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Abstract—In this paper, we explore the potential of 

leveraging Large Language Models (LLMs) for automated test 

generation based on free-form textual descriptions in area of 

automotive. As outcome, we implement a prototype and 

evaluate the proposed approach on autonomous driving feature 

scenarios in CARLA open-source simulation environment. Two 

pre-trained LLMs are taken into account for comparative 

evaluation: GPT-4 and Llama3. According to the achieved 

results, GPT-4 outperforms Llama3, while the presented 

approach speeds-up the process of testing (more than 10 times) 

and reduces cognitive load thanks to automated code generation 

and adoption of flexible simulation environment for quick 

evaluation. 
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I. INTRODUCTION 

In recent years, intensive progress in deep learning 
research and related artificial intelligence areas has both led to 
improvement of the existing solutions and brought many 
novel use cases. Computer vision and deep learning-based 
sensor data analysis techniques have become much more 
accurate, even for real-time applications. On the other side, 
hardware is also becoming much cheaper and powerful at the 
same time. 

However, apart for scientific purposes and prototyping, 
the adoption of such novel solutions is much slower when it 
comes to practical utilization in industry. When it comes to 
industry sectors such as automotive, integration of such 
solutions requires comprehensive testing together with strict 
standardisation and compliance-related activities [1]. These 
additional processes involve significant amount of additional 
effort, slowing down the progress and innovation in many 
areas, especially when it comes to automotive [1, 2]. It is 
identified that slow adoption of novelties and long re-
engineering cycles are main bottlenecks in the European 
automotive industry [2].  

As autonomous driving capabilities of state-of-art vehicles 
heavily rely on AI innovations, new developments, features 
and upgrades cannot be immediately delivered to the end 
users. Apart from that exhaustive standardisation process has 
to be passed, many of these novel solutions potentially require 
extension of the existing standards in alignment with current 
AI usage regulations. Due to the previously mentioned factors, 
in practice, utilization of novel hardware and software 
capabilities might take up to several years in the existing 
automotive software development workflow to be transferred 
from prototypes into end-consumer products [2]. 

However, apart from formal standardisation and 
compliance, the delivery of new features and capabilities in 
automotive, such as autonomous driving elements also require 
rigorous run-time testing. In this context, the elements of 
safety apart from pure functionality evaluation are also taken 
into account. Such tests might involve the utilization of road-
legal test vehicles. Therefore, the whole process becomes 
longer and more expensive, considering the amount of 
resources required for such activities. Apart from additional 
engineering and testing efforts, this process might also involve 
test drivers, legal permissions and unexpected fees in case of 
damage. 

On the other side, during the last two years, Large 
Language Models (LLMs), together with other approaches of 
the so-called generative artificial intelligence have drawn 
attention of numerous researchers and enthusiasts. Among the 
numerous proposed adoptions, LLMs have been considered to 
improvement of the existing software development processes 
as well. Usually, the following aspects are covered in area of 
software development aided by LLMs [1, 3]: 1) code 
generation – automatic generation of executable code starting 
from freeform textual descriptions or potentially involving 
other inputs as well; 2) debugging and code analysis – 
identifying security flaws, bugs and other potential problems 
within the provided code; 3) code explanation – LLMs are 
able to provide verbose textual descriptions of given code 
excerpts; 4) code correction – LLMs were also approved to be 
quite useful when it comes to feedback to the user, code 
corrections and other suggestions for improvement of the 
given code. 

In this paper, we explore the potential of the emerging 
LLMs with aim to make the testing workflow in case of future 
vehicle development faster, more efficient, cost-effective and 
convenient. We focus on generation of testing code for 
autonomous driving scenarios based on freeform textual 
scenario descriptions provided as input, including both the 
constraints coming from standardisation documents and user-
defined requirements. When it comes to implementation, we 
perform the experiments leveraging the latest GPT and openly 
available Llama3 [4] as the underlying LLMs. On the other 
side, for simulation aspects we make use of graphically rich, 
open-source CARLA platform [5] based on Unreal Engine as 
simulation environment. CARLA offers solid support for 
variety of sensors and actuators often leveraged for 
autonomous driving features. In our previous work from [1], 
we presented initial prototype based on GPT, while Llama3-
based fine-tuned solution for Object Constraint Language 
(OCL) rule construction from free-form text was shown in [6]. 
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One of the advantages of the proposed approach is the fact that 
it takes into account both the design- and run-time aspects. 

