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Abstract II
 

 

This master thesis investigates the use of Knowledge Graphs (KGs) to improve the 
interpretability and usability of API documentation for Building Information Modeling 
(BIM) authoring tools. By integrating KGs with Large Language Models (LLMs), the 
research addresses challenges in understanding complex and unstructured API doc-
umentation, contributing to enhanced workflows for developers in the construction in-
dustry. Set within the framework of BIM and its APIs, this study combines qualitative 
and quantitative methodologies to construct a graph-based structure for API docu-
mentation. The primary objective is to transform unstructured data into a queryable 
format using a Knowledge Graph and evaluate its effectiveness when integrated with 
an LLM-based Retrieval-Augmented Generation (RAG) Agent. The method was test 
with the Vectorworks API, and a question set comprised of 36 questions.  

The method demonstrates that deterministic graph construction methods ensure reli-
able relationships and well-defined nodes, facilitating accurate querying and infor-
mation retrieval. Furthermore, it highlights the flexibility of LLM-embedding-based 
graph construction, which adapts to unstructured and incomplete documentation. It 
shows that developing a graph-based RAG Agent can effectively answer user que-
ries by leveraging the semantic richness of the constructed graphs. Comparative 
analysis reveals that a hybrid graph combining a deterministic and embedded node 
generation approach outperforms exclusively LLM-generated graphs in text accuracy 
and code suggestion reliability. 

This research bridges the gap between developers and advanced BIM tools by offer-
ing a novel approach to API documentation interpretation. By integrating KGs with 
LLMs, the study provides a robust framework for improving productivity and decision-
making in BIM workflows. Limitations such as dependence on data quality and com-
putational intensity of embeddings are recognized, paving the way for future investi-
gations of hybrid graph construction methods. This study advocates further explora-
tion of KGs and LLMs to improve the interpretability and usability of BIM API in the 
construction domain. 

Key Terms: Knowledge Graphs, Large Language Models, BIM APIs, Retrieval-Aug-
mented Generation, graphRAG 
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Zusammenfassung III
 

 

Diese Masterarbeit untersucht die Verwendung von Wissensgraphen (Knowledge 
Graphs, KGs) zur Verbesserung der Interpretierbarkeit und Nutzbarkeit von API-Do-
kumentation für Autorenwerkzeuge für Building Information Modeling (BIM). Durch 
die Integration von KGs mit Large Language Models (LLMs) werden die Herausfor-
derungen beim Verständnis komplexer und unstrukturierter API-Dokumentation an-
gegangen, was zu verbesserten Arbeitsabläufen für Entwickler in der Bauindustrie 
beiträgt. Im Rahmen von BIM und seinen APIs kombiniert diese Studie qualitative 
und quantitative Methoden, um eine graphenbasierte Struktur für API-Dokumentation 
zu erstellen. Das Hauptziel ist die Umwandlung unstrukturierter Daten in ein abfrag-
bares Format unter Verwendung eines Wissensgraphen und die Bewertung seiner 
Effektivität bei der Integration mit einem LLM-basierten Retrieval-Augmented Gene-
ration (RAG) Agent. Die Methode wurde mit der Vectorworks API und einem Frage-
satz von 36 Fragen getestet.  

Die Methode zeigt, dass deterministische Graphen Konstruktionsmethoden verlässli-
che Beziehungen und Knoten gewährleisten, was die genaue Abfrage und das Abru-
fen von Informationen erleichtert. Darüber hinaus wird die Flexibilität der LLM-em-
bedding-basierten Graphenkonstruktion hervorgehoben, die sich an unstrukturierte 
und unvollständige Dokumentation anpasst. Es wird gezeigt, dass die Entwicklung 
eines graphenbasierten RAG-Agenten Benutzeranfragen effektiv beantworten kann, 
indem er den semantischen Reichtum der konstruierten Graphen nutzt. Eine verglei-
chende Analyse zeigt, dass ein hybrider Graph, der einen deterministischen und ei-
nen eingebetteten Knotengenerierungsansatz kombiniert, ausschließlich LLM-gene-
rierte Graphen in Bezug auf Textgenauigkeit und Zuverlässigkeit von Codevorschlä-
gen übertrifft. 

Diese Forschung überbrückt die Lücke zwischen Entwicklern und fortschrittlichen 
BIM-Tools, indem sie einen neuartigen Ansatz zur Interpretation der API-Dokumenta-
tion bietet. Durch die Integration von KGs mit LLMs bietet die Studie einen robusten 
Rahmen zur Verbesserung der Produktivität und Entscheidungsfindung in BIM-Work-
flows. Einschränkungen wie die Abhängigkeit von der Datenqualität und die Aussa-
gekraft von Einbettungen werden erkannt und ebnen den Weg für zukünftige Unter-
suchungen hybrider Graphenkonstruktionsmethoden. Diese Studie befürwortet die 
weitere Erforschung von KGs und LLMs, um die Interpretierbarkeit und Nutzbarkeit 
der BIM-API im Baubereich zu verbessern. 
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1.1 Motivation 

The rapid development of digital technologies has fundamentally changed the con-

struction industry, with Building Information Modeling (BIM) emerging as the corner-

stone of the innovations. BIM has revolutionized the way architects, engineers, and 

contractors collaborate by enabling advanced 3D modeling, improving decision-mak-

ing processes, and streamlining project execution by combining all relevant data in one 

model. The technique of 3D modeling has become increasingly established in the daily 

planning and construction business. Another significant aspect of BIM is that it offers, 

apart from the 3D geometrical modeling aspect, the opportunity to enrich the modeled 

elements with extensive semantic information. Leading software companies offer BIM 

authoring tools that combine geometric and semantic modeling, such as Autodesk 

Revit1, Graphisoft Archicad2, Nemetschek Vectorworks,3 and Allplan4. Those tools im-

prove the design process by reducing the planning time, indicating clashes in planning 

before even coming to the construction site, and offering a platform for collaboration. 

Connecting geometric data with semantic knowledge makes multidisciplinary design 

activities and site scheduling more time-efficient and visually understandable.  

Despite the advantages of these advancements, the complexity of these tools has led 

to new challenges. Many architects and engineers need to learn to work with the latest 

tools, which is considered an extra effort most users resist. Furthermore, the user in-

terface of those tools is quite complex, and understanding all functions takes in-depth 

training. However, developers who add new functionality to the software or develop 

individual features also have difficulties understanding the application programming 

interfaces (APIs) documentation as they are as complex as the software itself. Never-

theless, the integration of programming interfaces has transformed the usability of the 

software itself, not only in BIM authoring software. Tools such as visual programming 

applications, script-based systems, and plug-in development environments enable the 

 

1 Atuodesk Revit: https://www.autodesk.com/de/products/revit/architecture  
2 Graphisoft Archicad: https://graphisoft.com/de/archicad  
3 Nemetschek Vectorworks: https://www.vectorworks.net/en-US/fundamentals  
4 Nemetschek Allplan: https://www.allplan.com/de/  
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customization of workflows to the specific needs of the user. One example is Dynamo5 

for Revit from Autodesk, which provides a visual programming interface that utilizes 

the functions of the Revit API in a simplified visual way. Although detailed, API docu-

mentation from BIM tools is often inconsistent, unstructured, and difficult to interpret. 

Developers struggle to extract relevant information and find connections, leading to 

inefficiencies in creating extensions and automation.  

As in many other sectors, the emergence of AI is another significant change the con-

struction industry has experienced in recent years (Abioye et al., 2021). Large Lan-

guage Models (LLMs) demonstrated the ability to process and generate human-like 

text. They can address similar challenges across industries by facilitating natural lan-

guage interactions and summarizing complex information. However, LLMs often fail to 

provide accurate answers and correct code implementations when applied to domain-

specific scenarios. To address these challenges, this research proposes integrating 

Knowledge Graphs (KGs) with LLMs to enhance the interpretability and usability of 

BIM API documentation. This would support developers in writing new plugins as it 

would be easier to find relevant functions and retrieve coding suggestions for the spe-

cific functions. Knowledge graphs enable structure data with nodes and relationships, 

offering insights into connections between functions previously unseen. This study 

aims to develop a knowledge graph structure for API documentation to enable intelli-

gent queries and provide better coding suggestions. This is achieved by extracting the 

data from the BIM-API into a BIM-API-Graph, which then can be utilized by a graph-

based Retrieval-Augmented Generation (RAG) Agent to answer users' questions 

about the implementation of the API precisely.  

1.2 Research objectives 

This thesis explores the intersection of Knowledge Graphs, Large Language Models, 

and BIM APIs to tackle challenges associated with interpreting API documentation. 

The explicit target is to develop a comprehensive approach that enables developers to 

process and transform API documentation into Knowledge Graphs and use these 

graphs as a basis for a large language model (LLM). This approach aims to improve 

 

5 Dynamo BIM: https://dynamobim.org/  
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the graph-based RAG agent's answers regarding the developer's questions and pro-

vide correct coding implementation examples.  

The research aims to answer the following questions: 

 What kind of knowledge graph schema design can effectively represent BIM 

API documentation? 

 What are the comparative advantages of Knowledge Graphs over raw textual 

data when utilized as a knowledge base for an LLM-based RAG Agent in the 

context of BIM API queries? 

 What challenges emerge while transforming BIM API documentation into a 

Knowledge Graph, and how can these be addressed? 

By addressing these objectives, the study seeks to bridge the gap between developers 

and the increasingly complex tools they use, providing a practical solution to improve 

their workflows and productivity.  

1.3 Reading guide 

This thesis is structured in the following chapters: 

 Chapter 2 – Theoretical Background: overviews knowledge graphs, LLMs, RAG 

and Graph RAG methods, BIM APIs, and their applications in the built environ-

ment. 

 Chapter 3 – Current State-of-the-art literature reviews existing research on 

LLMs, knowledge graphs, and their applications in BIM workflows.  

 Chapter 4 – Methodology outlines the process of constructing knowledge 

graphs from BIM API documentation and the chatbot's design.  

 Chapter 5 – Case Study showcases the methodology on a real-world example.  

 Chapter 6 – Results and Analysis presents the outcomes of the knowledge 

graph generation and the chatbot implementation and evaluation of the results.  

 Chapter 7 – Discussion examines the implications of the findings and evaluates 

the research objectives. 

 Chapter 8 – Conclusion and Future Works summarizes the key contributions 

and outlines potential directions for future research.  



2  Theoretical Background 4
 

 

This chapter presents the theoretical background for the methods used in this study. 

The technologies' characteristics are briefly outlined, and the methods relevant to this 

study are introduced. Possible advantages and disadvantages are also briefly men-

tioned. The relevant topics are large language models (LLMs), knowledge graphs 

(KG), Retrieval Augmented Generation (RAG) and Graph Retrieval-Augmented Gen-

eration (Graph-RAG) methods, and BIM APIs. 

2.1 Knowledge Graph Characteristics and Use Cases in the Built Environment 

Knowledge graphs have emerged as powerful tools for representing data in a struc-

tured and interconnected way. Semantic graphs capture information with entities 

(nodes) and relationships (edges), enabling advanced querying and reasoning capa-

bilities over classical serialized data representation standards. Knowledge graphs build 

on classical techniques such as JSON and XML but go beyond their capabilities by 

addressing inherent limitations.  

 JSON6 (JavaScript Object Notation) is a lightweight, text-based format that stores data 

using key-value pairs. It is widely used for transmitting data between servers and cli-

ents in web applications due to its simplicity and human-readability (W3Schools, 

2025a). XML7 (eXtensible Markup Language), similar to HTML but with no predefined 

tags, provides a more flexible and hierarchical structure for encoding documents 

(W3Schools, 2025b). Both formats are well-suited for hierarchical data representation 

and serialization, making them suitable for many applications. However, they struggle 

to capture complex relationships and interconnected data effectively. This limitation 

becomes particularly evident in domains like the built environment, where data is highly 

interdependent, requiring advanced relation reasoning and semantic context. 

Knowledge graphs address these challenges by representing data as entities (nodes) 

 

6 https://www.w3schools.com/whatis/whatis_json.asp  
7 https://www.w3schools.com/XML/xml_whatis.asp  
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and their connections (edges). Therefore, KGs are central to improving data interoper-

ability, semantic enrichment, and supporting collaboration in the built environment 

(Pauwels et al., 2022). 

There are two primarily used knowledge graph types enabling those features: Labeled 

Property Graphs (LPG) (Needham & Hodler, 2019) and the Resource Description 

Framework (RDF) graphs. RDF8 is a standard from W3C for exchanging data on the 

Web (W3C, 2025b). The graphs capture data using a triple structure (subject-predi-

cate-object), and each triple is identified by a Uniform Resource Identifier (URI). Such 

a URI is built from the subject-predicate-object structure. An example of an RDF graph 

can be seen on the left side of Figure 1. RDF graphs can be stored in triple-stores and 

queried using SPARQL9 (W3C, 2025a). While they offer high semantic expressiveness 

and interoperability, their strict schema can be limiting in rapidly changing environ-

ments (Pauwels et al., 2022).  

 

Figure 1 Comparison of the structure of an RDF graph with an LPG graph 

In comparison, LPGs are designed to be flexible and are typically used schema-free, 

providing more adaptability to changes in the information captured in the graph. The 

nodes and edges can be labeled and defined by properties, drastically reducing the 

number of nodes and edges (Barrasa & Webber, 2023). An example of an LPG graph 

can be seen on the right side of Figure 1. The graphs consist of nodes connected by 

relationships, classified by relationship types. Properties are attributes for nodes and 

 

8 RDF: https://www.w3.org/TR/rdf12-concepts/  
9 SPARQL: https://www.w3.org/TR/sparql12-query/  
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relationships, giving extra information, and are stored as key-value pairs (Needham & 

Hodler, 2019). LPG graphs can be queried using the query language Cypher10.  

Knowledge graphs are relevant to the built environment as they can enhance interop-

erability and enable semantic enrichment. KGs facilitate advanced reasoning and en-

able users to uncover hidden insights. Using graph-based queries, retrieving specific 

information becomes more efficient. Approaches showcasing the application of seman-

tic graphs in the domain will be described in Chapter 3.2.  

This thesis aims to utilize the strengths of knowledge graphs, particularly LPGs, to 

transform unstructured BIM API documentation into a structured, queryable format.  

2.2 Characteristics of LLMs 

Large Language Models (LLMs) have significantly improved in recent years, support-

ing users by answering diverse questions across various topics. However, their 

knowledge strongly depends on the scope and quality of their training data. As a result, 

specialized domains like Building Information Model (BIM) are not captured to the full 

extent. To address this limitation, knowledge graphs have proven to be an effective 

tool for grounding LLMs in specific subject areas. Moreover, LLMs can also simplify 

information retrieval from knowledge graphs, as they can provide user-friendly access 

to data, eliminating the need for the user to understand complex query languages.  

