
Adopting RAG for LLM-Aided Future Vehicle

Design

Vahid Zolfaghari∗, Nenad Petrovic∗, Fengjunjie Pan∗, Krzysztof Lebioda∗, Alois Knoll∗
∗Technical University of Munich, Robotics, Artificial Intelligence and Embedded Systems, Munich, Germany

Email: v.zolfaghari@tum.de, nenad.petrovic@tum.de, f.pan@tum.de, krzysztof.lebioda@tum.de, k@tum.de

Abstract— In this paper, we explore the integration of Large

Language Models (LLMs) with Retrieval-Augmented

Generation (RAG) to enhance automated design and software

development in the automotive industry. We present two case

studies: a standardization compliance chatbot and a design

copilot, both utilizing RAG to provide accurate, context-aware

responses. We evaluate four LLMs—GPT-4o, LLAMA3,

Mistral, and Mixtral—comparing their answering accuracy and

execution time. Our results demonstrate that while GPT-4 offers

superior performance, LLAMA3 and Mistral also show

promising capabilities for local deployment, addressing data

privacy concerns in automotive applications. This study

highlights the potential of RAG-augmented LLMs in improving

design workflows and compliance in automotive engineering.

Keywords—automotive software development, ChatGPT,

Large Language Model (LLM), Retrieval Augmented Generation

(RAG)

I. INTRODUCTION

Large Language Models (LLMs) are currently trending
topic in area of Artificial Intelligence (AI) and their adoption
in practice is becoming more and more relevant every day.
Despite that their question answering power enriches the end-
user experience for many applications and services, they also
aim to provide enhancements to creative processes, such as
design and engineering decisions.

However, the adoption of such LLM-based approach in
some engineering domains would assume availability of
sensitive information, such as trade secrets, customer's
private/personnel data and technical details which should be
only available internally to employees and never exposed
outside the boundaries of the underlying organizations.
Therefore, the real potential of leveraging LLMs for many
innovative usage scenarios is reduced due to these reasons.

It is already shown that LLMs can bring many benefits
when it comes to software development, such as providing
suggestions, analysis source code or even generating
executable code [1], [2], [3]. However, in areas such as
automotive, both hardware and software requirements can be
also covered by non-disclosure policies and other mechanisms
making the utilization of the necessary information as input to
LLM quite concerning for the companies [2]. Initially, most
of the LLM-driven services were based on models including
billions of parameters, which requires enormously powerful
cloud infrastructure and were not aimed to be run locally. In
almost all cases, they were run on large provider's
infrastructure, such as Amazon and Google. Therefore,
providing documents and other specification-related
information in automotive was considered quite problematic -
as it involved practically sending the secret information to
online services and other parties involved. For that reason, the

adoption of LLM-aided tools in automotive was considered
quite problematic and has not been the main focus of
researchers exploring the usage of LLMs.

In order to overcome the mentioned issue of giving out the
secret information to other parties while using LLM-based
services, there are two potential solutions. The first one is to
entirely deploy the LLM-based service within the boundaries
of the organization, relying on local infrastructure (such as
high-performance computing clusters). However, this
approach would involve additional costs for both the hardware
needed (such as high-performance GPUs) and efforts for
setting up the clusters and their proper configuration.
Moreover, the LLM model itself would need to be trained or
fine-tuned using the company's non-disclosed (secret) data,
which can require enormous amount of time (depending on
the amount of data). Finally, cost-effective local clusters are
usually only suitable for smaller-scale LLMs (reduced number
of parameters), which might not achieve satisfiable results for
the aimed purpose.

On the other side, another solution is to make use of
Retrieval Augmented Generation (RAG) [4], [5], which is a
technique that aims augmenting LLM knowledge with
additional data. Most of the general purpose LLMs can
provide quite accurate answers about variety of topics.
However, the scope of their knowledge is, in most cases,
limited to the publicly available data until the specific point in
time when the training was performed. Therefore, in cases
when we want to build LLM-enabled applications and
services which are able to also consider private data or
additional information provided after training, the underlying
knowledge of LLM has to be augmented. In that context, the
process of retrieval of relevant information and augmenting
the prompts targeting LLM is referred to as RAG.

