
 LLM-Driven Testing for Autonomous Driving

Scenarios

Nenad Petrovic∗, Krzysztof Lebioda∗, Vahid Zolfaghari∗, André Schamschurko∗, Sven Kirchner∗, Nils Purschke∗, Fengjunjie Pan∗, Alois

Knoll∗
∗Technical University of Munich, Chair of Robotics, Artificial Intelligence and Real-time Systems, Munich, Germany

Email: nenad.petrovic@tum.de, krzysztof.lebioda@tum.de, v.zolfaghari@tum.de, andre.schamschurko@tum.de, sven.kirchner@tum.de,

nils.purschke@tum.de, f.pan@tum.de, k@tum.de

Abstract—In this paper, we explore the potential of

leveraging Large Language Models (LLMs) for automated test

generation based on free-form textual descriptions in area of

automotive. As outcome, we implement a prototype and

evaluate the proposed approach on autonomous driving feature

scenarios in CARLA open-source simulation environment. Two

pre-trained LLMs are taken into account for comparative

evaluation: GPT-4 and Llama3. According to the achieved

results, GPT-4 outperforms Llama3, while the presented

approach speeds-up the process of testing (more than 10 times)

and reduces cognitive load thanks to automated code generation

and adoption of flexible simulation environment for quick

evaluation.

Keywords—autonomous driving, CARLA, Generative Pre-

Trained Transformer (GPT), Large Language Model (LLM),

Llama3, Model-Driven Engineering (MDE)

I. INTRODUCTION

In recent years, intensive progress in deep learning
research and related artificial intelligence areas has both led to
improvement of the existing solutions and brought many
novel use cases. Computer vision and deep learning-based
sensor data analysis techniques have become much more
accurate, even for real-time applications. On the other side,
hardware is also becoming much cheaper and powerful at the
same time.

However, apart for scientific purposes and prototyping,
the adoption of such novel solutions is much slower when it
comes to practical utilization in industry. When it comes to
industry sectors such as automotive, integration of such
solutions requires comprehensive testing together with strict
standardisation and compliance-related activities [1]. These
additional processes involve significant amount of additional
effort, slowing down the progress and innovation in many
areas, especially when it comes to automotive [1, 2]. It is
identified that slow adoption of novelties and long re-
engineering cycles are main bottlenecks in the European
automotive industry [2].

As autonomous driving capabilities of state-of-art vehicles
heavily rely on AI innovations, new developments, features
and upgrades cannot be immediately delivered to the end
users. Apart from that exhaustive standardisation process has
to be passed, many of these novel solutions potentially require
extension of the existing standards in alignment with current
AI usage regulations. Due to the previously mentioned factors,
in practice, utilization of novel hardware and software
capabilities might take up to several years in the existing
automotive software development workflow to be transferred
from prototypes into end-consumer products [2].

However, apart from formal standardisation and
compliance, the delivery of new features and capabilities in
automotive, such as autonomous driving elements also require
rigorous run-time testing. In this context, the elements of
safety apart from pure functionality evaluation are also taken
into account. Such tests might involve the utilization of road-
legal test vehicles. Therefore, the whole process becomes
longer and more expensive, considering the amount of
resources required for such activities. Apart from additional
engineering and testing efforts, this process might also involve
test drivers, legal permissions and unexpected fees in case of
damage.

On the other side, during the last two years, Large
Language Models (LLMs), together with other approaches of
the so-called generative artificial intelligence have drawn
attention of numerous researchers and enthusiasts. Among the
numerous proposed adoptions, LLMs have been considered to
improvement of the existing software development processes
as well. Usually, the following aspects are covered in area of
software development aided by LLMs [1, 3]: 1) code
generation – automatic generation of executable code starting
from freeform textual descriptions or potentially involving
other inputs as well; 2) debugging and code analysis –
identifying security flaws, bugs and other potential problems
within the provided code; 3) code explanation – LLMs are
able to provide verbose textual descriptions of given code
excerpts; 4) code correction – LLMs were also approved to be
quite useful when it comes to feedback to the user, code
corrections and other suggestions for improvement of the
given code.

