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Abstract— In this paper, we explore the integration of Large 

Language Models (LLMs) with Retrieval-Augmented 

Generation (RAG) to enhance automated design and software 

development in the automotive industry. We present two case 

studies: a standardization compliance chatbot and a design 

copilot, both utilizing RAG to provide accurate, context-aware 

responses. We evaluate four LLMs—GPT-4o, LLAMA3, 

Mistral, and Mixtral—comparing their answering accuracy and 

execution time. Our results demonstrate that while GPT-4 offers 

superior performance, LLAMA3 and Mistral also show 

promising capabilities for local deployment, addressing data 

privacy concerns in automotive applications. This study 

highlights the potential of RAG-augmented LLMs in improving 

design workflows and compliance in automotive engineering. 
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Large Language Model (LLM), Retrieval Augmented Generation 

(RAG) 

I. INTRODUCTION 

Large Language Models (LLMs) are currently trending 
topic in area of Artificial Intelligence (AI) and their adoption 
in practice is becoming more and more relevant every day. 
Despite that their question answering power enriches the end-
user experience for many applications and services, they also 
aim to provide enhancements to creative processes, such as 
design and engineering decisions.  

However, the adoption of such LLM-based approach in 
some engineering domains would assume availability of 
sensitive information, such as trade secrets, customer's 
private/personnel data and technical details which should be 
only available internally to employees and never exposed 
outside the boundaries of the underlying organizations. 
Therefore, the real potential of leveraging LLMs for many 
innovative usage scenarios is reduced due to these reasons. 

It is already shown that LLMs can bring many benefits 
when it comes to software development, such as providing 
suggestions, analysis source code or even generating 
executable code [1], [2], [3]. However, in areas such as 
automotive, both hardware and software requirements can be 
also covered by non-disclosure policies and other mechanisms 
making the utilization of the necessary information as input to 
LLM quite concerning for the companies [2]. Initially, most 
of the LLM-driven services were based on models including 
billions of parameters, which requires enormously powerful 
cloud infrastructure and were not aimed to be run locally. In 
almost all cases, they were run on large provider's 
infrastructure, such as Amazon and Google. Therefore, 
providing documents and other specification-related 
information in automotive was considered quite problematic - 
as it involved practically sending the secret information to 
online services and  other parties involved. For that reason, the 

adoption of LLM-aided tools in automotive was considered 
quite problematic and has not been the main focus of 
researchers exploring the usage of LLMs. 

In order to overcome the mentioned issue of giving out the 
secret information to other parties while using LLM-based 
services, there are two potential solutions. The first one is to 
entirely deploy the LLM-based service within the boundaries 
of the organization, relying on local infrastructure (such as 
high-performance computing clusters). However, this 
approach would involve additional costs for both the hardware 
needed (such as high-performance GPUs) and efforts for 
setting up the clusters and their proper configuration. 
Moreover, the LLM model itself would need to be trained or 
fine-tuned using the company's non-disclosed (secret) data, 
which can require enormous amount of time (depending on 
the amount of data). Finally, cost-effective local clusters are 
usually only suitable for smaller-scale LLMs (reduced number 
of parameters), which might not achieve satisfiable results for 
the aimed purpose.  

On the other side, another solution is to make use of 
Retrieval Augmented Generation (RAG) [4], [5], which is a 
technique that aims augmenting LLM knowledge with 
additional data. Most of the general purpose LLMs can 
provide quite accurate answers about variety of topics. 
However, the scope of their knowledge is, in most cases, 
limited to the publicly available data until the specific point in 
time when the training was performed. Therefore, in cases 
when we want to build LLM-enabled applications and 
services which are able to also consider private data or 
additional information provided after training, the underlying 
knowledge of LLM has to be augmented. In that context, the 
process of retrieval of relevant information and augmenting 
the prompts targeting LLM is referred to as RAG.  

In this work, we aim to adopt RAG-based approach for 
development of design and software development tools, 
focusing on bridging the gap of non-disclosable data 
availability in area of automotive domain. As outcome, we 
propose vehicular system design workflow making use of 
LLM and RAG. Furthermore, we present its prototype 
implementation in context of central car server architecture 
scenarios. Finally, several widely adopted LLMs will be 
utilized and their performance compared - taking into account 
both the outcome quality and additional efforts needed for fine 
tuning or customization. 