LLMs have redefined natural language processing (NLP) by enabling machines to pro-

cess, understand, and generate human-like text (Jeon & Lee, 2025). These models 

are based on deep learning principles and are trained on large-scale datasets using 

unsupervised learning to solve tasks like text generation, summarization, and question-

answering (Ibrahim et al., 2024).  

A structured overview and understanding of LLMs is essential to fully leverage the 

potential benefits of integrating KG with LLMs. The following section briefly examines 

the fundamental mechanism of transformers, the differences between open- and 

closed-source LLMs, and the categorization of these models. An overview of this chap-

ter is shown in Figure 2. 

 

10 Cypher: https://neo4j.com/product/cypher-graph-query-language/  
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The foundation of an LLM is transformer architecture, which enables contextual learn-

ing from texts, as examined in detail by Vaswani et al. (2017). The attention mecha-

nism, central to the transformer architecture, computes a weighted representation of 

the input sequence by dynamically assessing the relevance of each word to the task 

at hand. Specifically, the models calculate attention scores by comparing query, key, 

and value vectors derived from the input tokens. In Scaled Dot-Product Attention, these 

scores are scaled by the square root of the key vector's dimension and normalized 

using a Softmax function to generate attention weights, a key component of the mech-

anism described by Vaswani et al. (2017). This process allows the model to focus on 

relationships between tokens regardless of their position in the sequence, effectively 

capturing local and global dependencies. Multi-head attention further enhances this 

capability by projecting the input into multiple subspaces, enabling the model to simul-

taneously learn diverse aspects of the sequence. Through empirical evaluation, Vas-

wani et al. demonstrated the transformer’s ability to achieve state-of-the-art perfor-

mance in tasks requiring deep contextual understanding, such as natural language 

generation and translation. 

Most currently used LLMs are based on this transformer design, containing encoder 

and decoder modules. They can be categorized into three categories, as visualized in 

Figure 2: decoder-only, encoder-only, and encoder-decoder LLMs (Pan, 2024).  

 

Figure 2 - Overview of Large Language Models (LLMs) 
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Encoder-only LLMs rely on the encoder to process input sentences and capture rela-

tionships between words. They are pre-trained using unsupervised methods. These 

models are optimized for comprehension-focused tasks like text classification. Exam-

ples of open-source encoder-only LLMs are BERT (Devlin et al., 2018), RoBERTa (Liu 

et al., 2019), and ELECTRA (Clark et al., 2020). 

Encoder-decoder LLMs utilize both encoder and decoder components. They encode 

input sentences into a hidden representation, which the decoder uses to generate the 

output text. Use cases for these models are summarization, translation, and question-

answering tasks. Examples based on this approach are open-source LLMs like T5 

(Raffel et al., 2019) and GLM-130B (Zeng et al., 2022). 

The third part is the decoder-only LLMs, which use the decoder module exclusively to 

generate target output text. These models are pre-trained to predict the next word in a 

sequence and are used to create text from context. Examples of closed-source de-

coder-only LLMs include OpenAI’s Generative Pre-trained Transformer (GPT) series 

(OpenAI, 2025), Google’s Gemini (Mallick & Korevec, 2024), and Claude (Antropic, 

2025). They can perform downstream tasks using simple instructions without finetun-

ing. An example of an open-source decoder-only LLM is Meta’s LLaMA (Ollama, 

2025a).  

This thesis utilizes decoder-only LLMs for its approach, as these models are used for 

open-end text generation, conversational AI, content creation, and code generation. 

Proprietary LLMs, such as OpenAI’s GPT-4o (OpenAI, 2025), offer state-of-the-art per-

formance and support for multimodal tasks but are often closed systems with limited 

transparency and lacking the possibility of fine-tuning (Jeon & Lee, 2025). In compari-

son, open-source models offer the possibility of fine-tuning. Touvron et al. trained the 

open-source model LLaMA-13B on public data and outperformed GPT-3 (Brown et al., 

2020) with their approach (Touvron et al., 2023). They based their work on the zero 

and few-shot learning methods presented by Brown et al., offering adaptation for spe-

cific tasks for LLMs.  

Despite their increasing capabilities, LLMs still have limitations. They lack domain-spe-

cific knowledge, real-time updated information, and proprietary knowledge (Pan, 

2024). Another downside is that these models still could generate factually inaccurate 

text, also known as “hallucinations” (Xu et al., 2024). Therefore, methods for improving 
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the answers from LLMs are constantly being developed. Methods for solving potential 

issues and limitations of these models are presented in the following chapter. 

2.3 Comparison of RAG and GraphRAG 

As previously mentioned, LLMs have specific capabilities and limitations. LLMs have 

significant potential for natural language understanding and generation. However, they 

also have limitations, such as hallucinations and a lack of domain-specific knowledge. 

Retrieval-Augmented Generation (RAG) and Graph Retrieval-Augmented Generation 

(Graph-RAG) were developed and introduced to overcome these limitations. This sec-

tion compares RAG with GraphRAG, highlighting their differences, advantages, and 

relevance to the context of BIM APIs.  

 

Figure 3 - LLM Question Answering Process: comparing RAG vs. GraphRAG 

 Figure 3 summarizes the different processes described in the following paragraphs. 

Overview RAG 

Retrieval-augmented generation (RAG) enhances large language models (LLMs) by 

dynamically integrating external knowledge bases into the reasoning process. RAG 

retrieves relevant information from external sources based on vector similarity by en-

coding the input query and database content into embeddings. This allows for efficient 

retrieval by identifying the most relevant documents for the question. Combining LLM’s 

inherent reasoning capabilities with factual knowledge retrieved using RAG methods 

improves the response's accuracy, reliability, and topicality (Peng et al., 2024).  

The typical retrieval process is illustrated in Figure 3; the user's question is processed 

by a retriever, which embeds the question and performs a semantic search to identify 
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the most relevant documents from an external source. These documents are then for-

warded to the LLM, together with the question, which generates a response based on 

its training data and the additional retrieved information.  

The quality and effectiveness of RAG’s outputs depend heavily on the relevance and 

quality of the retrieved data, as it directly influences the generated response. While 

RAG effectively captures semantic similarity, it is limited in representing relationships 

between pieces of information (Jeon & Lee, 2025).  

An upcoming solution for the challenges with RAG involves Graph Retrieval-Aug-

mented Generation (GraphRAG), where information is retrieved from graph elements 

containing relational knowledge (Peng et al., 2024).  

Overview GraphRAG 

GraphRAG can be seen as an extension of RAG methodologies, retrieving information 

from a graph database instead of solely relying on unstructured text input. Those 

knowledge graphs represent information with entities and relationships, enabling the 

model to reason about connections between the data (Peng et al., 2024). This explicit 

relational modeling allows for multi-hop reasoning and explainability. Multi-hop reason-

ing uses the edges between nodes to perform contextual reasoning utilizing multiple 

entities. Explainability is enabled by the graph structures as a logical retrieval path can 

be traced and explained.  

A structured overview literature review regarding methods for the step of the RAG pro-

cess is presented by Peng et al. The main steps presented are Graph-Based Indexing, 

Graph-Guided Retrieval, and Graph-Enhanced Generation.  

GraphRAG relies strongly on the previously generated graph; therefore, a high respon-

sibility lies in the information extraction process and node generation (Jeon & Lee, 

2025). Numerous studies focused on improving the automated knowledge graph con-

struction leveraging LLMs to enable a broader adoption of GraphRAG. A selection of 

those approaches is presented in Chapter 3.3.  

Nonetheless, it increases the system's complexity as it has construction, and maintain-

ing a knowledge graph adds extra steps and effort.  

Comparison of RAG with GraphRAG regarding their relevance for BIM APIs 
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In the context of BIM APIs, GraphRAG has some advantages over RAG. APIs often 

involve connected functions, parameters, and datatypes, requiring a detailed under-

standing of their relationships. RAG would retrieve information about individual text 

snippets, such as separate functions, in a thorough manner. Whereas, GraphRAG 

could retrieve the description and the dependent functions or parameters, providing a 

more holistic view.  

2.4 Characteristics of BIM Authoring Tool’s APIs 

Building Information Modeling (BIM) APIs play a crucial role in the construction industry 

by enabling developers to extend, customize, and automate tools and workflows in 

their 3D modeling software. Therefore, most software products have a programming 

interface for developers to use to develop their add-ons. Furthermore, software ven-

dors offer documentation for their BIM authoring software’s API as guidance for the 

developers; for example, Nemetschek Allplan offers documentation for PythonParts11 

extension, Nemetschek Vectorworks has documentation for VectorScript and Python 

APIs12, and Autodesk Revit offers Revit API Docs13. Those APIs define how to interact 

with programs at a coding level and document the common structures, standards, and 

terminologies. However, their complexity and the lack of standardization between the 

different tools and documentation pose challenges for developers.  

2.5 Summarization 

In the context of BIM APIs, LLMs offer the potential for automating and simplifying 

complex documentation. However, their limitations, particularly hallucinations and lack 

of relational reasoning, make them less effective when applied in a domain-specific 

scenario. Augmenting LLMs with knowledge graphs has the potential to fill these gaps 

by integrating structured knowledge to improve the accuracy and contextual relevance 

of responses for developers. The following chapter examines current approaches lev-

eraging LLMs and KGs in general and in the BIM field.  

 

 

11 Allplan PythonParts: https://pythonparts.allplan.com/2025/manual/getting_started/  
12 Vectorworks: https://developer.vectorworks.net/index.php?title=VS:Function_Reference  
13 Revit API: https://www.revitapidocs.com/  
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Over the past decades, Building Information Modeling (BIM) technology has signifi-

cantly transformed the construction industry. What began with the creation of basic 

CAD drawing has evolved into the development of complex multidisciplinary models 

that integrate advanced programing interfaces (APIs). These programming interfaces 

enable an upgrade in the time and efficiency of model construction. However, as the 

reliance on APIs grows, so does the complexity of their documentation, often leading 

to inefficiencies in their adoption and use. Addressing these challenges requires inno-

vative approaches that integrate advanced technologies to manage and interpret this 

information.  

 

Figure 4 - Overview literature review 

This study builds on three areas in the literature to explore solutions for improving the 

usability of BIM API documentation, as visualized in Figure 4. In the first part, Chapter 

3.1., recent advancements in Large Language Models (LLMs) will be explored, demon-

strating their potential to process natural language queries, generate contextual re-

sponses, and automate tasks. In the context of BIM, LLMs have been applied to tasks 

3 The current state-of-the-art in literature
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in different stages of design, data retrieval, and compliance checking (Saka et al., 

2024). Furthermore, the possibilities of automated model construction have been ex-

amined. However, these approaches often struggle with domain-specific challenges, 

such as hallucinations and a lack of relational reasoning.  

Chapter 3.2. introduces current approaches using graphs to make BIM data accessi-

ble. By leveraging Labeled Property Graphs (LPGs) and Resource Description Frame-

works (RDFs), researchers have developed methods to address issues such as in-

teroperability, traceability, and version control in BIM data.  

Chapter 3.3. highlights the opportunities of combining knowledge graphs with LLMs. 

Integrating knowledge graphs with LLMs represents a promising approach to overcom-

ing the limitations of each technology when used in isolation. Literature in this area 

explores how KGs can enhance the accuracy and contextual relevance of LLM out-

puts. 

Those reviews lead to a methodology for combining LLM with KG to retrieve infor-

mation and assist with specific documents in the field of BIM.  

3.1 LLM-based approaches for BIM 

Since the emergence of different LLMs, such as OpenAI’s GPT series, Google’s Gem-

ini, and Meta’s LLaMA, this technology has been widely spread in many fields, includ-

ing business, education, and the construction industry. Integrating large language 

models (LLMs) into the construction sector, particularly in Building Information Model-

ing (BIM), has opened unforeseen possibilities to optimize design, management, con-

struction, planning, and operational processes. Numerous studies explore the upcom-

ing opportunities emerging by integrating LLM into the BIM processes. Aiming to im-

prove and automate the design process, improve usability, and assist users with BIM 

authoring software.  

Text2BIM 

Studies like Text2BIM have demonstrated a multi-agent LLM framework to convert 

natural language inputs into code to generate building models in BIM authoring soft-

ware, enabling the automation of early-stage design processes (Du, Esser, et al., 

2024). Their framework achieved native BIM Models with internal layouts, external 

wrappers, and semantic information. They used four collaborating LLM agents to gen-

erate a BIM model from textual design information without fine-tuning. The agents are 
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controlled with prompt techniques, and a key innovation is the quality optimization loop, 

a rule-based model checker agent, enabling iterative conflict resolution. They test the 

framework with different models and design cases to demonstrate the efficiency and 

feasibility. Their approach showed the possibilities for utilizing LLM agents to automate 

the modeling process in BIM authoring software.  

BIM-GPT 

In the design phase, BIM models become complex and detailed, and untrained users 

possibly struggle to handle these models. Solving this issue, BIM-GPT provides a 

prompt-based virtual assistant framework to help practitioners retrieve and manage 

data from complex BIM models (Zheng & Fischer, 2023). The user interface from BIM 

authoring software is often complex, and lots of multi-disciplinary data are coming to-

gether in the model. Therefore, it can be difficult for non-experts to retrieve data from 

the model. The core module of their approach is a prompt library and a prompt man-

ager generating answers to BIM-related questions. Their study defined several use 

cases with individual prompt goals in detail. Dealing with identifying the user's intent 

and generating the correct query for the correct answer. A complex prompt manager 

handles and chooses the right prompt. The prompts to be chosen by the Prompt Man-

ager are categorized for different use cases: the intent prompt classifies the intent, then 

the parameter prompt identifies the parameters and filters, after that, the value prompt 

extracts the identified values, and lastly, summarizes the results. Their approach 

showed high accuracy rates for retrieving data efficiently, advancing the usability of 

authoring software.  

DAVE 

Another approach aiming to improve the usability of BIM authoring software focusing 

on interacting with the model is presented by Fernandes et al. (2024), a GPT-powered 

Digital Assistant for Virtual Engineering (DAVE). Their approach utilizes an LLM to in-

teract with BIM models using the authoring software API and an AI chatbot application. 