In this paper, we explore the potential of the emerging
LLMs with aim to make the testing workflow in case of future
vehicle development faster, more efficient, cost-effective and
convenient. We focus on generation of testing code for
autonomous driving scenarios based on freeform textual
scenario descriptions provided as input, including both the
constraints coming from standardisation documents and user-
defined requirements. When it comes to implementation, we
perform the experiments leveraging the latest GPT and openly
available Llama3 [4] as the underlying LLMs. On the other
side, for simulation aspects we make use of graphically rich,
open-source CARLA platform [5] based on Unreal Engine as
simulation environment. CARLA offers solid support for
variety of sensors and actuators often leveraged for
autonomous driving features. In our previous work from [1],
we presented initial prototype based on GPT, while Llama3-
based fine-tuned solution for Object Constraint Language
(OCL) rule construction from free-form text was shown in [6].

mailto:nenad.petrovic@tum.de
mailto:krzysztof.lebioda@tum.de
mailto:v.zolfaghari@tum.de
mailto:andre.schamschurko@tum.de
mailto:sven.kirchner@tum.de
mailto:nils.purschke@tum.de
mailto:f.pan@tum.de
mailto:k@tum.de

One of the advantages of the proposed approach is the fact that
it takes into account both the design- and run-time aspects.

The rest of the paper is organized as follows. In the next
section, we provide overview of relevant existing works in
area of automotive test generation, together with works
relying on LLMs even in other domains. The third section
gives high-level overview of the approach implementation,
including the crucial prompts and description of the
underlying metamodel used as one of the prompt inputs. The
fourth section describes the emergency brake case study
which was used as reference for automated test generation.
Moreover, the fifth section gives comparative overview of
GPT-4 and Llama3 models for distinct steps, Finally,
conclusion summarizes the main outcomes and considers
potential future research directions.

II. BACKGROUND AND RELATED WORKS

A. Automated test generation in automotive industry

In this section, we identify the publications which tackle
the topic of automated testing in automotive area, with main
focus on autonomous and assisted driving scenarios.

Table I gives an insight into the identified works,
summarizing their main characteristics: 1) description –
general overview of the solution 2) approach – which kind of
methods and techniques have been adopted in order to
perform the automation of testing workflow, such as model-
driven engineering, template-based code generation 3)
scenario – which particular automotive use cases were
targeted by the solution 4) target – which specific execution
platform is targeted, is it a simulation environment or physical
vehicle.

Based on the existing works shown in Table I, we can draw
conclusion that there are several different approaches to
automation of test workflows in automotive. Most of them
incorporate some kind of model-based notation in order to
define the test scenarios. Moreover, it can be identified that
simulation environments and scenario-based test generation
are successfully adopted as promising direction. Based on the
considered works, we can identify that their main goal is to
reduce the costs and complexity of autonomous driving
functionality verification. However, it can be also noticed that
LLMs are still not exploited enough when it comes to adoption
of test generation in field of automotive.

TABLE I. AUTOMATED TEST GENERATION FOR AUTOMOTIVE

Ref Description Approach
Scenari

o
Target

MD
-AS1

[7]

Mathematical

model describing

scenarios as a set
of parameters to

construct a test

scenario for
simulation

environment,

while two
component

categories are

identified: static
components and

dynamic objects.

Model-

driven

Pedestria
n

detection

ASAM-

Open
Scenario

CARLA

Ref Description Approach
Scenari

o
Target

MG

[8]

Automated
approach to

generation of

mock classes and
unit tests for

automotive

scenarios based on
metamodel

specification.

Model-

driven

Emergen

cy brake C++ with
GMock/G

Test

MTS

[9]

Traffic behavior
scenarios from

perspective of ego

vehicle are
generated based

on road netwrok,

OD (Origin-

Destination)

matrix, Car-

Following and
Lane-Changing

models.

