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Kurzfassung 

Städte wachsen exponentiell und aktuellen Daten zufolge werden bis 2050 67 % der 

Weltbevölkerung in Städten leben. Städte werden oft als Hotspots für 

Treibhausgasemissionen und andere Anomalien verantwortlich gemacht, die 

Klimawandel und Umweltverschmutzung auslösen, aber wir erkennen nicht an, dass 

Städte durch effiziente und wirksame Planung und Politik auch eine zentrale Rolle bei 

Minderungsstrategien für diese spielen können. Nachhaltige Städte sind die Lösung und 

die städtische grüne Infrastruktur (UGI) ist eine der entscheidenden Komponenten. Die 

UGIs, insbesondere Bäume, erbringen viele Ökosystemdienstleistungen (ES) und ihre 

Entwicklung ist für die Nachhaltigkeit von Städten und städtischen Gebieten von 

entscheidender Bedeutung. Das Pflanzen von Bäumen in Städten und die Entwicklung 

von UGIs mit fortschrittlichen GIS-Technologien finden statt. Ihre Wirksamkeit bei der 

Erzielung realistischer Ergebnisse wird jedoch durch die unvorhergesehenen 

tatsächlichen Standortbedingungen und die mangelnde Datenverfügbarkeit 

beeinträchtigt. Weitere Herausforderungen bei GIS-basierten Studien sind der 

zeitaufwändige Wissenserwerb und die Notwendigkeit von Experten, mehrere 

Datensätze zu sammeln und zu analysieren. Um diesem Mangel entgegenzuwirken, 

kombiniert diese Studie die Potenziale der oberirdischen GIS-basierten Daten und 

maschinellen Lernmodelle, insbesondere Feedforward Neural Networks (FNNs), um 

diesen Prozess der Identifizierung von Standorten für Baumpflanzungen und Initiativen 

zur Begrünung von Städten zu automatisieren. Basierend auf dem neuesten Stand der 

Technik und Forschung wird eine Methodik mit mehreren Aufgabenteilungen entwickelt, 

die Datenaufbereitung mit Feature Engineering, Datenverarbeitung, Modelltraining und 

-test sowie Modellvalidierung umfasst. Zur Durchführung der verschiedenen Aufgaben 

der Methodik wurden mehrere Arbeitsumgebungen verwendet, wie z. B. ArcGIS Pro, 

IDE und Microsoft Office. In München wurde eine Fallstudie durchgeführt, die mehrere 

Datensätze umfasste, und um dieses Kunststück zu erreichen, wurden unterschiedliche 

Datenskalen verwendet. Das Framework, das verwendet wurde, um die Daten mit dem 

FNN-Modelltraining kompatibel zu machen, umfasste Feature Engineering, 

fortschrittliche Optimierungstechniken und iterative Prozesse, die die Leistung und 

Flexibilität des Modells verbesserten. Die Leistung des FNN-Modells wird mit der des 

Decision Tree-Regressionsmodells verglichen, und es stellte sich heraus, dass das 

FNN-Modell leistungsfähiger war. Das endgültige FNN-Modell erreichte eine hohe 
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Leistung mit einem R²-Wert von 0,7916 und einem MSE von 228,68 und zeigte damit 

seine Fähigkeit, die Lerndaten zu verallgemeinern, um genaue Vorhersagen für die 

Zielvariable (Begrünungspotenzial) zu treffen. Die Vertrauenswürdigkeit und 

Transparenz der Modellvorhersagen werden mithilfe der SHAP-Funktionen und der 

Visualisierung der Vorhersagedaten in ArcGIS Pro interpretiert. SHAP-Werte könnten 

den Beitrag verschiedener Schlüsselmerkmale zu den Vorhersagen erklären, wie z. B. 

die Daten zur vorhandenen Vegetation, zu Oberflächenundurchlässigkeitswerten und 

zur Nähe zur nächsten Grünfläche, die mit den Beobachtungen anderer verwandter 

Forschungsarbeiten in ähnlicher Richtung übereinstimmten. Die iterative Improvisation 

und die Ergebnisse weisen auf die Flexibilität des Modells hin, das in anderen 

städtischen Regionen der Studie angewendet werden kann. Diese Forschung 

unterstreicht die Vorteile der Kombination von GIS und ML zur Optimierung der 

Ressourcennutzung und effizienten Entwicklung von UGI. Dieser Rahmen ermöglicht 

die Reproduzierbarkeit auf andere Städte, und dieses Modell kann Stadtplanern helfen, 

datengesteuerte Entscheidungen für die UGI-Entwicklung im Hinblick auf nachhaltige 

Entwicklungsziele zu treffen.  
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Abstract 

Cities are growing at exponential rates, and based on current data, by 2050, 67% of the 

global population will be living in the city. Cities are often blamed as the hotspots for 

greenhouse gas emissions and other anomalies that trigger climate changes and 

environmental pollution, but we fail to acknowledge that cities can also play a central 

role in mitigation strategies for these through efficient and efficient planning and policies. 

Sustainable cities are the solution, and Urban green infrastructure (UGI) is one of the 

crucial components. The UGIs, especially trees, deliver many Ecosystem services(ES), 

and their development is vital to the sustainability of cities and Urban areas. Urban tree 

Planting and UGI development with advanced GIS technologies are happening. Still, 

their effectiveness in deriving realistic outcomes is hampered by the unforeseen actual 

site conditions and the lack of data availability. Other challenges in GIS-based studies 

are time-consuming knowledge acquisition and the need for experts to collect and 

analyze multiple data sets. To counter this shortcoming, this study combines the 

potentials of the GIS-based above-ground data and machine learning models, 

specifically Feedforward Neural Networks (FNNs), to automate this process of 

identifying tree planting locations and urban greening initiatives. Based on the state of 

the art and research, a methodology is devised with multiple divisions of tasks involving 

data preparation with feature engineering, data processing, model training and testing, 

and model validation. Multiple working environments were used to perform the various 

tasks of the methodology, such as ArcGIS Pro, IDE and Microsoft Office. A case study 

was done in Munich, incorporating multiple datasets, and different data scales were 

used to achieve this feat. The framework used to make data compatible with FNN model 

training involved feature engineering, advanced optimization techniques, and iterative 

processes that enhanced the model’s performance and flexibility. The performance of 

the FNN model is compared with the Decision Tree regression model, and the FNN 

model was found to be better performing. The final FNN model achieved high 

performance with an R² score of 0.7916 and MSE of 228.68, exhibiting its ability to 

generalize the learning data to make accurate predictions on the target variable 

(Greening potential). The trustworthiness and transparency of the model predictions are 

interpreted using the SHAP functions and visualization of the prediction data in ArcGIS 

Pro. SHAP values could explain the contribution of various key features towards the 

predictions, such as the data on existing vegetation, surface imperviousness values, 

and proximity to the nearest green space, which were found to be aligned with the 

observations of other related research works done in similar directions. The iterative 
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improvisation and results indicate the flexibility of the model to be applied in other urban 

regions of the study. This research underscores the advantages of combining GIS and 

ML to optimize the resource utilization and efficient development of UGI. This framework 

allows reproducibility to other cities, and this model can help urban planners make data-

driven decisions for UGI development towards sustainable development goals. 
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Glossary 

Adam – An adaptive optimization algorithm is used in Neural Network machine learning 

models, which combines the advantage of optimizers like AdaFrad and RMSProp for 

efficient gradient-based optimization. [1] 

Artificial Intelligence – Simulation of human intelligence in machines programmed to 

learn, think, reason, and solve problems. [2] 

Batch Size – The number of training samples processed together for model training 

before the model updates its weights. [2] 

Categorical features – Features used for representing discrete categories like land use 

types, street types, etc., which are often encoded using techniques like one-hot 

encoding to make features compatible with model training. [1] 

Convolutional Neural Network – This is a type of Neural network used in image 

classification and object detection. It uses convolutional filters to extract features from 

the image files or grid-like data. [1] 

Dropout – It's a regularization technique used in Neural networks to prevent overfitting 

where randomly selected neurons are ignored during training. [1] 

Epoch- It refers to one complete pass through the entire training dataset during the 

training process of a machine learning model. [1] 

Ensemble Model – A machine learning algorithm like the random forest that combines 

predictions from multiple models to improve the accuracy of the machine learning model. 

