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Abstract: Assessing handling qualities is crucial for ensuring the safety and operational efficiency of
aircraft control characteristics. The growing interest in Urban Air Mobility (UAM) has increased the
focus on electric Vertical Takeoff and Landing (eVTOL) aircraft; however, a comprehensive assessment
of eVTOL handling qualities remains a challenge. This paper proposed a handling qualities frame-
work to assess eVTOL handling qualities, integrating pilot compensation, task performance, and
qualitative comments. An experiment was conducted, where eye-tracking data and subjective ratings
from 16 participants as they performed various Mission Task Elements (MTEs) in an eVTOL simulator
were analyzed. The relationship between pilot compensation and task workload was investigated
based on eye metrics. Data mining results revealed that pilots’ eye movement patterns and workload
perception change when performing Mission Task Elements (MTEs) that involve aircraft deficiencies.
Additionally, pupil size, pupil diameter, iris diameter, interpupillary distance, iris-to-pupil ratio, and
gaze entropy are found to be correlated with both handling qualities and task workload. Furthermore,
a handling qualities and pilot workload recognition model is developed based on Long-Short Term
Memory (LSTM), which is subsequently trained and evaluated with experimental data, achieving an
accuracy of 97%. A case study was conducted to validate the effectiveness of the proposed framework.
Overall, the proposed framework addresses the limitations of the existing Handling Qualities Rating
Method (HQRM), offering a more comprehensive approach to handling qualities assessment.

Keywords: eye metrics; handling qualities; eVTOL; urban air mobility; aircraft design; LSTM

1. Introduction

Urban Air Mobility (UAM) has garnered increasing interest due to urbanization trends,
where the electric Vertical Takeoff and Landing (eVTOL) plays a crucial role. Numerous
innovative eVTOL design concepts have emerged, such as wingless configurations, lift-and-
cruise models, and vectored thrust systems [1]. These diverse flight mechanics, coupled
with advanced flight control surfaces and state-of-the-art human–machine interfaces (HMI),
present significant challenges for the certification of eVTOL aircraft. In response, the Euro-
pean Union Aviation Safety Authority (EASA) has modified the Handling Qualities Rating
Method (HQRM) to better evaluate eVTOL [2]. Pilot satisfaction, workload, and safety
are regarded as important items during civil aircraft certification. The HQRM suggests
the Cooper–Harper Rating scale (CHR) to ensure the aircraft can be operated without
exceptional piloting skills, following a human-centered approach [3]. However, despite its
widespread adoption, the CHR has notable limitations. It is inherently subjective, influ-
enced by individual differences and self-assessment abilities, and continuous evaluation is
challenging as participants must pause to complete the rating scale [4]. Therefore, there
is a need to enhance the HQRM by developing methods that more objectively integrate
human factors.
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This study aims to investigate the potential of achieving results equivalent to subjective
assessments of handling qualities by exploring correlations between personal eye data
and subjective ratings, thus enabling a data-driven approach to validate and simplify
HQ assessment. Specifically, the proposed framework leverages eye metrics to assess
operators’ task workload and establish the relationship between precepted workload and
pilot compensation. By combining pilot compensation with flight performance data, the
framework offers an objective assessment of aircraft handling qualities. The contributions
of this work include the following:

• A database of eye movements at varying levels of handling qualities when operating
an eVTOL simulator;

• An analysis of the impact of perceived task workload on subjective handling qualities
ratings, supplemented by statistical data mining to reveal key indicators for handling
qualities assessment;

• A framework for assessing handling qualities objectively, supported by rigorous
analyses and offers novel insights into the use of eye tracking as a supplementary tool
for understanding handling qualities and pilot compensation.

2. Background
2.1. Handling Qualities Evaluation

Handling qualities refers to the controllability and maneuverability of an aircraft,
allowing pilots to perform specific tasks [3]. It is closely linked to the pilot’s perception
of how the aircraft handles during various maneuvers. Many studies have investigated
methods for evaluating handling qualities, as listed in Table 1.

Table 1. Summary of handling qualities assessment methods.

Method Examples Material Advantages Disadvantages

Subjective methods [5,6] CHR/Bedford
scale/NASA TLX

Human-centered
evaluation;

Easy to understand and
apply.

Relies on the pilot’s
subjective feelings;

difficult to quantify.

Flight model [7,8] Flight test/simulation
data

Adopting quantitative
indicators makes the
assessment objective.

Largely influenced by
model accuracy.

Ignore human factor.

Flight test [9,10] Flight test reports
Assessment results are

realistic and
comprehensive.

Costly and risky;
affected by pilots’

ability to fly and assess.

Pilot model [11,12] Motion data and
subjective report

Qualitative and
quantitative evaluation.

Influenced by pilot
subjectivity and

environmental factors.