Microscopic
traffic

simulation

U-turn

SUMO –
Simulation

of Urban

Mobility,

OSM,

Matlab

Parallel

driving

Collision
accident

B. LLM adoption for test generation

On the other side, this section provides an overview of the
existing scientific work that make use of LLMs for automated
test generation. For each of the considered references, the
following aspects are considered: 1) description – brief
description of the approach, its main goals and purpose; 2) test
scope – which level of testing granularity is targeted within
the work, such as unit testing, integration testing, non-
functional aspect evaluation or generation of complex
scenarios for acceptance testing; 3) target – which kind of
output is aimed to be produced by LLM in the considered
scenario, such as Python test scripts relying on Pytest; Java
code using JUnit or some other dependencies 4) model –
which LLM(s) were used in the considered work.

Table II provides an overview and summarizes the
relevant works on LLM-enabled test generation topic,
including their main characteristics and usage.

TABLE II. LLMS FOR AUTOMATED TEST GENERATION

Ref Description Scope Target Model

SYS-

NF
[10]

LLM fine-tuning

using reinforcement

learning to generate
system-level tests for

embedded systems

System-

level tests

Python
Code

Llama Non-

functional

C

Chat

Uni

Test
[11]

Unit test generation
framework,

incorporating

adaptive focal
context mechanism

for

generation-
validation-repair

workflow.

Unit tests

Java
with

JUnit

Code

Llama

Gene
US

[12]

Test case
specification and

user story generation

based on
requirements

documents

Test case
specificatio

n

JSON
GPT-4.0

LIB
RO

[13]

Test generation
based on bug reports

as input

Unit tests

Java
GPT-3.0

based

Codex

Ref Description Scope Target Model

Test
Gen-

LLM

[14]

Extend the coverage
of the existing unit

tests for corner cases
Unit tests

Kotlin Proprietar

y (Meta)

Based on the current works and more comprehensive
literature reviews [15], it can be concluded that LLMs show
quite strong potential in area of automated test generation.
However, it can be also noticed that most of the existing
solutions are considering unit testing, while none of them is
specialized for automotive industry. However, there are only
few solutions trying to achieve system-level and integration
testing relying on LLMs. Therefore, we identify the research
gap on this topic, as there are not many notable works focused
on automotive domain and complex scenario-based testing.
When it comes to target programming languages, it can be
noticed that most of the widely used ones are covered –
Python, Java and C. In this paper, we will focus on generation
on test code generation aiming autonomous driving simulation
platform CARLA.

III. IMPLEMENTATION OVERVIEW

A. LLM-enabled test generation workflow

Fig. 1 depicts the proposed workflow for automated
testing of autonomous driving capabilities relying on LLM.
As it can be seen, prompt to LLM which produces test
scenario code as output considers three types of inputs: 1)
scenario – user-provided textual description of test scenario;
2) requirements – standardization documents containing the
reference values and specifications for particular scenarios
related to autonomous driving; 3) experiment topology –
metamodel describing both the vehicle and the environment,
including the other vehicles, pedestrians, obstacles and
positions of these objects 4) experiment template – JSON
example illustrating the structure of the target code interpreted
by our custom experimentation engine on top of CARLA.
Therefore, in the first step, user (domain expert) specifies the
free-form textual description of the scenario which is about
the be tested. After that, in the next step, based on the

reference requirements and provided experiment topology, a
set of prompts to LLM is constructed and executed.

First, the reference requirements are transformed to Object
Constraint Language (OCL) rules, using the prompt:

Prompt 1: Generate OCL rules based on requirements
{requirements} with respect to Ecore metamodel {experiment
topology} (1)

After that, the second prompt is executed against the
scenario description in order to generate the Ecore model
instance which is verifiable in design-time, before the test
execution:

Prompt 2: Generate Ecore model instance based on
specification {scenario} with respect to Ecore metamodel
{experiment topology} (2)

After that, once the model instance and OCL rules are
generated, verification of compliance whether the constraints
are satisfied is performed. For that purpose, we implement
engine in Java which takes metamodel, model instance and
constraint rules as input, while the output is the list of
unsatisfied constraints.