Feedforward Neural Network – A type of Neural network used for regression and 

classification. They are computational models composed of multiple processing layers 

of Neurons to learn data representations with higher levels of abstraction. [2] 

Geodatabase – A database used to store, manage and query spatial and non-spatial 

data. [3] 

Geoprocessing Tools - These are software tools used to process and analyze 

geographic information, such as clipping the spatial data, buffer analysis, etc. [3] 

Geographic Information Systems – A system for capturing, storing, querying, analyzing 

and managing geographic data like spatial data with descriptive information. [3]  
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Integrated Development Environment – A software suite like Google Colab that provides 

tools for scripting, code editing, debugger, and compiler for software development. [4]  

Labelled data – Data used in supervised Machine learning tasks, where each input is 

associated with a known output. [1] 

Loss Function – A function used in Machine Learning models to evaluate how well the 

model’s prediction aligns with the actual values. [1] 

Mean Square Error – A loss function used to measure the average squared difference 

between predicted and actual values in regression tasks in model training. [5] 

Neuron – The fundamental unit of the Neural network, representing a single 

computational function. [2]  

Normalization – Used in model training to transform or scale the input features to 

numerical ranges, which the model can learn. [1] 

One-Hot encoding – A process by which categorical data is converted to numerical data 

to enable machine learning model training. [1] 

Overfitting – A situation in which the machine learning model learns noises and details 

specific to the training set, which can result in the model performing well on training data 

but poorly on unseen data. [1] 

Raster – Representation of spatial data in a grid-based form where each grid or cell 

holds the value or information of that data. [3] 

Regression model – A machine learning model used to predict a continuous outcome 

(dependent variable) based on one or more input variables (independent variable). [1] 

R2 Score – A value ranging from 0 to 1 indicates the performance of the model, with a 

higher value indicating better performance. The coefficient of determination or R2 Score 

is a statistical measure demonstrating the proportion of variance of the dependent 

variable explained by the independent variables in machine learning models. [1]  

Rectified Linear Unit – ReLU is an activation function used in a neural network that 

introduces non-linearity and is computationally efficient. [2] 

Shapefile – A vector data format used to store geometry and attributes of spatial features 

in GIS software. [3] 
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Spatial Data - Data containing locational or geographic components such as 

coordinates, boundaries, etc. [3] 

TensorFlow - An open-source library supporting different model architectures for 

machine learning and deep learning applications developed by Google. [1]  

Test Loss – A function used to measure the generalization performance of the model. It 

measures the quality of predictions of the model when evaluated on the test data. [2] 

Training loss – A function used to measure the quality of the model's predictions in the 

training process when evaluated on training data. [2] 

Underfitting - A situation in which the machine learning model fails to learn patterns and 

relationships on the training set, which can result in the model’s poor performance on 

both training data and unseen data. [1] 

Validation loss- A function used to monitor overfitting during training, and it measures 

the quality of the predictions of the model when evaluated on the validation dataset.  
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1 Introduction 

Cities have quantitative and sociological definitions, but in general, cities are relatively 

closed and dense developments with a concentration of workplaces, centres of trade, 

commerce, transportation, administrative and central functions, etc., which are socially, 

culturally, and economically productive. Cities vary depending on land use, location, 

country aspects, history of the city's evolution, resources, etc. The distinctive feature of 

all cities is their increasing number of inhabitants. [6]. Cities are growing at exponential 

rates, and based on current data, by 2050, 67% of the global population will be living in 

the city [7]. Most cities expanded and developed based on human needs, and many 

were developed through an economic lens of growth and demand [8]. The boundary 

limits of the cities are also increasing with increasing people and demands; for instance, 

it is projected that the Urban land in the United States is expected to increase from 3.1% 

in 2000 to 8.1% in 2050 [9, p. 65, 10]. Cities constitute a small area compared to the 

total land area, but their urbanisation process is felt globally in terms of climate changes, 

environmental problems, natural disasters, Urban heat island (UHI) effects in the cities, 

pollution, other hydro-meteorological and climatological hazards  [11, 12]. The climate 

changes, heat stresses, and rising pollution in cities change the phenology, worsen the 

air quality, increase the energy and resource demands, deteriorate the health of 

inhabitants, and affect the natural biodiversity of the cities, leading to many ecological 

stresses [13, p. 147, 14–16]. The United Nation’s agenda for 2030, which include the 

17 Sustainable Development Goals (SDG), has emphasised countering these 

adversities through SDG 3, SDG 7, SDG 11, SDG 12 and SDG 13 [17]. 

Cities are often blamed as the hotspots for Greenhouse gas emissions and other 

anomalies that trigger climate changes along with environmental pollution, but we fail to 

acknowledge that cities can also play a central role in mitigation strategies for these 

through good planning and good governance [18, 19]. With SDG 11, Sustainable cities 

are a solution to tackle multiple challenges while ensuring the needs of the inhabitants. 

Sustainable cities are human habitats that focus on the city's economic, social, and 

ecological aspects and the well-being of all inhabitants, so that they have the least 

possible impact on the environment. [20]. The misconception is that a sustainable city 

is to make cities look green, but in reality, it is a combination of green, blue and grey 

infrastructure with a permeable surface, spacious squares, canals, trees, hedges, green 
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grass parks, etc., for the well-being of the inhabitants [21]. Sustainable Urbanism is a 

holistic approach where an urban area is designed to enable Nature, and Urban Green 

infrastructure (UGI) is one of the crucial elements of sustainable urbanism as it forms 

the core part of enabling nature experience to human beings as well as a multitude of 

Ecosystem Services (ES) and promote biodiversity in the urban area[22, p. 4]. Making 

sustainable cities for its citizens requires UGIs, which are multiple functions oriented, an 

integral part of the urban environment, socially inclusive, and well-connected [20]. 

 The UGIs, especially trees, deliver many ES, such as cooling by evapotranspiration, 

carbon sequestration, and shading, which can improve the microclimate around UGI in 

urban areas. UGI for a sustainable city are to be planned strategically, and their future 

development along with management is one of the critical aspects for successfully 

utilising the UGI to deliver ES. [23]. Many studies have quantitatively and qualitatively 

analysed trees' ES and validated the importance of urban trees. Trees in urban areas 

are found to reduce the surface air temperature and UHI, which positively impacts the 

comfort of inhabitants and reduces the demands on the resources utilised. Healthy 

urban trees in urban areas reduce the impervious cover around them, reducing the 

chances of flooding and summer heat from the impervious concrete surfaces. [24–26]. 

In the Urban areas, the places with higher tree cover experience better air temperatures 

than those without tree cover, which also enhances the biodiversity around the area. 

Trees play an essential role in improving the microclimate of the region near it, and 

studies have shown that trees positively impact communities and beautify 

neighbourhoods. Studies have found that trees are beneficial for the amelioration of air 

quality, reducing air pollutants like particulate matter, and the carbon sequestration 

process of Urban trees keeps a check on the rising carbon dioxide levels in the cities 

[18, 27, 28]. Psychological studies suggest that trees improve the quality of people 

around them and also the productivity of the lives around trees [26] [18] [29, p. 490, 30]. 

Apart from the various sustainability benefits and other environmental benefits, the 

significance of trees and UGI became apparent for the health of society during the 

COVID-19 pandemic [31]. Studies prove that UGIs are as crucial as the grey 

infrastructures of the cities.  

Development of UGIs and planting new trees are becoming popular in cities, and many 

urban tree-planting programs are blooming in the cities and are becoming the need of 

the time [32]. In many countries, governments and other non-governmental 

organizations are pushing ambitious projects to plant more trees and develop the UGI 

in Urban areas, and one of the famous projects is Los Angeles’ Million Trees LA 
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campaign [33, p. 2] [32]. Apart from tree planting projects, many UGI development 

programs are being implemented. As part of the development of UGI, Countries like 

Germany are preparing a system for effectively managing and developing their tree 

inventory using a tree information system. For this, very high spatial Resolution (VHR) 

Remote sensing techniques are used to gather data on urban trees [34]. The 

development of UGI and identifying tree planting locations with GIS studies further 

undertake these initiatives and lead to many advancements. Still, their effectiveness in 

deriving realistic outcomes is hampered by the unforeseen actual site conditions and 

the lack of data availability. [35–37]. Identifying tree planting locations is an elaborate 

process which requires the engagement of knowledge engineers, experts knowing 

multiple attributes related to the city or urban space, formulation of a sufficiently 

systematic approach, data on multiple facets of the above and below-ground features 

of the city and spatiotemporal datasets [26, 38–40]. Tree planting without a holistic view 

cannot solve the problem; 50 per cent of the newly planted trees are lost within 5 years 

after planting due to above and below-ground stressors for the tree growth  [23, 40] [41]. 

Furthermore, urban trees have a higher mortality rate compared to natural forests. For 

instance, studies on urban trees in Baltimore in the US observed that the annual 

mortality rate of urban trees was 6.6% [41]. Hence, there is a need to improve the overall 

UGI development approach and find apt tree-planting locations for the expanding cities 

and urban lands.  

This study aims to combine the potentials of the GIS-based data and Machine Learning 

(ML) models to overcome the lack of available datasets and reliance on time-consuming 

human efforts to identify the proper tree planting sites. 