In this work, we aim to adopt RAG-based approach for
development of design and software development tools,
focusing on bridging the gap of non-disclosable data
availability in area of automotive domain. As outcome, we
propose vehicular system design workflow making use of
LLM and RAG. Furthermore, we present its prototype
implementation in context of central car server architecture
scenarios. Finally, several widely adopted LLMs will be
utilized and their performance compared - taking into account
both the outcome quality and additional efforts needed for fine
tuning or customization.

II. BACKGROUND AND RELATED WORKS

A. Retrieval-Augmented Generation (RAG)

Typical RAG-enabled workflow consists of two main
processes [4], [5]:

1) indexing - involves creation of a pipeline to ingest and
index data from a textual source (such as PDF or Word
document), typically performed apriori, offline. Furthermore,
this phase can be broken down into the following steps: a) load
- data is initially loaded using document loaders; b) split -
large documents are broken into smaller chunks with text
splitters, making them easier to search and fit within the
model's context window; c) store - these chunks are stored and
indexed, often using a vector store and an embeddings model,
for efficient searching later.

2) retrieval and generation - runtime process where the
system takes a user query, retrieves relevant data from the
index, and passes it to a model for generating a response. This
phase consists of: a) retrieve - relevant data chunks are fetched
from storage using a Retriever in response to a user query; b)
generate - LLM generates an answer by using a prompt that
combines the question and the retrieved data.

B. Langchain and Additional Tools

For implementation, we rely on Langchain [6] which
offers a set of tools making the development of LLM-enabled
applications easier.

Concretely, the framework consists of the following open-
source libraries: 1) langchain-core - offers base abstractions
and the LangChain Expression Language (LCEL), which is
fundamental for many components in LangChain, providing a
declarative approach to composing chains. 2) langchain-
community - Includes third-party integrations such as partner
packages like langchain-openai; 3) langchain - Comprises
chains, agents, and retrieval strategies that make up the
cognitive architecture of an application; 4) langgraph -
Supports building robust, stateful multi-actor applications
with LLMs by representing steps as edges and nodes in a
graph; 5) langserve - enables the deployment of LangChain
chains as REST APIs

The broader ecosystem includes also LangSmith, which is
a developer platform for debugging, testing, evaluating, and
monitoring LLM applications, seamlessly integrated with
LangChain.

C. Related Works

In the existing literature, there are several solutions (both
scientific and industry-oriented) which adopt LLMs to aid the
various aspects of automotive engineering and software
development. Table I gives an overview and summarizes the
main characteristics of those works.

TABLE I. LLMS AND AUTOMOTIVE: EXISTING WORKS

Reference Aspect Model

[7]

Hazard Analysis & Risk
Assessment (HARA) workflow

ChatGPT

[8]

Systems Theoretic Process

Analysis (STPA) applied to
Automatic Emergency Brake

(AEB) and Electricity Demand

Side Management (DSM)
scenarios

ChatGPT

[9]

Chatbot-alike employee advisor

and production-related decision
making support tool

ChatGPT

[7]
Driving assistance based on

collected data
ChatGPT

Reference Aspect Model

[2]

Code generation based on textual
user input, constrianed by

metamodel

ChatGPT

As it can be seen, the existing publications mostly present
proof-of-concept results based on widely adopted
ChatGPT[8]. Despite that it is among the most powerful LLM-
based services, there are two main drawbacks which represent
huge barrier in area of automotive: 1) API usage and fine
tuning are charged on per-token basis, which might cause
additional expenses 2) online access is required, which might
be a concern for vendors and other relevant parties in the chain
of automotive development, as data is sent outside the
boundaries of the underlying organizations, which is
potentially problematic in many scenarios.

Therefore, in our paper, apart from ChatGPT, we also
explore the capabilities of other approved open-source
alternative – LLAMA, for its two versions: 2 and 3 (the latest
one). Considering that it is less demanding in computing
power compared to ChatGPT (but still quite powerful), we can
also perform deployment locally, without exposing data.
Additionally, most of the approaches aiming the assistance of
engineering and analysis in area of automotive, despite that
consider taking user feedback into account, mostly do not go
further than simple user-based result validation.