In case that some of the rules do not hold within the model
instance, additional prompt is executed in order to generate
feedback to the user which provides hints what should be
corrected within the model instance:

Prompt 3: What should be corrected in {model instance}
in case that following OCL rules are not satisfied {failing
rules} (3)

Once the model instance passes all the checks in design-
time, the following prompt is executed in order to generate the
JSON-based experiment specification starting from model
instance and JSON template for our engine on top of CARLA:

Prompt 4: Based on {model instance} generate JSON file
with respect to template {experiment template}
(4)

As outcome of this prompt execution, a JSON file is
generated, which is further interpreted, as shown in the

Fig. 1. Flexible LLM-enabled testing for automotive scenarios.

Automotive experiment topology (AET) metamodel.

experiment workflow, depicted in Fig. 2. The aim of this
engine is to further simplify the target code which is generated
by LLM based on textual requirements, so the possibility of
syntax and other errors can be reduced.

Fig. 2. Experimentation workflow based on CARLA engine.

Finally, based on test execution results and logs produced
in experiment run-time, another prompt is executed to LLM in
order to construct verbose feedback to the user in case that test
conditions are failing. In what follows, an example of such
prompt for generation of verbose feedback to the user based
on test results in run-time is given.

Prompt 5: In case of {test scenario} with outcomes {test
report} what should be corrected? (5)

 Taking into account the generated feedback in run-time,
user is able to re-consider the system aspects – both functional
and non-functional, scenario definition and augment the
provided specification in order to correct the missing aspects
or update the insufficient ones.

B. Automotive experiment metamodel

In this subsection, we introduce Automotive Experiment
Topology (AET) metamodel which is used for specification of
automotive experiments and used as one of the inputs for
automated test scenario code generation. Three main aspects
are covered by the metamodel: 1) environment configuration
– positioning of vehicle, obstacles and pedestrians within the
virtual driving environment 2) vehicle configuration – covers
capabilities, functional and non-functional aspects of the
vehicle which is the subject of testing within the generated
experiment, including sensors, actuators and processing
hardware 3) event chain – definition of processing tasks which

are expected to be performed on the vehicle during the virtual
drive.

The highest-level entity is test scenario. Test scenario
consists of test elements, whose common properties are
position coordinates (x,y,z) within the simulation.
Furthermore, there are two categories of test elements: 1) fixed
- static elements such as obstacles within the environment 2)
movable – elements which are able to change their position
over time, containing additional properties, such as destination
coordinates and target movement speed. Additionally, there
are different categories of movable elements, such as
pedestrian and ego vehicle. Special category of movable
elements is ego vehicle, which is unique per test scenario and
represents controllable vehicle which from whose perspective
the testing scenario is executed. On the other side, scenario
could contain multiple obstacles and pedestrians.

When it comes to ego vehicle, our metamodel covers the
following relevant aspects: 1) sensors – additional devices
responsible for environment data acquisition, such as camera,
LIDAR and radar 2) actuators – components which are used
to change the current state of the vehicle with respect to
environment, such as braking and steering 3) processing units
– general purpose processors, microcontroller units or custom
accelerators aiming specialized tasks such as machine
learning capabilities. When it comes to sensors, for each of
them we take into account relevant characteristics, such as
camera resolution (image width and height), camera field of
view (FOV), number of LIDAR channels, range and others.
Additionally, positioning for each of them can be taken into
account as well, so vehicle could have front, side or back
sensors. On the other side, relevant target parameters are
considered for actuators, together intensity of actuator
reaction. For processing units, their capabilities such as clock,
architecture and memory limitations are taken into account.

