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Abstract

The potential energy surface (PES) of a quantum chemical system is notoriously hard
to compute. In the past decades, tensor networks emerged as a promising tool to study
many-body quantum systems. The framework of tensor networks was recently found to
provide astonishing results on specific kinds of mathematical functions while being very
sample-efficient using the so-called quantics tensor cross interpolation (QTCI) method.
This work investigates the question of whether the QTCI method can also be applied
to approximating PESs using a parsimonious amount of samples. For that, we apply
QTCI on a variety of different quantum systems and compare the sample efficiency
and accuracy. We show that while leading to imporessive results on length-separating
functions, the PES just might not be the application where QTCIs have the edge over
traditional machine learning methods.
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Kurzfassung

Die Potential Energy Surfaces (PES) von quantenchemischen Systemen sind aufwendig
zu berechnen. In den letzen Jahrzehnen haben sich Tensornetzwerke als vielver-
sprechendes Werkzeug entwickelt um Mehrkörperquantensysteme zu beschreiben und
darzustellen. Seit kurzem ist der Werkzeugkasten um Tensornetzwerke erweitert wor-
den. Sie können auch verwendet werden um mathematische Funktionen platzsparend
darzustellen; mit Hilfe der Methode der Quantics Tensor Cross Interpolation (QTCI).
Die vorliegende Arbeit untersucht die Frage, ob die QTCI Methode auch auf die PES
von Quantensystemen angewandt werden kann und dabei nur eine kleine Anzahl
von Datenpunkten benötigt. Wir testen unseren Ansatz mit einer Reihe von kleinen
Molekülen. Obgleich die QTCI Methode großartige Ergebnisse für einen bestimmten
Typ von mathematischen Funktionen liefert, finden wir in dieser Arbeit heraus, dass
QTCI sich in unserer Betrachtung nicht besser verhält als traditionelle Methoden des
maschinellen Lernens.
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1 Introduction

In the vast expanse of chemistry, photochemistry is a part of the field investigating the
interaction between light and matter. Among its numerous applications, photochemistry
has been instrumental in understanding fundamental processes within physical and
biological systems. In this thesis, we aim to expand the toolkit of quantum chemistry,
leveraging various computational tools to enhance the ability to study systems capable
of being controlled by the influence of light.

First, we want to give a motivation for what systems exhibit a behavior sensitive to
light. For this introduction, we focus on the rhodopsin molecule and its role in the
process of photoreactions. Rhodopsin is a light-sensitive protein found in the retina of
the eye. This protein plays a crucial role in perceiving light of a certain wavelength. In
its normal state, the protein has a specific arrangement of its atoms called a conformation.
Upon absorption of a photon, rhodopsin undergoes a photoisomerization reaction,
resulting in a change in its conformation. This transformation triggers a cascade of
events leading to the transduction of light into electrical signals within the visual
system. Ultimately, rhodopsin is the first step in the chain that allows us to see. This
behavior is present in other proteins or molecules as well. For instance, photosynthesis
also leverages the interaction of light with respective proteins. In our investigation,
we conducted experiments on formaldimine, a small molecule with similar energetic
properties to rhodopsin. When light is incident on this molecule, its conformation
changes, just like rhodopsin. Therefore, it serves as a simple yet expressive model
system to study photochemical reactions.

In chemistry, the field of ab initio methods deals with the task of modeling and
simulating chemical systems from first principles. Since the beginning of the last
century, we have understood matter at a degree fine enough to mathematically model
systems at a high enough accuracy such that chemical systems can be modeled and
understood without actual wet-lab experiments. These advances gave rise to a whole
new field of computational chemistry, in which a rich toolbox for studying chemical
systems using computational tools has been developed over the years. Nevertheless,
the problem of modeling photochemical reactions has remained challenging because of
the breakdown of common approximations when studying photosensitive compounds.

In this thesis, we build on existing tools developed for static quantum chemistry
systems and try to extend the knowledge to rich reaction landscapes. We do this by
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1 Introduction

using a method that has proven itself excellent at representing high-dimensional objects
while being memory efficient. In the following, we will first discuss the necessary
background to understand the methods that we used. We start by introducing both
quantum chemical foundations and the techniques we used to extrapolate from single
configurations. In the next part, we explain how we combined the methods introduced
to form a pipeline capable of modeling the energy landscape of molecules. After that,
we present the findings and observations that we made during our experiments.
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2 Background

As alluded to in the introduction, ab initio quantum chemistry allows the understanding
of the behavior of physical systems at the atomic scale. In this context, quantum
chemistry focuses on applying the principles of quantum mechanics to describe the
properties and reactions of molecules and other chemical systems.

In the following part, we will provide a detailed account of the quantum mechanical
foundations and computational methods used in this thesis. After that, we introduce
tensor network methods and present tensor network-based techniques used to analyze
quantum chemistry systems. We only include topics relevant to the problem at hand.
This background knowledge is essential for understanding the methodology and results
presented in the subsequent chapters of this thesis.

2.1 Quantum Foundations

The experiments conducted during the project require a representation of the chemical
problems of the highest accuracy. For this, one usually resorts to quantum chemistry,
which possesses a mathematically rigorous way of describing the studied systems. The
next two sections will give a short overview of the methods required to analyze systems
with the required accuracy. Further information and a deeper treatment can be found
in computational chemistry textbooks like [12].

2.1.1 Notation and Formalism

In the framework of quantum chemistry, everything can be formulated using means fa-
miliar from algebraic studies. The core of the mathematical view of quantum chemistry
is the observation that everything can be expressed in terms of operators, which will be
marked by a hat ·̂, and vectors, which will be written as |·→. For instance, Â will denote
an operator named A, and |b→ will denote a vector named b. Let V denote the vector
space containing all vectors. This means we can write |a→ ↑ V for any vector a that is
an element of the vector space. Note that the vectors support all operations to be able
to call V a vector space. Two of these operations are addition and scalar multiplication.
The addition means that for any |a→ , |b→ ↑ V, the addition is defined, and the result is
an element of V. More precisely, |a→+ |b→ ↑ V. Scalar multiplication can be defined

3



2 Background

similarly, for any scalar a ↑ C and |b→ ↑ V, the statement a |b→ ↑ V holds true.
A central relationship of the two mathematical objects introduced is that operators

can act on vectors, producing new vectors. As an example, one could give the result B̂ |α→
of acting with an operator B̂ on a vector |α→ a new name, |β→. One would write this
as |β→ = B̂ |α→ . Furthermore, every |a→ induces a corresponding linear form denoted
by ↓a| : V ↔ C. The application of such a linear form is typically shortened to
↓a| (|b→) = ↓a|b→ . Since the result of acting on a vector |c→ with an operator B̂ results
in another vector B̂ |c→ , the application of a linear form ↓a| on said vector ↓a|

(
B̂ |c→

)
is

often shortened as
〈

a
∣∣B̂

∣∣c
〉

.
The previous section introduced a very abstract way of dealing with vectors and

operators. In quantum chemistry, there are two kinds of vector spaces that are of
particular importance. The first one is the one from linear algebra, consisting of n-
dimensional vectors. In this notation, operators are represented by matrices that can
be multiplied by vectors to yield new vectors. The second kind is functional vector
spaces, consisting of mathematical functions. One can then define operators on these
as a function that creates another function. An operator of particular importance is the
Laplacian operator ↗2 : (Rn ↔ R) ↔ (Rn ↔ R), which maps a function to another
function that returns the sum of the original function’s second derivatives

↗2 : f ↘↔
[

x ↘↔ ε2 f
εx2

1
(x1) +

ε2 f
εx2

2
(x2) + · · ·+ ε2 f

εx2
n
(xn)

]
.

In both the algebraic world and the function vector spaces, the linear form mapping a
vector space element to a complex number is defined. The former uses the well-known
inner product. For instance, let a, b ↑ Rn be two vectors with elements ai and bi. Then,

↓a|b→ def
= a≃b =

n

∑
i=1

ai · bi. For functions, this application is defined via integration. The

following shows the definitions for applying a linear form directly and for first applying
an operator to a vector:

↓ϱ|φ→ =
∫

ϱ(x) · φ(x)dx
〈
ϱ
∣∣Â

∣∣φ
〉
=

∫
ϱ(x) ·

[
Âφ

]
(x)dx. (2.1)

These definitions are crucial for understanding the methods used in quantum chemistry.

2.1.2 Atoms and Molecules

The real world has a direct translation to the mathematical framework introduced in
the previous sections. The fundamental description of quantum chemical systems is as
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2 Background

follows. The mechanics of a system specifying the interactions between its constituents,
like atoms or electrons, are captured in a single operator Ĥ called Hamiltonian. The
dynamic components of a system, or more exactly, its state, are captured in a single
vector, typically named ϱ. The relationship between the system definition and the
state can be packed into a single equation, the time-independent Schrödinger equation
Ĥ |ϱ→ = E |ϱ→. In linear algebra parlance, this is a common form called eigenvalue
problem. In the case of quantum chemistry, one is usually tasked with finding at least one
solution, i.e. some |ϱω→ , to that problem. The collection of these solutions is comprised
of so-called called eigenpairs, each of them represents a solution to the eigenvalue
problem. Each eigenpair (|ϱi→ , Ei) contains an eigenvector |ϱi→ and a corresponding
eigenvalue Ei.

As alluded to before, the choice of the Hamiltonian Ĥ depends on the systems at
hand and its molecular configuration. The foundations presented here are taken from
[21]. In the view of a quantum chemist, a molecule is described by a set of N nuclear
positions {RI ↑ R3}N

I=1 with corresponding electronic charges {ZI}N
I=1 and mass-ratios

{MI}N
I=1, and n electron positions {ri ↑ R3}n

i=1. The Hamiltonian for the corresponding
systems is then expressed in terms of these properties:

Ĥ = ⇐1
2

n

∑
i=1

↗2
i ⇐

1
2

N

∑
I=1

1
MI

↗2
I

︸ ︷︷ ︸
kinetic operators

⇐
n

∑
i=1

N

∑
I=1

ZI

riI
︸ ︷︷ ︸

Coulomb
attraction

+
n

∑
i=1

n

∑
j>i

1
rij

+
N

∑
I=1

N

∑
J>I

ZI ZJ

RI J
︸ ︷︷ ︸

repulsion terms

,

where ↗2
α denotes the Laplacian operator that only acts on a set of coordinates indexed

by α. Note that this description is in so-called atomic units, which do not include
multiplicative prefactors that are part of standardized units.