The rest of the paper is organized as follows. In the next 
section, we provide overview of relevant existing works in 
area of automotive test generation, together with works 
relying on LLMs even in other domains. The third section 
gives high-level overview of the approach implementation, 
including the crucial prompts and description of the 
underlying metamodel used as one of the prompt inputs. The 
fourth section describes the emergency brake case study 
which was used as reference for automated test generation. 
Moreover, the fifth section gives comparative overview of 
GPT-4 and Llama3 models for distinct steps, Finally, 
conclusion summarizes the main outcomes and considers 
potential future research directions.  

II. BACKGROUND AND RELATED WORKS 

A. Automated test generation in automotive industry 

In this section, we identify the publications which tackle 
the topic of automated testing in automotive area, with main 
focus on autonomous and assisted driving scenarios.  

Table I gives an insight into the identified works, 
summarizing their main characteristics: 1) description – 
general overview of the solution 2) approach – which kind of 
methods and techniques have been adopted in order to 
perform the automation of testing workflow, such as model-
driven engineering, template-based code generation 3) 
scenario – which particular automotive use cases were 
targeted by the solution 4) target – which specific execution 
platform is targeted, is it a simulation environment or physical 
vehicle. 

Based on the existing works shown in Table I, we can draw 
conclusion that there are several different approaches to 
automation of test workflows in automotive. Most of them 
incorporate some kind of model-based notation in order to 
define the test scenarios. Moreover, it can be identified that 
simulation environments and scenario-based test generation 
are successfully adopted as promising direction. Based on the 
considered works, we can identify that their main goal is to 
reduce the costs and complexity of autonomous driving 
functionality verification. However, it can be also noticed that 
LLMs are still not exploited enough when it comes to adoption 
of test generation in field of automotive. 

TABLE I.  AUTOMATED TEST GENERATION FOR AUTOMOTIVE 

Ref Description Approach 
Scenari

o 
Target 

MD 
-AS1 

 

[7] 

Mathematical 

model describing 

scenarios as a set 
of parameters to 

construct a test 

scenario for 
simulation 

environment, 

while two 
component 

categories are 

identified: static 
components and 

dynamic objects.  

Model-

driven  
 

 

 

 
 

  

Pedestria
n 

detection 

ASAM-

Open 
Scenario 

CARLA  

Ref Description Approach 
Scenari

o 
Target 

MG 

[8] 

Automated 
approach to 

generation of 

mock classes and 
unit tests for 

automotive 

scenarios based on 
metamodel 

specification. 

Model-

driven 

 
 

Emergen

cy brake C++ with  
GMock/G

Test 

MTS 

[9] 

Traffic behavior 
scenarios from 

perspective of ego 

vehicle are 
generated based 

on road netwrok, 

OD (Origin-

Destination) 

matrix, Car-

Following and 
Lane-Changing 

models. 

Microscopic 
traffic 

simulation 

U-turn 

SUMO –
Simulation 

of Urban  

Mobility, 

OSM, 

Matlab 

Parallel 

driving 

Collision 
accident 

B. LLM adoption for test generation 

On the other side, this section provides an overview of the 
existing scientific work that make use of LLMs for automated 
test generation. For each of the considered references, the 
following aspects are considered: 1) description – brief 
description of the approach, its main goals and purpose; 2) test 
scope – which level of testing granularity is targeted within 
the work, such as unit testing, integration testing, non-
functional aspect evaluation or generation of complex 
scenarios for acceptance testing; 3) target – which kind of 
output is aimed to be produced by LLM in the considered 
scenario, such as Python test scripts relying on Pytest; Java 
code using JUnit or some other dependencies 4) model – 
which LLM(s) were used in the considered work. 

Table II provides an overview and summarizes the 
relevant works on LLM-enabled test generation topic, 
including their main characteristics and usage. 

TABLE II.  LLMS FOR AUTOMATED TEST GENERATION 

Ref Description Scope Target Model 
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Ref Description Scope Target Model 
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tests for corner cases 
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Based on the current works and more comprehensive 
literature reviews [15], it can be concluded that LLMs show 
quite strong potential in area of automated test generation. 
However, it can be also noticed that most of the existing 
solutions are considering unit testing, while none of them is 
specialized for automotive industry. However, there are only 
few solutions trying to achieve system-level and integration 
testing relying on LLMs. Therefore, we identify the research 
gap on this topic, as there are not many notable works focused 
on automotive domain and complex scenario-based testing. 
When it comes to target programming languages, it can be 
noticed that most of the widely used ones are covered – 
Python, Java and C. In this paper, we will focus on generation 
on test code generation aiming autonomous driving simulation 
platform CARLA. 