According to EASA [2], no specific generally recognized method for handling qualities
evaluation exists, though CHR is commonly employed. CHR guides pilots in assessing
HQ through a series of questions (Figure 1). However, as a subjective method, CHR has
inherent limitations, particularly in the subjective interpretation of its two key discriminants:
“performance” and “pilot compensation” [13]. While “performance” can be quantified
using flight parameters, quantifying “pilot compensation” remains challenging [14,15]. To
overcome the limitations of CHR and enhance the comprehensiveness of handling qualities
assessment, supplementary approaches are necessary.
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Pilot compensation, as defined by [3], refers to the additional workload a pilot must
exert to enhance aircraft performance, whereas workload includes both the compensation
for aircraft deficiencies and the effort required to complete a given task [16]. Several studies
have explored the relationship between handling qualities and physiological measure-
ments. For example, Klyde et al. [4] attempted to involve electroencephalogram (EEG) and
electrocardiogram (ECG) data to assess physical workload and predict handling qualities;
Bachelder et al. utilized pilot neuromuscular feedback to estimate handling qualities [17];
Li et al. used EMG and eye data to investigate aircraft control interface deficiencies [18].
However, significant advancements in this field are challenging due to the complex in-
teractions between physiological feedbacks and handling qualities. Therefore, our study
aims to establish a method that can deal with the uncertainty and unstable interactions
between these data and ratings in a feasible way, thus enhancing the reliability of handling
qualities assessments.

2.2. Physiological Measurements in Aviation

Physiological metrics have been shown to provide valuable insights into an opera-
tor’s engagement, distraction, and workload across various tasks [19]. In our previous
research [20], electroencephalography (EEG) has been utilized to investigate pilots’ trust in
automated Urban Air Mobility (UAM), where excessive signal noise in EEG data posed
challenges. Additionally, ECG signals are highly susceptible to fluctuations in operators’
emotional and psychological states promoting us to explore other physiological indicators
that may be more responsive to compensation rather than overall task load.

Among these indicators, eye metrics are promising because they reflect compensatory
behaviors as they provide visual patterns that are directly related to operations and decision
making [21]. The application of eye metrics in the aviation industry is well established,
including measurements of fixation, visual search, pupil, saccades, and blink [22]. Numer-
ous studies have utilized eye-tracking data to assess pilot performance [23]. For instance,
ref. [24] employed areas of interest (AOIs) to measure pilots’ attention distribution during
flight, while ref. [25] added gaze, fixations, and the corresponding fixation hit maps. These
studies indicate that decreased situational awareness often correlates with deteriorating
visual search strategies. The pilot’s workload was investigated in [26]; selected eye metrics
include pupil dilation, saccadic, fixation, and saccades. Increased workload is generally
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associated with larger pupil dilation, shorter gaze duration, and fewer saccades. Fur-
thermore, pilots’ experience levels can be reflected in their eye gaze patterns and fixation
behavior [27]. Beyond performance assessments, eye metrics have also been applied to
aircraft design, particularly in enhancing aviation displays [28] and improving safety [29].
These studies have demonstrated strong correlations between eye metrics and factors such
as situational awareness, pressure, attention, and workload—all of which contribute to pilot
compensation. Therefore, this study aims to incorporate eye metrics into the assessment of
pilot compensation and handling qualities.

However, most existing studies utilizing eye-tracking data primarily rely on traditional
statistical analyses [30]. While such methods yield useful information like gaze position,
they often fall short in providing deeper insights into cognitive and behavioral processes.
Additionally, eye-tracking data are abundant and complex, requiring considerable effort to
analyze [31]. Its relationship with handling qualities is intricate and variable, potentially
leading to contradictory results. For instance, while pupil diameter typically decreases as
fatigue increases, individual differences and environmental factors can introduce conflicting
effects [32]. Consequently, it is crucial to develop an approach capable of capturing the deep
features of eye-tracking data in relation to handling qualities and revealing the underlying
interaction mechanisms. Rapid advancements in artificial intelligence (AI) present an
opportunity to address this challenge. Deep learning (DL) techniques, capable of handling
large datasets, modeling nonlinear relationships, and performing end-to-end learning, have
been increasingly applied in related studies [29]. For example, ref. [33] adopted various
methods including 1D convolutional neural networks (CNNs), Support Vector Machines
(SVMs), Random Forests (RFs), and AdaBoost (AB), to recognize eye-movement trajectories
in patients with neglect syndrome. Ref. [34] combined autoencoder neural networks with
SVMs to extract features from eye data and assess user preferences for humanoid robots.
Inspired by these promising results, this study utilizes DL techniques to assess handling
qualities levels and ratings.

3. Material and Methods
3.1. Handling Qualities Assessment Framework

The proposed handling qualities assessment framework consists of three key com-
ponents, as depicted in Figure 2. Pilot Compensation is the primary focus of this study. It
establishes a correlation between pilot compensation and task workload, facilitating an
objective assessment of pilot compensation using eye metrics through statistical data min-
ing and deep learning (DL) network modeling. Flight Performance is evaluated using flight
data, consistent with methodologies described in previous studies [4]. Lastly, Qualitative
Interviews offer descriptions of aircraft deficiencies and help explain discrepancies between
the results derived from eye metrics and subjective ratings.
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3.2. Dataset

The dataset comprises flight trajectory data, eye-tracking data from operators, and
their subjective ratings of handling qualities and task workload across nine Mission Task
Elements (MTEs).