III. IMPLEMENTATION OVERVIEW

For the purpose of executing prompts against vendor-
specific documents and specifications encapsulating good
design practices, we have employed the Retrieve and Re-Rank
approach as a powerful technique for information retrieval and
question-answering systems.

The general process of Retrieve and Re-rank is depicted in
Fig. 1.

This methodology involves two key stages: initial retrieval
of a set of potentially relevant documents, followed by a re-
ranking process to filter out the most relevant results. The first
step in our Retrieve and Re-Rank pipeline involves semantic
search using a Bi-Encoder model. For this purpose, we’ll use
the multi-qa-MiniLM-L6-cos-v1[9] model from
SentenceTransformers. This sentence-transformers model
converts sentences and paragraphs into a 384-dimensional
dense vector space, optimized for semantic search. It has been
trained on 215 million question-answer pairs from various
sources. For the cross-encoder we have used the cross-
encoder/ms-marco-MiniLM-L-6-v2[10].

Fig. 1. High-level depiction of Retrieve and Re-rank approach.

We employ a two-stage search process to efficiently
identify relevant context for our prompts. Since we're dealing
with a large number of text chunks, we leverage the speed of
a bi-encoder model in the first stage and combine it with the
high accuracy of cross-encoder. Bi-encoder model assigns a
similarity score (between 0 and 1) to each chunk based on its
relevance to the input query. We then sort the chunks by their
scores and pick the top k (in our case, k=32) most relevant
ones for further processing. In the second stage, we use a more
accurate but computationally expensive cross-encoder model.
We feed each of the top k chunks from the first stage, along
with the original query, into the cross-encoder. Finally, we
select the top m (in our case, m=3) most relevant chunks based
on the cross-encoder scores and return them as context for our
prompts. The detailed overview of the described process is
depicted in Fig. 2.

IV. CASE STUDIES

A. Automotive Compliance Chatbot

The goal of this case study is to provide a chatbot that
would help automotive engineers during complex design
phases, by giving them answers to compliance-related
questions. In the first step, the user uploads a document which
would be used as a reference for answers by LLM. In our
proof-of-concept implementation, we were relying on the
following documents related to automotive standards and
reference requirements: ISO/TR 4804:2020[7], ISO/CD TS
5083[11], ISO 26262-1:2018[12] and AVC Consortium’s
reference specification[13]. While the first two are ISO
standard norm documents, the third one is a set of good
practices for automotive requirements related to various
aspects of autonomous driving capabilities.

Fig. 2 shows our custom compliance chatbot based on
AVC automotive requirements document [14] as reference.

B. Automotive Design Copilot

The focus of the second case study is on leveraging the
feedback given by LLM related to user-defined design in the
form of copilot-alike tool. In this case study, we build upon
our previous works [2] and[13]. The proposed workflow
involving feedback to user’s design decision during
automotive software development from [13] is integrated with

the code generation tools described in [2]. The illustration is
given in Fig. 4.

User designs vehicular system in model-driven manner,
while interaction with RAG-empowered service gives hints
and corrections - either on-demand (user asks what the
resolution of camera for emergency should be brake) or
automatically (checking camera resolution from model -
parsing using Pyecore) and comparing the result from RAG.
In case that correction is needed. In the first verification step,
the user's design process outcome is Ecore model instance
which is verified relying on OCL rules, as given in [2]. For
that purpose, OCL rules had been previously generated using
ISO standard document as input. In this step, the rules
generated encapsulate general design guidelines, which are
not trade secrets. After the model instance verification, as
outcome we get the list of rules and their status - pass or fail.
After that, the outcomes of verification are taken as input in
order to construct prompts to RAG-enabled module which is
able to insert the information coming from additional
documents as part of querying context, such as vendor-
specific good practices and parameter values which are
aligned with existing ISO standards, but which are not
publicly available or part of trade secrets. This way, we enable
integration of relevant manufacturer-specific guidelines into
the LLM-driven design workflow without exposing it.