1.1 Aim of the Study 

The study's primary objective is to improve the efficiency of UGI development with the 

help of GIS and ML. The development of UGI depends on multiple aspects of the city, 

and their scope for improving the city's liveability is vast. Location for new tree planting 

sites needs to address multiple questions such as: where are the areas most suitable 

for tree planting which are aligned with the goals of the organization who undertake the 

tree planting initiative, where are the locations which need tree planting, which areas 

are in critical to reap the maximum benefits of the ES from trees, where are the suitable 

location were trees can grow with proper nourishments and maintenance, and many 

other questions which are related to the provisions regarding the governing body of the 
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location [26]. Identifying new potential locations for greening within the city is a complex 

task requiring physical visiting of various sites, and there is a need to assess the site 

based on above-ground and below-ground data. With the availability of spatial and 

physical data on multiple features above the ground, the ML algorithms can understand 

the patterns and relationships between existing trees and other physical parameters of 

the city. These patterns and relationships between various city parameters can bypass 

the requirement of unavailable complex underground data. So, through this study, we 

are trying to combine the advantages of the available GIS-based above-ground data 

and the advantages of deep learning ML models to create a solution for the complex 

task of identifying the potential location for greening by making ML model to learn 

inherent patterns in the existing physical attributes of the city. Defining the target 

variables for locations suitable for planting trees in the program can be used to predict 

possible locations for growing new trees. So, this study intended to develop a framework 

for creating a dataset for a portion of the city to train ML models to predict the possible 

locations of trees in the other parts of the city.  

We have taken Munich, Germany, as the case study location to accomplish the study. 

Munich has a good pool of GIS-compatible above-ground data about the various 

physical parameters of the city, which can be used to train ML models to learn the 

patterns and inherent relationships between various physical features.  

1.2 Research Question and Hypothesis 

Cities require more UGI, and their development is crucial for the sustainability of the 

cities and the delivery of ecosystem services. This study is intended to answer the 

research questions: 

How well can the ML models trained with GIS-based above-ground data of a small 

portion of the city predict the greening potential of the other parts? 

How can a framework be created to build a dataset that can help ML models learn the 

complex relationship between the physical and spatial components of the city? 

How can the ML model predict areas with high greening potential in Munich?  

The study aims to answer each research question by delineating the various processes 

defined in the methodology and their outcomes.     

The primary outcomes expected from the research project are: 
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a) Converting the available GIS-based data to pure data, which can be used for model 

training. 

b) Train the ML model to predict potential city greening locations using data from a 

portion of the city.   

c) Comparing different model outputs and their validity. 

d) Providing an overview of areas with high greening potential in Munich. 

This study hypothesises that with the framework for the creation of data (which is limited 

to the above-ground features of the city) and training, the ML model can create an 

automated program which can be used to understand the complex relationship between 

various physical parameters of the city to identify target variables i.e., the greening 

potential as per this study. This methodology and AI ML model can be reconfigured 

according to the need and can be expected to be employed in cities with similar GIS 

data on the city's above-ground features. 

1.3 Significance of the Study 

Tree planting in cities is a comparatively new phenomenon that emerged as a resolution 

to the detrimental changes in cities owing to the rapid urbanization and industrial 

revolution, which affected the lives of city inhabitants [29, p. 477]. Planting new trees in 

cities requires permission from various authorities and knowledge-based analysis on 

multiple data such as the tree data, climate factors, soil characteristics, growing space, 

site condition and location, existing vegetation, land typology and its ownership, land 

regulations, social influences, street data, government regulations for urban 

development, sidewalk data, underground lines and other MEP data, other government 

data about the underground data [9, 35]. There are rules and regulations on one side, 

the city's underground lines and other essential service lines; the above-ground factors 

also play on the other. In many locations, data unavailability, such as the water line 

channels, electricity lines, mobility and other data features of city administration and 

national security. [40] [13]. From Figure 1, multiple stressors are mentioned that can 

interfere with the development and growth of the UGI, especially the trees in the city. 

The below-ground stressors include hindrance to the development of roots due to 

underground grey infrastructures, including utility lines of the city administration, poor 

soil composition caused by non-natural soil types, poor water infiltration, lack of nutrient 

availability in the urban soils, pollutants in the soil, and many other urban underground 

factors. The above-ground stressors include restrictions from buildings and other grey 



 

14 

infrastructures, surface sealing, vehicles, human interventions, pests, increased heat 

due to grey infrastructures, and many other restricting factors above the ground. [22, 

40]. Hence, manually finding a location is a humungous task for finding new tree-planting 

sites within the city.  

In cities with 80 to 90% of land covered by grey infrastructures, land availability is one 

of the controlling factors in identifying new tree planting locations, and it requires proper 

urban planning visions with an overall holistic view and knowledge in the development 

of UGI. Tree planting drives or programs are rarely utilized near the zones with a lot of 

Grey infrastructure due to a lack of data or understanding of the utilities and 

underground structures near the grey infrastructures. Hence, the sites proximal to the 

grey infrastructures are not utilized for their potential for UGI development. [22, p. 13]. 

Also, the expansion of the cities and the urbanisation process of the near regions of the 

cities will have to be under consideration of the UGI development drive as these regions 

will be experiencing a contraction in land availability and the detrimental effects of the 

urbanisation processes in the future. [22].  

As a step up to improve the efficiency in the development of UGI, GIS-based 

methodologies have shown better management and planning of these developments. A 

combination of remote sensing and GIS data is considered an effective tool in data-

driven decision-making and creating knowledge-based systems to aid the holistic 

development of the topography or Urban areas [38]. Many GIS-based studies on 

different cities were based on unique goals of UGI development; some studies were 

engaged in improving the microclimate and reducing UHI of the cities, and some others 

were focused on improving the water infiltration in Urban lands by focusing on tree 

planting locations in non-used urban lands, some concentrated the studies on 

enhancing the quality of the Urban habitat, other studies focused on identifying tree 

planting locations to reap maximum benefits of other ES from the trees, and some 

general GIS-based studies to identify the tree planting locations in cities with limited 

data [35] [22, p. 13] [42] [26, 39]. Lack of sufficient data was one factor affecting the 

GIS-based studies, and the necessary data for deep analysis to conduct need-based 

studies were challenging to access as this spectrum of data is spread across different 

organizations or departments. In the case of the accessed data, some may not be 

compatible or available in readily usable formats for GIS analysis by the experts. [35] 

[26]. The GIS-based approach requires experts to consider investing a lot of time and 

applying knowledge from different points of view and discipline, which can further delay 

the process [22]. The time-consuming and resource-intensive knowledge acquisition 
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program in deriving knowledge-based and data-driven systems is one of the major 

bottlenecks to tackle. [38]. 

The advent of ML, a subfield of Artificial Intelligence (AI), is the science of modelling 

computer programs for the human learning process by which automated knowledge 

acquisition is achieved. With ML, the existing data is used to train the AI model, which 

uses a rule-based system to enable the model to acquire knowledge and theories using 

inference strategies to make predictions. While many studies have integrated GIS and 

ML in the urban context, there has been no approach yet to determine an automated 

model to identify new tree-planting locations.  

 

 

Figure 1 | Below and above ground ground stressors for Urban trees [40, p. 316] 
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2 State of Art 

The expansion of cities and urbanization processes are reshaping the topography and 

landscapes worldwide, which triggers multiple challenges in the course of the process. 

Increased grey Infrastructures and urbanization lead to reduced green spaces, 

increased impervious surfaces, misalignment from the land's natural topography, UHI 

and other environmental issues in the Urban areas. As a measure to handle these 

adversities, Urban planners are increasingly focussing on data-driven systems for 

informed decision-making to assess and develop the UGI. Geographical Information 

system (GIS) - based UGI development is now widely used to manage and plan 

sustainable cities, requiring manual identifications and multiple analyses. [43–45]. With 

the development and progress in interoperability among different software and data 

formats [46], there is a huge possibility of data exchange between various platforms and 

GIS [47]. The vast pool of data from remote sensing and other GIS-compatible data of 

the cities requires data management and processing at various levels [45, 48, 49]. GIS-

based ML researches are widely employed in urban and regional contexts to assess the 

region's spatial features and physical parameters [50]. With ML, these data can be used 

to process various functions such as filtering, interpretation and predictions. The 

availability of multiple ML model types for different applications is another key aspect of 

these models, which interpret relationships and patterns in the distribution of various 

physical parameters of the city for making predictions with the available data. [49] . This 

study focuses on utilising the advantages of ML and a dataset derived from GIS to 

develop UGI in the cities. This section reviews the methodologies relevant to urban tree 

planting, ML and GIS-based UGI development studies, and the works that can aid the 

study. 

2.1 Urban Tree planting and Spatial 

parameters in urban space 

Urban tree planting requires a comprehensive understanding of the urban landscape's 

various spatial and physical parameters, as these parameters can significantly influence 

the selection of new tree planting sites in Urban areas. The various parameters chosen 

for the study are based on the researchers' propositions regarding the factors 

considered for tree planting sites in urban areas. Multiple criteria need to be considered 
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for Urban tree planting, and the primary spatial and physical parameters to be 

considered are climatic data, site data, existing vegetation, land regulations, land utility 

data, social influences, maintenance requirements, grey- infrastructure data, 

accessibility to the site, soil data, underground infrastructures data.   [9, 35, 51]. There 

have been research studies that are done to devise strategies for urban tree planting, 

and the main three categories are: (1) good physical growth of the tree and ensuring the 

survival rate of the planted trees, (2) maximising the Ecosystem services from trees and 

environmental benefits, (3) enhancing the aesthetics and liveability [35, 52, 53]. Studies 

suggest that combining these parameters using the GIS tools can provide a systematic 

approach for locating new tree planting locations and improving the greening potential 

of the Urban area [35].  