Finally, our metamodel also covers the aspects of on-
vehicle processing, in a form of event chain. The event chain
consist of tasks, which are further split into three categories:
1) sense – recording of environmental data, such as camera

Fig. 3. Automotive experiment topology (AET) metamodel.

images 2) decide – corresponds to tasks whose goal is to
extract useful information from raw sensor data, such as
obstacle detection 3) act – activation of actuators, such as
steering or brakes in case of obstacle detection. To each
processing task, a mapping to corresponding Python module
is done. On the other side, there is also a correspondence
between tasks and vehicle components, so sense tasks depend
on sensors, decide depends on processing units, while act
depends on vehicle’s actuator components. Finally, each of
these tasks also has time budget parameter, which represents
the longest allowed processing time, that can be further
leveraged for insights into non-functional constraint
satisfaction. Fig. 3 depicts the previously described
metamodel. The implementation of this metamodel was done
relying on Ecore which is a part of Eclipse Modeling
Framework (EMF) [16].

IV. CASE STUDY

As a case study for test generation, we consider emergency
brake scenario, based on regulations from [17] and publicly
available reference requirements based on [18]. The test
scenario is generated based on the following textual
description:

Ego vehicle is Tesla Model 3, the obstacle lead vehicle is
Toyota Prius.

The initial position (transform) of the ego vehicle is x=-
67.25, y=27.93.

The initial rotation (transform) of the ego vehicle is
yaw=0.16.

The destination of the ego vehicle is 40 meters in front of
its initial position.

The forward speed of the ego vehicle is 20m/s.

The ego vehicle should ignore other vehicles, but should
not ignore traffic light.

The initial position (transform) of the lead vehicle is 20
meters in front of the ego vehicle.

The initial rotation (transform) of the lead vehicle is the
same as ego vehicle.

The forward speed of the lead vehicle is 0m/s.

The ego vehicle has a front camera with resolution of
1920x1080, and field of vision 90.

The ego vehicle has a front LIDAR with horizontal FOV:
9.5° and vertical FOV: 2.1° – 7°.

There is one pedestrian with initial position is x=-35.00,
y=27.96.

Pedestrian walks towards direction of x=0.0, y=-1.0.

When it comes to constraints, it is checked whether vehicle
contains at least one camera and one LIDAR.

The screenshots from the CARLA simulation environment
while running the emergency brake scenario code based on
our JSON configuration interpretation are shown in Fig. 4.

Fig. 4. Generated CARLA simulation experiment.

V. EXPERIMENTS AND EVALUATION

When it comes to evaluation, we compare two LLMs:
GPT-4 and Llama3 8B instruct. When it comes to execution
environment, the first one relies completely on OpenAI’s
cloud infrastructure due to high hardware demands in terms of
GPU power. For the second one, we rely on Hugging Face’s
library in Python and it is deployed within free version of
Google Colab’s environment with 15GB VRAM T4 GPU. It
is considered as more flexible solution, regarding its lower
resource demand and open-source nature, making it locally
deployable.

The following aspects of evaluation are taken into account
for each of the main steps are taken into account: 1) execution
time – how much time is needed to execute the step; 2) tokens
– average number of consumed tokens for given step 3) error
rate – percentage of wrong output generated by LLM based on
10 subsequent runs; 4) manual – the estimated time required
to perform the step manually without relying on the proposed
workflow. When it comes to hyperparameter values,
temperature value 0.1 was used, while nucleus sampling
parameter top_p was set to 0.9. The choice of such parameter
values leads to almost deterministic results with small degree
of variety, which is suitable due to nature of code generation
problem itself (correct syntax and modeling rules applied).

TABLE I. QUESTION ANSWERING ACCURACY AND EXECUTION TIME

EVALUATION

Step

GPT-4

Exec

time

[s]

Tokens
Error

rate

[%]