The architecture comprises four components: Data Extraction, Python, JSON Bridge, 

and C# Revit API updater. The Data Extraction Component prepares structured project 

data (JSON/CSV) for the GPT Assistant, while the Python component handles the user 

interaction, natural language processing, and communication with OpenAI API. The 

JSON Bridge Component ensures real-time communication between the Python and 

C# Revit API Component, which executes updates in Autodesk Revit based on the 
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user's command. What is interesting about their approach is the way they leveraged 

the Revit API and the AI component together. The scalability of their system is currently 

limited by the fact that they are mapping every Revit interaction to a unique Python 

function. This poses challenges for larger BIM models. A possible solution could be 

automating the function generation using AI again.  

LLM-based copilot 

LLM-based copilots, such as those proposed by Du, Nousias, and Borrmann (2024), 

can support developers and users of 3D-modeling software by answering technical 

questions about the usage of tools and providing suggestions. These tools are partic-

ularly valuable for navigating complex BIM software. Their method is based on an 

agent framework where an agent selects the appropriate tool according to the tool 

description from a predefined tool set.  

3D-GPT 

An approach not specific to BIM but also dealing with automated 3D modeling based 

on textual user instructions is 3D-GPT (Sun et al., 2023). They showcased that their 

3D-GPT can interpret instructions and execute modeling tasks. The method is based 

on three agents: one for task dispatch, one for conceptualization, and one for modeling. 

Their work demonstrates how LLMs can streamline workflows in 3D modeling.   

Overview AI in construction phases 

An overall view of LLM-enhanced BIM application in the construction sector is provided 

by Saka et al. (2024). They analyzed the current approaches available and offered a 

structured overview. The approaches are sorted in the paper according to the con-

struction phase they facilitate. Starting in the pre-design phase, LLMs facilitate deci-

sion-making by analyzing the project requirements and generating recommendations 

for optimal design strategies, construction techniques, and project schedules. This is 

followed by the design phase, where LLMs enhance BIM models by generating im-

proved specifications and automating compliance checking. During the construction 

phase, many potential application fields exist for LLMs. They enhance project sched-

uling and logistics by analyzing and understanding textual information. LLMs automate 

rule verification in regulatory compliance, converting regulations into logical clauses for 

efficient compliance checking. Analyzing extensive documentation to identify hazards 

and predict outcomes is an excellent benefit for risk management. Furthermore, the 

ability to process textual and visual data helps to automate updated information in the 
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construction process, saving time in progress monitoring and reporting. LLMs can sup-

port the operation and maintenance phase by analyzing energy consumption and pre-

dicting maintenance needs. Besides all these opportunities, the paper identifies sev-

eral challenges, categorized as industry-related, LLM-related, and challenges arising 

from combining both. The LLM-related challenges are hallucinations, interoperability, 

liability, and ethical issues. Hallucination-related issues can be a severe danger in the 

construction sector, as a miscalculation or planning error can result in a tremendous 

cost increase. An industry-related issue is the limited ability to understand domain-

specific knowledge, as the industry requires a deep technical understanding of different 

principles. Furthermore, many regulations in the building sector are changing from 

case to case. A solution to solve these issues could be utilizing RAG methods.  

All of the previously mentioned approaches aim to improve the handling of BIM author-

ing software by incorporating the ability of LLMs to understand and process natural 

language. However, the large amount of knowledge data in the construction sector and 

the tendency of LLMs to hallucinate when it comes to topics out of their scope appear 

to be unsolved challenges. Other studies have already focused on processing large 

amounts of BIM data and gaining insight. The following chapter evaluates approaches 

for accessing BIM data through graphs.  

3.2 Accessing BIM data through Graphs 

Accessing and querying data in Building Information Modeling (BIM) remains challeng-

ing due to the complexity and heterogeneity of data sources; the same applies to BIM 

APIs. Graph-based approaches offer significant potential in addressing these chal-

lenges by leveraging the graph's structured and relational nature. This section dis-

cusses different methods for using graphs in BIM to improve workflows and access 

data.  

IFC to LPG 

Zhu et al. (2023) developed a graph-driven approach to converting Industry Foundation 

Classes (IFC) data into Labeled Property Graphs (LPGs) to reveal hidden relationships 

between data elements and make building information accessible and queryable. In 

the paper, they compared the suitability of RDF or LPG for their approach, favoring 

LPG as they are more suitable for access and query ability and performance reasons. 

RDF graphs are more suitable for use cases where linking heterogeneous data is the 

focus. After analyzing the structure of IFC and LPG, they conceptually mapped the 
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attributes from IFC to the LPG concept. They validated their model-driven conversion 

by comparing the number of nodes with the number of IFC instances. The approach 

has proven that the various IFC-SPF models can be transformed into LPG without 

information loss. Nevertheless, they noticed during their process limitations, such as 

performance issues rising with larger files or Cypher queries not being tailored to 

query-building information.  

Version control for BIM models 

Another approach introduced by Esser et al. is the object-based version control for BIM 

models to overcome traceability issues for individual objects. The method is based on 

representing the object network, forming a BIM model as a property graph structure, 

and tracking changes as graph transformation (Esser et al., 2023). They presented a 

methodology for merging design decisions into a vendor-neutral data model. Their con-

cept of “branch-and-merge” presents a solution for merging multiple diverging model 

states produced during the design process into a consistent coordination model. They 

merged the models' changes by expressing them as graph transformations, enabling 

updates through patterns context, push-out, and gluing. Their system identifies and 

resolves conflicts using semantic matching and structural matching. With their ap-

proach, they enhanced the overall collaboration in the construction industry and show-

cased the usability of graphs for BIM models.  

Downgrading Revit Models 

Furthermore, graphs can be used when it comes to the problem that software formats 

cannot be opened in earlier versions. One study presents an approach to address this 

problem by using a generated BIM graph and software APIs, illustrating the process of 

downgrading a Revit model from version 2023 to 2022 through three main steps: ex-

porting object geometries, generating the BIM graph, and reconstructing models using 

enriched semantics and software APIs (Wang et al., 2023). They proposed a pipeline 

to predict semantic types of objects and reorganize them into a KG, which can be used 

for reconstructing in an earlier version.  

Data to Knowledge 

Pfitzner et al. (2024) presented an approach to turn data into knowledge using a graph. 

They presented a pipeline that included data acquisition, processing, and extraction 
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knowledge from the construction side. By developing a labeled property graph to rep-

resent construction objects, processes, and their interrelations, they integrated time- 

and location-specific data into a graph, enabling insights into the construction phases.  

Graph-based automated code checking 

Buildings and their models must fulfill many requirements, and checking them can be 

time-consuming and inefficient. Automated code checking (ACC) has been introduced 

to BIM to solve this problem. However, ACC is limited because the regulations in the 

construction field are often complex and not straightforward to check. Therefore, Bloch 

et al. (2023) introduced a graph-based ACC approach to overcome limitations such as 

regulations that do not address only geometric aspects but also relational ones.  

Those approaches showcase the relevance of graphs for the area of BIM. There are 

different methods for utilizing graphs to enable information exchange, retrieval, and 

comparison. The presented studies all use the graph's benefit of relational information 

representation to connect different kinds of BIM data. 

3.3 Enhancing LLM with a Knowledge Graph 

LLMs and KG graphs are quite different technologies, but looking at their pros and 

cons, it becomes clear that they leverage each other. LLMs are proficient at processing 

language and have broad knowledge. However, they are a black box, hallucinations 

can occur, and they have little domain-specific knowledge. KGs offer structured, pre-

cise knowledge but are often incomplete, and knowledge can be overlooked. Further-

more, they cannot process natural language, which makes it occasionally difficult for 

users to retrieve specific information from the graphs. Looking at these individual as-

pects of the two technologies, it becomes clear that a combination of the two can bring 

many benefits. This chapter will evaluate the current approach of combining KG with 

LLMs to identify the potential for transferring their concept to the BIM field. The topic is 

split into three parts: Approaches for combining KG with LLMs, Approaches for en-

hancing LLMs with KGs, and Approaches utilizing LLMs to construct KGs. 

Approaches for combining KG with LLMs 

An approach of combining KG with LLMs was taken by Pusch & Conrad; their goal is 

to improve the reliability of question-answering systems. They compared the generated 

Cypher queries from different LLMs and implemented a query-checking algorithm to 

validate the results (Pusch & Conrad, 2024). In their approach, they used LangChain 
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Neo4jGraph for the graph schema generation. Then, an LLM generates a Cypher 

query, which a query checker will validate. The query checker identifies missing prop-

erties at the return statements, incorrect node types, and relationship direction errors. 

Then, the query will be executed. They devised three question types for testing: 1-hop 

questions involving only one relationship, 2-hop questions involving two relationships, 

and 3-hop questions with a chain of four entities and three relationships. They tested 

their approach for different scenarios and different LLMs. They compared Zero-shot, 

One-shot, and Few-Shot Prompting for GPT4-Turbo, and LLaMa3-70B. This results in 

a higher performance for GPT4-Turbo for Zero-Shot and an increased performance 

from LLaMA3-70B when using Few-Shot Prompting compared to Zero-Shot.  

Kau et al. (2024) have done a deep literature review to answer how KG can enhance 

LLM capabilities, how LLMs can support KGs, and the advantages of combining KG 

and LLMs in a joint fashion. They categorize the found papers into approaches that 

use KG or LLMs as “Add-ons” versus “Joint” approaches. Joint approaches combine 

the strength of LLMs and KGs by fusing textual and knowledge embeddings in a joint 

encoder. This results in a better semantic understanding of knowledge.  

Approaches for enhancing LLMs with KGs 

As hallucinations of LLMs can be a significant problem when using LLM-based ap-

proaches, connecting LLMs with a structured knowledge source might favor the cor-

rectness of the results and improve the reasoning of the answer. Chekalina et al. 

(2024) developed an approach combining LLMs with KGs, showcasing that it can re-

duce hallucinations and improve accuracy. Their method transforms input text into a 

set of KG embeddings, and then they use an adapter to bring these embeddings into 

the language model space. In their approach, they trained a Text2Graph mapper and 

KG embedding Adapter. This results in adding a KG modality to the Large Language 

Model. The evaluation of the results comparing three LLM models with and without the 

KG modality has shown an improvement in accuracy. The accuracy depends on the 

LLM and the test data set and, therefore, varies. 

A similar approach to what this study is trying to implement was done by Abedu et al. 

(2024); their study improved the accuracy of an LLM-based chatbot by augmenting it 

with a knowledge graph. They created a Knowledge Graph Constructor to generate 

the graph based on the repository data. Furthermore, they enable interaction with a 

combination of a Query Generator, a Query Executer, and a Response Generator. 
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They found that their KG-enhanced LLM answered 65% of repository-related questions 

correctly. When integrating chain-of-thought prompting, the correctly answered ques-

tions raised 84%.   

Approaches utilizing LLMs to construct KG 

Creating those KG from raw data and combining them with LLMs appears challenging. 

Different studies developed approaches utilizing LLMs to enhance and automate the 

KG construction process.  

Yao et al. (2023) present an approach for using an LLM to complete KGs. Their study 

shows a significant improvement in LLM model answering performances when inte-

grating KG data.  

Trajanoska et al. (2023) presented a method for an automated process to extract in-

formation from unstructured data by constructing a KG using Natural Language Pro-

cessing. Their approach focuses on creating KG from raw text by integrating advanced 

LLMs with semantic technologies.  

A novel approach presented by Bhatt et al. (2024) leverages LLM to generate KGs 

directly from unstructured data without using traditional pipelines. Their pipeline con-

sists of five steps: data selection, preprocessing of the data, KG generation, ground 

truth creation, and evaluation. The input text undergoes tokenization, cleaning, and 

formatting to ensure its compatibility with the different models. They compared three 

models for their approach: GPT-4, LLaMA 2, and BERT. Each of the models inde-

pendently extracts entities and relationships to generate the graph. A manually con-

structed ground of truth KG serves as the benchmark to validate the generated KGs. 

In their evaluation, GPT-4 demonstrated the highest performance, with high precision, 

recall, and semantic alignment. Balanced performances suitable for limited resources 

scenarios showed LLaMA 2. Meanwhile, BERT struggled with contextual understand-

ing and generating nuanced relationships.  

3.4 Summary of the identified research gaps 

The literature research revealed several application scenarios for intersecting LLMs, 

Knowledge Graphs (KGs), and Building Information Modeling APIs. In the field of LLM-

based approaches for BIM, studies demonstrate the potential of LLMs to optimize and 

automate the BIM process. Showcasing how LLMs can automate the BIM modeling 

and assist practitioners in managing complex models. However, they face limitations, 
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including domain-specific hallucinations and inadequate relation reasoning, resulting 

in less reliability and usability. Graph-based techniques promise robust storage for ef-

ficiently representing extracted information and retrieving relational knowledge, result-

ing in the consideration of combining KG with LLMs. The combination offers structured, 

precise knowledge to reduce LLM hallucinations and enable natural language query-

ing, facilitating access to graph-based data. Even though current graph-based ap-

proaches face scalability challenges for constructing and querying graphs from com-

plex, heterogeneous data sources. Approaches showed improvements in automated 

KG graph construction utilizing LLMs to enhance the entity and relationship extraction 

from unstructured data.  

Considering the specifics of the APIs provided by standard BIM authoring tools, it 

seems promising to use both LLMs and KGs to foster later use cases such as agent-

based interactions. This study proposes a dual approach, creating a semantically rich 

KG tailored to BIM API documentation and using this “BIM-API-Graph” to extend LLM 

reasoning. This methodology aims to overcome the limitations of both technologies 

and enable efficient, accurate, and contextualized search and interaction for develop-

ers. 
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This chapter outlines the approach adopted to address the research objectives and 

answer the key questions posed in this study. The methodology is structured to tackle 

the three main challenges: interpreting complex BIM API documentation, generating 

graph construction methods, and retrieving relevant information from the graph using 

an LLM. It is separated into two main chapters: Knowledge Graph Construction and 

the graph-based RAG-Agent retrieval. The complete approach is shown in Figure 5, 

providing the main steps of both parts and visualizing their connection.  

Chapter 4.1 focuses on the first part, “Graph Construction”, transforming unstructured 

BIM API documentation into structured Knowledge Graphs. First, the data is prepared 

by examining various sources, including JSON files, textual documentation, and web-

based examples. This is followed by three partly automated approaches for generating 

the knowledge graph. Separated into one deterministic method for reliable node crea-

tion, one semi-automated approach based on LLM embeddings, ensuring semantic 

richness in the constructed graph nodes, and one method to integrate more complex 

coding examples from utilizing examples from webpage documentation.  