3.2.1. Participants

The experiment involved 23 licensed pilots (commercial, helicopter, or private), all ex-
perienced in performing MTEs using the eVTOL simulator. All participants were informed
of the experimental protocols and signed the informed consent form. Data from two partic-
ipants who experienced simulator sickness and two others who voluntarily withdrew from
the experiment were excluded. Eye-tracking data from three participants were discarded
due to poor recording quality. Ultimately, usable data were obtained from 16 participants
(15 males, 1 female). The study protocol was approved by the Ethics Committee of the
Technical University of Munich.

3.2.2. Simulator Setup

The Institute of Flight System Dynamics at the Technical University of Munich
(TUM-FSD) has developed an eVTOL simulator based on Mixed Reality (MR) technology
and a motion platform [35], as shown in Figure 3. The eVTOL was designed based on the
concept of Simplified Vehicle Operation (SVO), relying on two joysticks to achieve unified
control, without throttle levers and rudder pedals in cockpit. More details about aircraft
configuration and control inceptor can be found in [36].
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The cockpit replica and motion system complied with the EASA standards, providing
a professional and realistic environment for research [37]. The development process of the
simulator is available in [35–38].

3.2.3. Mission Task Elements

Participants were required to perform a series of MTEs and assess the handling
qualities and task workload for each mission. MTEs are a set of standardized flight tasks
designed to test an aircraft’s response to pilot inputs, typically tailored to the specific
aircraft types, ensuring that the aircraft’s performance meets established standards [39].
Currently, there are no generally recognized MTEs for eVTOL. With reference to [40],
TUM-FSD proposed MTEs for eVTOL by analyzing tasks that cover nominal missions and
be served as certification candidates, as follows:

• Vertical step: From a stable hover at 10 feet, the eVTOL ascends to a reference altitude
(40–50 feet), stabilizes for at least 2 s, then descends back to hover at 10 feet;

• Acceleration/deceleration (Acc/Dec): Starting from a stable hover, participants rapidly
increase speed to 50 knots, then decelerate back to a hover, adjusting pitch to
maintain altitude;

• Sidestep: From a stable hover, the aircraft moves laterally to a set point, maintaining
constant altitude throughout the maneuver;

• Diagonal hover to stop (diagonal): The aircraft moves diagonally while maintaining
altitude, beginning from a stable hover with the longitudinal axis set at a 45◦ angle to
a reference line;
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• Slalom: Performs a series of smooth turns along the centerline of the test route at
500-ft intervals;

• Takeoff and transition (takeoff): The eVTOL takes off from a stable hover, climbs
vertically to 100 feet, accelerates, and transitions into wingborne mode while staying
above marked boundaries;

• Re-transition and landing (landing): From wingborne mode at 80 knots, the aircraft
decelerate to transition mode, following marked boundaries until coming to a hover
and landing;

• Hover turn: Execute a 180◦ turn from a stable hover at an altitude under 20 feet;
• Pirouette: The aircraft moves laterally around a 100-feet radius circle while keeping

the nose pointing toward the center and maintaining it at 10 feet.

Criteria for these MTEs include hover time, lateral and longitudinal position, altitude,
and heading. Detailed requirements for each MTE are provided in [41]. The virtual scene
from some participants when performing MTEs is shown in Figure 4, where participants
achieve the mission objectives by aligning green dots and lines within yellow regions.
Flight performance was evaluated by the flight trajectory recorded by X-plane. Flight
performance was classified as “desired” when the trajectory remained within the yellow
markers, “adequate” when within the red markers, and “uncontrollable” if it exceeded the
red markers at any point during the flight.
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3.2.4. Eye Data Collection

Eye-tracking data were collected using the Varjo XR3 headset, equipped with two eye-
tracking cameras that capture eye movements with a latency of approximately
20–30 ms. The headset supports an interpupillary distance (IPD) range of 58–72 mm
and features a gaze camera resolution of 640 × 400 pixels, with a gaze tracking frequency of
200 Hz [42]. The recorded data were processed using Varjo Base and output in .csv format.
The recorded indicators are listed in Appendix A.

In addition, other features associated with workload were computed, as shown in
Appendix B. Gaze entropy was calculated using the forward gaze coordinates (x f , y f )
and origin coordinates (xo, yo) output by the Varjo XR-3 system. Here, (x f , y f ) refers
to the eye position coordinates, while (xo, yo) represents the direction of the gaze vector.
Data gaps caused by blinks (defined as missing data for periods exceeding 100 ms) were
excluded from the analysis. The visual field was discretized into 2560 partitions based on
the resolution of the gaze camera, and Shannon’s entropy formula was applied to calculate
gaze entropy (G), followed by