III. IMPLEMENTATION OVERVIEW 

A. LLM-enabled test generation workflow 

Fig. 1 depicts the proposed workflow for automated 
testing of autonomous driving capabilities relying on LLM. 
As it can be seen, prompt to LLM which produces test 
scenario code as output considers three types of inputs: 1) 
scenario – user-provided textual description of test scenario; 
2) requirements – standardization documents containing the 
reference values and specifications for particular scenarios 
related to autonomous driving; 3) experiment topology – 
metamodel describing both the vehicle and the environment, 
including the other vehicles, pedestrians, obstacles and 
positions of these objects 4) experiment template – JSON 
example illustrating the structure of the target code interpreted 
by our custom experimentation engine on top of CARLA. 
Therefore, in the first step, user (domain expert) specifies the 
free-form textual description of the scenario which is about 
the be tested. After that, in the next step, based on the 

reference requirements and provided experiment topology, a 
set of prompts to LLM is constructed and executed. 

First, the reference requirements are transformed to Object 
Constraint Language (OCL) rules, using the prompt: 

Prompt 1: Generate OCL rules based on requirements 
{requirements} with respect to Ecore metamodel {experiment 
topology} (1) 

After that, the second prompt is executed against the 
scenario description in order to generate the Ecore model 
instance which is verifiable in design-time, before the test 
execution: 

Prompt 2: Generate Ecore model instance based on 
specification {scenario} with respect to Ecore metamodel 
{experiment topology} (2) 

After that, once the model instance and OCL rules are 
generated, verification of compliance whether the constraints 
are satisfied is performed. For that purpose, we implement 
engine in Java which takes metamodel, model instance and 
constraint rules as input, while the output is the list of 
unsatisfied constraints. 

In case that some of the rules do not hold within the model 
instance, additional prompt is executed in order to generate 
feedback to the user which provides hints what should be 
corrected within the model instance: 

Prompt 3: What should be corrected in {model instance} 
in case that following OCL rules are not satisfied {failing 
rules} (3) 

Once the model instance passes all the checks in design-
time, the following prompt is executed in order to generate the 
JSON-based experiment specification starting from model 
instance and JSON template for our engine on top of CARLA: 

Prompt 4: Based on {model instance} generate JSON file 
with respect to template {experiment template}                                    
(4) 

As outcome of this prompt execution, a JSON file is 
generated, which is further interpreted, as shown in the 

Fig. 1. Flexible LLM-enabled testing for automotive scenarios. 

Automotive experiment topology (AET) metamodel. 

 



experiment workflow, depicted in Fig. 2. The aim of this 
engine is to further simplify the target code which is generated 
by LLM based on textual requirements, so the possibility of 
syntax and other errors can be reduced. 

Fig. 2. Experimentation workflow based on CARLA engine. 

Finally, based on test execution results and logs produced 
in experiment run-time, another prompt is executed to LLM in 
order to construct verbose feedback to the user in case that test 
conditions are failing. In what follows, an example of such 
prompt for generation of verbose feedback to the user based 
on test results in run-time is given. 

Prompt 5: In case of {test scenario} with outcomes {test 
report} what should be corrected?                                           (5) 

 Taking into account the generated feedback in run-time, 
user is able to re-consider the system aspects – both functional 
and non-functional, scenario definition and augment the 
provided specification in order to correct the missing aspects 
or update the insufficient ones. 

B. Automotive experiment metamodel 

In this subsection, we introduce Automotive Experiment 
Topology (AET) metamodel which is used for specification of 
automotive experiments and used as one of the inputs for 
automated test scenario code generation. Three main aspects 
are covered by the metamodel: 1) environment configuration 
– positioning of vehicle, obstacles and pedestrians within the 
virtual driving environment 2) vehicle configuration – covers 
capabilities, functional and non-functional aspects of the 
vehicle which is the subject of testing within the generated 
experiment, including sensors, actuators and processing 
hardware 3) event chain – definition of processing tasks which 

are expected to be performed on the vehicle during the virtual 
drive. 