The solution of the Schrödinger equation with this Hamiltonian is hard to obtain.
Therefore, one can leverage the so-called Born-Oppenheimer approximation and reduce
the computational cost. Because nuclei are much heavier than electrons, it is common
to neglect the movement of the nuclei. They are treated as static parameters of the
Hamiltonian, and the solution of the Schrödinger equation only describes the movement
of the electrons. It is common to solve the Schrödinger equation using functions. The
Schrödinger equation can thus be interpreted as a differential equation. A solution to
the Schrödinger equation is then called wave function. Unfortunately, this is not possible
analytically for any but the smallest systems.

2.2 Potential Energy Surfaces

As described before, solving the Schrödinger equation for a single set of nuclear
coordinates may give rise to a set of solutions that correspond to different electronic
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2 Background

states a quantum system can be in. Furthermore, the Born-Oppenheimer approximation
essentially converts the Hamiltonian operator to a function of the nuclear coordinates
Ĥ
(
{RI}N

I=1


. This results in a continuous surface of solutions. Each set of nuclear

coordinates has an energy value for a specific electronic state. These ingredients, the
different energy levels, and the nuclear coordinates, create a set of surfaces, the so-
called potential energy surfaces (PES). Obtaining a PES analytically is not possible because
solving the Schrödinger equation for a specific set of coordinates is already impossible
for many systems of relevant size. Therefore, one has to resort to approximations. It is
common to obtain solutions to the Schrödinger equation in some locations, and have a
cheap approximation to fill in the gap.

2.2.1 Conical Intersections

Degree of Freedom

En
er

gy

Conical Intersection
E0

E1
min E0

Figure 2.1: A plot illustrating the behavior of two PES around a conical intersection.
The chart plots the energy as two functions of an arbitrary degree of freedom in a
chemical system. The one-dimensional degree of freedom here can be imagined as
a chemical bond length or a rotation angle. The lower curve labeled E0 corresponds
to the electronic ground state. E1 labels the first excited state respectively. The point
where the two curves touch is referred to as a conical intersection. Furthermore, the
energetically most favorable states are marked as dots on the ground state surface.
Note that the functions shown here do not correspond to a particular real molecule.

PESs possess many important properties with respect to chemistry. For key impor-
tance of this thesis are conical intersections of the PES. These points occur at degeneracies
of the solutions of the time-independent Schrödinger equation. Degenerate means
that two solutions of the Schrödinger equation have the same energy eigenvalue. For
complex molecules, these degeneracies usually occur for unique points on the energy
surfaces of molecules. A qualitative example of such a system is shown in Figure 2.1.
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2 Background

The chart shows two hypothetical one-dimensional surfaces that touch at a marked
point of degeneracy.

Conical intersections are of relevance for chemistry because they allow transitions
from an electronically higher state into an electronically lower-lying state that would
not be reachable without the excitation. A molecule always seeks to minimize its
internal energy because it is in the most favorable state. A radiationless transition from
one electronic state into another is possible at a conical intersection. In the following,
we give an example of how such a transition could take place.

2.2.2 Photo-Induced Reactions

Assume that, for instance, a molecule is in a minimum of the ground state corresponding
to the left dot on E0 in Figure 2.1. After a photonic excitation, the molecule can be put
into an electrically excited state, corresponding to E1. One option for the molecule is to
reemit a photon and thus fall back into the ground state. Another option is described as
follows: Since the conformation is not energetically favorable, the molecule relaxes into
another state by traveling downwards along the energy surface of E1. When reaching
the point of conical intersection, it can transition from the first excited state into the
depicted ground state without emitting a photon. The molecule relaxes further until
it reaches the second local minimum, indicated by the dot on the right of the ground
state surface. This reaction is what lies at the heart of many photochemical processes.

2.3 Interpolations and Approximations

One important distinction is of crucial importance for this work. Concretely, we want to
point out the difference between approximations and interpolations. Both deal with the
representation of a function by another function, which may be called model. This model
may have favorable properties, such as a more parsimonious memory representation or
requiring fewer computations, leading to better tractability. A function f : Rn ↔ R can
be approximated by another function f̃ : Rn ↔ R. This approximation f̃ should be close
to f within a certain margin of error.

An interpolation extends the closeness requirement of an approximation to the original
f . It is based on data points that are assumed to be samples taken from f . The
interpolation provides a function f̂ that provides a new set of values between the
known data points by choosing f̂ such that it passes through these points. The most
common techniques include linear and polynomial interpolation, where a straight line
or a polynomial is fitted to the given data points. In this thesis, we utilize a different
kind of interpolation that will be explained in Section 2.6.

7



2 Background

For our purposes, it is important to distinguish between approximations and inter-
polations. An interpolation is defined to be exact at the known data points. For an
approximation, only the margin of error constraint has to be obeyed.

2.4 Tensor networks

When studying tensor networks, it is common to print tensors and tensor networks
in the Penrose convention [15]. For that, we would like to make use of the graphical
notation. In the following, we will give examples of mathematical drawings and
notations. Let a = ↑ R be a scalar. One says that a has zero dimensions because it’s a
scalar. In the graphical notation, adding dimensions corresponds to adding a leg to the
object. Let b = ↑ Rε be a ε-dimensional vector containing real numbers. According
to the same logic, C = ↑ Rm⇒n represents a matrix with m · n many entries. Adding
one more dimension yields a tensor D = ↑ R·⇑⇒·⇑⇑⇒·⇑⇑⇑ with three legs. Therefore,
D is said to be of order three. This can be continued for tensors with arbitrary many
dimensions, which correspond to dots with equivalently many legs. The number of
legs or dimensions is called order of a tensor.

In tensor networks, matrix multiplication is generalized to a scalar product over an
arbitrary dimension. For instance, the multiplication of two matrices A ↑ R·⇑⇒n and
B ↑ Rn⇒·⇑⇑ can be represented in the following way in the graphical notation:

A = , B = , A · B =
i k j

.

The connecting leg can be considered summing over the corresponding dimensions.
By convention for matrix multiplication, this is the second dimension of the first input
matrix A and the first dimension of the second input matrix B. This can be written as

the sum over the shared dimension (A · B)ij =
n

∑
k=1

Aik · Bkj. The shared dimension is

indexed by k. In the context of tensor networks, it is very common to generalize the
matrix product to tensors of higher order than two. This can be done by summing
over different dimensions of the input tensors. Furthermore, a summation or so-called
contraction can include more than two tensors, unlike a standard matrix product. When
visualizing such a contraction, one quickly arrives at a so-called tensor network. It is
nothing but a graphical depiction of the underlying contraction.

In the following, the concept of a contraction will be illustrated with an example. Let
E = be a tensor network composed of four tensors, three of order three and
one of order two. The network has three open legs, which are legs without a connection
inside the network. The whole network E represents a new tensor of order three, which

8



2 Background

is governed by its three open legs. By recursively contracting E like in the following
sum

Ei1i2i3 = (E)i1i2i3 =


k1



i1i2i3
= ∑

k1




︸ ︷︷ ︸

F





i1k1

·
( 

k1i2i3
= · · · ,

one can obtain a tensor’s entries, here at the coordinates i1, i2, and i3. The intermediate
tensor has been given a new name, F. If one fully extracts the entry Ei1i2i3 , it
would be necessary to break down F by applying more contractions summing over the
subtensor’s legs. Only once all tensors are part of the sum in their pure form, without
any connected tensors, can the sum be evaluated.

A common mathematical object is called matrix product state, short MPS. It is a special
way of expressing a tensor with D dimensions, as shown in the following diagram.

A = 1
L1 L2

n1 n2 n3

· · ·
LD⇐1

1

nD⇐1 nD

︸ ︷︷ ︸
D-many tensors a1 to aD (left to right)

↑ R1⇒n1⇒n2⇒···⇒nD⇒1

Like before, each open leg corresponds to one dimension in the represented tensor A.
The so-called bond dimensions {Li}D⇐1

i=1 specify the number of elements in the dimension
joining two tensors. Note that the left-most tensor and the right-most tensor have one
leg forced to one. It is common to set L0 = LD = 1. Each element of the tensor A
is a three-tensor, and we can interpret the MPS as a set comprised of these tensors

A ⇓

ai ↑ RLi⇐1⇒ni⇒Li

D

i=1
.

One close relative to the MPS that will be important in the current discussion is
the matrix product operator, short MPO, representation of tensors. Similar to the MPS
representation, it consists of a chain of tensors. The important distinction is that MPOs
have one more set of legs. The following diagram shows an MPO in its general form.

B = 1
L1 L2

n1 n2 n3

m1 m2 m3

· · ·
LD⇐1

1

nD⇐1 nD

mD⇐1 mD
︸ ︷︷ ︸

D-many tensors b1 to bD (left to right)

↑ R1⇒n1⇒m1⇒···⇒nD⇒mD⇒1

A couple of years ago, tensor networks qualified themselves as powerful tools to
represent and solve problems in electronic structure theory. The usage of MPS and MPO
representations will be touched on in the following part about quantum chemistry.
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2 Background

2.5 Ab Initio Quantum Chemistry

A big part of the achievements of quantum chemistry is solving the Schrödinger
equation and accurately representing the many-body quantum state. As alluded to
before, one seeks to find a solution to the Hamiltonian operator Ĥ that represents the
quantum system in the Born-Oppenheimer approximation as

Ĥ = ⇐1
2

n

∑
i=1

↗2
i +

n

∑
i=1

V(ri) +
n

∑
i=1

n

∑
j>i

1
⇔xi ⇐ xj⇔2

, (2.2)

where V(ri) denotes the potential each electron experiences from being influenced
by the nuclei. Note that the kinetic movement of the nuclei and the influence of
the electrons on the nuclei have been removed. This means that the Hamiltonian is
parametrized by the positions and charges of the nuclei {(Ri, Zi)}N

i=1 ↖
(
R3 ⇒ N

)
.