G = −∑n
i=1 p(xi, yi)× log[p(xi, yi)]

where n is the total number of gaze points, p(xi, yi) is the proportion of the ith gaze point
in the (x,y) partition relative to the total gaze points.
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Autocorrelation function (ACF) values (ρk) were computed to measure the correlation
between gaze points at different time intervals, represented by the ratio of self-covariance
at a given lag time to the variance of entire time series. Gaze in the same visual field for
more than 100 ms was defined as fixations. In this study, fixations were represented by 0
and 1, where 1 indicated that the operator was gazing and the fixations duration was the
length of gaze, while 0 the reverse. Saccadic distance (S) was calculated by the distance
between two consecutive gaze points:

S =
2
√
(xi+1 − xi)

2 + (yi+1 − yi)
2

3.2.5. Subjective Measurements

Subjective ratings for task workload and handling qualities were based on the NASA
Raw Task Load Index (NASA-RTLX) and CHR respectively. NASA-RTLX is a simplified
version of the NASA Task Load Index (NASA-TLX), which directly averages the scores
across six dimensions rather than using comparisons to derive weighted scores [43]. This
simplified scale was used to reduce experimental complexity, and results were standardized
on a scale of 0 to 10 to represent participants’ overall workload perception, including the
effort to complete the task itself and compensate for aircraft deficiencies. For handling
qualities assessment, CHR was adopted, focusing on controllability, performance, and pilot
compensation [14]. The CHR scale used in this study is depicted in Figure 1. Participants
were also encouraged to comment on the aircraft qualitatively, including the unsatisfactory
designs and suggestions for improvements.

3.2.6. Experimental Procedures

The experimental procedures are illustrated in Figure 5. All participants first reviewed
and signed the informed consent form. After confirming the absence of simulator-induced
sickness or ophthalmic disorders, they were guided into the laboratory. Participants famil-
iarized themselves with the simulator and practiced the MTEs for approximately one hour.
After calibration for eye tracking, participants proceeded with the main experiment, where
MTEs were presented in random order. Immediately after each MTE, participants com-
pleted the NASA-RTLX and CHR. Considering that participants had already performed the
MTE several times in other experiments [35–38], each participant performed all MTEs once,
with a two-minute break between tasks. If a task attempt resulted in errors that exceeded
the preset safe operational threshold, the experiment was paused, and the participant was
required to retry the MTE until it was performed safely. After completing all MTEs, partici-
pants were ranked the MTEs based on perceived workload, allowing for the assessment of
overall subjective workload. MTEs ranked lowest and highest in workload were assigned
scores of 1 and 9, respectively.
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3.3. Data Mining

This study applied both statistical analysis methods and deep learning networks to
analyze and classify HQ and TW based on eye-tracking data.
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3.3.1. Statistical Analysis

To investigate the interaction and mutual influence of handling qualities and task
workload, correlation coefficients between subjective task workload and handling qual-
ities scores were calculated. Eye-tracking indicators were tested for normality using the
Anderson–Darling test. The Kruskal–Wallis one-way Analysis of Variance (ANOVA) and
Dunn’s post hoc test was applied to eye-tracking indicators to identify statistically sig-
nificant differences across various MTEs. In addition, a chi-square test was employed
to examine whether eye indicators correlate with handling qualities and task workload
levels. Spearman’s rank correlation analysis was conducted to explore the monotonic
relationship between eye metrics and subjective measurements of handling qualities and
task workload. Furthermore, gaze points were visualized to intuitively illustrate variations
in eye metrics across different MTEs [44], with heatmaps generated by overlaying data
from all participants to account for individual differences.

In addition to these traditional analyses, machine learning methods were employed to
identify key indictors related to handling qualities. Given that eye data are temporal and
high-dimensional, Random Forest (RF) was adopted to identify key indicators based on
their contribution to decision tree splits during the feature selection process.

3.3.2. Deep Learning Networks

Long Short-Term Memory (LSTM) is a neural network architecture designed to process
sequential data by capturing long-term dependencies in sequences [45]. It addresses the
problem of vanishing or exploding gradients through the use of gating mechanisms. The
Forget Gate determines which information from the previous cell state should be discarded,
while the Input Gate decides which new information to incorporate from the current input
and the hidden state of the previous time step. This is combined with the output of the
Forget Gate to update the cell state for the current time step. Finally, the Output Gate selects
what information to output from the current cell state as the hidden state for the current
time step. The structure of the LSTM cell is depicted in Figure 6.
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As outlined in Section 3.2.4, a total of 36 eye-tracking features were initially consid-
ered. To reduce model complexity and improve training efficiency, feature selection was
conducted based on data mining. Features deemed unimportant through both chi-square
test and RF importance analysis were removed, resulting in a final set of 30 input features,
as shown in Figure 7. The dataset was segmented into 1-second intervals to capture tem-
poral information. With a recording frequency of 200 Hz, the segmentation resulted in
31,820 samples with an input shape of (t, f ), where t represents timestamps (200) and f
indicates the number of feature (30).
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To identify the most responsive target variables, the proposed model adopted a
multi-label classification approach. Each label was predicted by its corresponding output
layers, with a specific number of neurons. The multi-label classification targets include
the following:

• Subjective Handling Qualities Score (HQS): the rated scores of CHR (9-classes);
• Subjective Handling Qualities Level (HQL): set CHR scores 1–3/4–6/7–9 as level

1/2/3 (3-classes);
• Subjective Task Workload Score (TWS): the standardized NASA-RTLX scores (9-classes);
• Subjective Task Workload Level (TWL): set NASA-RTLX scores 1–3/4–6/7–9 as level

1/2/3 (3-classes);
• Subjective Overall Workload Level (OWL): the ranking results at the end of the experi-

ment (3-classes);
• Pre-defined Handling Qualities Level (PHQL): the pre-defined HQ level according to

the task difficulty (3-classes).