Studies have been done to devise measures to ensure the development of UGI and 

suggestions to identify new tree-planting locations in urban areas. Studies done by 

Rieke Hansen & et al.[22, p. 14] has formulated five basic principles for the development 

of UGI in urban areas, which are: improving the quality of the UGI, promoting the 

diversity of functions and multiple uses of UGI, Connecting the green areas and creating 

green networks, encouraging cooperative alliances and endeavours, developing grey 

infrastructure and UGI in tandem. Multiple research suggests goal-oriented tree planting 

and UGI development measures; for instance, locations with higher levels of air 

pollutants, a higher density of inhabitants, and high traffic volume areas can be ideal 

locations for planting new trees to reap maximum ES. [26, 42]. Planting more trees near 

existing habitats, impervious covers, and comparatively higher temperature areas than 

the adjacent areas can help reap maximum environmental benefits and ES from trees. 

For instance, In Germany, there is a need for upgrading the drainage systems and 

transportation facilities, and these developments of grey infrastructure can used as 

opportunities to redesign these grey infrastructures in collaboration with UGI. [22, 26]. 

Research has been conducted to formulate a systemic approach for tree planting 

initiatives, which suggests connecting the desired benefits of trees like ES with the 

objectives, targets, and indicators. In this case, an indicator is delineated as the canopy 

cover percentage or crown projection area of trees. [54, p. 2].  

GIS-based urban and environmental studies have incorporated data on the spatial and 

physical features of the above-ground attributes of the urban area created through 

remote sensing and photogrammetry. These spatial and physical data are used in 

tandem with GIS tools to derive useful information that can be put together to develop 

methodologies to improve urban land use patterns and urban green spaces. [55, 56]. A 
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study done on prioritizing the tree planting locations on streets used spatial and temporal 

data like surface temperature, existing tree density and vegetation cover, tree functional 

diversity, land use types, street data, socioeconomic data, and tree data to help the 

planners make decisive locations to promote tree planting along the streets [18, 32]. 

2.2 Framework for GIS-based Machine 

Learning Models 

City space constraints play a significant hurdle in locating new tree planting sites and 

improving the greening potential of urban areas, as available spaces are underutilized 

or obscured due to a lack of knowledge. Identifying new tree planting locations requires 

extensive data collection on various spatial parameters and strategic data.  Using ML to 

predict the greening potential of a city or urban area by training the model with the 

holistic data of the city is a complex task involving multiple processes. The framework 

for creating the dataset involves joining numerous data of the city's various physical and 

spatial parameters. In this study, the greening potential in the context of trees is 

considered for the UGI study since the trees have longer life spans and form a 

considerable part of the UGI [57, 58]. While there are studies incorporating GIS for 

identifying new tree planting locations, the major bottlenecks these studies face are the 

limited availability of data, physical site validation, and different goal orientations of 

studies, resulting in the absence of standardized methodologies for achieving the 

study's objective. Many studies were utilized in similar fields to employ GIS-based data 

to find optimal locations for various urban-based features. [35, 59]. 

There has been research on finding optimal sites for placing solar panels, which utilize 

spatial parameters defined by attributes, physical dimensions, position, extent, and 

spatial consistency, which are processed for multiple criteria analysis using an Analytic 

hierarchy process [60]. Mark C. Dwyer and Robert W. Miller used GIS to assess the 

benefits of urban tree canopies and surrounding land use by evaluating the 

environmental benefits of urban tree canopies, such as cooling effects and carbon 

sequestration. This study highlights the importance of GIS in understanding the 

interaction of urban tree canopy with the surroundings. [61]. GIS-based approaches 

were used in identifying ideal tree planting locations along the streets, which 

incorporated multiple spatial and temporal data to define the weights for the indicators 

to decide the locations to be planted with new trees [18, 32]. Studies done by Dexter & 
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et al. [27] prioritized tree planting sites based on goals such as meeting the community's 

needs and the location's suitability. This study has created the need-based criteria and 

suitability criteria by agglomerating various features coming under each criterion, and 

these variables are assessed in GIS tools to identify the new tree planting locations. As 

part of the MillionTrees initiative in New your City, a study was done to identify the best 

tree planting locations to reduce air pollution by prioritising GIS tools to filter the three 

indicators, such as pollution concentration, population density and low canopy cover, to 

make them the basis for identifying new tree planting locations. The paper introduces 

GIS methodologies that prioritise indicators such as urban tree canopy enhancement as 

a strategy to identify tree planting sites. [62]. There have been multiple GIS-based 

approaches for urban-related studies and identifying new tree planting locations, but 

their objectives and goals differ. There has been no standard methodology for a holistic 

approach to identifying new greening locations within the city based on available data; 

even if it is present, the limited data availability and validation studies are shortcomings 

of the studies [35].            

The study by C. Wua & et al. identifying tree-planting locations using GIS relied mainly 

on the remote sensing data, which analysed the tree sites based on their land cover, 

permeability conditions of the land, existing vegetation, and type of land. The initial 

phase of the GIS framework was to identify the locations with potential planting sites 

using the remote sensing data. In the second phase,  iterative modelling processes were 

used to determine the number and type of trees that could fit into these newly identified 

locations for tree planning. The research had limitations on the accuracy of the data and 

the unavailability of other significant data sets such as the street data, building data and 

other physical parameters of the urban area. [35] 

Urban tree placement Analysis study done by R. Reitberger & et al. underscores the 

effectiveness of GIS analysis on above-ground spatial parameters like land cover, 

surface imperviousness data, existing vegetation, and urban infrastructure in identifying 

tree planting sites. This study has emphasized optimizing the UGI development 

strategies through spatial analysis, data processing, and selecting features that can 

directly affect the outcome. This study also suggests strategies for formulating the 

feature engineering of data to enhance the study's performance and effectiveness. [39]. 

C. V. Ekeanyanwu & et al. [63] reviewed the methodologies for merging the GIS and ML 

to find efficient data transfer methods to reduce loss and adaptability of GIS-based ML 

models for productive predictions and automation. Joan M. Peralta and Thelma D. 

Palaoag explored the possibility of using ML from GIS data to map Urban Green space 
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in smart cities, and the model used for this study was found to perform with high 

accuracy for predicting the data to help urban planners with data-driven decision making 

[64]. Similarly, the ML models were used in studies to assess and analyse the quality of 

green spaces, and the performance evaluated for the ML models suggests the model 

for practical implementation and usage due to their high accuracy [65]. 

2.3 Machine Learning Models  

ML, an application of AI, is now widely used to make computer programs automatically 

learn data and improve based on the learning processes [66]. Multiple ML algorithms 

are used based on the purpose and datasets. ML algorithms like supervised ML 

algorithms, unsupervised ML algorithms, semi-supervised ML algorithms, and 

reinforcement learning ML algorithms are the algorithms that are used the most. This 

study focuses on the open-source library for ML frameworks like TensorFlow using 

Keras, which is a high-level API designed for easy model building [67]. TensorFlow is 

flexible and uses an extensive library of models, which provides a comprehensive 

ecosystem for building and training ML models [68].  

2.3.1 Supervised Machine Learning Algorithms 

The supervised ML algorithms are used in the GIS-based ML programmes due to their 

proficiency in learning labelled data to predict the target variable in unseen data based 

on the learned data. [69] .Supervised ML algorithms, like ensemble models, are found 

to be suitable for handling labelled spatial data to map input variables to desired outputs 

and predict urban development patterns in the case study of North Carolina [5]. The 

supervised ML algorithms have more flexibility in terms of applicability in diverse 

datasets and scales, making them compatible with handling extensive spatial data from 

GIS-based studies. Studies on GIS-based ML programs show that supervised 

algorithms provide insights into the features that can aid the interpretability of the model. 

Studies focussed on urban mapping analysis using ML suggest that supervised ML 

algorithms are designed to reduce errors in prediction by real-time monitoring of the 

progress of the models' training. From the study on urban mapping analysis using 

multiple ML algorithms, the Neural Network (NN) ML algorithms performed better and 

had high accuracy in predicting data involving remote sensing multispectral satellite 

imagery datatypes. [64, 70–72]. Supervised ML algorithms demonstrated higher 

efficiency and interpretability in the GIS-based ML studies used in Urban land planning 
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and environmental assessments. The performance of novel supervised ML models 

effectively dealt with complex GIS data validated in the studies related to the Urban 

growth predictions of Nasiriah City in Southern Iraq [71]. Supervised ML algorithms like 

NN can learn non-linear relationships in large-scale datasets derived from 

environmental and urban contexts and performed better [73][55]. The decision tree 

models, Ensemble models and the NN model types in TensorFlow are the major model 

types used to deal with spatial data and multiple decision-making conditions [74]. The 

model type to be chosen is decided based on the dataset type, the dataset's complexity, 

scalability, and the requirement/objective of the model prediction [67, 74].   

2.3.2 Data Types and Feature Engineering 

The input data for model training plays a pivotal role in the performance of the ML model. 