The solutions of the corresponding Schrödinger equation are functions of the electron
positions ϱ ({ri}n

i=1) and are referred to as wave functions. These can be found using
various quantum chemistry methods. In the following, we will briefly explain the
main ideas behind the methods we used in our experiments for finding electronic
ground-state solutions. Then, we will explain the extensions for finding excited states.

2.5.1 Basis Sets

One important concept of quantum chemistry is the use of basis sets. In general, it is
a tool frequently used to simplify the use of quantum mechanical operators because
it removes the computation of complicated integrals from the optimization stage. A
basis set refers to a finite set of normalized functions that can be used as a starting
point to represent the wave function. A clever choice of functions makes it possible to
precompute the values of important operators and use the matrix representation in
further computations. In quantum chemistry, a huge variety of basis sets is available
to choose from. A popular choice among them is Gaussian-type functions because
they allow analytic solutions to the integrals arising from operators composing the
Hamiltonian.

An operator can generally be expressed as a matrix if one restricts the set of admissible
functions to a finite set of m functions {ϱi}m

i=1. Then, one can reformulate an operator
Â as a matrix A ↑ Cm⇒m via the relationship

Aij =
〈
ϱi
∣∣Â

∣∣ϱj
〉
↑ C.

The so-called overlap matrix S is an important matrix induced by the identity operator.
Its element s are the values Sij =

〈
ϱi
∣∣ϱj

〉
that measure the overlap of any two functions

in the corresponding basis set.

10
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Using pre-specified function basis sets allows defining arbitrary vectors as a linear
combination of basis functions like |ϱσ→ = σ1 |ϱ1→+ σ2 |ϱ2→+ · · ·+ σm |ϱm→ . Here, |ϱσ→
is parametrized by a coefficient vector σ ↑ Cm. It is very common to express atomic
orbitals as linear combinations of basis functions. The coefficient vector parametrizes
the shape of the corresponding orbital. Finding such a coefficient vector is a crucial task
in quantum chemistry, which will be explained in more detail in the next section. In
general, a basis set with more functions can be used to tackle more complex problems.

2.5.2 Self-Consistent Field Methods

This section explains the rationale behind the Hartree-Fock and Density Functional
Theory based on [8]. The last term in the Born-Oppenheimer approximation’s Hamilto-
nian makes the solution of the Schrödiner equation dependent on the solution itself.
This is because the electron’s motion is guided not only by the system but also by the
potential they represent themselves. One can simplify the problem of solving the full
Hamiltonian by considering an alternative version of the Hamiltonian as

Ĥ(0) = ⇐1
2

n

∑
i=1

↗2
i +

n

∑
i=1

V(ri) +
n

∑
i=1

v(ri). (2.3)

Note that the only change from Equation 2.2 is that the pairwise interaction sum is
reduced to a general potential that summarizes the contributions of all electrons in the
system. Therefore, solving the corresponding Schrödinger equation will yield a solution
close to the ground-state, which is not exact because the intricate electron-electron
interactions are treated in a simplified form. The methods solving this problem are
referred to as self-consistent field (SCF) methods.

It is common to decompose the total energy of a quantum chemical system into the
five terms

E = ET + EV + EJ + EX + EC︸ ︷︷ ︸
def
=EXC

.

Over the years, many methods have been developed to accurately find a value for each
of the terms from the wave function of a molecule. The inverse problem of finding a
wave function for the whole energy expression from the individual terms is not as easy
and has not been solved yet.

The Hartree-Fock method solves an eigenvalue equation similar to the molecular
Schrödinger equation. Contrary to an analytical solution, the Hartree-Fock method con-
verts finding the eigenfunction into an iterative minimization procedure. Furthermore,
the Hartree-Fock solution uses a simplified version of the Hamiltonian. The adjusted
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Schrödinger equation F̂ |ϱ→ = E |ϱ→ uses the so-called Fock operator

F̂ = T̂ + V̂ + Ĵ + K̂.

As before, the problem is expressed as an operator, here F̂, that is a sum of other
operators. The first two operators, T̂ and K̂, are the electron’s kinetic energy and the
potential energy induced by the static nuclei. The operator Ĵ is comprised of the sum
of the Coulomb potentials of the electrons. Thus, each electron is assumed to move in
the field induced by the sum of the Coulomb potential. The K̂ operator is the so-called
exchange operator.

The orbital wave functions can be expanded in the form of a basis set using the
technique described in Section 2.5.1. Each molecular orbital φi of the Slater determinant
is expanded as a linear combination

∣∣φj
〉
= ∑

i=1
Cij |χi→ of atomic orbitals χi. For these

atomic orbitals, basis functions as discussed in Section 2.5.1 are employed. Because of
the sum, one can evaluate the integral induced by each element of the Fock operator
with each atomic orbital separately. Similar to the techniques discussesd in Section 2.5.1,
the Fock operator can be expressed as a matrix F. This reduces the problem to finding
the solutions in the form of the coefficient matrix C of

FC = SCε. (2.4)

In this equation, S is the overlap matrix mentioned in Section 2.5.1, and ε is a vector
collecting all energy eigenvalues of each respective molecular orbital. This changes
the problem of finding the coefficients to a form well-known from linear algebra. The
concrete derivation is omitted here, but [12] presents an explanation of how to derive
the so-called Roothaan-Hall equations shown in Equation 2.4 from the full Lagrangian of
the studied system.

The goal of Hartree-Fock solvers is to find a set of coefficients corresponding to the
quantum state with the minimum energy, called ground state of a system. This can only
be done in an iterative fashion because a direct solution of Equation 2.4 is impossible.
For the scope of this thesis, it is important to note that this minimum energy depends
on the arrangement and nature of the nuclei. Therefore, the SCF procedure and other
quantum chemistry tools can be seen as a black box. The nuclear configuration is
passed in as input, and the result comes in the form of coefficients corresponding
to an energy value. This value is precisely the energy on the PES for that specific
conformation.

Over the past years, programs like pyscf [20] have been developed to provide access
to quantum chemistry tools, like the Hartree-Fock method or density functional theory
(DFT). Important for this thesis is to understand that the methods use an iterative
approach to minimize the energy corresponding to a set of parameters. In this iterative
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scheme, the Fock matrix is formed for each iterative because it depends on the current
set of wave function coefficients. In this inner step, the Fock matrix needs to be
diagonalized to obtain a new set of coefficients. After this step, the algorithm decides if
the iteration has converged and either continues the optimization with the new set of
coefficients or returns them as the result of the algorithm.

2.5.3 Tensor Networks for Electronic Structure Problems

Quantum systems usually suffer from a computational blowup with respect to increas-
ing system size. The tensor network techniques described in Section 2.4 can be used
to represent quantum systems in a more sparse fashion by reducing the exponential
overhead through the sacrifice of accuracy. In this setting, the quantum state, expressed
through a set of basis set coefficients, can be represented by an MPS. The Hamiltonian
operator is, similar to the matrix form, represented by an MPO. Schollwöck [19] intro-
duces the DMRG algorithm, a method to iteratively find an optimal MPS representation
for the quantum state.

It is important to know, that the inner diagonalization step of the SCF procedure
can take various forms. Since the rise of tensor networks, it is common to represent
the wave function coefficients using an MPS and the corresponding operator using an
MPO. This allows for an approximate but configurable and fast diagonalization using
the DMRG algorithm. In this work, we use this combination of the DMRG algorithm as
an inner loop for the Hartree-Fock, or SCF, method. In the following, we refer to this
combination as DMRG-SCF.

2.5.4 Time-Dependent Methods

The Hartree-Fock method and DFT can serve as a starting point for the computation
of excited states. The excited state energies can be computed by considering the time-
dependent (TD) Schrödinger equation instead of the time-independent version. For a
detailed derivation of both the TD-HF and the TD-DFT equations, see [5]. The main
takeaway for the scope of this thesis is, that both time-dependent methods can compute
the energy of an excited state above the ground state for any system configuration.

2.6 Quantics Tensor Cross Interpolation

A recent approach leveraging tensor networks is called quantics tensor cross interpolation
(QTCI). It is a method to obtain a tensor network in MPS representation for a mathemat-
ical function. [17] introduces the QTCI technique and [7] reviews the state-of-the-art
techniques in the ecosystem of TCIs. Here, we give a brief intuition of the method and
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the algorithmic version used in this thesis.

2.6.1 Approximating Functions with Scale-Separation

The main purpose of QTCI is to build an approximation for a special kind of function.
These have the property that they both exhibit inherently local behavior and behavior
that only affects the function globally. For instance, a function can have rapid oscillations
locally but exhibit a fall-off behavior when zooming out. With traditional interpolation
techniques, this is very hard to capture because of averaging effects: Either the local
behavior is retained but not the global, and vice versa. QTCI allows for capturing both
effects using a feature called scale separation, which can be solved using a so-called
quantics grid.

2.6.2 Quantics Grid

Any number x ↑ [a, b) can be decomposed into a so-called quantics representation. This
is equivalent to assigning each number in the interval a corresponding bit string of B
binary digits (σ1, . . . , σB) such that

x ↙ u = a + (b ⇐ a) ·
B

∑
b=1

σb

2b , σi ↑ {0, 1} (2.5)

This is done by dividing [a, b) into 2B many equally spaced subintervals. u is the
closest approximation to the number x possible at the given bit depth B. The resulting
representation has the advantage of being finite and adjustable. One can freely choose B
to arrive at a sufficient precision. Note that the bit strings cannot uniquely be assigned
to a number because the representation is finite for a given but fixed B.