The highest-level entity is test scenario. Test scenario 
consists of test elements, whose common properties are 
position coordinates (x,y,z) within the simulation. 
Furthermore, there are two categories of test elements: 1) fixed 
- static elements such as obstacles within the environment 2) 
movable – elements which are able to change their position 
over time, containing additional properties, such as destination 
coordinates and target movement speed. Additionally, there 
are different categories of movable elements, such as 
pedestrian and ego vehicle. Special category of movable 
elements is ego vehicle, which is unique per test scenario and 
represents controllable vehicle which from whose perspective 
the testing scenario is executed. On the other side, scenario 
could contain multiple obstacles and pedestrians. 

When it comes to ego vehicle, our metamodel covers the 
following relevant aspects: 1) sensors – additional devices 
responsible for environment data acquisition, such as camera, 
LIDAR and radar 2) actuators – components which are used 
to change the current state of the vehicle with respect to 
environment, such as braking and steering 3) processing units 
– general purpose processors, microcontroller units or custom 
accelerators aiming specialized tasks such as machine 
learning capabilities. When it comes to sensors, for each of 
them we take into account relevant characteristics, such as 
camera resolution (image width and height), camera field of 
view (FOV), number of LIDAR channels, range and others. 
Additionally, positioning for each of them can be taken into 
account as well, so vehicle could have front, side or back 
sensors. On the other side, relevant target parameters are 
considered for actuators, together intensity of actuator 
reaction. For processing units, their capabilities such as clock, 
architecture and memory limitations are taken into account.  

Finally, our metamodel also covers the aspects of on-
vehicle processing, in a form of event chain. The event chain 
consist of tasks, which are further split into three categories: 
1) sense – recording of environmental data, such as camera 

Fig. 3. Automotive experiment topology (AET) metamodel. 

 



images 2) decide – corresponds to tasks whose goal is to 
extract useful information from raw sensor data, such as 
obstacle detection 3) act – activation of actuators, such as 
steering or brakes in case of obstacle detection. To each 
processing task, a mapping to corresponding Python module 
is done. On the other side, there is also a correspondence 
between tasks and vehicle components, so sense tasks depend 
on sensors, decide depends on processing units, while act 
depends on vehicle’s actuator components. Finally, each of 
these tasks also has time budget parameter, which represents 
the longest allowed processing time, that can be further 
leveraged for insights into non-functional constraint 
satisfaction. Fig. 3 depicts the previously described 
metamodel. The implementation of this metamodel was done 
relying on Ecore which is a part of Eclipse Modeling 
Framework (EMF) [16]. 

IV. CASE STUDY 

As a case study for test generation, we consider emergency 
brake scenario, based on regulations from [17] and publicly 
available reference requirements based on [18]. The test 
scenario is generated based on the following textual 
description: 

Ego vehicle is Tesla Model 3, the obstacle lead vehicle is 
Toyota Prius. 

The initial position (transform) of the ego vehicle is x=-
67.25, y=27.93. 

The initial rotation (transform) of the ego vehicle is 
yaw=0.16. 

The destination of the ego vehicle is 40 meters in front of 
its initial position. 

The forward speed of the ego vehicle is 20m/s. 

The ego vehicle should ignore other vehicles, but should 
not ignore traffic light. 

The initial position (transform) of the lead vehicle is 20 
meters in front of the ego vehicle. 

The initial rotation (transform) of the lead vehicle is the 
same as ego vehicle. 

The forward speed of the lead vehicle is 0m/s. 

The ego vehicle has a front camera with resolution of 
1920x1080, and field of vision 90. 

The ego vehicle has a front LIDAR with horizontal FOV: 
9.5° and vertical FOV: 2.1° – 7°. 

There is one pedestrian with initial position is x=-35.00, 
y=27.96. 

Pedestrian walks towards direction of x=0.0, y=-1.0. 

When it comes to constraints, it is checked whether vehicle 
contains at least one camera and one LIDAR. 

The screenshots from the CARLA simulation environment 
while running the emergency brake scenario code based on 
our JSON configuration interpretation are shown in Fig. 4. 

 

 

 

 

Fig. 4. Generated CARLA simulation experiment. 