The GIS-based data encompasses different types of data, predominantly structured, 

unstructured and spatial. The structured data comprises well-defined, organized data 

stored in rows and columns, usually in Excel formats or SQL databases. The 

unstructured data comprises free-form data that does not follow any specific order or 

division of information in images, pixels, etc. [1, 2]. Remote sensing imagery 

development-related studies with ML utilize unstructured datasets to train the model, 

but too many layers of images or complexities can hinder the performance of the ML 

models on unstructured datasets [75]. Spatial datasets are found in file formats like GPS 

coordinates and shape files used in geospatial analysis, containing data that are 

geographically referenced [76]. Different datatypes are used for different purposes of 

model training, and the scale of the data availability also interferes with model choice. 

The choice of the data used for ML model training depends on the source of the data, 

the formats of the data, the objective of the study and the complexities of the target 

variable, which is labelled for making predictions. [2]. 

Creating a dataset for training ML models which can be used for predicting labelled data 

of complex target variables like the greening potential or new Urban tree planting 

locations within the city requires information from multiple GIS data of the urban area 

ranging from raster files to the point data features [39, 76]. Multiple data types in GIS 

encompass their kinds of values, information and patterns. GIS  data of urban-based 

spatial and environmental data is a mixture of multiple data with different sub-regions, 

which add even more complex patterns in the dataset generation. The scale of the 

dataset is another decisive factor in GIS-based ML training, as some ML algorithms 

cannot perform with varying and very large datasets (which are common in urban-
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related studies involving spatial data). [2, 77, 78]. Preprocessing the dataset to handle 

missing data and other noises in the dataset for ML model training and relative ease in 

achieving the due process also plays a significant role in the choice of the dataset used 

for ML algorithms. Studies show that geospatial and spatially heterogeneous data faces 

preprocessing challenges and their influence on ML model selection. The unstructured 

data requires specialized pre-processing and transformations to make it compatible with 

ML model training. In contrast, structured data is advantageous on those fronts because 

of its ease of handling. [77, 79]. Handling and extracting datasets for labelled ML model 

training involves multiple data features and pre-processing.  

Feature Engineering is the process of transforming raw data into meaningful features 

and creating spatial relationships between the labelled target variables and the other 

training features of the ML model, which can improve the model's performance. Spatial 

feature engineering involves creating new variables or features and spatial relationships 

within data, enabling better ML model performance by learning patterns and 

relationships. A study involving urban vegetation mapping uses spatial feature 

engineering processes to train the NN models to enhance their performance. [80]. A 

study done on the training NN models in the Digital Elevation Model (DEM) height 

estimation of different terrain types utilizes the experimental data to be feature-

engineered to make the raw data compatible for the model to effectively learn patterns 

and improve the model's performance [81]. Handling multiple data features and 

combining different data types for use in the model to learn patterns require effective 

feature engineering to enhance the performance of the ML model, as it helps reduce the 

overfitting of the learned data for the model. For instance, Feature engineering is 

essential for transforming categorical data to numerical representation and normalising 

data to values 0 and 1, as ML models learn on such data. Similar feature engineering 

operations were used in the study to optimize the performance of the ML model, which 

aimed at measuring urban green space exposure based on street view images. [4, 82]. 

Feature engineering in Urban studies is crucial for transforming data and multiple 

operations like normalization of data, categorical encoding, and spatial feature creation. 

[2]. Studies done on NN models on spatial data have found that custom feature 

engineering can enhance the predictive ability of the model [83]. A NN ML study on 

Gully erosion susceptibility has derived independent variables like distance to a river, 

drainage density and 11 other features through feature engineering to improve the 

efficiency of the NN model [73]. 
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Considering the requirement of the data types, preprocessing, handling the data for 

easy manipulations, feature engineering, and source of data, the structured dataset is 

the most practical and easy option for handling multiple features [79]. Structured data 

are utilized in regression models where the source of the data was from GIS-based 

studies [84]. The structured data can also include spatial attributes and complex feature 

extraction. A study by Nikparvar & Thill found the handling and simplicity of structural 

data for NN ML models for handling data encompassing spatially heterogeneous data 

[77].  

2.3.3 Neural Network Models 

NN are ML models which are inspired from the Human brain. NNs are made of layers 

of interconnected neurons which can learn patterns and relationships to represent data 

through model training. Multiple types of neural network models are designed for defined 

purposes. The main Neural Network models are Feedforward Neural Networks (FNN), 

used for general-purpose tasks with structured data; Convolutional Neural Networks 

(CNN), used in image classification and object detection; and Recurrent Neural 

networks, used in Natural Language Processing (NLP). [2, 67]. NN models can capture 

non-linear dependencies in the data, the scalability in NN is standardised, and they can 

handle heterogeneous large datasets. [1]. NNs are widely used in Geospatial and 

remote sensing fields due to their ability to combine multiple features and 

heterogeneous geospatial data [71, 85]. NN models perform better in studies focussed 

on Urban growth predictions and land use classifications due to their interpretability of 

the training progress and flexibility in handling data [82, 86]. In the research that focused 

on urban green space mapping in smart cities, the NN model demonstrated higher 

accuracy than other models like Support Vector Machines and Random Forests [64]. 

 FNN, also known as Multi-layer Perceptrons (MLP), is found to be particularly effective 

in performance in structured tabular data and has shown significant validity in modelling 

spatial data for their ability to learn non-linear relationships, which exist in Urban 

landscape studies [87]. FNNs are computational models composed of multiple 

processing layers of Neurons to learn data representations with higher levels of 

abstraction [88]. Studies on FNN and urban land use suggest that the FNN algorithms 

can learn non-linear interactions of diverse feature types like numerical, categorical, and 

spatial data [89]. The FNN has been applied in urban studies, which utilize structured 

datasets to predict urban traffic, incorporating multiple features like road networks, 

vehicle counts, and temporal data [90]. FNN models were found to perform with high 
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accuracy in predicting urban building energy consumption and urban road land use 

planning, and they were trained for structured data containing spatial data [56, 91]. 

Studies on GIS-based data and FNN with structured feature-engineered spatial data 

demonstrated better prediction on spatial data with improved feature engineering of 

training datasets [73].  

2.3.4 SHAP Values for Model Interpretability 

Training models with complex heterogenous data makes the model more complex and 

their interpretability is critical for their prediction explanation, debugging and data 

exploration. Shapely Additive Explanations (SHAP) values give insight into quantifying 

the various features contributing to the model’s prediction. [92]. In GIS-based ML 

training program studies involving multiple features and large datasets, SHAP values 

help explain the relative importance of the various features used for training the model 

that can positively or negatively affect the predictions. [93]. The SHAP method is found 

to be seamlessly integrated with supervised ML models and NN, thereby enhancing the 

trustworthiness and transparency of the model's predictions. The SHAP values are 

visualized using the Beeswarm plots, Waterfall plots and other types of plots. The 

Beeswarm plots give the global overview of all the SHAP values of the features selected 

for training, and the waterfall plot provides the SHAP values of a single sample 

prediction with data on various features affecting that prediction. [94]. The use of SHAP 

in the context of Urban studies with ML models can provide actionable insights and help 

interpret the ML model's predictions and methods to improve the model's performance 

by understanding the dependencies of various features in the dataset that affect the 

prediction. [95]. 
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3. Methodology 

The overview of the research is to create a decisive framework to convert the spatial 

and physical data of the city in the GIS tool to data formats, which can be used to train 

the AI models to identify the patterns and relationships between the UGI and above-

ground data. 

The methodology was derived based on thorough review of the state-of-art approaches 

and research. The methodology of this research is subdivided into multiple tasks/stages 

of progress to achieve the desired goal. The skeletal flowchart of the workflow or stages 

of the methodology is represented in Figure 2. 

 

Figure 2 | Skeletal flowchart of the tasks in the methodology 

Tools Used 

ESRI ArcGIS Pro version 3.4.0 (ArcGIS) is used for the GIS part of the study. Analysis 

and geospatial processing of various data gathered are carried out in ArcGIS. Integrated 

Development Environment (IDE) Google Colab is used for Python scripting the AI model 

with packages from tensorFLow (2.12.0) and the SHAP functions. Microsoft Office was 

utilized for data processing and clearing the noises in the data. 

3.1 Data Preparation 

Data preparation is the methodology's initial phase, which involves collecting and 

preparing the collected data in the GIS platform (Here ESRI ArcGIS Pro). Based on the 

insights from the state-of-the-art section, all the available and relevant data are added 

to the working map environment of ArcGIS from the “catalogue pane” of the ArcGIS 
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working map contents pane. The data used are in the formats Geodatabase files, 

shapefiles, Raster data, and GeoJSON formats [96]. The data not readily available in 

shapefiles or formats supported by ArcGIS are imported into ArcGIS using the “Quick 

Import” data interoperability tool in the Geoprocessing tools. After importing and adding 

the shapefiles into the ArcGIS, all the data layers are checked for the spatial references 

and projected coordinate system. The projected coordinate system used for this study 

is ETRS 1989 UTM 32N. All the data added are projected into the same Coordinate 

system using the “project” tool in ArcGIS.All the shape files containing the detailed 

physical and spatial data on various physical parameters of the city, such as data related 

to trees, buildings, land types, street data, and perviousness of the land, are then 

successfully overlaid and checked for accuracy and alignment with the base maps 

available in ArcGIS. Geoprocessing tools, like “Raster to Polygon”, are used to convert 

the Raster files into shape files to enable straightforward data derivation. Figure 3 shows 

the ArcGIS map illustration of the data preparation task used in the case study of Munich 

with the integration of various data used in the study.  