The proposed model was built with three LSTM modules, each consisting of 64 units,
followed by a fully-connected layer of 128 neurons and 6 distinct output layers, as illustrated
in Figure 8. Model parameters were optimized using grid search, with a batch size of 64
and a learning rate of 0.001. Adam optimizer and binary cross-entropy loss function were
used. In addition, early stopping was implemented, whereby training was terminated if
there was no improvement in accuracy after 100 epochs. The model’s performance was
evaluated using 5-fold cross-validation, with metrics including accuracy (acc), recall (rec),
and precision (pre).
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4. Results
4.1. Subjective Measurements Results

Detailed subjective measurements are presented in Table 2. The results reveal that
participants generally rated landing, pirouette, and hover turn as inducing a higher workload
and worse handling qualities. Meanwhile, the ratings of pirouette and slalom varied among
individuals, emphasizing the importance of human factors in assessing handling qualities.
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Table 2. The subjective measurements from Cooper–Harper Rating scale and NASA-TLX.

ID 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 Ave Std

C
H

R

Vertical 2 4 1 1 2 1 3 2 1 2 2 2 1 1 1 2 1.75 0.86
Acc/dec 2 1 1 3 2 3 3 2 1 4 1 7 2 5 3 4 2.75 1.65
Sidestep 4 5 2 3 2 1 4 2 2 4 1 2 3 4 1 1 2.56 1.31
Diagonal 2 1 1 3 2 4 1 3 3 3 1 2 4 3 1 7 2.56 1.59

Slalom 4 6 2 2 1 1 1 4 1 2 1 1 6 8 2 3 2.81 2.20
Takeoff 3 1 4 3 2 2 1 2 1 3 1 1 7 2 4 4 2.56 1.63
Landing 5 5 4 6 2 3 1 5 2 8 5 2 8 8 2 2 4.25 2.38

Hover turn 4 7 4 5 6 3 4 5 4 8 4 1 8 7 5 5 5.00 1.86
Pirouette 2 4 1 2 5 1 4 5 4 3 4 4 5 6 1 7 3.63 1.82

N
A

SA
-TLX

Vertical 1 5 1 1 2 1 4 2 1 2 2 3 2 2 2 2 2.06 1.12
Acc/dec 2 4 2 1 3 3 1 3 1 3 4 5 1 1 2 2 2.38 1.26
Sidestep 3 4 2 3 1 1 2 4 2 3 3 1 3 3 4 3 2.63 1.02
Diagonal 4 3 3 2 2 2 1 5 2 6 3 3 3 6 3 5 3.31 1.49

Slalom 4 8 3 4 2 2 2 5 1 1 4 2 5 8 3 6 3.75 2.21
Takeoff 3 5 3 3 1 1 1 4 1 3 3 1 4 4 3 4 2.75 1.34
Landing 4 8 4 5 2 2 4 6 2 7 6 6 8 7 4 5 5.00 2.00

Hover turn 3 6 5 5 7 2 6 7 3 2 6 2 7 6 5 7 4.94 1.91
Pirouette 8 6 5 6 6 2 6 9 1 3 7 9 5 5 6 8 5.75 2.29

To explore the interaction and mutual influence of handling qualities and task work-
load, the correlation between subjective ratings of handling qualities and task workload
was studied by calculating the correlation coefficient and regression analysis, with results
shown in Table 3. Data marked in red indicate no correlation, and data marked in bold
represent a strong correlation.

Table 3. The correlation and regression analysis results for CHR scores and NASA-TLX scores.

ID 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 Ave

Correlation −0.03 0.66 0.45 0.44 0.94 0.52 0.55 0.88 0.60 0.41 0.82 0.58 0.90 0.68 0.06 0.59 0.60
Regression R-squared = 0.361, F-statistic = 80.22, p-value = 1.70−15

4.2. Eye Measurements
4.2.1. Statistical Differences

The Kruskal–Wallis ANOVA and Dunn’s post hoc test were performed to assess the
statistical differences in eye-tracking features among various MTEs. The ANOVA results
showed p-values below 0.05 for all features, indicating significant differences in eye metrics
across MTEs. Further intergroup variability was examined through Dunn’s test. It was
found that fixations and saccadic distance did not differ significantly between hover turn
and pirouette; left and right projected x, gaze projected to left and right view x showed no
statistical difference in diagonal and sidestep; and left eye openness did not vary statistically
between acc/dec and takeoff.