II. BACKGROUND AND RELATED WORKS 

A. Retrieval-Augmented Generation (RAG) 

Typical RAG-enabled workflow consists of two main 
processes [4], [5]:  



1) indexing - involves creation of a pipeline to ingest and 
index data from a textual source (such as PDF or Word 
document), typically performed apriori, offline. Furthermore, 
this phase can be broken down into the following steps: a) load 
- data is initially loaded using document loaders; b) split - 
large documents are broken into smaller chunks with text 
splitters, making them easier to search and fit within the 
model's context window; c) store - these chunks are stored and 
indexed, often using a vector store and an embeddings model, 
for efficient searching later. 

2) retrieval and generation - runtime process where the 
system takes a user query, retrieves relevant data from the 
index, and passes it to a model for generating a response. This 
phase consists of: a) retrieve - relevant data chunks are fetched 
from storage using a Retriever in response to a user query; b) 
generate - LLM generates an answer by using a prompt that 
combines the question and the retrieved data. 

B. Langchain and Additional Tools 

For implementation, we rely on Langchain [6] which 
offers a set of tools making the development of LLM-enabled 
applications easier. 

Concretely, the framework consists of the following open-
source libraries: 1) langchain-core - offers base abstractions 
and the LangChain Expression Language (LCEL), which is 
fundamental for many components in LangChain, providing a 
declarative approach to composing chains. 2) langchain-
community - Includes third-party integrations such as partner 
packages like langchain-openai; 3) langchain - Comprises 
chains, agents, and retrieval strategies that make up the 
cognitive architecture of an application; 4) langgraph - 
Supports building robust, stateful multi-actor applications 
with LLMs by representing steps as edges and nodes in a 
graph; 5) langserve - enables the deployment of LangChain 
chains as REST APIs  

The broader ecosystem includes also LangSmith, which is 
a developer platform for debugging, testing, evaluating, and 
monitoring LLM applications, seamlessly integrated with 
LangChain. 

C. Related Works 

In the existing literature, there are several solutions (both 
scientific and industry-oriented) which adopt LLMs to aid the 
various aspects of automotive engineering and software 
development. Table I gives an overview and summarizes the 
main characteristics of those works. 

TABLE I.  LLMS AND AUTOMOTIVE: EXISTING WORKS 

Reference Aspect Model 

[7] 

Hazard Analysis & Risk 
Assessment (HARA) workflow 

ChatGPT 

[8] 

Systems Theoretic Process 

Analysis (STPA) applied to 
Automatic Emergency Brake 

(AEB) and Electricity Demand 

Side Management (DSM) 
scenarios 

ChatGPT 

[9] 

Chatbot-alike employee advisor 

and production-related decision 
making support tool 

ChatGPT 

[7] 
Driving assistance based on 

collected data 
ChatGPT 

Reference Aspect Model 

[2] 

Code generation based on textual 
user input, constrianed by 

metamodel 

ChatGPT 

As it can be seen, the existing publications mostly present 
proof-of-concept results based on widely adopted 
ChatGPT[8]. Despite that it is among the most powerful LLM-
based services, there are two main drawbacks which represent 
huge barrier in area of automotive: 1) API usage and fine 
tuning are charged on per-token basis, which might cause 
additional expenses 2) online access is required, which might 
be a concern for vendors and other relevant parties in the chain 
of automotive development, as data is sent outside the 
boundaries of the underlying organizations, which is 
potentially problematic in many scenarios. 

Therefore, in our paper, apart from ChatGPT, we also 
explore the capabilities of other approved open-source 
alternative – LLAMA, for its two versions: 2 and 3 (the latest 
one). Considering that it is less demanding in computing 
power compared to ChatGPT (but still quite powerful), we can 
also perform deployment locally, without exposing data. 
Additionally, most of the approaches aiming the assistance of 
engineering and analysis in area of automotive, despite that 
consider taking user feedback into account, mostly do not go 
further than simple user-based result validation.  