 

Figure 5 – Methodology Overview 

The second part of this approach addresses graph-based RAG-Agent retrieval using 

the previously generated graph as a data source. Chapter 4.2 presents the develop-

ment of the graph-based RAG-Agent, which involves designing an agent and a toolset 

that interacts with the constructed knowledge graph. The LLM agent is based on a 

custom prompt template, which guides the agent in choosing the appropriate tool from 

the predefined tool set. Then, the tool is used, and the result is returned to the agent, 

4 Methodology
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deciding whether the answer is sufficient or whether another tool is necessary to an-

swer the user's question to its full extent. This decision is based on the predefined 

“Answering Guidelines” in the agent's prompt. The process is repeated until the results 

are sufficient, and then the agent forms a final answer, which will be returned to the 

user. 

4.1 Knowledge Graph Construction 

The construction of the Knowledge Graph is a crucial component of this research, 

which aims to transform unstructured BIM-API documentation into a structured, query-

able format. The following section will explain two different generation and retrieval 

processes to identify the best-performing graph. The two approaches, A and B, differ 

in their LLM usage. Approach A uses a method based on an open-source embedding 

model and a graph transformer with Cypher queries to generate the embedded chunks 

and vector indexes. On the other hand, approach B uses a specific tool that combines 

the KG construction and embedding, and retrieving answers from the graph utilizes a 

specific GraphRAG tool. The overall process of both approaches enables the integra-

tion of domain-specific knowledge into a graph-based representation that can enhance 

the LLM-based retrieval capabilities. The ultimate objective of this process is to gener-

ate a BIM-API-Graph.  

The methodology for knowledge graph construction is divided into four key stages: 

understanding the input data and generating graph nodes through three distinct meth-

ods. Each method leverages different data sources to ensure a comprehensive and 

semantically rich representation. The process is shown in Figure 6.  
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Figure 6 - Approach of the first part of the study generation of the BIM-API-Graph 

The process starts with data preparation. First, the documentation is converted into a 

text file. Then, applying regular expression, the txtToJSON-Parser parses the text file 

into JSON.  

From this on, the first method uses the TextSplitter to split the text file of the API into 

chunks, which are then embedded using an embedding model. The embedded chunks 

are then used to generate a vector index and graph nodes. This process ensures the 

capture of contextual information in a way that the LLM understands and enables the 

LLM to discover its node types and relations in the data. In this section, Approach A 

and B differ; Approach B uses a different tool for embedding and graph generation 

here. This is utilized to test a different generation-retrieval process to compare the 

approaches' graph generation abilities. 

The deterministic graph method generates nodes by extracting the key-value pairs 

from the JSON. Those are then supplemented to the Cypher queries as graph proper-

ties. The nodes and relationships are then added to the BIM-API-Graph with the que-

ries. This process enables a reliable and consistent extraction of key elements such 

as functions, parameters, and data types. 
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The third method enriches the graph by creating relationships between the function 

nodes based on implementation examples extracted from the webpage documenta-

tion. Therefore, the web documentation of the BIM-API is scraped to extract the rele-

vant pages containing coding implementation examples. The function names from the 

examples are then merged into the BIM-API-Graph using a [USES]-relationship. This 

adds practical context and aims to enhance the coding implementation suggestions. 

4.1.1 Data Preparation 

Creating a high-quality knowledge graph begins with a thorough understanding and 

analysis of the input data, which can vary significantly depending on the structure and 

content of the API documentation. While some 3D-programming software documenta-

tion is well-structured, featuring strongly typed parameters and datatypes, others may 

lack uniformity or detail, adversely affecting the graph’s accuracy. Consequently, the 

quality and reliability of the graph relies highly on the precision of input data.  

In this section, different input data components are evaluated, and specific require-

ments for graph generation are outlined. Depending on the graph generation method 

chosen, the requirements for the data differ.  

The deterministic approach relies the most on the quality and detail of the documenta-

tion data. Manual preprocessing of the input data is often necessary to transform un-

structured “.txt” or other formats into structured “.json” files, enabling the extraction of 

key-value pairs. This step involves identifying specific keywords and elements com-

monly found in code documentation. Since coding languages vary in syntax and con-

ventions, not all elements are necessarily present in every dataset, requiring adapta-

bility during preprocessing. General elements usually present are functions, function 

names, input parameters, descriptions, methods, and return values. After identifying 

those key elements and their syntax, the next step is to decide which other information 

from the functions might be relevant to the graph, for example, documentation-specific 

data. Finally, it is necessary to determine how to connect the extracted elements and 

decide which elements will be nodes, node properties, relationships, and relationship 

properties. Based on those findings, the graph can then be constructed.  

The reliance on manual input is minimized for the graph-creating process using LLM 

embeddings. Instead, the LLM generates embeddings based on the text chunks ex-

tracted from the documentation. These embeddings capture semantic relationships 

between data, enabling the automated construction of graph nodes. This is particularly 
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effective for unstructured or incomplete documentation as it leverages the contextual 

understanding of LLMs to enhance the graph’s semantic richness.  

Implementing the Webpage-Example-Graph is based on webpage extraction depend-

ing on the data from the webpage documentation, which can be quite different for each 

BIM-API. So, manual input is necessary to understand the structure of those pages 

and find the parts with the examples. The relevant sections with the coding examples 

from the webpage need to be identified and delivered to the tool as input.  

4.1.2 Construction graph nodes from JSON with a deterministic approach 

This part describes the deterministic approach that operates consistently and predict-

ably, producing the same outcome every time given the same initial conditions. The 

limitation of this approach is that the resulting output accuracy relies strongly on the 

quality of the input data. This implies that the first step in the deterministic graph crea-

tion process is preparing the input data. 

This approach is inspired by the pipeline presented by Bronzini, where a data prepa-

ration process was also implemented. In the method, a PDF parser was used to extract 

the text, and then regular expression optimizes the textual data to the specific needs 

(Bronzini, 2024). 

For this approach, JSON is the preferred target format as it allows the storage of key-

value pairs and objects. This format makes it convenient to construct the graph. The 

individual functions from the input data are saved as a list of objects, with each object 

consisting of the same key-value pairs. In addition, JSON allows the storage of nested 

elements so that the input parameter values are stored correctly. Then, when creating 

the graph, it iterates over the individual objects of the JSON and adds the values as 

node properties to the graph. Jeon and Lee (2025) converted their input data into a 

structured JSON to retrieve pair datasets.  

The data processing in a JSON format differs depending on the input data type. The 

file from the API-Documentation Function is the original data source; the file is copied 

to a “.txt”-file and then transformed by the “txtToJSON”-Converter into a JSON file 

where each function element is represented as key-value pairs. The key-value pairs 

are extracted with regular expression patterns, which find the wanted terms in the tex-

tual file. However, for this to work, the input data must be written consistently, as dif-

ferent writing in the original data can cause misdetection. For example, a misspelling 
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might break this process as the pattern would no longer detect the term. For that rea-

son, breaking conditions are very relevant so the skipped lines from the code can be 

identified.  

After the JSON file is correctly created, the node construction begins. The script pro-

cesses each function object of the JSON, extracts the key-value pairs, and creates 

nodes and relationships in the graph database. This process establishes a graph-

based representation of the data, which can be queried and visualized for insights into 

function dependencies and structure.  

The graph nodes preferably created follow the schema in Figure 7. 

 

Figure 7 - Deterministic-Graph-Approach: nodes and relationships created with this approach 

With this approach, the following relationships and entities will be created.  

Table 1 - Nodes and Relationships of the deterministic approach 

Relationship and Nodes Description 

(Function)-[HAS_PARAMETER](Parameter) 
Indicates a Function that has a certain input 

parameter. 

(Function)-[FUNCTION_OF](Document) 
Indicates a Function that is from a certain 

document. 

(Function)-[RETURNS_DATATYPE](Datatype) 
Indicates a Function returns a certain 

datatype. 

(Function)-[BELONGS_TO](Category) 
Indicates a Function belonging to a certain 

category. 
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4.1.3 Construction graph nodes from textual files using LLM-embeddings 

When the input data lacks proper documentation or the used coding language is not 

strongly typed, identifying and understanding connections between functions becomes 

complex. For instance, in a 3D modeling application, constructing a wall requires a 

sequence of functions to be called in a specific order. The input data, represented as 

a “.txt” file, will be embedded to address this challenge and enhance the comprehen-

sion of such connections. This step provides the LLM-based Agent with semantic con-

text and is searchable with advanced information retrieval.  

Approach A 

This section outlines the structured approach of processing textual data into semanti-

cally rich knowledge graph nodes, integrating vector embeddings for advanced infor-

mation retrieval. This method comprises five steps: data loading, text chunking, em-

bedding generation, graph insertion, and vector index creation. A similar approach for 

automated graph construction was made by Jeon & Lee; they used an algorithm to 

extract nodes, relationships, and vector indices (Jeon & Lee, 2025).  

Firstly, the data is loaded with a dedicated loader, in this case, a text loader. This en-

sures the raw data is accessible for further processing containing the relevant 

metadata. The loaded document will then be processed into manageable chunks using 

a predefined separator (e.g., the function keyword “\ndef “) and constraints on chunk 

size. Overlaps between the chunks are minimized to ensure distinct content for each 

function. Subsequently, the chunks will be transformed into a vector representation 

using a language model. The embedding of the data enables capturing semantic infor-

mation to allow similarity-based comparisons. Additional metadata and the embedding 

are mapped to graph entities using a graph transformer. The text chunks are repre-

sented as nodes linked to the corresponding document nodes. Furthermore, the LLM 

extracts additional entities from the embeddings; those are added with a relationship 

to the chunk. The graph nodes schema by this process is shown in Figure 8.   
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Figure 8 - Embedded Graph node schema 

The vector embeddings are stored as a node property with the chunk node, enabling 

their use in similarity-based retrieval. Finally, a vector index is constructed, leveraging 

the stored embeddings. The index is configured with 1024 dimensions and uses cosine 

similarity as its metric. This enables advanced search functionalities, facilitating effi-

cient and accurate retrieval of semantically related nodes.  

Approach B 

To compare the results, another approach to generate embeddings with an LLM was 

used to create the nodes with an LLM, which extracts different entities automatically 

with predefined labels. This approach loads the textual document into a KG-Builder, 

which then generates embeddings and uses an LLM to extract entities from the em-

beddings. For this approach, a prompt template is necessary to guide the LLM. Fur-

thermore, certain entities and relations can be defined to guide the LLM regarding the 

final graph schema. The predefined node labels are chosen based on the detected 

entities in the input data from Chapter 4.1.1., allowing the LLM to generate a similar 

BIM-API-Graph to the one in Approach A: 

basic_node_labels = ["Function", "Category", "Datatype", "Parameter", 
"Document" ] 
function_node_labels = ["ReturnType", "DataType", "Datatype", 
"Parameter", "Document", "Description"] 
rel_types = [ 
    "HAS_PARAMETER", "FUNCTION_OF", "BELONGS_TO", "RETURNS_DATATYPE", 
    "IS_DATATYPE", "RETURNS", "USES"] 
 

Prompt Template used:  

Extract the entities (nodes) and specify their type from the following 
Input text. 
Also extract the relationships between these nodes. The relationship 
direction goes from the start node to the end node. 
 
Return the result as JSON using the following format: 
{{ 
    "nodes": [ 
        {{"id": "0", "label": "the type of entity", "properties": 
{{"name": "name of entity"}} }} 
    ], 
    "relationships": [ 
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        {{"type": "TYPE_OF_RELATIONSHIP", "start_node_id": "0", 
"end_node_id": "1", "properties": {{"details": "Description of the 
relationship"}} }} 
    ] 
}} 
 

The nodes generated by this approach can vary according to the LLM-identified enti-

ties.  

4.1.4 Construction graph nodes from examples of the web-documentation 

The third node extraction approach aims to enhance the implementation understanding 

of the functions from the documentation. This part focuses on the real-world implemen-

tation examples derived from the web-based program documentation. The process in-

volves web scraping, data extraction, semantic analysis, and graph representation.  

The process begins with identifying all relevant hyperlinks from a specific base URL. 

The web scraping techniques retrieve a list of fully qualified URLs, filtering for those 

containing references to functions. By combining HTTP requests, HTML parsing, reg-

ular expressions, and error handling, the script provides a framework for data-driven 

analysis. This step is designed to adapt to the variability of software documentation 

systems and various formats. The process starts by sending requests to the base URL 

to fetch the raw HTML content of the main page and any linked pages. The script uses 

parsing and filtering to extract and clean the required data, ensuring only function-

related pages are processed. Subsequently, the extracted pages are analyzed to iden-

tify and extract code examples. Regular expressions identify specific function calls 

(e.g. prefixes with vs.) within these examples. The extracted examples are then for-

matted into Cypher queries, connecting the mentioned functions in the code snippet 

with a [USES]-relation. Figure 9 shows the connection schema.  

  

Figure 9 - Showcasing the Graph schema of the [USES] relationship 

This script outlines a systematic approach for extracting relationships between func-

tions from a web-based documentation resource and transforming them into a 

knowledge graph.  
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4.2 Graph-based RAG Agent 

The graph-based RAG agent implements an interactive system to assist developers 

by leveraging semantic search, graph querying, and stateful conversational agents. 

The method includes different tools to retrieve relevant programming functions, param-

eters, and examples.  

The application consists of one agent using a set of three tools. This guarantees the 

optimized quality of the query result. The agents decided which tool to use next based 

on the user input and the advice and information about the tool. The retrieval process 

is visualized in Figure 10, starting with a user question asked to the agent, which den 

decides, based on the Answering Guidelines in the prompt template, which tool to use 

to query the graph for the needed answer. All tools defined in the predefined toolset 

query the BIM-API-Graph with different methods and return then the answer to the 

agent, which generates the final answer or iterates again through the steps to use 

another tool until the answer is sufficient. 

 

Figure 10 – Graph-based RAG agent methodology 

A session manager is implemented to store session data, allowing the agent to main-

tain context throughout the interactions.  
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4.2.1 Question types 

The agent will face different questions and aim for different results depending on the 

question asked. Therefore, different tools must be designed to meet user require-

ments. This section examines different user question types to support the agent later 

by identifying the right tools for the answer.   

 

Figure 11 - Schema for agent-prompt scenarios 

The Schema in Figure 11 shows the types of Questions the LLM-based agent might 

encounter. The level of categorization is inspired by Pusch and Conrad, who presented 

an approach for LLM-based KG queries. They categorized their questions to answer 

by their approach into three sections, defined by how many “hops” the number of edges 

traversed between nodes in a graph the question answering requires (Pusch & Conrad, 

2024). The system supports 1-hop, 2-hop, and 3-hop queries, which involve increasing 

complexity in nodes, relationships, and paths within the KG. 