The data is then clipped using the “Clip” tool in ArcGIS according to the extent of the 

area considered for the respective studies, such as the pilot study area, main study 

area, and validation study area, which will be regarded in the later sections. 
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Figure 3 | GIS illustration of data preparation task used in the case study of Munich 

3.2 Feature Engineering 

As outlined in the state-of-the-art review, feature engineering is done to create a 

relationship between various physical features of the city so that these inherent complex 

relationships between the different physical attributes of the city can be used to train the 

ML model. Feature engineering involves creating a framework for a hierarchical process 

in the ML model training. This consists of defining the target variables for training the 

ML model and creating physical relationships between various available physical 

attributes of the City used for the study. Furthermore, deriving additional features for the 

model to learn the inherent interaction of various above-ground physical features such 

as complex interactions like the building and tree density within a certain study radius, 

land use patterns at different urban zones and other dependencies. The dataset is 

created by bringing the relationship between the target variable and other data features 

into the purview of the model training. 
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For this study, we have derived a process through which the model will learn the 

relationships between the city's various physical and spatial features. The area chosen 

for study is first defined according to the extent of the area of the study (Pilot Study, 

main Study, validation study). The structured tabular data was used in this study to train 

the model. The relationship of the city's various physical and spatial parameters was 

defined with respect to a reference point. For this approach, a new set of points was to 

be introduced in the study area.  

In ArcGIS, the study area is first defined, and all the data used for the study is clipped 

to the extent of the study area. A square grid of 10m in size is introduced in this study 

area using the tool “Generate Tesselation”. The attribute table of the square grid is 

updated by adding two fields: centroid-x and centroid-y. The centroid of each square 

grid is then calculated by the tool “ Calculate geometry attributes”. To create a point 

feature in these centroids of the square grid, a tool called the” XY table to point” tool 

was run to introduce points using this centroid-x, centroid-y values of the square grid 

feature. This point in the centroid of each square grid is used as the reference point from 

which the relationship of various physical features of the city is defined, and the square 

grid is considered the area of influence for these grid points. The near distance to trees, 

streets, and buildings is derived using the near tool command. With these newly 

introduced grid points as reference points, the distance to various target features is 

calculated using the “Near“ tool. 

• Distance to the nearest trees from the grid points, with a search radius of 7.05m 

(Search radius is considered in the purview that half the distance of the diagonal 

of the square grid of 10m size is 7.05m) 

• Distance to the nearest building from the grid points, with a search radius of 5m 

(Search radius is fixed based on the results from running multiple iterations of 

model training and the influence of this particular feature in model training using 

the SHAP values). 

• Distance to the nearest street from the grid points, with a search radius of 7.05m. 

• Distance to the nearest cycle track from the grid points, with a search radius of 

7.05m. 

• Distance to the nearest “open or Green Space” from the grid point. 

Each grid point's urban land type is identified using the “Spatial Join” tool with the grid 

points as the target feature and the join feature as the urban typology data. The 

percentage of imperviousness of the land at each grid point is also similarly found using 

the “spatial join” tool. With the square grid as the area of influence of these grid points, 
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various other features for training the ML model, such as the built-up imperviousness, 

public or not public area, the number of trees, and the type of the nearest street, are 

also derived using geoprocessing tools like “Near”, “Spatial Join”,” intersect”. The 

feature engineering of the data is updated in the attribute table of the grid point feature, 

on which this geoprocessing analysis is done in ArcGIS. A buffer is created on the 

boundary of the extent of the study, and the reference grid points are removed in this 

boundary buffer area to avoid redundancies in model training. Figure 4 demonstrates 

the process used for feature engineering in ArcGIS. The percentage area of the square 

grid covered by the Crown projection area of the trees is calculated in ArcGIS using the 

“intersect” and “Dissolve” tools.  

Figure 4 | GIS illustration of the processes used for feature engineering 

3.3 Data Processing 

This stage of the methodology involves making structured datasets compatible with 

training ML models by aligning the fields and correcting missing or error values from the 

datasets to avoid redundancies and deviations in the results. The attribute table of the 

reference grid point on which the feature engineering is done in ArcGIS is exported into 
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Excel format. Data processing is done in the Microsoft (MS) Excel sheet. Refer to Figure 

5 for insight into the operation environment for various methodology stages. In data 

processing, all the deviating values and null values from the Excel sheet are removed. 

The derived feature-engineered data from the ArcGIS data contains many unwanted 

fields and null values. These noise data are removed and processed before it is used 

for model training. 

The derived Excel data is processed in a series of steps. The first approach is to delete 

all the fields which are not needed for the study. The main fields required for the study 

are based on the derived feature-engineered data from ArcGIS.The Feature Engineered 

data from the ArcGIS is imported into the MS Excel sheet using the tool “Table to Excel”. 

Some new fields are added to the imported Excel sheet based on the feature 

engineering data. A field defining whether the grid point lies within a building is added 

to the derived data. The field specifying if the point is within the building is manually 

defined in the Excel sheet by comparing the values in the field “distance of the point to 

the nearest building”. All entries with a 0 value in the “distance of the point to the nearest 

building” signify that the point lies in the building. This way, the value is defined for the 

field “within a building or not”. Numerical data 1 or 0 is given for this data in the purview 

of model training. All the unwanted fields and features are removed in this process, and 

only the data required for model training is retained. The significant fields retained for 

the model training data from the list of fields from feature-engineered data are shown in 

Table 1 (Given below are the features which are found relevant based on the study):   

Table 1 |  Features used for model training 

Feature Description Data Type 

Unique identifier for each reference point feature. Numerical 

X-coordinates of the point. Numerical 

Y-coordinate of the point. Numerical 

Distance from the point to the nearest street. Numerical 

The type of nearest street to the point, Numerical/Categorical 

Field specifying whether the point is within a 
building  

Numerical 

Distance from the point to the nearest building. Numerical 

Distance from the point to the nearest tree. Numerical 

Number of trees within the square grid. Numerical 

Height of trees within the grid. Numerical 

The scale imperviousness of the location of the 
point of the study 

Numerical 
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The field specifies whether the location of the point 
of the study is public property. 

Categorical 

Classification of Land Use Type / Urban Typology Numerical/ Categorical 

The distance to the nearest cycle track Numerical 

The crown area of the nearest tree Numerical 

The angle of the location of the nearest tree 
concerning the reference point 

Numerical 

The distance to the nearest green or open space Numerical 

The built-up imperviousness feature of the 
reference point 

Numerical 

Greening potential of the grid (target variable for the 
model). 

Numerical 

 

3.4 Model Selection and Training 

The decision to select and train the model is grounded in analysing the state of art 

section. Choosing the model for training is crucial since different models work for various 

data types and purposes. TensorFlow libraries are selected to train the machine learning 

model. The Structured data created with the feature engineering process in ArcGIS are 

suitable for ML tasks like classification and regression. To identify the complex patterns, 

relationships and the nature of large datasets used for training, the Feedforward Neural 

Network (FNN) model was used as the primary model training framework. The 

tensorFlow ML algorithm library builds and trains the model to learn the relationship 

between the city's spatial and physical features. Python script is used to input the ML 

models in the Integrated Development Environment (IDE), Google Colab. 

The significant steps involved in building the model are  

• Feature and Target Definition: 

The feature-engineered structured data from the Excel sheet in the IDE is loaded into 

the model. The features of the data are defined in the model. The training features 

are defined in terms of “x” and “y” variables. “x” is set as the feature matrix, and the 

“y” variable is set as the target variable; here, it is “greening potential”.  

• Data processing 

The data that require normalisation to ensure values remain in a valid range are 

normalised (Angle data contains negative angle values, and it involves normalisation 

to avoid errors in the prediction of the model). The data is then standardised to ensure 
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numerical stability and to scale the values to have a mean of 0 and a standard 

deviation of 1 to enable model training. The standardised dataset is then split into 

training and testing datasets. Here, 80% of the dataset is used for training the data, 

and 20% is divided for testing the model for evaluation. 

• Defining the Model 

The FNN is defined as having three hidden layers and one layer for regression. 

Dropouts are introduced in the model to regularise the model by preventing 

overfitting. Activation functions are also defined to enable non-linear learning of the 

neurons. Callback functions are also defined along with the model definition stage to 

avoid the overfitting of the model 

• Model Compilation and Training 

The model is compiled with suitable optimizer and loss functions to improve the 

quality of the model's prediction and think about the measured predictions made. The 

model is compiled here with the “Adam’ optimiser and the mean_squared_error 

(MSE) loss function. After model compilation, the model is trained for different epoch 

combinations, batch sizes and validation splits. 