4.2.2. Associations with Handling Qualities

Table 4 shows the results of chi-square test, which determines if eye features have
significant associations with handling qualities and task workload. Features with p-values
less than 0.05 rejected the null hypothesis and their associations with handling qualities
and task workload were confirmed.
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Table 4. The results of the chi-square test between eye metrics and the target variables.

Feature
HQ TW

Feature
HQ TW

Score p Value Score p Value Score p Value Score p Value

Focus distance 2.94 × 104 0.00 1.63 × 104 0.00 Stability 1.85 × 104 0.00 1.99 × 104 0.00
Gaze forward x 1.53 × 102 1.04 × 10−29 4.95 × 102 7.52 × 10−33 Gaze forward y 1.14 × 103 4.25 × 10−242 1.70 × 103 8.34 × 10−285

Gaze projected to
left view y 5.19 × 102 7.53 × 10−108 7.65 × 102 5.79 × 10−160 Gaze projected

to left view x 5.45 × 101 1.90 × 10−11 2.14 × 102 7.86 × 10−42

Gaze projected to
right view y 5.19 × 102 7.53 × 10−108 7.65 × 102 5.79 × 10−160 Gaze projected

to right view x 6.79 × 101 3.96 × 10−12 2.10 × 102 5.88 × 10−41

Gaze forward z 5.92 × 102 1.20 × 10−123 4.16 × 102 8.37 × 10−85 Left forward x 2.34 × 102 5.69 × 10−47 4.34 × 102 9.65 × 10−89

Left forward y 1.48 × 103 0.00 1.48 × 103 0.00 Left forward z 1.54 × 102 7.38 × 10−30 6.63 × 101 2.69 × 10−11

Left origin x 5.20 × 10−1 9.99 × 10−1 3.99 × 10−2 1.00 Left pupil size 1.10 × 103 8.18 × 10−234 2.65 × 103 4.77 × 10−280

Left projected x 8.85 × 10−1 9.96 × 10−1 1.98 9.82 × 10−1 Left projected y 1.86 × 101 9.56 × 10−3 1.52 × 101 5.58 × 10−2

Right forward x 2.16 × 102 4.33 × 10−43 6.10 × 102 1.40 × 10−126 Right forward y 9.21 × 102 1.35 × 10−194 8.37 × 102 2.12 × 10−175

Right forward z 1.55 × 102 4.37 × 10−30 6.53 × 101 4.13 × 10−11 Right origin x 3.26 × 10−2 1.00 5.62 × 10−1 1.00

Right pupil size 1.25 × 103 1.15 × 10−266 2.95 × 103 0.00 Right projected
x 3.92 8.57 × 10−1 4.27 8.32 × 10−1

Right projected y 6.89 × 10−1 9.98 × 10−1 4.13 × 10−1 9.89 × 10−1 Interpupillary
distance 2.84 × 104 0.00 7.06 × 104 0.00

Left iris diameter 3.11 × 104 0.00 1.52 × 104 0.00 Left pupil
diameter 9.17 × 102 1.08 × 10−193 2.49 × 103 0.00

Left iris/pupil
ratio 4.04 × 102 4.09 × 10−83 1.86 × 103 0.00 Left eye

openness 1.75 × 103 4.20 × 10−266 2.47 × 103 0.00

Right iris
diameter 6.33 × 104 0.00 6.87 × 104 0.00 Right pupil

diameter 9.26 × 102 1.18 × 10−195 2.67 × 103 0.00

Right iris/pupil
ratio 4.64 × 102 4.93 × 10−96 1.10 × 103 5.06 × 10−232 Right eye

openness 1.67 × 103 7.30 × 10−263 5.81 × 103 3.52 × 10−120

Gaze entropy 3.95 × 103 0.00 5.63 × 103 0.00 ACF values 3.08 × 104 0.00 9.41 × 104 0.00

Fixations 6.94 × 103 0.00 2.21 × 104 0.00 Saccadic
distance 3.78 × 102 1.17 × 10−77 5.46 × 102 1.08 × 10−112
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To further explore eye metrics’ associations with handling qualities, Spearman’s rank
correlation coefficients were calculated, as shown in Figure 9, to reveal their monotonic
relationship. Additionally, Figure 10 presents the results of RF feature importance analysis,
identifying key eye metrics related to handling qualities and task workload.
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4.2.3. Gaze Heatmaps Visualization

Areas of interest (AOIs) are defined as selected regions containing the key information.
However, due to the variability in MTE criteria, such as different reference marks, it is hard
to pre-define AOIs. Thus, gaze heatmaps were generated by overlapping participants’ gaze
direction data, as depicted in Figure 11.

4.3. Deep Networks

The training results for the proposed model are shown in Table 5. To evaluate the
effectiveness of the proposed LSTM model, an ablation study was conducted, comparing
its performance with other state-of-the-art models. The structures and parameters of these
comparison models remained consistent with their original configuration, but the input
layer and output layer were adjusted to fit the specific characteristics of this dataset.