The question types are categorized into different difficulty levels; level 1 questions re-

quire only one tool and are a simple graph query. Level 2 questions are more challeng-

ing and typical “explain-questions.” Here, two tools are used: semantic search and the 

connected example query; those together output a complex text answer with a sug-

gested code implementation and listing of the connected functions. The last is level 3, 

where general questions about the documentation are asked without background 

knowledge. Here, the agent needs to use three tools to retrieve possible relevant func-

tions using the semantic search. Then, do a graph query with those functions to retrieve 

more information, and lastly, find connected functions using the last connect example 

query.  
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4.2.2 Agent 

An LLM agent guided by a custom prompt will be employed for this approach. The task 

of the agent is to process and answer user questions. Therefore, it is supposed to use 

a set of tools interactively and combine the tool output into a logical, straightforward 

answer. The agent's behavior is guided by a detailed prompt that includes General 

Instructions, Tool-Usage Guidelines, and Answering Guidelines.  

The agent operates interactively by analyzing the user input, deciding which tool to 

employ, and integrating outputs into a cohesive final response. Furthermore, it handles 

parsing errors gracefully and provides descriptive feedback when tools fail or unex-

pected inputs are encountered. The key features and advantages of the agent are that 

it combines outputs of multiple tools to address complex user questions. Furthermore, 

it adapts to query types and includes technical explanations and contextual recom-

mendations. To maintain session continuity, the agents leverage Chat Message His-

tory, which integrates with the graph database to store and retrieve session-specific 

chat history. This ensures stateful interaction and improves the user experience. 

While the current design is robust, challenges remain, as the user's questions can be 

very different, and the handling of those ambiguous queries can be advanced. This 

can be accomplished by expanding the toolset and improving tool coordination.  

4.2.3 Prompt Templates 

A custom prompt template is created to guide the agent’s behavior, as the prompt can 

influence the agent's behavior and outcome (Amatriain, 2024). The template defines 

guidelines for answering questions and the expected answer format.   

First, the tool guidelines list the available tools and their descriptions.  

## Tool-Usage Guidelines 
Use the tools listed below as needed to find functions, parameters, data 
types, or other requested information. Follow this sequence when using 
tools: 
1. **Semantic Search**: Use embeddings and a vector index to find 
relevant functions, parameters, and data types. 
2. **General Graph Query**: Given the input, query the graph database for 
special nodes and relationships. 
3. **Connected Example Query**: Use this after the other queries to find 
functions related to the previously obtained results. This leverages 
[USES] relationships. 

Furthermore, the prompt template contains answering guidelines that guide the agent 

using the right tools for special questions.  
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## Answering Guidelines 
Follow these case-specific guidelines: 
 
- **List all/Find all:** 
  Use the **Graph Query** tool to find categories, parameters, etc.. 
  Return the results as bullet-pointed lists or as clear, full sentences. 
 
- **Explain me:** 
  Use both **Semantic Search** and **Connected Example Query** tools to 
gather definitions, usage details, and code implementations. 
  Present a concise explanation, accompanied by a code snippet following 
the Code Implementation Guideline.  
  For the code implementation use **Graph Query** to find the function 
node with the python property. 
 
- **What/How:** 
  Use the **Semantic Search** tools to determine input parameters or 
return data types. 
  Use the function_names from Semantic Search for tool input. 
  Provide clear, full-sentence explanations and code implementation where 
helpful. 
  If related functions can be found, use the **Connected Example Query** 
to list them under "Other Helpful Functions". 

For the tools, there are also templates guiding the Cypher generation process. For the 

Cypher tool, an example is used to guide the generation process to the correct rela-

tionship.  

# Find functions connected to a first function (by name case insensitive) 
using the [USES] relation 
MATCH (f:Function) 
MATCH (f)-[r1:USES]->(f2:Function)-[r2:USES]->(f3:Function) 
RETURN f.name AS FunctionName, f2 AS FunctionUsed, f3 AS FunctionUsed2 

No examples are used for the general graph query prompt; there are just general guid-

ance instructions.  
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4.2.4 Toolset 

The application comprises a set of three tools, providing specific functionality for data 

retrieval. Each tool is encapsulated as a reusable component, enabling modularity in 

the answering process. For this approach, three structured tools were defined. In the 

table, the tools are described in terms of basic functionality. 

Table 2 - Tool list and description 

Tool name Description 

Semantic search Finds related functions and elements using embeddings and 

vector indexing. 

Graph query Queries the relationships and nodes within a knowledge 

graph. 

Connected Examples 

Query 

Identifies relationships among results based on graph con-

nections. 
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In this chapter the Methodology proposed in Chapter 4 is tested on a real example. 
For this study, the Vectorworks API14 serves as a case example.  

5.1 Knowledge Graph Construction 

The knowledge graph is constructed based on the Python file of the Vectorworks doc-

umentation. The first step in the construction process is to convert the text file into a 

JSON file. After that, the deterministic graph nodes are generated, followed by the 

embedded nodes. The last step is to add extra connections between the functions 

based on the examples on the webpage documentation.  

For these approaches, LangChain components are used in the different components 

of the graph construction process. LangChain is a framework for developing LLM ap-

plications and implementing an interface for embeddings, vector stores, and other re-

lated technologies (LangChain, 2025a). They are offering open-source components to 

build and query graphs. Those components are designed to be modular and interop-

erable, allowing customization and extension. Furthermore, the framework seamlessly 

integrates third-party services and tools, which enables data retrieval, storage, and 

processing. For this approach, the fundamental is the standard interface, which allows 

the integration of different LLMs and services.  

5.1.1 Analysis of Input Data 

This section will analyze the input data and examine the Vectorworks Python docu-

mentation. In the snippet below, an example function shows what an element of code 

documentation looks like.  

def WallHeight( 
       wallHd  # HANDLE - Handle to wall. 
       ): 
    ''' 
       Python: (startHt, endHt) = vs.WallHeight(wallHd) 
       VectorScript: PROCEDURE WallHeight(wallHd:HANDLE; VAR    
       startHt:REAL; VAR endHt:REAL); 
       Category: Objects - Walls 
       Procedure WallHeight returns the wall heights of the referenced  
       wall object. 
    ''' 

 

14 Vectorworks API: https://developer.vectorworks.net/index.php?title=VS:Function_Reference  

5 Case Study: BIM API Graph and Graph-based RAG Agent
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    pass 
    return ( 0.0,  
             0.0 ) 

After a careful examination, the extracted key elements relevant to the deterministic 

graph are function name, input parameter (name, datatype, and description), Python, 

VectorScript, Category, Description, and return value and return description. Figure 12 

shows the function “WallHeight” from the previous example, translated into the graph. 

It is essential to extract those elements as they are the key to understanding the func-

tion. The next step is identifying which elements must be individual nodes, relation-

ships, or properties. It is important not to map every element as nodes as it would blast 

the graph without providing extra information; instead, it is necessary to cluster prop-

erties with nodes to describe them in more detail.  

 

Figure 12 - Function “WallHeight” in the BIM-API-Graph with the properties of the Function node (right) 

So, in this case, elements describing the function will be added to the function node as 

properties. Therefore, the node will get the element's name, description, python, return, 

and VectorScript as properties. The node “Parameter” receives name, description, and 

datatype as properties. This separation enables better queries and adds new relation-

ships to reveal hidden connections. For clustering purposes, the “Category” node is 

added. Another critical node is “Datatype,” which is the data type of the parameters as 

well as the return datatype of the functions. This enables relations between functions 

to be found by finding other functions using the datatype.  

MATCH(c:Category)-[b:BELONGS_TO]-(f:Function)-[h:HAS_PARAMETER]-
(p:Parameter)-[r]-(d:Datatype)  
WHERE type(r)="IS_DATATYPE" AND d.name="HANDLE" AND c.name="Objects - Wal
ls"  
RETURN p, d  
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Figure 13 - Query Graph for parameters with special characteristics 

With this kind of structure, it is possible to retrieve new data about the documentation 

from the graph. With the query in Figure 13, it is possible to find all the parameters with 

the datatype “HANDLE,” which belong to the Category “Objects – Wall.” This infor-

mation makes it possible to find new relations between functions, helping to under-

stand their usage better.  

5.1.2 Construct graph nodes from JSON with a deterministic approach 

The deterministic approach utilizes a JSON file to create nodes based on the key ele-

ments of the JSON schema. Therefore, the documentation is converted into a JSON 

file using a custom converter. The “txtToJSON”-converter uses regular expression pat-

terns to extract the keys and values from the text file. This part needs to be manually 

adapted to meet the correct patterns. After the conversion, the JSON can be loaded, 

and the key-value pairs can be extracted and added to the graph. The key-value pairs 

are properties that Cypher queries can add to the graph. First, the functions, catego-

ries, and datatypes are added, and lastly, the parameter nodes.  
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5.1.3 Construct graph nodes from textual files using LLM-embeddings 

Approach A  

For this part, the text file from the documentation is loaded to the graph using the 

“TextLoader”15 from LangChain. After that, the text is split into chunks using the “Char-

acterTextSplitter16” form LangChain. As a separator, the keyword for the function is 

used in this case, “/ndef”. Depending on the documentation size, the following step is 

quite time-intensive. The chunks are split into batches and embedded for the whole 

batch. After embedding, the chunks are added to the graph using the “LLMGraph-

Transformer”17 from LangChain. Finally, a Vector index is created on the property 

“textEmbedding” from the Chunk node.  

Approach B 

To compare the results, another approach to generate embeddings with an LLM was 

used. This loads the textual document into a KG-Builder18 pipeline from Neo4j, which 

then generates embeddings and uses an LLM to extract entities from the embeddings.  

kg_builder = SimpleKGPipeline( 
    llm=llm, 
    driver=driver, 
    text_splitter=FixedSizeSplitter(chunk_size=450, chunk_overlap=100), 
    embedder=embedder, 
    prompt_template=prompt_template, 
    entities=node_labels, 
    relations=rel_types, 
    from_pdf=False 
) 
 

For this approach, a prompt template is necessary to guide the LLM. In the following 

section, a part from the prompt template is provided.   

You are a BIM-API researcher tasked with extracting information from text 
documentations 
and structuring it in a property graph to inform further research Q&A. 
 
Extract the entities (nodes) and specify their type from the following 
Input text. 
Also extract the relationships between these nodes. The relationship 
direction goes from the start node to the end node. 

 

15 TextLoader: https://python.langchain.com/api_reference/community/document_load-
ers/langchain_community.document_loaders.text.TextLoader.html  
16 CharacterTextSplitter: https://python.langchain.com/api_reference/text_splitters/charac-
ter/langchain_text_splitters.character.CharacterTextSplitter.html  
17 LLMGraphTransformer: https://python.langchain.com/api_reference/experimental/graph_transfor-
mers/langchain_experimental.graph_transformers.llm.LLMGraphTransformer.html  
18 KG-Pipeline: https://neo4j.com/docs/neo4j-graphrag-python/cur-
rent/user_guide_kg_builder.html#customizing-the-simplekgpipeline  
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Return the result as JSON using the following format: 
{{ 
    "nodes": [ 
        {{"id": "0", "label": "the type of entity", "properties": 
{{"name": "name of entity"}} }} 
    ], 
    "relationships": [ 
        {{"type": "TYPE_OF_RELATIONSHIP", "start_node_id": "0", 
"end_node_id": "1", "properties": {{"details": "Description of the 
relationship"}} }} 
    ] 
}} 

Furthermore, certain entities and relations can be defined to guide the LLM regarding 

the final graph scheme. This approach also creates a Vector Index.  

5.1.4 Construct graph nodes from examples of the web-documentation 

For this section, the implementation examples are retrieved from the web documenta-

tion. Figure 14 shows an example section from a function from VectorWorks web page 

documentation19. Regular expressions identify specific function calls (e.g. prefixes with 

vs.) within these examples.  

 

Figure 14 - Example page showcasing the example section to be detected by the algorithm 

Those functions are then saved and added to the graph using Cypher queries. The 

relation is the property with the page URL of the example added.  

Figure 15 displays a section from the resulting graph.  

 

19 Vectorworks API: https://developer.vectorworks.net/index.php?title=VS:Function_Reference  
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Figure 15 - Example from the resulting graph with the created USES-relations and the properties (right) 

The figure shows that the function “AddCavity” uses the “Wall” function in an example 

code snipped, and in the properties, the page URL defines the location of the example.  

5.2 Graph-based RAG Agent Development 

5.2.1 Approach A 

This section details the development process of the graph-based RAG Agent, focusing 

on its integration with the knowledge graph constructed in the previous section and its 

ability to effectively assist developers in querying BIM API documentation. The agent 

and the prompts are based on an example of Neo4j20 and are explained in detail in the 

following chapter. 

Choice of Graph system 

For the graph database management system, Neo4j21 was selected, as it offers effi-

cient storage and retrieval of graph data with high performance and scalability. Essen-

tially, this approach was also the local graph storage option, which enables the test of 

the approach to be local on the machine, enabling more extensive storage options. 

Furthermore, Neo4j utilizes the declarative query language Cypher, which simplifies 

the process of formulating complex queries.  

 

20 Example from Neo4j: https://github.com/neo4j-graphacademy/llm-knowledge-graph-construc-
tion/blob/main/llm-knowledge-graph/chatbot/solutions/agent.py  
21 Neo4j: https://neo4j.com/  
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Framework Selection 

The agent system was developed using LangChain and Neo4j, which were chosen for 

their capabilities in handling semantic search and graph queries. LangChain facilitates 

the seamless integration of the LLM with the KG, while Neo4j Cypher provides a robust 

mechanism for querying and managing graph-based relationships.  

LangChain is a framework for developing LLM applications and implementing an inter-

face for embeddings, vector stores, and other related technologies (LangChain, 

2025a). They are offering open-source components to build stateful agents. Alterna-

tives like LlamaIndex22 are also possible but are less specialized in conversational 

agent and tool orchestration than LangChain.  

Choice of LLM 

The approach for this study is mainly based on an open-source LLM, in this case, the 

model from Ollama “llama:3.2,” which is a small 3B size model optimized for agentic 

retrieval, tool use, and summarization tasks (Ollama, 2025a). It is a lightweight model 

that is easy to run on local machines. As the documentation of API can contain many 

Lines of code, integrating an open-source model can reduce costs tremendously.  

The API documentation of Vectorworks contains 43,536 lines of code, which then has 

an average of 15 tokens per line, resulting in about 653,040 tokens in total.   

