-5,
37073 Göttingen, Germany

Christian Liedtke liedtke@ma.tum.de
TU München, Zentrum Mathematik - M11, Boltzmannstr. 3, 85748 Garching bei München,
Germany

475

https://doi.org/10.2307/1971133
mailto:xichen@math.ualberta.ca
mailto:gounelas@mathematik.uni-goettingen.de
mailto:liedtke@ma.tum.de

	Introduction
	Degenerations of type II
	Nodal rational curves on generic K3 surfaces
	The proof of Theorem 3.1
	Higher-rank lattices

	References