The quantization procedure can be extended to n dimensional vectors. Each com-
ponent of a vector x can be quantized separately, yielding a matrix of bits, where
each column corresponds to a bit string representing one dimension of the vector. If
we use the notation from Equation 2.5, we can rewrite each component of a vector
x =

[
x1 x2 · · · xn

]≃ as

xi ↙ ui = a + (b ⇐ a) ·
B

∑
b=1

σib

2b , σib ↑ {0, 1}, i ↑ {1, . . . , n}.

The resulting matrix σ contains all bits that fully define the quantized vector.
For this project, the number of bits per dimension B is a crucial hyperparameter. The

system geometry dictates the number n and cannot be tuned.
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2.6.3 MPS Representation of a Function

The goal of QTCI is to obtain an arbitrary compact representation of a n-dimensional
function f by means of interpolation. This is done using the quantization tools intro-
duced in the previous section and representing f by a tensor instead. Each function
input is first quantized. This quantization converts the continuous input to a finite
representation in bits. The legs of the tensor correspond to the bits and have two
dimensions. Diagrammatically, f can be represented by a tensor

fσ = 1 1
σ11 ··· σn1 σ12 ··· σn2 ··· σ1B ··· σnB

.

Note that the indices of the tensor can also be rearranged, as long as all L = nB indices
are kept. This corresponds to the following diagrammatic representation

fσ = 1 1
σ1 σ2 ··· σε ··· σL

. (2.6)

Grouping indices together that correspond to the same length scale is referred to as
fusing. Instead of having two-dimensional legs for each bit, each leg corresponds to a
specific length scale of dimension 2n. This reduces the number of legs on the overall
tensor fσ .

As described in Section 2.4, this tensor can be represented by a smaller tensor network
in MPS form if fσ does not have full rank

fσ =
M1 M2 M3

1
L1 L2

σ1 σ2 σ3

· · ·
Mε

σε

Lε · · ·
ML

1
σL

. (2.7)

The higher the rank of the tensor fσ , the higher the required bond dimension to
accurately represent the full tensor. The bond dimensions grow exponentially if the
represented tensor is of full rank. Due to the construction on a quantics grid, this should
not be the case for the class of functions exhibiting length-separation characteristics.
Instead, these functions should yield a tensor that requires a modest bond dimension
when represented by an MPS on a quantics grid. This is because of a low entanglement
between different length scales, which leads to a small connecting bond dimension.

2.6.4 Matrix and Tensor Decompositions

In the previous section, a parsimonious representation of functions was described. The
next important part of the discussion is to understand how the TCI algorithm can
be used to construct such a representation. [17] gives a brief intuition of the method
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introduced in [14]. An in-depth discussion of the extended algorithmic foundations is
given in [7]. In this part here, we briefly describe how to obtain the MPS representation
of a function using TCI.

For matrices, such a decomposition already exists in the form of the singular value
decomposition (SVD). The goal of SVD is to find a factorization of a matrix A = UΣV †,
where U and V are unitary matrices, and Σ is a square diagonal matrix with nonnegative
entries. These entries are called singular values of A. The number of nonzero entries r
in Σ is exactly the rank of A. Because of this property, it is possible to represent the full
matrix A using r many columns of U, r many rows of V , and r many entries of Σ. This
is also referred to as a compact SVD.

It is possible to further reduce the amount of information necessary to represent A
by allowing the sacrifice of accuracy and obtain a lossy approximation of A. By only
retaining the largest r⇑ < r singular values, corresponding columns of U, and rows
of V , one obtains an optimal approximation that is as close to A as possible. [6] The
resulting SVD is referred to as truncated because the original matrix cannot be fully
reconstructed based on the decomposition anymore. [4] argue that this leads to a
representation requiring fewer evaluations and less memory than the original matrix if
r ∝ min{m, n}.

This approach can be generalized to tensors with more than two dimensions. Tensors
can be interpreted as a matrix by regrouping the legs. This is also known as reshaping.
All but one leg, the one at site ε as shown in Equation 2.7, are joined into a single index.
The resulting matrix is then decomposed using a standard matrix SVD. This yields a
new tensor train element UΣ at site ε. The dimensions of the matrices can be adjusted
in a similar way to before resulting in a compact or even truncated version. The number
of elements retained in this process defines the bond dimension of the tensor train at
site ε. Then, the matrix can be reshaped into the desired MPS form. After repeating this
process, one obtains a compact or truncated version of the original tensor. In general,
the minimum required rank, or bond dimension, between elements of the tensor train
gives an indication of coupling between the individual dimensions.

The algorithms described for constructing compact versions of matrices and tensors
have one crucial downside. Both require knowing the full matrix or tensor, respectively.
When approximating a mathematical function with only as few evaluations as possible,
starting from the full tensor is unfeasible. In this case of function representation, this is
equivalent to having access to all values evaluated at every possible location. This is
computationally counterintuitive for representing continuous functions. Instead, it is
desired to leverage the structure inherent in the function to reduce the number of eval-
uations required as far as possible. TCI solves this problem. Instead of truncating a full
tensor until a desired compactness is reached, the construction algorithm interactively
constructs a tensor with large enough bond dimensions.

16



2 Background

2.6.5 Cross Interpolation

The previous section introduced traditional matrix and tensor decompositions, the
rationale behind them, and why they are insufficient for representing mathematical
functions. In this part, we discuss a different approach described in [14] for obtaining
a tensor network representation from sampling a compressible tensor. Although it is
not as optimal as starting from the full tensor, this alleviates the necessity of knowing
all the items of a tensor before compressing it. The algorithm used to construct the
MPS representing the high-dimensional compressible tensor is iterative and reasonably
approximates the full tensor over several steps. The process termed matrix cross
interpolation can be generalized to arbitrary tensors. The rationale behind this bottom-
up approach is discussed here. [4] presents several techniques. In the following,
we explain one matrix cross interpolation technique. It is the one used during our
experiments.

In the previous part, we already discussed the ability to decompose a matrix with
SVD. Furthermore, we explained that the columns and rows of the unitary matrices
in the decomposition can be interpreted as orthogonal vectors forming a basis of the
underlying subspace. The matrix cross interpolation technique is based on cleverly
choosing such vectors instead of obtaining them through a decomposition technique.
In the cross interpolation method, these vectors are chosen as rows and columns of the
matrix to be approximated. Unfortunately, the resulting factorization is not as accurate
as an SVD, but the exponential overhead of knowing the full tensor can be avoided.

Formally, matrix cross interpolation can be described as finding a factorization

A ↙ Ã = CP⇐1R (2.8)

where C is a matrix containing columns of A, R is a matrix containing rows of A, and P
is the so-called pivot matrix. This matrix P contains entries of A at the precise locations
where each row and column meet, i.e., at the intersection of each cross formed by a
row from R and a column from C. Hence the name cross interpolation. At this point,
two important observations can be made. First, note that the approximation becomes
exact if all respective entries of A are selected by choosing all rows and columns.
Second, even if not all rows and columns of A can be retained (this would correspond
to storing the full tensor), the approximation becomes exact at the midpoints of the
crosses. Therefore, the approximation can also be called interpolation at these points.

A crucial part of the algorithm is the choice of the rows and columns. Both [4] and
[17] chose a heuristic approach that maximizes the volume of the pivot matrix, defined
by the absolute value of its determinant vol P = |det P| . It has been proven that this
approach yields a good heuristic whilst keeping the pivot matrix nondegenerate, which
is important for inverting it in Equation 2.8. The algorithm chooses new sampling
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points in each step, effectively yielding a locally optimal pivot value.
MCI can be generalized to tensors, similar to the tensor to MPS decomposition

discussed in Section 2.6.4.

2.7 Baseline Methods

In order to evaluate a method, one benefits from comparing it to another method. In
our case, we resorted to comparing the TCI to a more traditional machine learning
method. The next paragraph will introduce the mathematical framework that we used
to benchmark and compare the methods.

2.7.1 Machine Learning

In the traditional regression machine learning framework, one is seeking a probability
density pω by only having access to n pairs of features xi ↑ Rd and target values yi
collected in a dataset D = {(xi, yi) ′ pω(yi|xi)}n

i=1 ↖ Rd ⇒ R. In general, pω is unknown
but can be written as the solution to the optimization problem of maximizing the
likelihood of the data

pω = arg max
p

p(D),

where the maximum is taken over all probability distributions. In general, it is not
possible to optimize over distributions and one commonly restricts the optimization
to a set of parametric distributions {pθ}θ↑M where θ collects all p parameters of a
distribution on a parametric manifold M ↖ Rp. Then, one can maximize the likelihood
of observing the data D on the parametric manifold to find the optimal parameter
vector

θω = arg max
θ↑M

pθ(D). (2.9)

After finding the optimal parameter, pθω approximates pω as close as possible.
By making further assumptions, we can reformulate the optimization goal. First of

all, we make the common assumption that our samples stem from the same distribution
pω and are statistically independent. This allows us to rewrite the joint distribution
pθ(D) as a product ∏

x↑D
pθ(x, y) of individual independent factors pθ(x, y). Using Bayes’

rule, these factors can be written as

pθ(y|x) =
pθ(x, y)

p(x)
∞∈ pθ(x, y) = pθ(y|x) ·!!!"

↗θ p(x) = 0
p(x) ∝ pθ(y|x).
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Note that we can drop the feature prior term p(x) when seeking an extremum on M
since the prior distribution does not depend on the parameter vector θ. Thus, it only
acts like a constant multiplicative factor that does not shift the location of the extremum.
Second, we chose a normal distribution with unit covariance as our parametric family
and parametrize it by a neural network that collects the parameters fθ ,

pθ(y|x) = N ( fθ(x)|y, I) ∝ exp

⇐1

2
⇔ fθ(x)⇐ y⇔2

2


,

where ⇔ · ⇔2 denotes the L2-norm. With these tools and acknowledging that the
logarithm is monotonic, we can simplify Equation 2.9 into

θω = arg max
θ↑M

∏
(x,y)↑D

pθ(y|x)

= arg max
θ↑M




log



 ∏
(x,y)↑D

pθ(y|x)








 = arg max
θ↑M

∑
(x,y)↑D

log pθ(y|x)

= arg min
θ↑M



⇐ ∑
(x,y)↑D

log pθ(y|x)



 .