For testing of the approach, it was mainly the “lama3.2” model, but to compare the 

results, the approach with the questions was also tested using the OpenAI model 

“GPT-4o-mini”. Together with the “llama3.2” model for the embedding provider, the 

“mxbai-embed-large” model was used, which is the state-of-the-art model from “mixed-

bread.ai” (Ollama, 2025b). 

Choice of Question 

Considering the question schema explained in Chapter 4.2.1 for this study, 36 ques-

tions were developed with different difficulty levels. The questions are designed to test 

whether the LLM can identify the correct entities and relationships. Some questions 

ask for the same answer in different ways, testing which wording works the best or 

 

22 LlamaIndex: https://www.llamaindex.ai/  
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whether it has an influence. In Table 3, the questions for the different levels are listed. 

They aim to reflect developers' typical questions.  

Table 3 – Questions for the different levels 

Level 1 Level 2 Level 3 

List all node names with the 

label Category. 

Explain to me the function 

Add3DPt. 
How can I create a wall? 

List all nodes with the label 

Category. 

Explain to me the function 

Add3DPoint. 
How can i add a roof? 

List all nodes belonging to 

Category Worksheets. 

Explain to me the function 

AddSurface. 

Which functions return the 

datatype REAL? 

List all nodes belonging to 

the Category: Layers. 

Explain to me the function 

CreateWallFeature. 
How can I add a vertex? 

List all nodes belonging to 

Textures. 

Explain to me the function 

BeginRoof. 

What parameters has the 

function AddHole? 

List all node names with the 

label Parameter. 

Explain to me the function 

BeginSweep. 
How can I create a Layout? 

List all nodes belonging to 

Category Textures. 

Explain to me the function 

AddVertex3D. 

How can I add a symbol to a 

wall? 

List all node names with the 

label Function. 

Explain to me the function 

AddCavity. 

How can I add a symbol to a 

wall? 

Find all the parameters using 

the datatype INTEGER. 

Explain to me the CreateLay-

out. 

How can I add a new story 

level? 

Find me all Parameters with 

the datatype STRING.  

Explain to me the function 

BuildResourceList. 
How can I create a Mesh? 

List me the parameters from 

the function Abs. 

Explain to me the function 

Message. 
How can I add a Sweep? 

List all functions returning 

HANDLE. 

Explain to me the function 

AddChoice. 
How can I add a point? 
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Graph Query - Tool adaptation 

The “GraphCypherQAChain23” from Neo4j was used for the graph query tools, as it 

provides solid results and is straightforward to integrate and adapt (LangChain, 

2025b).  

cypher_chain = GraphCypherQAChain.from_llm( 
    llm=llm, 
    graph=graph, 
    cypher_prompt=cypher_generation_prompt, 
    verbose=True, 
    allow_dangerous_requests=True, 
    enhanced_schema=True, 
    validate_cypher=True, 
    top_k=20, 
    return_direct=True,  
) 

The parameters are set to receive the best query results; the parameters en-

hanced_schema allow the chain to use the graph schema to build the Cypher query; 

with validate_cypher, the query will be validated whether it is runnable. With top_k, the 

number of returned elements is limited, in this case 20. With the return_direct set to 

true, the result will be directly returned without the LLM formulating an answer. This is 

used as the agents need the pure result to develop an overall answer.  

To improve the result translation back to the agent, the run_cypher function was mod-

ified, and an extract key value was added after the run of the cypher_chain. As the 

Ollama-based Agent had difficulties interpreting the result directly from the cy-

pher_chain, the extract_key_values function returns extracted the function names from 

the graph query tool to the agent in the cased used with the Ollama model.   

def run_cypher(q): 
    # Perform the query and return the result 
    print("run_cypher") 
    print(f"Received query: {q}") 
    # Run the cypher_chain 
    result = cypher_chain.invoke(q) 
    def extract_key_values(data, key_patterns): 
        extracted_values = [] 
        if isinstance(data, dict): 
            for key, value in data.items(): 
                # Match key against key_patterns 
                if key in key_patterns: 
                    extracted_values.append(value) 
                elif isinstance(value, (dict, list)): 

 

23 GraphCypherQAChain: https://python.langchain.com/api_reference/commu-
nity/chains/langchain_community.chains.graph_qa.cypher.GraphCypherQAChain.html  
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                    extracted_values.extend(extract_key_values(value, 
key_patterns)) 
        elif isinstance(data, list): 
            for item in data: 
                extracted_values.extend(extract_key_values(item, 
key_patterns)) 
        return extracted_values 
 
    # Define key patterns to search for 
    key_patterns = ['p.name', 'c.name', 'n.name', 'name', 'f.name']   
 
    # Extract values matching any of the key patterns 
    extracted_values = extract_key_values(result.get('result', []), 
key_patterns) 
     
    return extracted_values 
 

The key pattern extractions enable the function to return only the wanted function, pa-

rameter, or datatype names. The key patterns can be adapted manually.  

Connected Example Query - Tool adaptation 

The Connected Example Query Tool is similar to the Graph Query Tool; it also uses 

the GraphCypherQAChain, but the cypher_prompt is slightly different, and the key ex-

traction is different. The prompt integrates an example of the query to be built by the 

chain, which guides the tool in which relationships and nodes need to be extracted.  

 Examples:  
# Find functions connected to a first function (by name case insensitive) 
using the [USES] relation 
MATCH (f:Function) 
MATCH (f)-[r1:USES]->(f2:Function)-[r2:USES]->(f3:Function) 
RETURN f.name AS FunctionName, f2 AS FunctionUsed, f3 AS FunctionUsed2 
 

The run_uses function is modified to extract the function names of the connected func-

tions, which then will be returned to the agent from the tool. 

def run_uses(q): 
    print("run_uses", q) 
    result = cypher_chain.invoke(q) 
     
    functions_used = [] 
    for item in result.get('result', []):           
        function_used = item.get('FunctionUsed')            
        if function_used and 'name' in function_used: 
            functions_used.append(function_used['name'])       
 
    return functions_used 
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Semantic Search - Tool adaptation 

This tool initializes the Neo4jVector24 instance, which facilitates retrieval by connecting 

an existing vector index in a Ne4j graph. A custom Cypher query defines the retrieval 

and determines the structure of the search results. Then, the similarity_search method 

is performed based on the user input (user_input) and the number of closest matches 

to return (k). The method transforms the user_input into a vector using the embedding 

provider, compares it against the stored vectors in the Neo4j index, and retrieves the 

top k matches. 

retrieval_query = f""" 
RETURN node {{.text}} AS text, score, {{documentId: "id", vectorScore: 
score}} AS metadata 
""" 
retrieval_example = Neo4jVector.from_existing_index( 
    embedding_provider, 
    graph=graph, 
    index_name="vectorIndex", 
    embedding_node_property="textEmbedding", 
    text_node_property=["text"], 
    retrieval_query=retrieval_query 
) 
query_result = retrieval_example.similarity_search(user_input, k=3) 
return query_result 
 

This tool uses Neo4j’s ability to store and query textual and vector-based data, making 

it highly suitable for hybrid search. Leveraging a pre-existing vector index ensures fast 

retrieval of semantically similar data. With the retrieval_query, the format and metadata 

of the search result can be controlled flexibly.  

Challenges and Limitations 

Adapting the agent to handle diverse user queries required extensive customization of 

the toolset. Ensuring smooth interaction between the LLM agent and the graph query 

tools posed initial difficulties, particularly returning the query result to the agent in a 

format the agent understands.  

5.2.2 Approach B 

In approach B, a different adaptation for the semantic search tool and the graph query 

tool was examined. A Vector Retriever from Neo4j was chosen for the semantic search 

tool, which enables a GraphRAG retrieval based on the vector index.  

 

24 Neo4jVector: https://api.python.langchain.com/en/latest/vectorstores/langchain_community.vector-
stores.neo4j_vector.Neo4jVector.html  



5  Case Study: BIM API Graph and Graph-based RAG Agent 47
 

 

Graph Query Tool 

For the Graph Query tool, a VectorCypherRetriever25 was adapted using a retrieval 

query. The VectorCypherRetriever is initialized with the name of the vector index, a 

Cypher query for additional retrieval, and an optional embedder for text-to-vector con-

version. The search process starts with a vector similarity search to find nodes similar 

to the query; then, for each node retrieved, the retrieval_query will be run to fetch re-

lated information, enriching the context for the query. The combination of vector simi-

larity search with graph traversal enables gathering more comprehensive information. 

The retrieval_query first matches the chunk, which is the start point of the graph tra-

versal, and then the chunk-connected entities are found with the “[:FROM_CHUNK]” 

relationship. The “)-[relList:!FROM_CHUNK]-{1,2}(nb)” finds relationships between the 

entity and its neighbors (nb), specified with {1,2} including relationships up to two hops 

away from the entity. The query returns a list of the connected entities and relations.  

graph_retriever = VectorCypherRetriever( 
    driver=driver, 
    index_name="text_embeddings", 
    embedder=embedder, 
    retrieval_query=""" 
    MATCH (chunk)<-[:FROM_CHUNK]-(entity)-[relList:!FROM_CHUNK]-{1,2}(nb) 
    UNWIND relList AS rel 
    WITH collect(DISTINCT chunk) AS chunks, collect(DISTINCT rel) AS 
rels, collect(DISTINCT entity.name) AS visited_node_names 
    RETURN apoc.text.join([c IN chunks | c.text], '\n') + 
        apoc.text.join([r IN rels | 
        startNode(r).name+' - '+type(r)+' '+r.details+' -> 
'+endNode(r).name], '\n') AS info, 
        visited_node_names 
    """) 

Semantic Search Tool 

The semantic search tool uses the VectorRetriever26, which performs a vector similarity 

search based on the vector index name and an embedder, converting the query text 

into vector embeddings. The return properties define which node properties will be 

retrieved.  

vector_retriever = VectorRetriever( 
    driver=driver, 
    index_name="text_embeddings", 
    embedder=embedder, 
    return_properties=["text"]) 

 

25 VectorCypherRetriever: https://neo4j.com/docs/neo4j-graphrag-python/cur-
rent/user_guide_rag.html#vector-cypher-retriever  
26 VectorRetriever: https://neo4j.com/docs/neo4j-graphrag-python/current/user_guide_rag.html#vector-
retriever  
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This chapter evaluates the effectiveness of Approaches A and B for constructing a 

BIM-API-graph and assesses the graph-based RAG agent’s performance. The analy-

sis focuses on graph quality, agent accuracy, and code suggestion reliability.  

First, the structure of the generated BIM-API-Graph is analyzed, comparing the outputs 

of Approach A and B. Second, the responses generated by the graph-based RAG 

Agent are evaluated, and problem cases will be identified. This includes comparing 

answers from two LLMs: Ollama’s open-source “llama:3.2-latest” and OpenAI’s “gpt-

4o-mini.” Additionally, the accuracy of the agent-generated code implementations is 

examined. The next step is the analysis of the results produced by Approach B; inter-

esting here is whether the different GraphRAG-module can produce more solid results 

using the modified graph structure. Finally, Approaches A and B will be compared to 

the overall performance and usability. Figure 16 visualizes the description of the result 

analysis.  

 

Figure 16 – Overview Result and Analysis 

6.1 Approach A 

This section describes the results obtained from Approach A, starting with an evalua-

tion of the generated BIM-API-Graph, followed by an assessment of the retrieval per-

formance of the graph-based RAG agent. The approach uses two different LLMs, the 

6 Results and Analysis 
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open-source model “llama:3.2-latest” and the OpenAI model “gpt-4o-mini”, to evaluate 

their effectiveness in handling different question types. These questions, designed to 

test the agent’s capabilities across multiple levels of complexity, were validated by 

cross-referencing the results with the API documentation. Additionally, agent-gener-

ated code implementations were tested for executability and accuracy. The findings 

are summarized and discussed to highlight the strengths and limitations of the ap-

proach in meeting the research objectives.  

6.1.1 Graph Structure  

The evaluation of the graph structure aims to assess the effectiveness of Approach A 

in accurately representing BIM API documentation. This section analyses the quantity 

and quality of nodes and relationships generated, highlighting key characteristics and 

potential limitations.  

 

Figure 17 – Section from the Graph generated from Approach A 
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Figure 17 illustrates a section of the BIM-API-Graph generated from Approach A, com-

prising a total of 7,650 nodes and 20,860 relationships. The different types of nodes 

and relationships used in the graph are summarized in  

In addition, the relationship “HAS_PARAMETER” links functions to their respective pa-

rameters, providing a detailed insight into the dependencies between parameters and 

functions. With 6,194 recorded connections, this relationship accounts for a significant 

part of the diagram. The graph also contains 1,622 parameter nodes and 2,866 func-

tion nodes from the deterministic approach. The JSON file from the documentation 

counts 2,866 functions. 

Table 4 and provide a clear comparison between the deterministic approach, the LLM-

embedded approach, and the webpage example approach. 

The “USES-Relationship” establishes connections between functions, enabling the dis-

covery of relations between them, as described in chapters 4.1.4 and 5.1.4. This fea-

ture proved particularly useful in uncovering functional relationships, with 1,366 con-

nections generated under this relationship type. 

In addition, the relationship “HAS_PARAMETER” links functions to their respective pa-

rameters, providing a detailed insight into the dependencies between parameters and 

functions. With 6,194 recorded connections, this relationship accounts for a significant 

part of the diagram. The graph also contains 1,622 parameter nodes and 2,866 func-

tion nodes from the deterministic approach. The JSON file from the documentation 

counts 2,866 functions. 

Table 4 – Generated Nodes and Relationships from Approach A 

 Deterministic Ap-
proach 

LLM-embedded 
Approach 

Webpage Examples 
Approach 

Node types 

Datatype 

Function 

Parameter 

Category 

Document 

Chunk 

Document 
Function 

Relation-

ships 

FUNCTION_OF 

HAS_PARAMETER 

BELONGS_TO 

PART_OF USES 
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IS_DATATYPE 
RE-

TURNS_DATATYPE 

Property 

keys 

id 

name 

description 

function_id 

python 

vector_script 

return 

datatype 

Id  

Text 

TextEmbedding 

page_url 

Furthermore, 112 datatype nodes were added, connected to parameters by 1,821 

“IS_DATATYPE” relations and to functions by 2,865 “RETURNS_DATATYPE” rela-

tions.  

While the deterministic approach provided a reliable framework for extracting well-de-

fined elements, some challenges emerged. The datatype extraction, explained in chap-

ters 4.1.2 and 5.1.2, faced challenges with multi-line return values, resulting in incon-

sistent node creation. For instance, the "Boolean" return type for the "Centroid" function 

was correctly identified, but the additional return parameters were misclassified as in-

put parameters. This indicates a need for improved parsing techniques to handle multi-

line returns effectively. In Table 5, the original function from the documentation is 

shown (vs.txt); on the other side, the extracted function (vs.json), the sequence is 

marked in blue. This is not only an issue from the “txtToJSON.py” parser, but it as well 

happened for the automated approach, where the entities are extracted from the LLM 

directly from the vs.txt file. This is described in chapter 6.2.1 and visualized in Figure 

25.  