III. IMPLEMENTATION OVERVIEW 

For the purpose of executing prompts against vendor-
specific documents and specifications encapsulating good 
design practices, we have employed the Retrieve and Re-Rank 
approach as a powerful technique for information retrieval and 
question-answering systems.  

The general process of Retrieve and Re-rank is depicted in 
Fig. 1.  

This methodology involves two key stages: initial retrieval 
of a set of potentially relevant documents, followed by a re-
ranking process to filter out the most relevant results. The first 
step in our Retrieve and Re-Rank pipeline involves semantic 
search using a Bi-Encoder model. For this purpose, we’ll use 
the multi-qa-MiniLM-L6-cos-v1[9] model from 
SentenceTransformers. This sentence-transformers model 
converts sentences and paragraphs into a 384-dimensional 
dense vector space, optimized for semantic search. It has been 
trained on 215 million question-answer pairs from various 
sources. For the cross-encoder we have used the cross-
encoder/ms-marco-MiniLM-L-6-v2[10].  

Fig. 1. High-level depiction of Retrieve and Re-rank approach. 



We employ a two-stage search process to efficiently 
identify relevant context for our prompts. Since we're dealing 
with a large number of text chunks, we leverage the speed of 
a bi-encoder model in the first stage and combine it with the 
high accuracy of cross-encoder. Bi-encoder model assigns a 
similarity score (between 0 and 1) to each chunk based on its 
relevance to the input query. We then sort the chunks by their 
scores and pick the top k (in our case, k=32) most relevant 
ones for further processing. In the second stage, we use a more 
accurate but computationally expensive cross-encoder model. 
We feed each of the top k chunks from the first stage, along 
with the original query, into the cross-encoder. Finally, we 
select the top m (in our case, m=3) most relevant chunks based 
on the cross-encoder scores and return them as context for our 
prompts. The detailed overview of the described process is 
depicted in Fig. 2. 

IV. CASE STUDIES 

A. Automotive Compliance Chatbot 

The goal of this case study is to provide a chatbot that 
would help automotive engineers during complex design 
phases, by giving them answers to compliance-related 
questions. In the first step, the user uploads a document which 
would be used as a reference for answers by LLM. In our 
proof-of-concept implementation, we were relying on the 
following documents related to automotive standards and 
reference requirements: ISO/TR 4804:2020[7], ISO/CD TS 
5083[11], ISO 26262-1:2018[12] and AVC Consortium’s 
reference specification[13]. While the first two are ISO 
standard norm documents, the third one is a set of good 
practices for automotive requirements related to various 
aspects of autonomous driving capabilities.  

Fig. 2 shows our custom compliance chatbot based on 
AVC automotive requirements document [14] as reference. 

B. Automotive Design Copilot 

The focus of the second case study is on leveraging the 
feedback given by LLM related to user-defined design in the 
form of copilot-alike tool. In this case study, we build upon 
our previous works [2] and[13]. The proposed workflow 
involving feedback to user’s design decision during 
automotive software development from [13] is integrated with 

the code generation tools described in [2]. The illustration is 
given in Fig. 4. 

User designs vehicular system in model-driven manner, 
while interaction with RAG-empowered service gives hints 
and corrections - either on-demand (user asks what the 
resolution of camera for emergency should be brake) or 
automatically (checking camera resolution from model - 
parsing using Pyecore) and comparing the result from RAG. 
In case that correction is needed. In the first verification step, 
the user's design process outcome is Ecore model instance 
which is verified relying on OCL rules, as given in [2]. For 
that purpose, OCL rules had been previously generated using 
ISO standard document as input. In this step, the rules 
generated encapsulate general design guidelines, which are 
not trade secrets. After the model instance verification, as 
outcome we get the list of rules and their status - pass or fail. 
After that, the outcomes of verification are taken as input in 
order to construct prompts to RAG-enabled module which is 
able to insert the information coming from additional 
documents as part of querying context, such as vendor-
specific good practices and parameter values which are 
aligned with existing ISO standards, but which are not 
publicly available or part of trade secrets. This way, we enable 
integration of relevant manufacturer-specific guidelines into 
the LLM-driven design workflow without exposing it. 