This common form indicates that maximizing the likelihood is equivalent to minimizing
the negative log-likelihood. We can now substitute the term involving log pθ(·) and
drop all the constant multiplicative factors because they do not affect the optimization:

arg min
θ↑M

∑
(x,y)↑D

⇐ log pθ(y|x)

= arg min
θ↑M

∑
(x,y)↑D

⇐ log exp︸ ︷︷ ︸
identity


⇐1

2
⇔ fθ(x)⇐ y⇔2

2



= arg min
θ↑M

∑
(x,y)↑D

1
2
⇔ fθ(x)⇐ y⇔2

2 = arg min
θ↑M

∑
(x,y)↑D

MSE( fθ(x), y) def
= arg min

θ↑M
L(θ).

(2.10)

This resembles the form of the well-known mean-squared loss function used in regres-
sion analysis. The last line holds because of the symmetry of the L2-norm. In the next
section, we describe how this optimization problem can be solved numerically, and
a set of parameters that minimizes the objective function L can be found. A similar
derivation can be found in many standard machine learning textbooks, like [13].
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2.7.2 Numerical Optimization

A local extreme point of Equation 2.10 can be found by setting the gradient of the loss
function ↗θL(θ) to zero and solving for the parameter vector θ. Unfortunately, this
is not feasible in an analytical fashion for many machine learning models. Therefore,
one usually resorts to numeric optimization techniques. Since the objective function L
is differentiable and the model fθ as well, we can use the traditional gradient descent
scheme of iteratively updating a set of parameters θ(k) using the well-known rule

θ(k+1) ∋ θ(k) ⇐ α ·↗θL(θ)|θ=θ(k) ,

where α is the step size. By repetitively following the steepest descent direction, θ(k) is
assumed to have converged to a local minimum. Today’s machine learning libraries
like JAX [2] have builtin support for computing the descent direction ↗θL(θ)|θ=θ(k) .
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Our experiments combine traditional quantum chemistry tools with an interpolation
technique. This allows the PES to be evaluated only in a necessary number of evalua-
tions. The following part describes the overall experimental setup, the studied systems,
and the inner workings of our experimental and benchmarking pipeline.

3.1 Motivation

Quantum chemistry has been tasked with finding, representing, and approximating
energy surfaces for all of its history. In this part, we present selected approaches and
highlight differences in our approach.

PESs have already been studied by applying interpolation techniques. Ischtwan and
Collins [11] introduced a method for constructing PES using a moving interpolation
technique. The approach integrates ab initio energy, gradient, and second derivatives
calculations at dynamically significant configurations. Their algorithm ensures conver-
gence with an increasing number of data points and emphasizes efficient placement,
guided by trajectory sampling in relevant regions of the configuration space. The
authors report that their method works well for reaction dynamics. They apply the
approach to a six-dimensional PES for a reaction that shows the framework’s potential.
For this method to work, a reaction path must be known before optimization. From this
work, we conclude that an effective choice of sample points is crucial for interpolating
a PES.

QTCI provides such a sampling scheme. Therefore, in this thesis, we explore the
application of an interpolation technique to quantum chemistry simulations. We hy-
pothesize that QTCI excels at finding an accurate representation of a PES by cleverly
choosing regions to sample from. The existing quantum chemistry tools are used
to compute the energy at the specific location. With that, we aim to find an accu-
rate representation of the PES, stored in an MPS tensor combined with a quantics
representation.

We are extending the set of tools and exploring a novel combination of tools that we
believe will yield promising results in accurately representing molecular PESs while
remaining sample-efficient.
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3.2 Querying Potential Energy Surfaces

Our initial goal was to obtain a model of the ground state energy surface and the
surface of the first excited state. This would allow for finding regions of interest where
the two surfaces touch. In photochemistry, this corresponds to a conical intersection
as introduced before. In our exploration, we experimented with a variety of different
quantum chemistry tools from pyscf [20]. A brief overview of the methods has already
been given in Chapter 2. For the experiments, it is important to note that we use the
quantum chemistry tools to generate reference points on the ground state surface Eω

0
and the first excited state surface Eω

1 . These are not particularly special surfaces but can
be obtained from most quantum chemistry packages without special tricks. Because of
the variational limitations discussed in Section 2.1.2, the methods themselves cannot
compute the electronic states without error. Nevertheless, they are the best estimate
available and they will therefore serve as a ground truth.

In the following, we will briefly summarize the quantum chemistry tools used in our
experiments. Note that all our experiments were expressed as Python code.

3.2.1 Ground State Solvers

Many quantum chemistry tools use a Hartree-Fock solver to estimate a ground state.
Note that in our experiments, we are fortunate not to have to be concerned with the
absolute accuracy of the Hartree-Fock solution. In general, this solution is only a crude
approximation of the actual ground state and, thus, its energy. It is common to take the
Hartree-Fock solution as a starting point for finer solutions [16] or to find excited states
on top of its solution, like TD-HF [5]. The solvers serve as initial evidence that the
computational framework is doing something reasonable. In our experiments, we used
the Hartree-Fock method and the DFT solvers available for ground state computations.

3.2.2 Excited State Solvers

For our experiments, we were studying the energy gap between PES. Therefore, we
used quantum chemistry methods that either compute orthogonal solutions of the
Schrödinger equation at once or extend a ground state solution to include excited states.

3.3 Surface Interpolation

As described before, our interpolation technique of choice is the QTCI. We use the
xfac package [7] to run the TCI algorithm in combination with a built-in quantics
representation. The code is written in C++, but the package provides bindings for using
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the QTCI in Python code. Furthermore, the authors also provide an implementation in
Julia. Since our experimental framework uses the pyscf quantum chemistry package,
it was a natural choice to use the Python bindings and integrate the QTCI module into
our code.

The xfac package expects the function to be interpolated, in our case, the energy
functions, as a callback returning a single scalar value. This makes it necessary
to wrap all the calls to the computational chemistry package in a single function.
Our code makes it possible to generate such functions solely by providing a system
definition, a solver, and an experimental configuration. The solver can be any function
that maps a quantum chemical system configuration to a scalar value. In our case,
these were the energy approximation programs provided by pyscf. The experimental
configuration includes parameters of the quantum chemistry algorithms, like tolerances
or convergence thresholds. The code developed during this thesis can be found in the
accompanying repository. 1

3.4 Studied Systems

System DoF Parameter Range Basis Set

Hydrogen chain Hn n ⇐ 1 [0.5, 8]n⇐1Å sto6g
LiF 1 [0.5, 8]n⇐1Å augccpvtz
Formaldimine H2C⇐⇐NH 2 (α, φ) ↑ ([0, π]⇒ [0, 2π]) sto3g

Table 3.1: An overview of the quantum chemical systems showing the degrees of
freedom (DoF), the parametrization, and the quantum chemical basis set.

Our experiments were conducted using different quantum chemistry tools and
different quantum chemical systems. For the experiments, it was necessary to express
them as a function mapping a D-dimensional input coordinate to an energy value.
These are the functions Ei : RD ↔ R introduced in the previous sections. In order to
compute the energy one has to map the coordinate to an actual instance of a quantum
chemical system. In general, we created a code that maps a D-dimensional input
coordinate to a molecule representation suitable to the treatment with pyscf. In our
experiments, we either parametrized bond lengths or angles based on previous findings,
which will be discussed in the following by talking about specific systems. A short
summary of the systems is given in Table 3.1.

1It is available at https://github.com/neftlon/masters-thesis-code.
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3.4.1 Dimer Molecules

The first system that we considered is a molecule dimer, which consists of two atoms.
The two atoms comprising the system can be joined by a shared bond, which is
parametrized by a single bond-length r which is a positive scalar. Therefore, these sys-
tems belong to a class having an energy function taking a one-dimensional argument.
The dimer can exist anywhere in R3, but because of the rotational and translational in-
variance of the energy operator, we restrict ourselves to the simple instances on a single

coordinate axis. One can map r to two coordinates, for instance c1 =

[
0 0 ⇐1

2
r
]≃

and c2 =

[
0 0

1
2

r
]≃

, that are exactly r = ⇔c2 ⇐ c1⇔2 apart. With this definition, the

coordinates for both atoms are in a straight line, as shown in the following scheme.

0
rc1 c2

This allows the approximation of the ground state using a QTCI representation.
For the experiments, we chose to use the H2 and LiF dimer molecules. The first one

was chosen because it is easy to setup and model with quantum chemistry methods.
The second molecule is a bit harder to model because of its increased number of
electrons, but it possesses a conical intersection. The conical intersection in this system
was reported, for instance, in [12].

3.4.2 Hydrogen Chains

A natural extension of the dimer molecules was to consider hydrogen chains because
they have two important properties despite not being physically very plausible. First,
they allow easy control of the number of degrees of freedom. Second, hydrogen
atoms are comparably easy to model and include in calculations, making scaling to a
higher-dimensional system computationally feasible. We modeled a hydrogen chain of
n hydrogen atoms to lie on a straight line, similar to our dimer configuration. There are
common parameterizations available for the hydrogen chain, for instance in [18], where
the chain is parametrized by a bond length and a spacing parameter, or uniformly
separated atoms controlled by a single parameter like in [16]. Our parametrization
yield a molecule configurable by n ⇐ 1 degrees of freedom where n is the number of
atoms in the chain.
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3 Interpolating Potential Energy Surfaces

3.4.3 Formaldimine

As alluded to in Chapter 1, formaldimine is a model of a photosensitive protein in
the human eye. The key part that makes this system so interesting for studying
photochemical reactions is its behavior around the conical intersection in its potential
energy surface as reported in [1]. Because of the touching point between the ground
state and excited state surfaces, the molecule can move from one conformation into
another solely by excitation. This excitation can be caused by the interaction with a
photon, which is the driving force for processes in the human eye as well. Because of
its reasonable simplicity, we study this molecule in this thesis.