Table 5 – Comparison ws2GetToolInfo-Function in .txt with .json 

vs.txt vs.json 

 
def ws2GetToolInfo( 
       toolPath  # DYNARRAY[] of 
CHAR - 
       ): 
    ''' 
       Python: (BOOLEAN, 
outDisplayName, outShortcutKey, 
outShortcutKeyModifier, 
outResourceID) = 

{ 
    "id": 2822, 
    "FunctionName": 
"ws2GetToolInfo", 
    "InputParameters": [ 
        { 
            "name": "toolPath", 
            "datatype": 
"DYNARRAY[] of CHAR", 
            "description": "" 
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vs.ws2GetToolInfo(toolPath) 
       VectorScript: FUNCTION 
ws2GetToolInfo(toolPath:DYNARRAY 
of CHAR; VAR 
outDisplayName:DYNARRAY of CHAR; 
VAR outShortcutKey:CHAR; VAR 
outShortcutKeyModifier:INTEGER; 
VAR outResourceID:INTEGER) : 
BOOLEAN; 
       Category: Workspaces 
       Workspace advanced APIs. 
Return the tool information at 
the specified index of the parent 
tool at the specified path. See 
'ws2GetToolsCnt'. 
    ''' 
    pass 
    return ( False   , # 
             'string', 
             'a'     , 
             0       , 
             0        ) 
 

        } 
    ], 
    "Return": "( False   ,", 
    "ReturnDescription": "string, 
a     , 0       , 0        )", 
    "description": "Workspace 
advanced APIs. Return the tool 
information at the specified 
index of the parent tool at the 
specified path. See 
'ws2GetToolsCnt'.", 
    "Python": "(BOOLEAN, 
outDisplayName, outShortcutKey, 
outShortcutKeyModifier, 
outResourceID) = 
vs.ws2GetToolInfo(toolPath)", 
    "VectorScript": "FUNCTION 
ws2GetToolInfo(toolPath:DYNARRAY 
of CHAR; VAR 
outDisplayName:DYNARRAY of CHAR; 
VAR outShortcutKey:CHAR; VAR 
outShortcutKeyModifier:INTEGER; 
VAR outResourceID:INTEGER) : 
BOOLEAN;", 
    "Category": "Workspaces" 
}, 

The function is displayed in the graph in the following Figure 18.  

 

Figure 18 - ws2GetToolInfo Functions with the properties of the return datatype 

In Figure 19, all the functions are displayed connected to the false return type.  
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Figure 19 - Functions connected to the datatype "(False ," 

Another unexpected but beneficial outcome emerged from merging the connected ex-

ample function with the graph: generating 18 additional function nodes not originally 

documented in the Python API documentation of Vectorworks. These newly identified 

functions expand the graph's scope and highlight the potential for discovering undoc-

umented functionalities through this method. 

The following functions were added to the graph: 

 Message, Poly, Concat, InsertChoice, GetSelChoice 

 Writeln, WriteLn, Read, ReadLn, RemoveGeoref 

 message, Handle, EndText, BeginText, Poly3D 

 GetPointAndParameter, GetVSVar, SetVSVar 

In the following Figure 20, the function “Poly3D” is visualized as connected to two other 

functions of the graph, and the link to the web page example where the use of the 

functions becomes directly visible.  

 

Figure 20 - VS:Poly3D in the graph (left) and in the example (right) 
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6.1.2 Agent Performance 

This section examines the retrieval performance from the graph-based RAG agent in 

Approach A, which was tested using two LLMs, “llama:3.2” and “gpt-4o-mini.” The 

agent's performance was evaluated by asking questions of varying complexity, validat-

ing the answers against the BIM documentation, and checking the executability of the 

code generated by the agent. The agent answered 36 questions across three com-

plexity levels: single-hop, multi-hop, and ambiguous queries. Accuracy varied signifi-

cantly between complexity levels: 

Responses from Ollama-based RAG Agent 

The implementation effort for the Ollama model consisted primarily of defining the 
prompt and structuring the expected results so that the LLM could interpret them ef-
fectively. The model achieved its best performance when answering questions with 
text responses. However, the frequency of coding implementations in the responses 
was lower than initially expected. Despite this, the Ollama model adhered closely to 
the agent's prompt description and invoked the required tools as instructed.  
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Table 6 summarizes the overall results and provides an accuracy rating for both text 

and code responses.  

Text accuracy is presented as: 

 percentage of questions correctly answered out of all questions asked 

 percentage of questions correctly answered from the subset of questions where 

an answer was provided. 

The same applies to the code accuracy: 

 percentage of correct code suggestions out of all questions asked 

 percentage of correct code suggestions for answers that included a code exam-

ple, as not all answers included code implementations. 
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Table 6 - Result from graph-based Agent RAG – Ollama “lama3.2” 

 
Level 

Ques-
tions 

Asked 

Ques-
tions 
An-

swered 

Correct 
Text An-

swers 

Answer 
in-

cludes 
Code 

exam-
ple 

Correct  
Code 

Sugges-
tions 

Work-
ing Py-

thon 
Code 

Exam-
ple 

Text Ac-
curacy 
(Asked 
vs. Cor-

rect) 

Text Ac-
curacy 

(An-
swered 
vs. Cor-

rect) 

Code 
Accu-
racy 

(Asked 
vs. Cor-

rect) 

Code 
Accu-
racy 

(Code 
vs. Cor-

rect) 
1 12 8 6 0 0 0 0,500 0,750 0,000  
2 12 8 8 6 5 5 0,667 1,000 0,417 0,833 
3 12 9 9 8 7 7 0,750 1,000 0,583 0,875 

 36 25 23 14 12 12     

From the results presented, it becomes clear that the questions from level 3 are an-

swered more frequently correctly than those from level 1. This discrepancy can be 

attributed to the agent’s struggles in generating accurate and valuable Cypher queries, 

particularly for Level 1 questions. The questions from levels 2 and 3 are more often 

correct as the agent retrieves the results from the semantic search tool here.  

The following examples illustrate how the agent responded to questions and why it 

failed. The questions from Level 1 were answered correctly when the Graph Query 

produced an accurate Cypher query and returned valid results. However, errors oc-

curred when the agent failed to detect the correct entities. This happened for the ques-

tion: “List all nodes belonging to Textures.” Where the following query was returned: 

MATCH (f:Function {name: "Textures"}) 
OPTIONAL MATCH (f)-
[r:FUNCTION_OF|BELONGS_TO|RETURNS_DATATYPE|HAS_PARAMETER|USES]-
(d:Document) 
RETURN f, d, r 

The problem is that “Textures” is not a function but a Category, leading to an empty 

result. Instead of acknowledging the issue, the LLM fabricated an answer, highlighting 

its limitation in entity recognition. 

Furthermore, the agent occasionally failed entirely for questions requiring more com-

plex Cypher queries. In such cases, the Ollama model’s tool-handling capabilities 

proved insufficient. The toolchain frequently entered an endless reasoning loop, con-

cluding that it was impossible to return a valid result. This limitation demonstrates the 

need for improved error-handling mechanisms and enhanced query-generation logic, 

as the OpenAI-based agent does not fail to answer the same questions.  

Code Suggestion from Ollama-based RAG Agent 

The code suggestion provided by the Ollama-based RAG Agent closely adhered to the 

examples from the documentation. Even though they are not as complex as they could 



6  Results and Analysis 57
 

 

be, they were mostly correct when added to the answer. The answers from the agent 

were correct when they stuck to the prompt description and generated the correct 

graph query with the correct result. For example, for the question, “Explain to me the 

function CreateWallFeature.” The Semantic Search tool and the Graph Query tool 

were used. The Graph Query tool generated the correct Cypher query and returned 

the result to the agent.  

MATCH (f:Function {name: "CreateWallFeature"}) 
RETURN f 

The agent then generates the answer shown in Figure 21. 

 

Figure 21 – Example response from the Ollama-based Agent 

The coding suggestions for more abstract questions from Level 3, including example 

values, were more complex. “How can I add a point?” was answered by offering a 

coding suggestion with example values. This shows the general ability of the agent to 

provide based on the graph-data coding examples.  
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Figure 22 – Response from the agent to a Level 3 question 

Responses from OpenAI-based RAG Agent 

Now the responses from the graph-based RAG Agent using the OpenAI-LLM “gpt-4o-

mini” are analyzed. In the following table, the overall results are shown. It evaluates 

the accuracy of the text and code answers. The text accuracy is separated into the 

percentage of questions correctly answered from all asked questions and the percent-

age of questions correctly answered from the questions answered at all. The same 

applies to code accuracy, divided into the percentage of correct code suggestions from 

all asked questions and the percentage of correct code suggestions when the answer 

includes a code example, as not all answers have code suggestions.  

Table 7 – Results from graph-based RAG Agent - OpenAI “gpt-4o-mini” 

 Level 
Ques-
tions 

Asked 

Ques-
tions An-
swered 

Correct 
Text An-

swers 

Answer 
includes 
Code ex-

ample 

Correct  
Code 

Sugges-
tions 

Working 
Python 

Code Ex-
ample 

Text Ac-
curacy 
(Asked 
vs. Cor-

rect) 

Text Ac-
curacy 

(An-
swered 
vs. Cor-

rect) 

Code Ac-
curacy 
(Asked 
vs. Cor-

rect) 

Code Ac-
curacy 
(Code 

vs. Cor-
rect) 

1 12 12 9 4 4 1 0,750 0,750 0,333 1,000 

2 12 12 12 12 12 12 1,000 1,000 1,000 1,000 

3 12 12 11 10 9 8 0,917 0,917 0,750 0,900 

 36 36 30 25 24 21     

Table 7 shows that the model performed the highest for questions from Level 2. Over-

all, the agent answered all questions with a high percentage of correct code sugges-

tions.  
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Starting with questions on level 1, here, more solid queries and answers were pro-

duced by the model “GPT-4o-mini” than by Ollama. However, it struggled with the 

same question as the Ollama model: “List all nodes belonging to Textures.”  

For this question, GPT-4o-mini generated the following query: 

MATCH (f:Function)  
WHERE toLower(f.name) CONTAINS 'textures' 
RETURN f 

This query failed because "Textures" is a Category, not a Function, leading to incorrect 

results. A similar issue arose: “Find all the parameters using the datatype INTEGER.” 

for which the following query was generated: 

MATCH (f:Function)-[:RETURNS_DATATYPE]->(d:Datatype) 
WHERE toLower(d.name) = toLower("INTEGER") 
RETURN f, d 

Although syntactically correct, the query did not align with the question's intent, result-

ing in an incorrect answer. 

Overall, “GPT-4o-mini” showed greater abilities in generating Cypher queries based 

on prompts and entities provided. It handled the inconstancies in the names by using 

this kind of queries:  

Question: “List all functions returning HANDLE.” 

Generated Query: 

MATCH (f:Function)  
WHERE toLower(f.return) = 'handle'  
RETURN f 

 

Continuing with the questions from level 2, where the agent showed great results in 

the semantic search with the vector index, combined with sufficient Graph Queries. 

The agent mainly used the “semantic-search tool,” and for more complex questions 

where Ollama previously failed, it retrieved the nodes from the graph using the Graph 

Query tool. The agent used the semantic-search tool alone in 8 of 12 questions and 

together with the graph-query tool in 4 of 12 questions.  

At level 3, questions were not asked about a specific function but rather about under-

standing the connections between the functions, and the results were not as good as 

those from level 2, but still on a high level.  
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Code Suggestions from OpenAI-based RAG Agent 

The agent returns high-level coding suggestions with complex examples and a good 

explanation of functions and parameters. The answers were more detailed than those 

provided by the Ollama model, illustrated in Figure 23.  

 

Figure 23 - Coding suggestions at Level 3 questions provided by OpenAI-based agent 

 
Overall Comparison Approach A: Ollama with OpenAI 

The Ollama-based agent stuck to the agent prompt and used the tools accordingly but 

failed to retrieve correct answers due to incorrect queries. Meanwhile, the GPT-based 

agent used the semantic search tool, combined with the graph query tool, to retrieve, 

in the majority of cases, the correct answers.  

6.2 Approach B  

This section describes the results obtained from Approach B, starting with an evalua-

tion of the generated BIM-API-Graph, followed by an assessment of the retrieval per-

formance of the graph-based RAG agent. The approach uses the OpenAI model “gpt-

4o-mini” for graph generation and retrieval. This approach evaluates a different method 

and their effectiveness in handling different question types. These questions, designed 
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to test the agent’s capabilities across multiple levels of complexity, were validated by 

cross-referencing the results with the API documentation. Additionally, agent-gener-

ated code implementations were tested for executability and accuracy. The findings 

are summarized and discussed to highlight the strengths and limitations of the ap-

proach in meeting the research objectives. 

6.2.1 Graph Structure  

Approach B provided a method to connect the graph more, show in Figure 24. Still, as 

the splitting was not defined with a CharacterTextSplitter, no separator was specified, 

resulting in functions being connected to more than one chunk node.  

 

Figure 24 – Graph from Approach B 

Most of the datatypes were recognized correctly, but some, especially the multi-line 

return types, were not. This can be seen in the following Figure 25, which visualizes 

the “Centroid” function. The return type “Boolean” was identified correctly, but the other 

two parameters were added as input parameters to the function.  
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Figure 25 - Centroid Function in the BIM-API-Graph-B 

In comparison, this is the function in the API: 

def Centroid( 
       h  # HANDLE - 
       ): 
    ''' 
       Python: (BOOLEAN, x, y) = vs.Centroid(h) 
       VectorScript: FUNCTION Centroid(h:HANDLE; VAR x:REAL; VAR y:REAL) 
: BOOLEAN; 
 
       Category: Graphic Calculation 
       Returns the centroid of the object. Returns false if an 
unsupported object type is supplied. 
    ''' 
    pass 
    return ( False  , # 
             0.0    , 
             0.0     ) 

6.2.2 Agent Performance 

The evaluation of the RAG agent focused on its ability to retrieve and present accurate 

information using the knowledge graph. This included answering queries, demonstrat-

ing multi-hop reasoning capabilities, and generating coding suggestions based on API 

documentation. 
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During the evaluation, it was found that the retrieval process for the entire graph was 

not feasible due to the token limitations in the “gpt-4o-mini” model. In particular, the 

system encountered the following error: 

neo4j_graphrag.exceptions.LLMGenerationError: Error code: 429 - {'error': 
{'message': 'Request too large for gpt-4o-mini in organization org-
iNj2mullHIZkHPT4TEyp85J4 on tokens per min (TPM): Limit 200000, Requested 
308538. The input or output tokens must be reduced in order to run 
successfully. Visit https://platform.openai.com/account/rate-limits to 
learn more.', 'type': 'tokens', 'param': None, 'code': 
'rate_limit_exceeded'}} 
 

The evaluation was performed on a smaller, representative graph segment to ad-

dress this limitation. This segment comprised 500 lines selected from the API docu-

ment to ensure the most relevant queries were covered. The selected rows were em-

bedded using OpenAI's “text-embedding-ada-002” model, and the graph was built us-

ing the kg_builder method described in chapter 4.1.3. 