V. EXPERIMENTS AND EVALUATION 

When it comes to evaluation, we compare two LLMs: 
GPT-4 and Llama3 8B instruct. When it comes to execution 
environment, the first one relies completely on OpenAI’s 
cloud infrastructure due to high hardware demands in terms of 
GPU power. For the second one, we rely on Hugging Face’s 
library in Python and it is deployed within free version of 
Google Colab’s environment with 15GB VRAM T4 GPU. It 
is considered as more flexible solution, regarding its lower 
resource demand and open-source nature, making it locally 
deployable. 

The following aspects of evaluation are taken into account 
for each of the main steps are taken into account: 1) execution 
time – how much time is needed to execute the step; 2) tokens 
– average number of consumed tokens for given step 3) error 
rate – percentage of wrong output generated by LLM based on 
10 subsequent runs; 4) manual – the estimated time required 
to perform the step manually without relying on the proposed 
workflow. When it comes to hyperparameter values, 
temperature value 0.1 was used, while nucleus sampling 
parameter top_p was set to 0.9. The choice of such parameter 
values leads to almost deterministic results with small degree 
of variety, which is suitable due to nature of code generation 
problem itself (correct syntax and modeling rules applied). 

TABLE I.  QUESTION ANSWERING ACCURACY AND EXECUTION TIME 

EVALUATION 

Step 

GPT-4 
 

Exec 

time 

[s] 

 

Tokens 
Error 

rate  

[%] 

Manual  

[s] Llama
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OCL rule 

generation 

0.11 760 10%  

 
300  

13.75 842 
30% 

Model instance 

creation 

0.16 1462 20%  

 
1200 

94.83 1528 
30% 

JSON 
configuration 

generation 

0.041 1081 10%  

 
2400 23.53 1122 20% 

Feedback 
 0.02 623     10%  

200 16.42 667 20% 

 
Based on the obtained results, it can be noticed that GPT-

based solution was faster, as expected, considering the fact 
that Llama3 was run as smaller variant suitable for local 
deployments on less demanding hardware, while GPT 
deployment relied on OpenAI’s powerful cloud infrastructure. 
Additionally, it can be seen that GPT’s error rate is lower than 
Llama3, considering that GPT model is much larger with 
respect to number of parameters compared to Llama3 variant 



used in the experiment. Additionally, it can be noticed that 
consumption of tokens in case of Llama3 was slightly larger. 
Moreover, regarding the achieved error rates, it is observable 
that model instance creation has the highest error rate for both 
LLMs. This fact can be explained by sensitivity of XML-alike 
instances to variations, as their structure is strictly defined by 
metamodel schema, while the number of generated tokens is 
largest in this case as well, increasing the probability of error.  

When it comes to speed up of distinct steps, compared to 
manual procedures performed by experienced expert, the 
adoption of LLMs reduces the order of magnitude of time 
needed from minutes to seconds, resulting in practice with 
acceleration of up to more than 10 times in case of Llama3. 

VI. CONCLUSION AND FUTURE WORKS 

 
This paper explores the adoption of novel LLMs for 

purpose of automated testing in area of automotive. Based on 
our results, it can be concluded LLMs have huge potential 
when it comes to automated generation of tests in automotive 
domain. The benefits of such approach are obvious, as such 
solutions reduce the time needed for test creation more than 
10 times. 

Our research demonstrates that commercial GPT-4 still 
provides more accurate results than Llama3 out of the box. 
However, further fine-tuning and optimization of Llama3-
based LLMs has huge potential to achieve similar 
performance, close to GPT-4 in terms of accuracy, as shown 
in our work focused on OCL rule generation [6]. Apart from 
that, one of the main advantages of Llama3-based solutions is 
the ability to deploy them locally, which is highly beneficial 
for automotive industry users, as their data would not be 
exposed and would remain within the organizational 
boundaries. Moreover, such kind of deployment would not 
involve additional costs on per-token basis like in case of 
OpenAI’s ChatGPT. Therefore, fine-tuning Llama3-based 
LLMs for all the steps, including model instance creation and 
code generation seems like promising future research 
direction. Another aspect that is aimed to be covered in our 
further works is including the asserts as part of generated code, 
that would give the ability to verify whether certain processing 
steps satisfy the time budget constraints. Finally, our plan is to 
integrate the proposed toolchain with physical vehicle 
testbench building upon [19], which would enable flexible 
experimentation with real vehicle’s digital twin in simulated 
environment. 
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