Fig. 2. Detailed insight into two-stage search process. 

Fig. 3. Custom automotive design compliance chatbot. 

Fig. 4. LLM-based design feedback in automotive leveraging RAG: 1-
user-specified model with respect to metamodel; 2-Failing OCL rules; 3-

Metamodel specification as input 4-Load document into RAG 5-Document 

chunks with relevant context information; 6-Prompt 1 execution 7-LLM-
generated suggestions 8-Prompt 2 execution; 9-User corrections of the 

model based on suggestions; 10-Code generation.  



The structure of the underlying prompt is the following. 
For each of the rules which are failing, we will have a prompt 
to LLM in this form: 

Prompt1: What to do to improve [model instance] if rule 
is not satisfied [failing rule] based on [retrieved context]?   (1)         

The elements in square brackets are inserted within the 
query. Three inputs are required to be added to the query: 1) 
model instance - the whole instance model which was created 
by user and contains some rule violation 2) failing rule - 
textual representation of input used for OCL rule generation 
previously by LLM 3) retrieved context - output of RAG 
which contains the relevant information regarding the aspects 
of provided design which are not satisfied within the provided 
instance. 

On the other side, once the model passes all the OCL 
constraints, another prompt is used in order to check whether 
the provided model instance provides complete set of 
requirements for the given scenario with respect to the 
selected reference document. In this case, the prompt is 
structured as follows: 

Prompt2: Are [scenario] requirements complete for 
[model instance] based on [retrieved context] as reference?   
(2)         

This way, we achieve two-step feedback workflow based 
on RAG and LLM to the user – first about constraint 
satisfaction and later about requirements completeness as 
well. Fig. 3 illustrates the proposed workflow and steps. Once 
user corrects the model instance, so it can pass both OCL rule 
and requirements completeness checks, the experiment code 
aiming CARLA[14] simulation environment will be 
generated, as described in [2]. 

V. EXPERIMENTS AND EVALUATION 

In this paper, we compared four Large Language Models 
(LLMs) with the aim to evaluate two aspects – accuracy 
(percentage of correct responses) and execution time while 
responding to a set of questions. The models involved into 
evaluation were: LLAMA3[15], [16], GPT-4o[17], and 
Mistral[18], all of which are the latest versions available as of 
June 2024.  

Execution time and correction percentage are measured as 
average of 5 different prompts inspired by CeCaS (Central Car 
Server) project’s workflow[19], based on ISO 26262-
1:2018[12]  document as input. Figure 5 shows the questions, 
and their correct answers extracted from ISO 26262-1:2018. 

Regarding the question answer scores, the following 
scoring rules were applied for accuracy evaluation:  

1 - the answer is correct, and the reasoning is also correct. 

0.5 - the answer is correct, but the reasoning is incorrect.  

0 - both the answer and reasoning are incorrect.  

These experiments were conducted on a Google Collab 
Pro system[20] with the following configuration: runtime - 
Python 3; hardware accelerator - NVIDIA L4 GPU; system 
RAM - 53.0 GB; GPU RAM - 22.5 GB; disk space - 201.2 
GB. We utilized the Langchain library to prepare and issue 
prompts to the OpenAI API. This library allowed us to 
efficiently handle the interaction with the API, streamline the 
process of generating responses, and manage the prompt 
engineering aspects of the experiment. 

For comparing the performance of open-source Large 
Language Models (LLMs), we employed Ollama[21]. This 
tool enabled us to run these models locally, providing a means 
to directly measure and compare their runtime performance 
against the proprietary models accessed via the OpenAI API.  

In Table II, the summary of accuracy-related evaluation is 
given. Based on the achieved results, we can notice the 
following for each of the models: 1) Llama3:   achieved a total 
score of 2, provided correct answers with correct reasoning for 
one question and partial answers for two others; 2) Mixtral: 
scored 1.5, indicating challenges in providing accurate 
answers and reasoning, while fully answered only one 
question correctly 3) GPT-4.0: excelled with a total score of 
4.5, consistently providing accurate answers and correct 
reasoning, making it the most reliable model in this 
comparison; 4) Mistral: matched Llama3 with a total score of 
2, showing some capability but less consistency compared to 
GPT-4.0. 