Responses 

The retrieval performance was analyzed based on the selected API lines. Table 8 eval-

uates the accuracy of the text and code answers. The text accuracy is separated into 

the percentage of questions correctly answered from all asked questions and the per-

centage of questions correctly answered from the questions answered at all. The same 

applies to code accuracy, divided into the percentage of correct code suggestions from 

all asked questions and the percentage of correct code suggestions when the answer 

includes a code example, as not all answers have code suggestions. This highlights 

the agent's ability to retrieve relevant information, its effectiveness in generating exe-

cutable code, and areas where performance can be improved. 

Table 8 – Results Approach B 

 
Level 

Ques-
tions 

Asked 

Ques-
tions 
An-

swered 

Correct 
Text An-

swers 

Answer 
in-

cludes 
Code 

exam-
ple 

Correct  
Code 

Sugges-
tions 

Work-
ing Py-

thon 
Code 

Exam-
ple 

Text Ac-
curacy 
(Asked 
vs. Cor-

rect) 

Text Ac-
curacy 

(An-
swered 
vs. Cor-

rect) 

Code 
Accu-
racy 

(Asked 
vs. Cor-

rect) 

Code 
Accu-
racy 

(Code 
vs. Cor-

rect) 
1 11 11 10 0 0 0 0,909 0,909 0,000  
2 5 5 5 4 2 2 1,000 1,000 0,400 0,500 
3 6 6 4 4 2 2 0,667 0,667 0,333 0,500 

 22 22 19 8 5 4     
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The graph-based agent accurately answered level 1 questions and only gave an incor-

rect answer in one case. The agent relied primarily on the Graph Query tool, which 

was used in seven cases, while the Semantic Search tool was used in four cases. 

Compared to Approach A, the results of the GraphRAG retrieval showed a significant 

improvement in terms of accuracy and relevance. This result confirms the usability of 

the GraphRAG tool for entity retrieval using the multi-hop approach.  

For level 2 questions, the agent successfully provided accurate text answers. However, 

50% of the generated code suggestions were not functional. As shown in Figure 26, 

although the text response was mostly correct, it contained a reference to a non-exist-

ent function, Point3D, in the Vectorworks API. This highlights the need to define nodes 

using a deterministic approach further.   

The answers to the level 3 questions were partially correct. The textual answers were 

often as expected, and when they were correct, the agent provided more sophisticated 

and detailed answers. However, the code suggestions were not of the expected qual-

ity. Although the modified retrieval tool successfully identified relevant nodes, it did not 

consistently generate executable code. This indicates that additional efforts are re-

quired to improve the robustness of the agent's code generation capabilities. 

 

Figure 26 - Question and Answer - Level 2 
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Figure 27 - Question and Answer - Level 3 

The token limitation imposed by “gpt-4o-mini” required an adaptation of the evaluation 

methodology to a smaller data set. This adaptation emphasizes the need for scalability 

in future graph retrieval systems. A smaller graph segment effectively demonstrated 

the agent's capabilities, especially when answering many queries. While the accuracy 

of the text search was consistently high, the correctness of the code suggestions var-

ied, indicating room for improvement in creating robust implementation examples. 

6.3 Comparison of Approaches 

This evaluation compares the performance of the graph-based RAG agents with the 

different approaches and levels of query complexity. The following tables summarize 

the results and focus on the text accuracy and the quality of the code suggestions. 

Table 9 below compares the correct text answers (Asked vs. Correct) to identify the 

overall best-performing model.  
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Table 9 – Compares Text Accuracy 

Correct Text 

Answers 

Approach A – 

Ollama  

Approach A – 

OpenAI  

Approach B – 

OpenAI 

Level 1 0,500 0,750 0,909 

Level 2 0,667 1,000 0,800 

Level 3 0,750 0,917 0,667 

The following Table 10 compares the correct code suggestions answers to identify the 

overall best-performing model regarding code. The correct code suggestions are eval-

uated against the total answer, including code implementation. 

Table 10 – Compares Code Accuracy 

Correct Code 

Suggestions 

Approach A – 

Ollama  

Approach A – 

OpenAI  

Approach B – 

OpenAI 

Level 1  1,000  

Level 2 0,833 1,000 0,500 

Level 3 0,875 0,900 0,500 

Approach A 

The OpenAI model outperformed the other configurations in both text accuracy and 

code suggestions. It showed robust performance across all query levels, achieving 

100% text accuracy for level 2 questions and high-quality code generation. The Ollama 

model performed well on text accuracy for higher-level queries, but its ability to suggest 

code lagged behind OpenAI. The deterministic graph structure proved to be a critical 

factor in the success of Approach A, as it ensures reliable relationships and well-de-

fined nodes. 

Approach B 

Showed promise in terms of flexibility and adaptability, especially when processing 

unstructured data. However, the results for both text accuracy and code suggestions 

were inconsistent, especially for more complex level 3 queries. The LLM-generated 
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graph lacked the precision and structural reliability of the deterministic graph in Ap-

proach A, leading to challenges in finding accurate and executable code. 

Summary 

From the results, it is reasonable to conclude that the graph's structure plays a crucial 

role. The deterministic graph in approach A provided a more stable basis for querying 

and code generation than the LLM-generated graph in approach B. Furthermore, the 

LLM selection was shown to be essential. OpenAI's model outperformed Ollama in 

both text and code accuracy, suggesting that the choice of LLM significantly affects the 

agent's performance. The lower performance of Approach B in code generation indi-

cates the need for improved graph construction and the integration of richer code ex-

amples and extract with the automated approach, as well as node properties with code 

implementations for each function node similar to Approach A. 

Approach A's deterministic graph is better suited for large amounts of data as its struc-

ture ensures reliability and avoids redundant relationships. Approach B, which relies 

on LLMs for graph generation, can scale better with unstructured or diverse APIs but 

requires optimization for larger data sets. A careful combination of both Approaches 

can potentially reveal further capabilities.  

Approach B offers higher adaptability for different APIs as it relies on LLMs for graph 

creation, which makes it flexible for different data formats and structures. Approach A 

requires manual preprocessing and schema creation, which limits adaptability but en-

sures higher precision. 

In summary, Approach A proved to be the best-performing method, especially when 

combined with the OpenAI LLM. Its robust graph structure provided higher accuracy 

and better code suggestions, making it ideal for precision and reliability scenarios. 

Meanwhile, Approach B showed potential for handling unstructured data and adapting 

to different APIs but requires further refinement of graph construction and query meth-

ods. 
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Based on the experimental results in the previous chapter in this chapter the answering 

of the research questions defined in Chapter 1.2.  will be discussed in this chapter.  

What kind of knowledge graph schema design can effectively represent BIM API doc-

umentation? 

An effective knowledge graph schema for representing BIM API documents must main-

tain a balance between structural reliability, semantic depth, and practical usability. To 

accomplish this, it is important to represent specific nodes with the most essential prop-

erties from the BIM API. Such important nodes are functions, parameters, and data 

types. Functions nodes are primary nodes with properties such as function name, de-

scription, return type, and code implementation details. Parameter nodes for function 

parameters capture properties such as parameter names, data types, and descrip-

tions. Separate nodes for data types allow relationships between functions that share 

input or output types. The second most important element of the BIM-API-Graph are 

the relationships between those nodes, as they reveal the dependency within the en-

tities. Relationships like [HAS_PARAMETER], [RETURNS_DATATYPE], and [USES] 

are essential, offering developers a way to navigate and understand complex docu-

mentation. The HAS_PARAMETER relation links function nodes to parameter nodes, 

clearly defining input requirements. RETURNS_DATATYPE relation connects func-

tions to their return types, facilitating queries about output characteristics. A significant 

enhancement comes from integrating implementation examples through [USES] rela-

tionships. These connections illustrate connections between functions from more com-

plex use cases and coding practices, making the graph more practical and relevant for 

developers. By linking examples to specific functions and their dependencies, the 

knowledge graph explains how functions work in isolation and interact in typical work-

flows, which is crucial for problem-solving and code generation. 

The hybrid generating combines deterministic key-value node relationships with se-

mantically enriched embeddings and practical usage links. The deterministic approach 

ensures reliability and provides a consistent foundation. Semantically enriched enables 

advanced reasoning and context-aware querying. This combination effectively bal-

7 Discussion
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ances reliability, depth, and usability for BIM API documentation. Additionally, the abil-

ity to support multi-hop queries through this schema allows the tracing of complex re-

lationships between functions, parameters, and data types. This way facilitates insights 

beyond the textual documentation and enables dynamic queries.  

What are the comparative advantages of Knowledge Graphs over raw textual data 

when utilized as a knowledge base for an LLM-based RAG Agent in the context of 

BIM API queries? 

Knowledge graphs (KGs) offer several advantages over raw text data when used as a 

knowledge base for a graph-based RAG Agent in the context of BIM API queries. 

These advantages result from their ability to structure, connect, and enrich data in a 

way impossible with raw text.  

Raw textual BIM API often lacks structure, and it is challenging to identify relationships 

and dependencies in the data. Whereas Knowledge Graphs organize data into well-

defined nodes (e.g., functions, parameters, datatypes) and relationships (e.g., 

[HAS_PARAMETER], [USES], [RETURNS_DATATYPE]), enabling straightforward 

navigation and retrieval. 

Another advantage of knowledge graphs over raw text is that text requires LLMs to 

infer connections implicitly, which can lead to errors or hallucinations, whereas KG 

supports explicit multi-hop queries that allow the agent to track and retrieve related 

information, such as chains of dependent functions required for a specific workflow.  

Furthermore, the study showcased improved coding suggestions from the LLM-based 

RAG agent when using the node properties, such as the Python property, to better 

understand the functions' implementation.  

What challenges emerge while transforming BIM API documentation into a 

Knowledge Graph, and how can these be addressed? 

During the transformation of BIM API documentation, different challenges emerged. 

Extracting relevant elements from API documentation, notably when the documenta-

tion lacks consistency, includes multi-line elements (e.g., complex return values or 

nested parameters), or uses varying formats across APIs. Solutions to address these 

issues were to develop custom parsers with regular expressions tailored to the struc-

ture of the API documentation. Another important step is the preprocessing of the doc-
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umentation to convert it into machine-readable formats (e.g., JSON), ensuring uni-

formity. Furthermore, LLMs can support identifying and parsing unstructured elements 

dynamically. 

Another issue occurred when transforming the documentation with an LLM into a KG 

using the LLM to detect entities, as the identifying entities (e.g., functions, parameters, 

datatypes) and relationships (e.g., [HAS_PARAMETER], [USES]) accurately can be 

difficult, especially when the documentation uses inconsistent naming conventions or 

descriptions. Here, the solution is to use predefined labels and relationships to guide 

the LLM on which elements are relevant entities to detect.   

A further challenge is to enrich the graph with context, such as real-world usage ex-

amples while avoiding irrelevant or redundant relationships. The solution appears to 

scrape and integrate implementation examples from developer forums, API websites, 

or documentation snippets. Using the [USES] relationships to explicitly link functions 

to practical coding scenarios, enabling context-aware querying. 

Summarize 

In summary, the study showed that an effective knowledge graph schema for BIM API 

documentation must balance structural reliability, semantic depth, and usability by or-

ganizing data into nodes (e.g., functions, parameters, data types) and relationships 

(e.g., [HAS_PARAMETER], [USES], [RETURNS_DATATYPE]). Knowledge graphs 

outperform raw text data by enabling explicit multi-hop queries, reducing inference er-

rors, and supporting enriched, dynamic insights that improve the functionality of LLM-

based RAG agents. Challenges in transforming BIM API documentation into 

knowledge graphs, such as inconsistent formatting and enriching graphs with relevant 

context, are addressed through custom parsers, LLM-guided entity recognition, and 

integration of real-world coding examples. 
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This study aimed to improve the interpretability of API documentation for BIM (Building 

Information Modeling) authoring software using graph-based approaches. To accom-

plish this, the usability of API documentation was significantly improved by introducing 

a hybrid graph generation methodology. The results presented in the previous chapter 

show that this approach effectively bridges the gap between complex technical docu-

mentation and practical usability by providing a structured tool for navigating API func-

tionalities. 

The hybrid graph generation method organizes documentation more effectively and 

facilitates improved code comprehension and integration for developers. The study's 

findings underscore the potential for graph-based representations to address 

longstanding challenges in API documentation usability, making it a valuable tool for 

enhancing the developer experience. 

Future Work 

Expanding the scope of this methodology to encompass a variety of APIs would pro-

vide quantitative insights into the types of API documentation that benefit most from 

graph-based representations. Comparative analyses across APIs from different do-

mains can further validate and refine this approach. 

It would be beneficial to incorporate more sophisticated examples beyond those avail-

able in web-based documentation to improve the relevance and complexity of LLM-

generated code suggestions. Sourcing examples from developer forums and open-

source projects could enrich the repository of coding samples. 

Adding detailed coding examples as separate "Example Nodes" and linking them to 

corresponding function entities within the graph could further increase the usefulness 

of the documentation. This integration would provide developers with concrete imple-

mentation guidance, thereby enabling more complex and contextually relevant code 

suggestions from LLMs. 

Future work could also focus on automating the graph generation process to handle 

large-scale API documentation efficiently. Investigating scalable solutions for real-time 

graph updates in response to API changes will be crucial. 

8 Conclusion and Future Work 
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Finally, conducting usability testing with a broad audience of developers would provide 

valuable feedback on the practical effectiveness of the proposed approach. Iterative 

refinements based on user feedback could ensure the solution remains robust and 

user-centered. 

Through these extensions, the hybrid graph generation methodology could evolve into 

a comprehensive framework for API documentation, serving as a vital resource for 

developers and enhancing the overall productivity of software development workflows. 
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