Formaldimine is a favorable system to study because it can be expressed using two
degrees of freedom as reported in [1]: a dihedral angle φ and a bending angle α. The
core of the molecule is formed by a double bond between a carbon atom a nitrogen
atom. The carbon atom contains two additional hydrogen atoms and the nitrogen atom
one. Our parametrization keeps the overall arrangement of the molecule fixed. The
only atom that is able to change by the two-dimensional conformation is the hydrogen
atom attached to nitrogen. The bending angle α essentially dictates how much the
hydrogen atom is lifted from the plane spanned by the remaining molecules. The
dihedral angle indicates how the atom is rotated around the molecule. The two angles
allow the convenient depiction of the molecules by an image where the color indicated
the energy for the respective conformation.

3.4.4 System Preparation

One important problem was the range conversion from our chosen coordinate frame
to ranges suitable for the QTCI. In general, a QTCI can interpolate any function that
is defined on a half-open interval [a, b)D. Note that every coordinate has to be in
the same range, which was problematic for systems with different parametrizations.
For instance, formaldimine’s parametrization has two angles, but both have different
angular values that are admissible. Therefore, it is impossible to create a single bijective
mapping that converts both angles into the range [0, 1). Since our value ranges are
vastly different among systems, we added a system-dependent preprocessing step that
maps a coordinate vector from a molecule-specific range to a D-dimensional vector in
the interval between zero and one, namely [0, 1)D. More concretely, this allows mapping
values from, for instance, angular ranges like [0, 2π) to the required range [0, 1) for the
QTCI. The same applies to the bond length. Using this system, the QTCI only needs
to be informed of the system’s number of degrees of freedom because the base range
[a, b)D = [0, 1)D is always the same.
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3 Interpolating Potential Energy Surfaces

3.5 Inspecting Energy Gaps

In our first approach, we use a QTCI to approximate either of these surfaces separately.
Concretely, we obtain an interpolation for both surfaces E0 and E1. This entails that
two interpolations must be fitted separately to have reasonable representations of both
electronic states. Many quantum chemistry tools compute the energies of multiple
electronic states at the same time without any additional computational overhead.
Thus, the first approach is not optimal because it essentially wastes the excited state
information when fitting the ground state surface and vice versa. It is possible to halve
the computational overhead by directly modeling the energy difference and using the
full information given by the respective quantum chemistry tool. For that, we only
learn a single interpolation that represents the difference E1 ⇐ E0.
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4 Experiments and Results

Here, we show the results that were obtained throughout the project phase of the
thesis using the methods described in the previous section. We start by presenting
one-dimensional and example systems. Step by step, we will explore more complex
methods and examine the capabilities of QTCI.

4.1 Smoke Test

The first experiments were conducted by reproducing examples from the publication
introduction of the QTCI method [17]. These examples serve as very illustrative
examples of the potential of QTCI. Figure 4.1 shows a plot of the function

f (x) = cos
( x

B


cos


x

4
△

5B


exp

(
⇐x2)+ 2 exp(⇐x)

for B = 2⇐30. The two cosine terms in the beginning account for the high-frequency
oscillations that are visible only on a scale as tiny as

[
0, 2⇐23] . The second part of the

sum describes an exponential fall-off that is responsible for the global behavior on a
bigger scale for x ↑ [0, 3]. Both behaviors are captured using QTCI, as shown in the
plot. This experiment shows that QTCI is capable of interpolating functions that exhibit
scale separation.

4.2 One-Dimensional Ground State

The subsequent experiment’s goal is to transfer the quality of the one-dimensional
example function to a simple PES without excited states. For a chemical dimer that
consists of two atoms that are joined through a bond, the system’s only degree of
freedom is the distance of the two nuclei. Therefore, one can interpret the dimer’s PES
as a one-dimensional function mapping the atomic separation r to an energy value.
We used different dimers to experiment with one-dimensional systems. Among these
were H2 and LiF, of which we discuss the corresponding experimental results in the
following. The simplest quantum chemical computation is using the Hartree-Fock
method to approximate the ground state energy. The Hartree-Fock method returns an
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Figure 4.1: A plot comparing a QTCI with the interpolated original function where
the QTCI shines because of scale-separation. The left part shows the local behavior of
f with rapid oscillations on a tiny interval. On the right side, the global behavior is
shown for values of a bigger length scale on a much larger interval. On a global scale,
rapid oscillations are no longer noticeable. (The figure is reproduced from [17] using
our computational framework.)

energy value given a set of nuclear coordinates. Therefore, our first goal was to model
the ground state surface of a dimer.

The results of interpolating the PES of the dimer systems are shown in Figure 4.2.
For the experiment, a QTCI with a resolution of 16 bits was used and fit upon a relative
tolerance of 10⇐8. All bond dimensions stayed well within the predefined upper bound
of Lmax = 15. The energy plot was created by evaluating the fitted QTCI on a uniformly
spaced grid of 100 points. It shows that the QTCI is capable of representing the PES.

In order to evaluate the accuracy of the approximation, the second row in Figure 4.2
shows the absolute errors comparing the predicted energy EQTCI with the reference
energy E of the Hartree-Fock method by taking the absolute difference. Hence, the

plot shows the squared-error
∥∥∥EQTCI(r)⇐ E(r)

∥∥∥
2

2
evaluated for r on the same grid that

was used to plot the energy function. Most of the errors are considerably low for
both systems, hovering around 10⇐12. This demonstrates that the QTCI is capable of
accurately representing the PES of these two dimers.

Interestingly, the interpolation algorithm lacks confidence about energy values close
to the borders. This can be seen in the frequency plot in the last row of Figure 4.2.
For both systems, the borders are sampled with very high frequency. Similar to the
borders, the area around the minimum of the ground state surface is densely populated
as well. This is to be expected because this is the area with the most sudden change
when going from one conformation to another. The QTCI needs a lot of samples to
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Figure 4.2: A plot showing different aspects of H2 (left column, blue data) and LiF
(right column, orange data). For both systems, different results depending on the bond
length r ↑ [0.5, 8) in Angstrom are shown: The interpolated energy in the first row, the
absolute error on a logarithmic scale in the second row, and the frequency of requested
QTCI samples in the last row shown as a histogram. The frequency plot in the bottom
right corner contains a marker at r = 6.375 for the location of the conical intersection
(CI) in the LiF system.
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reduce the prediction error in this region. Another observation is that close to the
conical intersection of LiF at around 6 Å (as described by [12]), the QTCI requests a
lot of samples. This manifests in a peak in the histogram for the corresponding bond
length, which we marked in the plot.

4.3 Excited State Exploration

For our approach to modeling conical intersections, we aimed to model the gap between
the ground and excited states. Therefore, the next step was to investigate modeling
excited states. Ideally, we can model the PES difference of a molecule at sufficiently
many locations such that QTCI provides a cheap representation of the difference
surface. Unfortunately, this demand cannot be met, and we will discuss our path in
the following section. In Section 3.2.2, we already presented the various solvers we
experimented with. The following part shows our experimental path. We first started
to use common quantum chemistry tools and then extended our range of methods with
more sophisticated tools. We found strong differences in the quality and performance
of the methods.

4.3.1 Natural Extension

After obtaining a ground state with Hartree-Fock, extending the solution to include one
or more excited states using the TD methods described in Section 3.2.2 is very easy. To
get started, we again looked at LiF because of its one-dimensional PES and the conical
intersection it possesses.

Figure 4.3 shows the first attempts to study both the PES and the interpolations
generated of LiF with QTCI. The PES looks well represented on a large scale, but close
inspections reveal subtle discrepancies. These cause the problem to be harder to solve
than necessary for QTCI. The plot highlights two regions of the interpolated PES, both
showing physically unrealistic behavior, which will be discussed in more depth in the
following.

The red region shows that the ground state suddenly jumps to an excited state. This
unphysical break of continuity in the potential energy surface can be traced back to the
method that generates the ground state surface generated by the Hartree-Fock method.
The choice of methods can be questioned, but it cannot be argued against the QTCI.
Quite the opposite is the case: The QTCI is able to accurately represent the function
given as its input.

Figure 4.4 plot shows the samples requested by the algorithm. Note that the disconti-
nuity is present in the sampled surfaces as well. Therefore, the QTCI can accurately
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Figure 4.3: A plot showing the surface learned by a QTCI approximation parametrized
by the bond length of the dimer. The inset axes shown in red and blue indicated areas
where the quantum chemistry method exhibits unphysical behavior due to unstabilities.
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Figure 4.4: A plot showing the samples requested by QTCI in the red region from
Figure 4.3. The plot on the top shows the energy surface where the sampled locations
are marked with dots. The bottom plot shows the frequency at which samples were
requested at the respective bond length. Note that a large number of samples have
been requested around the discontinuity.
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represent the PES, but the underlying method is incapable of providing high-quality
data.

Another important point that can be extracted from the red region is that the QTCI
requests samples close to the edge of the jump, visible in Figure 4.4 as well. The TCI
always samples points that contribute to high pivot error. The rationale behind this is to
pick places that have the most impact on the error, and thus have the ability to reduce
it substantially when being corrected by TCI. A discontinuity in the modeled surface
is a source of high pivot error where the QTCI has to first learn the kink induced by
the underlying model. Thus, the TCI tries to reduce the error by sampling values as
close as possible to the jump in order to find the discontinuity. Not only does this
correspond to unphysical behavior, but it also wastes a lot of samples for modeling a
problem caused by the underlying model’s quality.