Manual

[s] Llama

3

OCL rule

generation

0.11 760 10%

300

13.75 842
30%

Model instance

creation

0.16 1462 20%

1200

94.83 1528
30%

JSON
configuration

generation

0.041 1081 10%

2400 23.53 1122 20%

Feedback
 0.02 623 10%

200 16.42 667 20%

Based on the obtained results, it can be noticed that GPT-

based solution was faster, as expected, considering the fact
that Llama3 was run as smaller variant suitable for local
deployments on less demanding hardware, while GPT
deployment relied on OpenAI’s powerful cloud infrastructure.
Additionally, it can be seen that GPT’s error rate is lower than
Llama3, considering that GPT model is much larger with
respect to number of parameters compared to Llama3 variant

used in the experiment. Additionally, it can be noticed that
consumption of tokens in case of Llama3 was slightly larger.
Moreover, regarding the achieved error rates, it is observable
that model instance creation has the highest error rate for both
LLMs. This fact can be explained by sensitivity of XML-alike
instances to variations, as their structure is strictly defined by
metamodel schema, while the number of generated tokens is
largest in this case as well, increasing the probability of error.

When it comes to speed up of distinct steps, compared to
manual procedures performed by experienced expert, the
adoption of LLMs reduces the order of magnitude of time
needed from minutes to seconds, resulting in practice with
acceleration of up to more than 10 times in case of Llama3.

VI. CONCLUSION AND FUTURE WORKS

This paper explores the adoption of novel LLMs for

purpose of automated testing in area of automotive. Based on
our results, it can be concluded LLMs have huge potential
when it comes to automated generation of tests in automotive
domain. The benefits of such approach are obvious, as such
solutions reduce the time needed for test creation more than
10 times.

Our research demonstrates that commercial GPT-4 still
provides more accurate results than Llama3 out of the box.
However, further fine-tuning and optimization of Llama3-
based LLMs has huge potential to achieve similar
performance, close to GPT-4 in terms of accuracy, as shown
in our work focused on OCL rule generation [6]. Apart from
that, one of the main advantages of Llama3-based solutions is
the ability to deploy them locally, which is highly beneficial
for automotive industry users, as their data would not be
exposed and would remain within the organizational
boundaries. Moreover, such kind of deployment would not
involve additional costs on per-token basis like in case of
OpenAI’s ChatGPT. Therefore, fine-tuning Llama3-based
LLMs for all the steps, including model instance creation and
code generation seems like promising future research
direction. Another aspect that is aimed to be covered in our
further works is including the asserts as part of generated code,
that would give the ability to verify whether certain processing
steps satisfy the time budget constraints. Finally, our plan is to
integrate the proposed toolchain with physical vehicle
testbench building upon [19], which would enable flexible
experimentation with real vehicle’s digital twin in simulated
environment.

ACKNOWLEDGMENT

This research was funded by the Federal Ministry of
Education and Research of Germany (BMBF) as part of the
CeCaS project, FKZ: 16ME0800K.

REFERENCES

[1] N. Petrovic et al., “Synergy of Large Language Model and Model
Driven Engineering for Automated Development of Centralized
Vehicular Systems”, technical report, Technical University of Munich,
pp. 1-15, 2024. https://arxiv.org/pdf/2404.05508

[2] S. Solmaz et al., “Novel Hybrid-Testing Paradigms for Automated
Vehicle and ADAS Function Development”, Towards Connected and
Autonomous Vehicle Highways, EAI/Springer Innovations in
Communication and Computing. Springer, 2020, pp. 193-228.
https://doi.org/10.1007/978-3-030-66042-0_8

[3] N. Petrović and I. Al-Azzoni, “Model-Driven Smart Contract
Generation Leveraging ChatGPT”, Proc. of Int. Conf. Syst. Eng.
(ICSEng), 2023, LNNS 761, pp. 387-396. https://doi.org/10.1007/978-
3-031-40579-2_37

[4] Introducing Meta Llama 3: The most capable openly available LLM to
date [online], available on: https://ai.meta.com/blog/meta-llama-3/, last
accessed: 06/10/2024.

[5] CARLA: Open-source simulator for autonomus driving research
[online], available on: https://carla.org/, last accessed: 27/07/2024.

[6] F. Pan et al, “Generative AI for OCL Constraint Generation: Dataset
Collection and LLM Fine-tuning”, ISSE 2024, pp. 1-8, 2024.