• Model Evaluation 

The model’s performance is then evaluated based on the test dataset and the 

predictions made on the test dataset. The model’s performance is evaluated using 

the MSE and R² score. 

Refer to Appendix 1 for the script used in this study. 

3.5 Model Testing 

The model is trained in the IDE, and the results of the model's predictions are evaluated 

based on the MSE and R² score. These values are assessed, and their prediction 

distribution is plotted using Python. The SHAP values are derived from fine-tuning and 

explaining the model to improve the prediction. The prediction data are then compared 

with the actual data to test the accuracy and improve the model’s performance. The 

accuracy and predictions of the model are cross-validated using GIS tools and data. 

Model improvement is done for different iterations till a suitable learning score, such as 

the R² score, is achieved.  
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3.6 Model validation 

The model is validated using a Case study of the climate-neutral housing project at St. 

Michael Strasse (Maikäfersiedling), Munich. The data is prepared for the case study 

region with all the physical features except the target variable (greening potential), and 

this data sheet is fed to the model for prediction. The prediction results from the model 

are compared with the actual greening potential values of the validation study site. The 

prediction data is imported into ArcGIS to visualize and analyse the model's predictions 

to gain insights into the factors influencing tree planting locations in the city—the option 

for deployment of the model for practical usage.  

 

Figure 5 | Operation environment for various methodology tasks 

3.7 Visualization & Deployment 

The visualisation is done in the GIS platform. The predicted data from the model and 

the reference point coordinates are converted to the CSV format using Python scripting. 

This CSV format is imported into the ArcGIS map using the quick import tool in the same 

map in which the data set was prepared. The projected coordinate system is set to 
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ETRS 1989 UTM 32N, which can locate the points to the exact coordinates for which it 

is used. This trained model is then saved along with the architecture and weights of the 

model for future use.  
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4. Case Study 

The case study of Munich in Germany is used to accomplish the study's objectives by 

applying the methodology steps. Munich has a good pool of GIS-compatible above-

ground data about the various physical parameters of the city, which can be used to 

train ML models to learn the patterns and relationships between various physical 

features to answer the study's research questions. The study is divided into the pilot, 

the main, and the validation studies to achieve the desired level of accuracy of the study 

objectives. The ML model is trained based on the dataset derived as per the 

methodology, and different datasets are used in the three above-mentioned sections of 

the study. Figure 6 represents the flowchart of the progress of the study done under this 

case study. 

 

Figure 6 | Model training flow chart showing various studies done under the case study 
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4.1 Case Study Location & Data Used 

Munich city has a good proportion of UGI and uniform-height buildings, and the 

availability of spatial, meteorological and physical data is chosen as the study area [97]. 

Munich is the third-largest city in Germany and the capital of the Bavarian state of 

Germany. Its population is over 1.4 million, and the area is around 311 km2. The site 

considered for the case study is located in Munich (48◦8’ N, 11◦35’ E, elevation of 520m 

above sea level). The mean annual temperature of Munich is 9.6 °C. Munich has both 

cold and warm months, with an average coldest temperature of 0.3°C in January, while 

the warmest temperature averages 18.9°C  in July. The precipitation averages can 

reach a minimum of 46mm in January, and the winter in Munich is often drier. [98, 99]. 

Countries like Germany are preparing a system for effectively managing and developing 

their tree inventory using a tree information system. Munich in Germany has conducted 

multiple remote sensing and photogrammetry to create GIS data sets for effective urban 

management and development. Munich is developing 3D cityGML files with higher 

levels of Detail, and many of the GIS data are available in open source platforms. [22, 

100–102]. Figure 7 shows the administrative boundaries of the case study area, Munich. 

 

Figure 7 | Case study location, Munich, marked with administrative boundaries 
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Data used for the study  

Further to the state-of-the-art section, various above-ground spatial and physical data 

of Munich city are gathered from different sources. The various physical data of Munich, 

such as the tree, surface imperviousness data, building data, built-up area 

imperviousness data, street data, cycle track data, data on public areas and land-use 

typology data, are the significant datasets used to derive the dataset for model training. 

The tree data used are the geodatabase files containing tree position and the tree 

segments showing the delineation of the crown projection area of the trees of Munich 

city region, which is created using remote sensing by Deutsches Zentrum für Luft- und 

Raumfahrt e.V. (DLR) [100]. The surface imperviousness data, available in raster file 

formats with a resolution of 10m, is derived from the open-source platform Copernicus 

Land Monitoring Service [103]. The building data containing the vector data of Munich's 

buildings is derived from Munich's open-source data portal [104]. The cycle track data 

is also derived from the Open Data portal of Munich [105]. The street data is vector line 

data of the streets derived using Overpass Turbo, a web-based query tool for extracting 

specific data from the OpenStreetMap open-source database [106]. The vector data on 

the spatial information on the public area of Munich area is derived from the open data 

portal called “Geodatenservice der Landeshauptstadt München” [107]. The built-up area 

imperviousness data, also available in raster file formats with a resolution of 10m, is 

derived from the open-source platform Copernicus Land Monitoring Service [108]. The 

Urban typology of Munich containing information on the various classifications of land 

based on their use and type are availed from the research studies of the Research 

Training Group for integrated urban planning studies done under Technical University 

of Munich [101]. 

4.2 Pilot Study  

A pilot study was conducted to train the model in defining the approaches for devising 

the approach for defining the target variables for prediction and analysing the outputs to 

affirm the methodology of the study. The pilot study aimed to get an overview of the 

framework and methods devised to make the AI ML Model. As the name suggests, a 

smaller area of 16.06 sq. km was used for the study, with only some prominent physical 

attributes considered for the feature engineering of the dataset to train the ML model. 
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The features considered for creating the structured feature engineering data for the 

model training consisted of Tree, Street, Urban Typology and Building data. With these 

data, the data was prepared and processed in the GIS tool using the various 

geoprocessing tools in ArcGIS, as explained in the methodology section. Two 

approaches were used to train the model in the pilot study in defining the target 

variables. The greening potential was set as the target variable, and two methods were 

used to describe it. The features of the structured feature engineering data are given 

below in Table 2, used in the model training and their data type. The features used in 

the model training of the pilot study are shown in the Table. Basic Sequential NN with 

different combinations of the number of Neuron layers with a dropout of 0.3 were used 

to optimise the results. Callback functions were not used in the pilot study, and 50 

epochs were used in training the ML model. Figure 8 shows the area chosen for the pilot 

study, including the extent and the data used. 

Table 2 | Features used in the Pilot study 

Feature Description Data Type 

Unique identifier for each reference point feature. Numerical 

Unique identifier for the square grid enclosing the point feature Numerical 

X-coordinates of the point. Numerical 

Y-coordinate of the point. Numerical 

Latitude of the point. Numerical 

Longitude of the point. Numerical 

Unique identifier of the nearest street from the point. Numerical 

Distance from the point to the nearest street. Numerical 

Unique identifier for the nearest building from the point. Numerical 

Indicator of whether the point is within a building Numerical 

Distance from the point to the nearest building. Numerical 

Unique identifier for the nearest tree from the point. Numerical 

Distance from the point to the nearest tree. Numerical 

X-coordinate of the nearest tree from the point. Numerical 

Y-coordinate of the nearest tree from the point. Numerical 

Number of trees within the square grid. Numerical 

The total area covered by individual tree canopy Numerical 

Height of trees within the grid. Numerical 

Greening potential of the grid (target variable for the model). Numerical 

Classification of land use type (e.g., residential, commercial, etc.). Categorical 
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Figure 8 | Area selected for Pilot study and the data used in pilot study 

4.2.1 Pilot Study Approach-1 

In this approach for defining the target variable, an extra framework was to be performed 

manually on the dataset that was to be used for model training to define the values of 

the target feature “greening potential”. The framework created a set of conditions 

concerning the feature-engineered data. In this approach, some extra analysis in 

ArcGIS was also done to identify which land types (Urban typology feature) had a higher 

density of trees. A dimensionless number is derived for the density of trees on various 

kinds of land in Munich to identify the types of land having a significant share of trees 

compared to others. It was derived using a set of operations in ArcGIS with the “spatial 

join” tool and adding a new field with mathematical operations in the attribute table of 
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the “Urban Typology” shapefile. This dimensionless number is calculated by the number 

of trees enclosed in each type of land divided by the area of each land type chosen for 

the “spatial join” analysis. The derived values for various land types are given in Table 

3. Based on this dimensionless Tree density number and feature engineering data, a 

set of conditions was introduced to define the target variable for model training “greening 

potential”. According to the first approach, three values were determined for “greening 

potential”, which are 0.9, 0.5 and 0.1. The conditions used to define these values can 

be found in Table 4. Refer to Appendix 2, figure 26 for the dataset used for model training 

for this approach.  