We show another unphysical behavior in the blue part of Figure 4.4. Here, a cusp
in the ground state surface is shown. Furthermore, the ground state and the excited
state share the same curve over various amounts of bond lengths. In theory, the conical
intersection should be only one point, or a small touching region. This could not be
reproduced by TD-DFT, which fails to converge into the correct eigenstate. Instead,
both states are represented by the same eigenstate, which corresponds to unphysical
behavior. For large bond lengths, at around 6 Å, the curves of E1 and E0 separate again,
which is desired.

4.3.2 Comparison to Stable Method

The previous part proved that the discrepancies of the underlying method manifest in
the interpolation as well. Next, we inspected the overall quality of the interpolation.
Figure 4.5 compares the samples generated with TD-DFT with those generated by
a method that is expected to perform better in terms of stability. In particular, the
sampling locations in this plot are not requested by a TCI algorithm, they are uniformly
spaced across the values on the axis of the bond length. This allows for the direct
comparison of the two methods used, TD-DFT and DMRG-SCF.

First of all, it becomes evident that the energies generated by TD-DFT are not very
stable. Especially in the region around 4 Å, TD-DFT generates different energy values
over a range of values. This is not in agreement with the continuous nature of the
potential energy surface. This is especially hard when considering that QTCI is an
interpolation. This means that it is able to memorize the values of samples and
approximate the surface between the samples. Because of the unpredictable nature of
TD-DFT, this makes it very hard for a QTCI to converge, as described previously in
Section 4.3.1 where the unphysical jumps were supervised in a highly accurate but
ultimately wasteful manner. The instability of TD-DFT has been reported previously in
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Figure 4.5: A plot showing the samples generated by the TD-DFT and DMRG-SCF
for LiF at various bond lengths. It becomes evident that TD-DFT is very unstable for
computing the excited state surface.
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[9].
Furthermore, it is interesting to see that the energy surfaces are very different.

Both curves seem to diverge as expected for bond lengths close to zero. Both curves
seem to have different extrema and behaviors for large bond lengths. Whilst the
surfaces of DMRG-SCF attain each other for bond lengths that are large enough, the
curves generated with TD-DFT are largely separated. Nevertheless, we believe that
methodological differences can explain this and should not be too concerning for this
thesis.

Both surfaces exhibit continuous but not differentiable bends in the surfaces. For
DMRG-SCF, the excited state curve changes rapidly at around 2 Å, and the same
happens for TD-DFT’s respective curve at around 8 Å. We believe that is due to a rapid
change in the used orbitals in the basis set. Note that these are regions, where the QTCI
will have problems approximating the continuous surface.

Lastly, what is uncommon is that the energy curve of TD-DFT is below the DMRG-
SCF. The latter is a method that should, upon the right configuration, yield a better
result. In terms of quantum chemical minimization, this corresponds to finding lower-
lying energy eigenvalues that are closer to the true ground state. Since the curve of
DMRG-SCF is above that of TD-DFT, we theorize that the algorithmic configuration
of our instance of DMRG-SCF is not optimal. We used DMRG-SCF in a configuration
where it focused on the optimization of only some orbitals in a smaller active space. This
is a common technique to simplify the computational overhead in quantum chemistry
methods. We believe that the higher energy result with DMRG-SCF could be due
to picking a (2, 2) active space instead of solving the full system. Nevertheless, the
surface generated by DMRG-SCF is smoother. Therefore, we opt for using DMRG-SCF
in subsequent experiments with a two-dimensional molecule.

After inspecting the performance of TD-DFT, as discussed in this part, we investigated
more complex methods closely. It was very important to us to use a method that is
computationally feasible. Therefore, we first measured the wallclock durations of
various methods, which will be discussed in the next section.

4.4 Trade-Off with the Experiment Duration

We found, that even for the simplest systems, the experiment durations vary drastically.
Given that the QTCI does not give an estimate of how many samples it requests in a
given run, the experiment duration is rather unpredictable. We tried fencing in the
duration as much as possible. We took the average time per sample as a metric, as
shown in Figure 4.6. The plot gives an idea of which methods can be expected to
yield a feasible runtime. The data was obtained by running the different methods
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with 100 random samples on the LiF system. We chose this system because it is
right in the middle of our example systems in terms of complexity for computational
modeling. Note that we added additional methods for comparison that we tweaked to
be performant with LiF. In the figure, these are prefixed by lif. These methods use a
(6, 6) active space configuration that is selected just for this system.

In the bar plot, we compare different quantum chemistry methods and their respective
sample times. The methods can be divided into two categories. In the plot, these
categories are labeled as either "fast" or "slow". It becomes evident, that the methods
with a heavier computational overhead need to be considered slow. This was to be
expected, but the measurements make it possible to at least estimate the runtime
duration of experiments with these methods.

In the speed comparison, we also included methods that incorporate unfavorable
scaling, such as full configuration interaction (FCI). As expected, TD-DFT is the fastest
method and a FCI approach takes the longest. Interestingly, the DMRG-based SCF
computation is almost as slow as running FCI.

4.5 Experiments with Formaldimine

In this part, we will describe our experiments with formaldimine. First, we document
the initial exploration, which is when we compute a ground truth dataset. Then, we
explain the different instances of QTCI, which we used to interpolate the surface.

4.5.1 PES Evaluation

As stated in Section 3.4.3, we also explored the gap between the ground state surface
and the first excited state of formaldimine. Because of the limitations of TD-DFT
explained in the previous part, we had to use a more stable approach for computing
the PES of formaldimine.

Figure 4.7 was generated using DMRG-SCF evaluated on a regular grid of 50 ⇒ 50
pixels. For formaldimine, we picked an (3, 4) active space similar to [1]. Each pixel
represents an angle pair, which is a parameter vector for a unique conformation of
formaldimine. Embedded into our framework, DMRG-SCF outputs two energies for
each pixel: The ground state energy and the first excited state’s energy. In Figure 4.7,
the ground state surface is shown in the image on the left, and the excited state surface
is shown in the middle. From the plot, it becomes evident that the ground state surface
contains two wells. This corresponds to two minima in the depicted region of the
image. Since the angular configurations are cyclic, more configurations exist for which
the energy surface has minima. The difference between the two energy values is shown
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Figure 4.7: A plot showing the PES of formaldimine computed with DMRG-SCF
evaluated on a two-dimensional grid. Different energies are indicated by different
colors. Samples in white indicate energy values above 500 kJ mol⇐1. These large
values are excluded because their inclusion would distort the regions of interest, hence
rendering them unrecognizable.

in the last plot. The minima of the difference allude to a touching point of the two
surfaces.

After verifying the quality of the generated PES, we found it qualified to advance to
the next step in which the difference between the energies is interpolated using QTCI.
The hope for QTCI is to require fewer samples than to evaluate the full grid as done for
the plot. Essentially, the QTCI should need less data than the method evaluated on the
entire grid.

4.5.2 Interpolation with QTCI

After establishing and inspecting an experimental framework for the formaldimine
molecule, we interpolate the PES using QTCI. In order to compare different versions,
we use different algorithmic configurations. In traditional machine learning parlance,
this is called hyperparameter tuning. Note that we did not spend much time optimizing
the quantum chemistry toolchain since our focus lies on the interpolation with QTCI.
The following part documents different configurations of QTCI and their impact on the
interpolated surface.

Interpolation Training

As described in Section 2.6.5, the algorithm to obtain a QTCI can be split into different
sweeps. The algorithmic framework we used allows for investigating the state of the
interpolation within the sweeps. This can be thought of as looking at the interpolation
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Figure 4.8: This plot contains an example of a training run where a QTCI was fitted to
formaldimine’s PES. Step number zero shows the QTCI before training. It is only exact
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PES by iterative refinement.
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at various stages of optimization. Initially, we verified that the QTCI interpolation
actually is progressively enhancing an initially bad interpolation over various steps. The
initial findings are shown in Figure 4.8, where we fixed one algorithmic configuration
and evaluated the QTCI on a regular grid after each step. We obtain similar results for
other algorithmic configurations, and this example should only serve as an indicator
that can be generalized to other configurations. Note that the method that generates the
energy difference values on the PES was always the same across different configurations.
We used the DMRG-SCF method that we investigated formaldimine’s PES with before
in Section 4.5.1. The method was evaluated on the same 50 ⇒ 50 grid that we used
previously to generate the dataset. The algorithm itself has at no point been informed
about the specific grid that we picked.

By quantitative observations, one can already see that the surface is continuously
refined. Starting at a very crude approximation in the leftmost column in the plot, the
QTCI converges to a reasonable representation as shown in the column after the last
iteration. This shows that the TCI algorithm is able to iteratively refine its representation
up to the maximum accuracy possible at the given bit depth.

After this initial verification, we conducted further experiments with different al-
gorithmic configurations. The most important parameters of the QTCI algorithm are
the maximum bond dimension, the convergence threshold, and the bit depth of the
quantization. In the following, we show the results of changing different algorithmic
parameters.

Different Bit Depths

First, we altered the number of bits while fixing the maximum bond dimension. We
immediately noticed that a very high number of bits led to the algorithm getting stuck.
Therefore, we restricted the number of bits to small numbers. Figure 4.9 shows two
trained QTCIs, one with a four-bit representation and one using five bits. The reference
dataset from before is shown on the right. For four bits, the possible number of sample
locations is 24 for every dimension. Therefore, the two-dimensional surface has 256
unique locations after discretizing the angular coordinates.

Note that the functions approximated in Section 4.1 and [17] exhibit oscillations
on vastly different length scales. This does not apply to the PES we studied in our
experiments. This does not corrupt our claim that QTCI can accurately represent
those surfaces. Nevertheless, we hypothesized that the QTCI does not require a large
number of bits because the surface can already be represented accurately without scale
separation. Therefore, the examples shown in the plot use comparably low numbers of
five bits per dimension.
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Figure 4.9: A plot showing the trained QTCIs with two different numbers of bits B. The
rightmost column contains the reference dataset.