Fig. 2. Detailed insight into two-stage search process.

Fig. 3. Custom automotive design compliance chatbot.

Fig. 4. LLM-based design feedback in automotive leveraging RAG: 1-
user-specified model with respect to metamodel; 2-Failing OCL rules; 3-

Metamodel specification as input 4-Load document into RAG 5-Document

chunks with relevant context information; 6-Prompt 1 execution 7-LLM-
generated suggestions 8-Prompt 2 execution; 9-User corrections of the

model based on suggestions; 10-Code generation.

The structure of the underlying prompt is the following.
For each of the rules which are failing, we will have a prompt
to LLM in this form:

Prompt1: What to do to improve [model instance] if rule
is not satisfied [failing rule] based on [retrieved context]? (1)

The elements in square brackets are inserted within the
query. Three inputs are required to be added to the query: 1)
model instance - the whole instance model which was created
by user and contains some rule violation 2) failing rule -
textual representation of input used for OCL rule generation
previously by LLM 3) retrieved context - output of RAG
which contains the relevant information regarding the aspects
of provided design which are not satisfied within the provided
instance.

On the other side, once the model passes all the OCL
constraints, another prompt is used in order to check whether
the provided model instance provides complete set of
requirements for the given scenario with respect to the
selected reference document. In this case, the prompt is
structured as follows:

Prompt2: Are [scenario] requirements complete for
[model instance] based on [retrieved context] as reference?
(2)

This way, we achieve two-step feedback workflow based
on RAG and LLM to the user – first about constraint
satisfaction and later about requirements completeness as
well. Fig. 3 illustrates the proposed workflow and steps. Once
user corrects the model instance, so it can pass both OCL rule
and requirements completeness checks, the experiment code
aiming CARLA[14] simulation environment will be
generated, as described in [2].

V. EXPERIMENTS AND EVALUATION

In this paper, we compared four Large Language Models
(LLMs) with the aim to evaluate two aspects – accuracy
(percentage of correct responses) and execution time while
responding to a set of questions. The models involved into
evaluation were: LLAMA3[15], [16], GPT-4o[17], and
Mistral[18], all of which are the latest versions available as of
June 2024.

Execution time and correction percentage are measured as
average of 5 different prompts inspired by CeCaS (Central Car
Server) project’s workflow[19], based on ISO 26262-
1:2018[12] document as input. Figure 5 shows the questions,
and their correct answers extracted from ISO 26262-1:2018.

Regarding the question answer scores, the following
scoring rules were applied for accuracy evaluation:

1 - the answer is correct, and the reasoning is also correct.

0.5 - the answer is correct, but the reasoning is incorrect.

0 - both the answer and reasoning are incorrect.

These experiments were conducted on a Google Collab
Pro system[20] with the following configuration: runtime -
Python 3; hardware accelerator - NVIDIA L4 GPU; system
RAM - 53.0 GB; GPU RAM - 22.5 GB; disk space - 201.2
GB. We utilized the Langchain library to prepare and issue
prompts to the OpenAI API. This library allowed us to
efficiently handle the interaction with the API, streamline the
process of generating responses, and manage the prompt
engineering aspects of the experiment.

For comparing the performance of open-source Large
Language Models (LLMs), we employed Ollama[21]. This
tool enabled us to run these models locally, providing a means
to directly measure and compare their runtime performance
against the proprietary models accessed via the OpenAI API.

In Table II, the summary of accuracy-related evaluation is
given. Based on the achieved results, we can notice the
following for each of the models: 1) Llama3: achieved a total
score of 2, provided correct answers with correct reasoning for
one question and partial answers for two others; 2) Mixtral:
scored 1.5, indicating challenges in providing accurate
answers and reasoning, while fully answered only one
question correctly 3) GPT-4.0: excelled with a total score of
4.5, consistently providing accurate answers and correct
reasoning, making it the most reliable model in this
comparison; 4) Mistral: matched Llama3 with a total score of
2, showing some capability but less consistency compared to
GPT-4.0.