TABLE II QUESTION ANSWERING ACCURACY AND EXECUTION TIME 

EVALUATION 

Question LLAMA3 Mixtral GPT-4o Mistral 

1 0 0 1 0 

2 0.5 0 1 0.5 

3 0.5 1 1 0.5 

4 0 0.5 0.5 0 

5 1 0 1 1 

Overall score 2 1.5 4.5 2 

Execution  

time [s] 
19.7 132.38 19.06 10.93 

 

Overall, GPT-4.0 demonstrated superior performance in 
terms of both accuracy and reasoning, making it the most 
effective LLM among those evaluated in this study. However, 

Fig. 5. Questions and correct answers used for the experiment. 



LLAMA3 and Mistral also show acceptable results, 
considering the ability to run them locally on lower capability 
hardware, which is one of the crucial advantages when it 
comes to adoption of LLMs in automotive domain. 

Additionally, we also evaluate the average execution time 
per prompt for given questions in case of 3 runs, also shown 
in Table II (the last row). As can be seen, Mixtral is much 
slower than the other solutions, while Mistral exhibits the 
fastest response time.  

We conducted additional simulations to assess the scalability 

of the proposed Retrieve and Re-Rank pipeline. Specifically, 

we varied the size of input documents to observe how it affects 

the performance of indexing and search processes. Table III 

summarizes the results, where we increased the number of 

pages to be indexed through the pipeline and measured two 

key metrics: Indexing Time which includes running the 

pipeline, and Search Time, which reflects the time required to 

search for relevant sections using the indexed chunks. As 

expected, increasing the size of the input documents leads to 

a proportional increase in indexing time, as this process 

involves computationally intensive operations such as 

chunking and model inference. However, the search time 

remains nearly constant, even as the document size grows. 

This is because the Bi-encoder and Cross-encoder models 

used in the pipeline are optimized for fast retrieval, regardless 

of document size. These findings highlight the scalability of 

the search process and emphasize the advantage of using RAG 

methods to maintain fast response times, even in large-scale 

Question-Answering systems. 

TABLE III SCALABILITY OF RETRIEVE AND RE-RANK PIPELINE 

number of pages Indexing time Search time 

901 0.95 0.49 

3031 5.21 0.51 

5162 9.47 0.52 

7293 13.62 0.52 

   

VI. CONCLUSION AND FUTURE WORKS 

 
In this study, we explored the integration of Large 

Language Models (LLMs) with Retrieval-Augmented 
Generation (RAG) to enhance design and software 
development in the automotive industry. Our research 
demonstrates that LLMs, when augmented with RAG, can 
effectively address the challenge of handling non-disclosable 
data in automotive domains. We implemented two case 
studies: a standardization compliance chatbot and a design 
copilot, leveraging RAG to provide context-aware and 
accurate responses. 

This study demonstrates that current locally deployable 
open-source Large Language Models (LLMs) are still behind 
the commercial ChatGPT’s underlying GPT-4 when it comes 
to providing the necessary accuracy for question-and-answer 
tasks in the automotive industry using Retrieval Augmented 
Generation (RAG) technology. While the outcomes of models 
like LLAMA3 and Mistral seem more promising, they do not 
yet meet the stringent requirements for reliable performance 
in this specialized field. However, GPT-4 stands out by 
providing almost completely correct answers, indicating that 

proprietary models are currently more capable than open-
source alternatives.  

Future work should focus on improving the accuracy and 
reliability of open-source models to better support automotive 
applications by performing model fine tuning. Additionally, 
we will aim to extend the evaluation by testing additional 
open-source and commercial LLMs in order to identify the 
most effective models for various automotive applications. 
The effect of different bi-encoder and cross-encoder models 
on the performance of the RAG pipeline will also be 
evaluated, exploring models with varying architectures and 
training datasets to optimize retrieval and generation 
processes. Finally, the current manual assessment of LLM 
outputs against ground truth answers will be automated using 
semantic comparison models, such as cross-encoder models, 
to enhance accuracy and efficiency. 
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