Table 5. Comparison of the proposed LSTM with other state-of-the-art models.

Model Metrics HQS HQL TWS TWL OTW PHQL

Proposed
LSTM

Accuracy 0.94 0.97 0.93 0.98 0.94 0.90
Recall 0.94 0.97 0.93 0.97 0.93 0.90

Precision 0.94 0.97 0.93 0.97 0.94 0.89
Convolutional
neural network

(CNN) [46]

Accuracy 0.89 0.93 0.89 0.94 0.91 0.90
Recall 0.89 0.92 0.89 0.93 0.91 0.90

Precision 0.90 0.92 0.89 0.94 0.91 0.89
Multi-Layer
Perceptron
(MLP) [47]

Accuracy 0.83 0.89 0.81 0.91 0.86 0.87
Recall 0.84 0.88 0.81 0.91 0.86 0.86

Precision 0.83 0.87 0.83 0.90 0.85 0.85
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5. Discussions
5.1. The Associations Between Handling Qualities and Task Workload

The variability in pilot experience, such as the difference between fixed-wing and heli-
copter pilots, might have an impact on their subjective ratings. Overall, a similar trend was
observed between subjective ratings of handling qualities and task workload, where MTEs
rated higher in handling qualities also tended to have higher task workload. Although
correlation coefficients varied across participants, the overall correlation coefficient (0.60)
suggests a moderate positive correlation between these ratings across the samples. Regres-
sion analysis yielded an F-statistic of 80.22 with a significant p-value (1.70−15), indicating a
model fit. However, a more complex model is required to see how pilot compensation for
aircraft deficiencies contributes to workload.

5.2. Data Mining of Eye Measurements

The Kruskal–Wallis ANOVA and Dunn’s tests on eye metrics revealed significant
differences (p < 0.05) in most features across MTEs, while some features, such as fixations
and saccadic distances, showed no significant differences between certain MTEs. The low
variability in these features between certain MTEs may stem from similarities in reference
marks, or from lesser relevance of these features to the gaze points and eye movement
paths [48].

The results of Spearman correlation and RF analysis (Figures 9 and 10) suggest that
pupil size, pupil diameter, iris diameter, interpupillary distance, iris/pupil ratio, and gaze
entropy exhibit an upward trend with increasing HQ and TW ratings, while other eye
features did not exhibit a clear monotonic relationship.
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5.3. Gaze Heatmaps

Prior research has associated wider and darker heatmaps with higher workload, stress,
and pressure [49]. In this study, wider and darker heatmaps are observed in pirouette
and hover turn, which were assigned high scores. High-task-workload MTEs involve
stricter criteria, requiring participants to process more information and control the aircraft
across more dimensions. This leads to a broader visual scan pattern. Darker areas in the
heatmaps indicate longer gaze durations, reflecting the additional time required to process
information and navigate complex scenarios during high-task-workload MTEs.

However, flight experiences and operational preferences could lead to varied patterns.
For instance, helicopter pilots favored stick maneuvers, while fixed-wing pilot typically
used stirrup steering. It was also found that gaze heatmaps under takeoff and landing were
narrower, although they had high scores. Prolonged fixation may also reflect participants
intentionally focusing on critical elements. During MTEs with detailed visual references,
such as the pirouette and vertical step, participants tended to adopt a specific visual pattern.
Conversely, in MTEs with fewer visual cues, such as during takeoff and landing, where
participants knew the path but lacked clear cues for acceleration or deceleration, their gaze
might focus on areas lacking cues. This phenomenon aligns with the “attention tunnel-
ing”, where an individual’s focus narrows in response to high-task demands [50]. This
phenomenon suggests that the HMI involved in takeoff and landing needs improvement,
as operators faced challenges in assessing information. Furthermore, investigating eye
metrics that contradict subjective ratings can provide detailed insights into aircraft design,
offering comprehensive evaluations.

5.4. The Proposed LSTM Model

The accuracy of the proposed LSTM model reached an accuracy of 97% in classifying
HQL and TWL, indicating that DL techniques are promising in learning eye features. It
outperformed other state-of-the-art models due to its explicit memory mechanisms, which
capture historical information in time-series data.

Notably, the accuracy of the three-class classification was consistently higher than that
of the nine-class classification, demonstrating that the LSTM model performs better with
fewer classes. Moreover, in three-class classifications, the accuracies for subjective handling
qualities and task workload levels were consistently higher than those for overall task work-
load levels and pre-defined handling qualities levels, suggesting that eye metrics are more
closely associated with individuals’ momentary perceptions of task workload and handling
qualities, rather than objective task difficulty or overall assessments made afterward.