TABLE II QUESTION ANSWERING ACCURACY AND EXECUTION TIME

EVALUATION

Question LLAMA3 Mixtral GPT-4o Mistral

1 0 0 1 0

2 0.5 0 1 0.5

3 0.5 1 1 0.5

4 0 0.5 0.5 0

5 1 0 1 1

Overall score 2 1.5 4.5 2

Execution

time [s]
19.7 132.38 19.06 10.93

Overall, GPT-4.0 demonstrated superior performance in
terms of both accuracy and reasoning, making it the most
effective LLM among those evaluated in this study. However,

Fig. 5. Questions and correct answers used for the experiment.

LLAMA3 and Mistral also show acceptable results,
considering the ability to run them locally on lower capability
hardware, which is one of the crucial advantages when it
comes to adoption of LLMs in automotive domain.

Additionally, we also evaluate the average execution time
per prompt for given questions in case of 3 runs, also shown
in Table II (the last row). As can be seen, Mixtral is much
slower than the other solutions, while Mistral exhibits the
fastest response time.

We conducted additional simulations to assess the scalability

of the proposed Retrieve and Re-Rank pipeline. Specifically,

we varied the size of input documents to observe how it affects

the performance of indexing and search processes. Table III

summarizes the results, where we increased the number of

pages to be indexed through the pipeline and measured two

key metrics: Indexing Time which includes running the

pipeline, and Search Time, which reflects the time required to

search for relevant sections using the indexed chunks. As

expected, increasing the size of the input documents leads to

a proportional increase in indexing time, as this process

involves computationally intensive operations such as

chunking and model inference. However, the search time

remains nearly constant, even as the document size grows.

This is because the Bi-encoder and Cross-encoder models

used in the pipeline are optimized for fast retrieval, regardless

of document size. These findings highlight the scalability of

the search process and emphasize the advantage of using RAG

methods to maintain fast response times, even in large-scale

Question-Answering systems.

TABLE III SCALABILITY OF RETRIEVE AND RE-RANK PIPELINE

number of pages Indexing time Search time

901 0.95 0.49

3031 5.21 0.51

5162 9.47 0.52

7293 13.62 0.52

VI. CONCLUSION AND FUTURE WORKS

In this study, we explored the integration of Large

Language Models (LLMs) with Retrieval-Augmented
Generation (RAG) to enhance design and software
development in the automotive industry. Our research
demonstrates that LLMs, when augmented with RAG, can
effectively address the challenge of handling non-disclosable
data in automotive domains. We implemented two case
studies: a standardization compliance chatbot and a design
copilot, leveraging RAG to provide context-aware and
accurate responses.

This study demonstrates that current locally deployable
open-source Large Language Models (LLMs) are still behind
the commercial ChatGPT’s underlying GPT-4 when it comes
to providing the necessary accuracy for question-and-answer
tasks in the automotive industry using Retrieval Augmented
Generation (RAG) technology. While the outcomes of models
like LLAMA3 and Mistral seem more promising, they do not
yet meet the stringent requirements for reliable performance
in this specialized field. However, GPT-4 stands out by
providing almost completely correct answers, indicating that

proprietary models are currently more capable than open-
source alternatives.

Future work should focus on improving the accuracy and
reliability of open-source models to better support automotive
applications by performing model fine tuning. Additionally,
we will aim to extend the evaluation by testing additional
open-source and commercial LLMs in order to identify the
most effective models for various automotive applications.
The effect of different bi-encoder and cross-encoder models
on the performance of the RAG pipeline will also be
evaluated, exploring models with varying architectures and
training datasets to optimize retrieval and generation
processes. Finally, the current manual assessment of LLM
outputs against ground truth answers will be automated using
semantic comparison models, such as cross-encoder models,
to enhance accuracy and efficiency.

ACKNOWLEDGMENT

 This research was funded by the Federal Ministry of
Education and Research of Germany (BMBF) as part of the
CeCaS project, FKZ: 16ME0800K.

REFERENCES

[1] N. Petrović and I. Al-Azzoni, “Model-Driven Smart Contract
Generation Leveraging ChatGPT,” in Advances in Systems
Engineering, H. Selvaraj, G. Chmaj, and D. Zydek, Eds., Cham:
Springer Nature Switzerland, 2023, pp. 387–396. doi: 10.1007/978-3-
031-40579-2_37.