[7] A. Lyamani, T. Hajji, I. Elhassani, T. Masrour, “Scenarios for ADAS
Testing: Modeling and Design”, ICDTA 2022, Lecture Notes in
Networks and Systems, vol 454. Springer, pp. 753-762, 2022.
https://doi.org/10.1007/978-3-031-01942-5_75

[8] N. Petrović, M. Radenković, S. Cvetković, D. Rančić: “Model-
driven automated gMock test generation for automotive software
industry”, XV International SAUM, pp. 1-4, 2021.

[9] B. Yue, S. Shi, S. Wang and N. Lin, “Low-Cost Urban Test Scenario
Generation Using Microscopic Traffic Simulation”, IEEE Access, vol.
8, pp. 123398-123407, 2020.
https://doi.org/10.1109/ACCESS.2020.3006073

[10] D. Schwachhofer et al., “Training Large Language Models for System-
Level Test Program Generation Targeting Non-functional Properties”,
2024 IEEE European Test Symposium (ETS), 2024, pp. 1-4.
https://doi.org/10.1109/ETS61313.2024.10567741

[11] Y. Chen et al., “ChatUniTest: A Framework for LLM-Based Test
Generation”, FSE 2024, pp. 572-576, 2024.
https://doi.org/10.1145/3663529.3663801

[12] T. Rahman, Y. Zhu, “Automated User Story Generation with Test Case
Specification Using Large Language Model”, preprint, pp. 1-10, 2024.
https://arxiv.org/abs/2404.01558

[13] S. Kang, J. Yoon and S. Yoo, “Large Language Models are Few-shot
Testers: Exploring LLM-based General Bug Reproduction”, 2023
IEEE/ACM 45th International Conference on Software Engineering
(ICSE), 2023, pp. 2312-2323.
https://doi.org/10.1109/ICSE48619.2023.00194

[14] N. Alshahwan et al., “Automated Unit Test Improvement using Large
Language Models at Meta”, FSE 2024, pp. 185-196, 2024.
https://doi.org/10.1145/3663529.3663839

[15] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang and Q. Wang, “Software
Testing With Large Language Models: Survey, Landscape, and
Vision” in IEEE Transactions on Software Engineering, vol. 50, no. 4,
pp. 911-936, 2024. https://doi.org/10.1109/TSE.2024.3368208

[16] Eclipse Modeling Framework [online], available on:
https://eclipse.dev/modeling/emf/, last accessed: 06/10/2024.

[17] UN Regulation No. 157 - Automated Lane Keeping Systems (ALKS)
[online], available on:
https://unece.org/transport/documents/2021/03/standards/un-
regulation-no-157-automated-lane-keeping-systems-alks, last
accessed: 12/09/2024.

[18] AVC Consortium, Technical Reports & More from AVCC [online],
available on: https://avcc.org/documents/, last accessed: 12/09/2024.

[19] S. Kirchner et al., “AUTOFRAME: Software-Driven Integration
Framework for Automotive Systems”, ITSC 2024, pp. 1-6, 2024.

https://arxiv.org/pdf/2404.05508
https://doi.org/10.1007/978-3-030-66042-0_8
https://doi.org/10.1007/978-3-031-40579-2_37
https://doi.org/10.1007/978-3-031-40579-2_37
https://ai.meta.com/blog/meta-llama-3/
https://carla.org/
https://doi.org/10.1007/978-3-031-01942-5_75
https://doi.org/10.1109/ACCESS.2020.3006073
https://doi.org/10.1109/ETS61313.2024.10567741
https://doi.org/10.1145/3663529.3663801
https://arxiv.org/abs/2404.01558
https://doi.org/10.1109/ICSE48619.2023.00194
https://doi.org/10.1145/3663529.3663839
https://doi.org/10.1109/TSE.2024.3368208
https://eclipse.dev/modeling/emf/
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-157-automated-lane-keeping-systems-alks
https://unece.org/transport/documents/2021/03/standards/un-regulation-no-157-automated-lane-keeping-systems-alks
https://avcc.org/documents/