5.5. Comparison with Existing Handling Qualties Assessment Methods

Integrating eye metrics into the handling qualities assessment process offers a more
objective approach. Although our proposed approach still involves subjective ratings,
the physiological feedback provides more stability than pilot-provided handling qualities
ratings. Additionally, priori expert knowledge on eye metrics helps to reduce the discrep-
ancies caused by participants’ varying assessment abilities. For example, the subjective
ratings for slalom exhibited a significant standard deviation, yet the gaze heatmap indicated
a consistent focus. This observation may suggest that subjective ratings capture differ-
ent facets of task engagement compared to objective eye metrics. Rather than indicating
improper ratings, this variability may reflect diverse personal perceptions of task diffi-
culty and engagement, underlining the complementary insights provided by combining
subjective and objective measures.

Furthermore, a detailed investigation of eye metrics reveals aircraft design deficiencies,
as discussed in Section 5.3. Eye movement data vary among individuals, compensating for
the limitations of traditional flight modeling analysis, which often neglects human factors.
Since eVTOL aircraft designs and control modes are not yet standardized, the proposed
method provides insights into how different designs impact pilot maneuverability, offering
valuable data for future flight testing. However, it should be noted that while the proposed
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method serves as a quantification tool for pilot compensation in CHR, it cannot replace
HQRM independently.

6. Case Study

Participant 07 was randomly selected to demonstrate the proposed handling qualities
assessment framework. The assessment process is illustrated in Figure 12.
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1. The operators perform several pre-designed MTEs and r provides handling qualities
ratings based on CHR, as described in the current HQRM.

2. The recorded flight trajectory is analyzed to assess flight performance, correspond-
ing to the adequate performance and desired performance criteria described in the
CHR scale.

3. Gaze heatmaps are examined in terms of their depth and width to verify if they align
with the operator’s CHR ratings. Wider and darker heatmaps typically indicate a
higher workload, which should correspond to lower CHR ratings.

4. Eye-tracking data are processed through the proposed LSTM model. The model
outputs for each interval are averaged to provide an overall output for each MTE.

5. Any inconsistencies between the gaze heatmap analysis, model outputs, and the initial
CHR ratings are identified and compared. This step highlights any discrepancies that
may require further investigation.

6. Qualitative interview feedback is reviewed to analyze inconsistencies between the
gaze data, model outputs, and the initial subjective CHR ratings. These interviews
provide insight into the reasoning behind the operator’s subjective assessments.

7. Based on qualitative feedback and data mining results, the CHR rating for the landing
task was adjusted from 1 to 4. This adjustment is accompanied by suggestions for
improving the HMI and incorporating a “dead zone” design to mitigate aircraft
deficiencies and improve pilot control.

7. Limitations

While one potential limitation for this study is the use of subjective ratings as training
labels, the purpose is to predict these ratings from objective physiological signals, thereby
reducing the bias and inconsistency of human ratings. Eye metrics are not subject to an
individual’s subjective will, and therefore, using these signals as inputs improves the
objectivity of the assessment.

Additionally, the dataset comprised only 16 participants, limiting the results robust-
ness. Future research will need to validate these findings with a larger sample size. More-
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over, the dataset was imbalanced. Despite efforts to address this issue using Random
Sampling and the Synthetic Minority Over-sampling Technique (SMOTE), the results were
not satisfactory, indicating that more effective data-balancing methods are necessary. Lastly,
despite the simulator meeting most of EASA’s requirements, there are differences between
a simulator and a real aircraft. HQ assessments must ultimately be validated on actual
eVTOL to determine if the proposed method is applicable in real-flight conditions.

During the experiment, data from three subjects were excluded due to poor quality,
highlighting a key challenge in the reliability of eye-tracking data. Moreover, the con-
sistency observed in gaze heatmaps may reflect both higher workload and task-specific
demands, as wider and darker heatmaps suggest prolonged focus but can also indicate
intentional attention allocation. Therefore, rather than entirely replacing subjective ratings,
eye metrics serve as complementary indicators, enriching the overall understanding of
handling qualities.

8. Conclusions

This study investigated the potential for incorporating eye metrics to better identify
pilot compensation and handling qualities based on statistical data mining and the DL
network. The results demonstrated that handling qualities are positively associated with
task workload and can be reflected by key eye metrics, including pupil size, pupil diameter,
iris diameter, interpupillary distance, iris/pupil ratio, and gaze entropy. The proposed
LSTM model achieves an accuracy of 97%, indicating the utility of eye-tracking data to
supplement or support subjective CHR ratings with a degree of objectivity.

A handling qualities assessment framework is proposed based on these findings, inte-
grating pilot compensation, flight performance, and qualitative interviews. The framework
incorporates eye metrics to supplement existing HQRM, providing deeper insights into
pilot compensation and identifying aircraft design deficiencies. Compared to purely pilot-
provided HQ ratings, integrating eye metrics provides more stability, advancing simplified
and data-driven approaches for CHR applications. By combining physiological measures
and subjective input, we aim to achieve a more comprehensive understanding of task
engagement and compensation dynamics. A case study demonstrated the framework’s
effectiveness in offering a more comprehensive assessment of handling qualities.

The authors also recognize the current limitations in the dataset and eye-tracking
technology and intend to further investigate the intricate relationships between eye metrics,
task workload, pilot compensation, and handling qualities in future research.
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