[2] N. Petrovic et al., “Synergy of Large Language Model and Model
Driven Engineering for Automated Development of Centralized
Vehicular Systems,” Apr. 08, 2024, arXiv: arXiv:2404.05508. doi:
10.48550/arXiv.2404.05508.

[3] L. S. M. Netz, J. Michael, and B. Rumpe, From Natural Language to
Web Applications: Using Large Language Models for Model-Driven
Software Engineering. Gesellschaft für Informatik e.V, 2024. doi:
10.18420/modellierung2024_018.

[4] J. Dwight, Retrieval Augmented Generation. Independently published,
2024.

[5] Y. Gao et al., “Retrieval-Augmented Generation for Large Language
Models: A Survey,” Mar. 27, 2024, arXiv: arXiv:2312.10997. doi:
10.48550/arXiv.2312.10997.

[6] “Introduction to LangChain.” Accessed: Sep. 16, 2024. [Online].
Available: https://python.langchain.com/v0.2/docs/introduction/

[7] ISO, ISO/TR 4804:2020 Road vehicles — Safety and cybersecurity for
automated driving systems — Design, verification and validation,
Geneva, Switzerland., 2020. Accessed: Sep. 16, 2024. [Online].
Available: https://www.iso.org/standard/80363.html

[8] “ChatGPT | OpenAI.” Accessed: Sep. 13, 2024. [Online]. Available:
https://openai.com/chatgpt/

[9] “sentence-transformers/multi-qa-MiniLM-L6-cos-v1 · Hugging Face.”
Accessed: Sep. 16, 2024. [Online]. Available:
https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-
cos-v1

[10] “cross-encoder/ms-marco-MiniLM-L-6-v2 · Hugging Face.”
Accessed: Sep. 16, 2024. [Online]. Available:
https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2

[11] ISO, ISO/DTS 5083: Road vehicles — Safety for automated driving
systems — Design, verification and validation, Geneva, Switzerland.,
2024. Accessed: Sep. 16, 2024. [Online]. Available:
https://www.iso.org/standard/81920.html

[12] ISO, ISO 26262-1:2018 : Road vehicles — Functional safety, Geneva,
Switzerland., 2018. Accessed: Sep. 16, 2024. [Online]. Available:
https://www.iso.org/standard/68383.html

[13] Autonomous Vehicle Computing Consortium, “Technical Report 001
Conceptual Architecture for Automated and Assisted Driving

Systems,” Technical Report 001, Apr. 2021. [Online]. Available:
https://avcc.org/tr001/

[14] “CARLA Simulator.” Accessed: Sep. 16, 2024. [Online]. Available:
https://carla.readthedocs.io/en/latest/

[15] “Introducing Meta Llama 3: The most capable openly available LLM
to date,” Meta AI. Accessed: Sep. 16, 2024. [Online]. Available:
https://ai.meta.com/blog/meta-llama-3/

[16] “mixtral.” Accessed: Sep. 16, 2024. [Online]. Available:
https://ollama.com/library/mixtral

[17] “Hello GPT-4o.” Accessed: Sep. 16, 2024. [Online]. Available:
https://openai.com/index/hello-gpt-4o/

[18] “Bienvenue to Mistral AI Documentation | Mistral AI Large Language
Models.” Accessed: Sep. 16, 2024. [Online]. Available:
https://docs.mistral.ai/

[19] K. Lebioda, V. Vorobev, N. Petrovic, F. Pan, V. Zolfaghari, and A.
Knoll, “Towards Single-System Illusion in Software-Defined Vehicles
-- Automated, AI-Powered Workflow,” Mar. 21, 2024, arXiv:
arXiv:2403.14460. doi: 10.48550/arXiv.2403.14460.

[20] “Google Colab.” Accessed: Sep. 16, 2024. [Online]. Available:
https://colab.research.google.com/

[21] “Ollama.” Accessed: Sep. 16, 2024. [Online]. Available:
https://ollama.com