Different Bond Dimensions

Table 4.1: The algorithmic hyperparameters for QTCI as shown in Figure 4.10. In addi-
tion, the corresponding number of samples requested by the interpolation algorithm
and the MSE on our reference dataset are shown.

Bit Depth Max. Bond Dim. Rel. Tol. Number of Samples Dataset MSE

5 5 10⇐3 315 2.3401 ⇒ 10⇐2

5 20 10⇐2 532 1.4253 ⇒ 10⇐2

5 20 10⇐3 970 1.3825 ⇒ 10⇐2

5 100 10⇐3 994 1.4419 ⇒ 10⇐2

The full hyperparameter specification for the experiments is summarized in Table 4.1.
The parameters were chosen rather arbitrarily to get an idea of the algorithm’s behavior
in the low-bit-depth regime in which we wanted to model the PES. In the following, we
present our findings with respect to variations of different parameter configurations.

Despite the reasonably good representation of the PES, we also observe a collapse
in the representation before converging. By collapse, we refer to an iteration in which
the interpolation behaves worse than in a previous iteration. This can be seen in
Figure 4.8, where step number four provides a not yet complete but compelling-looking
interpolation. The following step completely discards the well expected for dihedral
values φ > 180▽. Although the well reappears in the subsequent step, we have to note
that the interpolation would behave very badly if the interpolation had terminated one
step earlier.
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Figure 4.10: A plot showing the trained QTCIs with different algorithmic parameters.
Each column corresponds to an algorithmic configuration. We captured the interpola-
tion at the end of each step and evaluated it on the same regular grid. The rightmost
column contains the reference dataset.
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Figure 4.11: This plot shows the quantized locations where the TCI algorithm sampled
the formaldimine PES. Different configurations took a different number of iteration
steps to converge. The step is indicated by a different shape.
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At the selected bit depth of five bits per dimension, the quantified space has a
size of 25 · 25 = 1024 potential sampling locations. For the two-dimensional surface
of formaldimine, we can plot all possible sampling locations in a grid. Figure 4.11
collects the sampled locations for several runs corresponding to different algorithmic
configurations of QTCI. For better comparability, the configurations were the same as
captured in Table 4.1 that have been used to obtain Figure 4.10.

Figure 4.11 shows that a larger bond dimension leads to a larger number of requested
samples. We hypothesize that the reason for this behavior is that the higher bond length
causes a bigger pivot error that is reduced in subsequent iterations. Nevertheless, one
observation is that, unless the bond length is really small (D = 5), the QTCI requests
samples from almost all potential sampling locations of the PES. Initially, we hoped for
the QTCI to require only a few evaluations of the PES, even for larger bond dimensions.
Unfortunately, this goal could not be achieved.

In the next section, we analyze the errors of different interpolations to find out if the
error reduces substantially by increasing the bond dimension of the QTCI.

4.5.3 Error Analysis

Table 4.1 contains the errors of the interpolation on our small test dataset. Since the
relative tolerance threshold of QTCI was specified in units of squared energy, namely
Hartree2, our errors are specified in Hartree2 as well. The numbers are higher than we
expected. Therefore, we investigated the individual contribution of each sample for
the dataset. In Figure 4.12, we show a box plot for the various configurations reported
in the table. We can see that many samples produce a low error. Nevertheless, there
are many strong outliers that contribute to high error, visible as black circles above the
boxes.

After a close inspection, we found that the error occurred in regions where there
is a huge discrepancy between individual samples that are close to each other. This
manifests the thesis that the interpolation picks up the noise of the underlying quantum
chemistry method and gets stuck focusing on the error instead of accurately modeling
the surface.

4.6 High-Dimensional Hydrogen Chain

One initial claim of using QTCI was that tensor network methods usually shine when
applied to higher-dimensional systems while embarking on the exponential blow-up of
the tensor size. We chose a hydrogen chain to serve as an example system for providing
a tractable and scalable PES to study. Unlike formaldimine, the n-dimensional nature
of our hydrogen chain parametrization makes it impossible to visualize the energy in a
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Figure 4.12: A plot showing the errors by different QTCIs on the dataset generated in
Section 4.5.1. The values are sorted by the MSE reported in Table 4.1.
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single plot for more than three dimensions. Nevertheless, we observed the absolute
convergence of the method and subsequently compared it to a simple ML baseline.
Because of the limitations of excited state computation, we focus only on representing
the ground state PES in this part. Even though this problem is different from modeling
the excited states, it still demonstrates the capabilities of modeling a PES with QTCI.

In the machine learning regime, it is common to fit a model to a predefined set of
data. We simulated this scenario in order to compare the QTCI fitting approach to a
traditional machine learning procedure. For different instances of the hydrogen chain,
differing by the number of degrees of freedom, we trained a QTCI and a machine
learning model. Both were then evaluated on the same independent test set.

As a machine learning model, we picked a perceptron with two hidden layers with
100 units each. Formally, the model can be expressed as a function mapping a set of
coordinates x to an output, i.e., the energy value y. The computation can be expressed
formally as

h0 = x
hi = ReLU(hi⇐1 · Wi + bi) for i ↑ {1, 2}
y = h2 · W3 + b3

where the ReLU(x) = max{0, x} is a common nonlinear activation function applied
elementwise. The goal of the optimization is to find a set of parameters θ = {Wi, bi}3

i=1
such that the MSE on the validation dataset is minimized. This choice of model has
around 10,000 parameters. For these experiments, we used flax [10] and the optax [3]
library for performing gradient descent as described in Section 2.7.2.

For measuring the quality of the obtained representation, we used the MSE as derived
in Section 2.7.1 since it can be applied to both the QTCI and the machine learning
model. Two further metrics are of key importance for comparison: The number of
samples used for training, and the number of parameters each model possesses.

Figure 4.13 contains a plot for each metric. The first one shows the MSE of each
method on the same test set. We observe that the machine learning model’s error curve
diverges from the QTCI for larger systems. This is to be expected since both the model
size and the training set size were held constant over all instances of the hydrogen
chain. This means that we essentially trained the same model on different systems
and the machine learning systems performed gradually worse for larger and larger
systems. Using QTCI dampens this behavior and the error stays well below the error of
the machine learning system.

We hoped the number of parameters could remain constant for larger hydrogen
chains. Unfortunately, this was not possible, which can be seen in the explosion of
the number of parameters required for larger chains in Figure 4.13. Simply put, if the
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Figure 4.13: A plot comparing the trained QTCI with a simple machine learning model
on different instances of the hydrogen chain. Each column corresponds to a different
metric. Note that the number of samples and number of parameters is constant across
all machine learning configurations.
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Table 4.2: The different parameter of QTCI and ML.

Parameter QTCI ML

Dataset size Variable Fixed
Number of Parameters Variable Fixed
Convergence Accuracy Fixed Variable

system size rises, the number of parameters to represent the function rises drastically
as well. Therefore, the initial claim that the QTCI can generalize the behavior learned
on smaller systems to larger systems cannot withstand. The key differences between
the machine learning model and the QTCI are summarized in Table 4.2.

4.7 Analysis and Findings

Paired with the scaling experiments in the last section, it is especially evident that the
experimental setup initially falls short of the expected results. Even though QTCI does
a reasonable job of representing the PES of the corresponding molecule, it is incapable
of doing that in a parsimonious way that is sample-efficient. The experiments scaling
the bond length especially revealed that the QTCI quickly gathers all the samples it
could from the PES. If we had increased the bit depth, the QTCI would have gotten
stuck investigating features that might be important for rapidly oscillating functions
but that are not present for smooth PESs. Our experiments revealed that the chosen
quantum chemistry tools were not stable enough for the interpolation process. The
tools became overly specific, and an overzealous amount of time was spent on samples
querying already known regions.

We found that machine learning has an easier job at learning from the noisy samples,
especially when assuming a prior statistical model as derived in Section 2.7.1. With
noisy input in mind, learning from the samples generated by the quantum chemistry
methods prevents a representation from trying to get overly confident where it is not
possible. An interpolation defined like QTCI does not come with such a necessary error
tolerance and, therefore, falls short of the expected results.

47



5 Conclusion

Conical intersections are an immensely relevant topic in quantum chemistry. Although
key in many important processes, finding conical intersections using PES from first
principles remains vastly unsolved. We aim to provide insights into this problem by
combining an interpolation technique with quantum chemistry solvers. Contrary to
existing approaches in which the PES is usually sampled from a uniform grid, our
approach should behave like a grid without the need for requiring an exponential
amount of samples. The overhead is reduced by only sparsely sampling the PES while
inferring the structure of the underlying space. We propose directly modeling the
difference in the excited states to pinpoint the location of a conical intersection.

In this thesis, we present the findings of our exploratory project. First, we experi-
mented with various quantum chemistry tools in order to find the most stable version.
For our experiments, we used TD-DFT and DMRG-SCF. Despite not being very stable,
the former is fast enough to allow for rapid prototyping. Unfortunately, the unstable be-
havior does not allow for deep investigations, which is why we switched to DMRG-SCF
for further experiments. We applied our approach to several molecules, including small
dimers and a model for a photochemical reaction. We find that the QTCI can model
the PES, but it cannot represent the PES only from a few samples. The interpolation
algorithm is not able to ignore the method-inherent noise of the underlying quantum
chemistry tools.

Compared to traditional machine learning, the QTCI requires a number of samples
that increases with system size. This is in contradiction to the expected benefits of
tensor decompositions using MPSs. Even though QTCI has been reported to shine on
various tasks like integration, we could not transfer this spirit to PES. We believe that
the main limiting factor is the noisy nature of the quantum chemistry tools.

While the current study revealed challenges in approximating PES, the potential
for improvement remains vast. Future research could include the development and
use of more stable quantum chemistry methods. The ultimate goal is to create stable,
accurate, and computationally efficient models for the PES, which would significantly
advance our understanding of chemical photoreactions and facilitate progress in various
applications, including the design and use of novel materials and catalysts.
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