Table 3 | Classification of various land typologies present in Munich with their 

corresponding dimensionless tree density number  

Various land types under the feature Urban 
typology  

Dimensionless Tree 
density number 

mixed industrial or commercial halls 2.59 

Network 3.32 

low free-standing or grouped building 4.9 

perimeter block building 3.81 

open or green space 5.58 

large building complex 3.92 

water 3.81 

Tower block or high free-standing building 4.8 

linear building 5.41 

Sport complex 2.83 

None 5.82 

detached/ semi-detached house 6.9 

Forestry 8.84 

agriculture 0.88 
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Table 4 | Categories of Greening potential values used in Pilot study Approach 1 

Condition 1: High Greening 

Potential =  

0.9 

The point is not within a building. 

There are no buildings near the point in the 

enclosed square grid. 

There are no streets near the point in the 

enclosed grid. 

The number of trees within the enclosed grid 

is greater than or equal to 1 

Land usage type is forestry, Open or green 

space, detached/ semi-detached house 

Condition 2: Medium Greening 

Potential = 0.5 

The point is not within a building. 

Distance to the nearest building from the point 

is greater than 3m. 

Distance to the nearest street from the point is 

greater than 2m. 

The number of trees within the enclosed grid 

is greater than or equal to 0 

Land usage type is all except agriculture. 

Condition 3: Low Greening 

Potential =   

0.1 

Rest of the condition 

4.2.2 Pilot Study Approach 2 

In the first approach, the analytical framework for defining the greening potential 

required careful analysis of the feature engineering data. The flexibility of feature 

engineering data is also challenging, as it can differ for different cities. The approach 
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also needs a lot of pre-analysis to be done by humans on the feature engineering data, 

which undermines the potential of the ML AI models.  

In the second approach, the “greening potential” target variable was defined using the 

tree segments data, which defined the crown delineation of the trees. The greening 

potential for each point is determined by the percentage of the square grid area of the 

respective reference grid point covered by the crown projection area of the trees 

enclosed in the respective grid. Figure 9 gives a visual illustration of how this approach 

is done in the GIS platform.  

𝐺𝑟𝑒𝑒𝑛𝑖𝑛𝑔 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =   
 𝐶𝑟𝑜𝑤𝑛 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑒𝑒𝑠 𝑖𝑛 𝑎 𝑔𝑟𝑖𝑑

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑆𝑞𝑢𝑎𝑟𝑒 𝑔𝑟𝑖𝑑
 × 100  

For each grid, the greening potential value is derived using geoprocessing tools such 

as the “intersect” and “dissolve” tools in ArcGIS. This way, the “greening potential” is 

derived for every point, and this data is used as a target variable for training the model. 

This approach requires less human intervention in defining the greening potential and 

can fit into the framework for further studies in different study locations. 

 

Figure 9 | Illustration of Greening potential definition used in Pilot Study Approach 2 
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This approach of defining the Greening potential is used in the coming sections of the 

study to train the model for further model optimization and achieving the objective. This 

approach involves more dependence on GIS and ML and better integrates the purpose 

of the study framework. 

4.3 Main Study 

The main study is the major area of focus, for training the model and optimizing it. The 

motive of the main study is to establish the framework suggested in the study's objective 

with concrete findings and build a model capable of learning the physical and spatial 

relationships of various city attributes. A comparatively larger area of 47.8 sq.km was 

used to derive the dataset, encompassing all the relevant GIS-based data available for 

Munich. The data for creating the structured feature engineering data for the model 

training consisted of tree data, building data, street data, urban typology data, cycle 

track data, surface imperviousness data, built-up imperviousness data, and vector data 

defining public properties. With these data, the data was prepared, feature-engineered 

and processed using the various geoprocessing tools in ArcGIS, as explained in the 

methodology section. The study area is depicted in Figure 10, showing the extent and 

data used. The target variable (“greening potential”) is determined by the percentage of 

the square grid area of the respective reference grid point covered by the crown 

projection area of the trees enclosed in the respective grid as mentioned in the second 

approach of the Pilot Study. Refer to Appendix 2, Figure 25, for the dataset used for 

model training. 

Different iterations of the model training are done with different features and with 

different approaches to avoid overfitting problems and improve the performance of the 

model. Of the various iterative models used, 3 different conditions of model training 

approaches, which resulted in the better performance of the model comparatively, are 

discussed in this section. The SHAP values are derived for each condition of the model 

training. Each condition is ranked in ascending order in terms of improvement in 

architecture and performance of the ML model, i.e., the condition 3 model is an improved 

version of the condition 1 model. Methods to reduce overfitting were introduced in this 

study, such as early stopping functions, regularization, optimized feature engineering 

based on SHAP interpretations 

The main training features retained from the feature-engineered dataset after multiple 

iterations of model optimization are given in Table 5. 
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Figure 10 | Area selected for the Main study and the data used in the Main Study 
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Table 5 | Features used in the main study 

Feature Description Data Type 

Unique identifier for each point feature. Numerical 

X-coordinates of the point. Numerical 

Y-coordinate of the point. Numerical 

Number of trees within the square grid. Numerical 

Distance from the point to the nearest tree. Numerical 

The crown area of the nearest tree Numerical 

Height of trees within the grid. Numerical 

The angle of the location of the nearest tree with respect 
to the reference point 

Numerical 

Field specifying whether the point is within a building Numerical 

Distance from the point to the nearest building. Numerical 

The built-up imperviousness feature of the reference 
point 

Numerical 

Distance from the point to the nearest street. Numerical 

The type of nearest street to the point Numerical/Categorical 

The distance to the nearest cycle track Numerical 

The scale imperviousness of the location of the point of 
the study 

Numerical 

Classification of Land Use Type / Urban Typology Numerical/ Categorical 

The distance to the nearest green or open space Numerical 

Field specifying whether the location of the point of the 
study is public property 

Categorical 

Greening potential of the grid (target variable for the 
model). 

Numerical 

 

4.3.1 Condition 1 

In this feature-engineered dataset, there are 3 categorical data features considered: “the 

type of nearest street to the point”, “Classification of Land Use Type / Urban Typology”, 

and “field specifying whether the location of the point of the study is public property”. 

The rest of the data are numerical datasets. Machine learning data requires numeric 

data for computation and one-hot encoding is done on these categorical data to convert 

these data into formats that can be fed into the ML algorithms to learn the data to make 

predictions. These data sets are trained for the model, and the SHAP values are derived 

to analyse the features influencing the model predictions and performance. The 

predicted data is visualized and analysed in the GIS platform for detailed interpretation.  
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4.3.2 Condition 2 

This condition is defined in the purview that the model can be tested on regions that 

may not encompass all land typologies or street types used for the training. The 

Features “the type of nearest street to the point” and “Classification of Land Use Type / 

Urban Typology” contain multiple distinct entry types. Refer to Table 3 under the Pilot 

Study section for insight on different land types under the feature Urban typology. 

Similarly, there are different types of streets defined in the Street data. Refer to Table 

13 in Appendix 3 for insights on different street types described in the study data. The 

one-hot encoded categorical features compiled in the model training algorithm identify 

each subsection of the categorical feature (e.g. Urban typology) as separate features 

such as “open of green space”, “forestry”, etc. So, the categorical features containing 

multiple values of distinct strings are replaced with numerical data. NN can introduce 

unintended ordinal relationships among various values of features used in training due 

to the numerical encoding of the categorical features. Therefore, a judicious approach 

of numerical encoding of the categorical features “the type of nearest street to the point” 

and “Classification of Land Use Type / Urban Typology” are necessary to avoid this 

unintended generalization of the model. The Numerical encoding of the “Classification 

of Land Use Type / Urban Typology” is done according to the dimensionless tree density 

number in Table 3 in the pilot study section. For the Street type numerical encoding, 

first, the “street data” in ArcGIS is intersected with the “surface imperviousness”. Then, 

the street types are indexed with a maximum count of “surface imperviousness” values. 

Thus, the street type is mapped with surface imperviousness data. The determined 

numerical encoding of the street type is given in Table 13 in Appendix 3. These data 

sets are trained for the model and the SHAP values are derived to analyse the model 

features and performance. The predicted data is visualized and analysed in the GIS 

platform for detailed interpretation. This condition established the flexibility of the model 

to be applicable in different urban areas of the city. 

4.3.3 Condition 3 

In this stage of optimizing the model performance, the features that can make the model 

overfit the data are avoided to check the model's performance based on an iterative 

process. The features are avoided based on logical reasoning as well. The model 

training results and predictions from condition 1 of the main study and condition 2 of the 

main study area are analysed to find the features which led the model to overfit the data. 

After analysis, certain land types are avoided from the study area to train the model. 



 

49 

The avoided land types in the study area are “open or Green Space” and “forestry”. The 

data from these Land types in the study area are not used for model training to avoid 

overfitting the model. The “open or Green Space”, and “forestry” land types contained 

trees planted in certain patterns in certain regions, and these similar patterns are not 

reproduced or mirrored in the similar types of lands in other parts of the study areas. 

Another reason to avoid these land types is because these sites can be easily accessed 

for planting new trees for the government or the public. These data sets are trained for 

the model, and the SHAP values are derived to analyse the model's features and 

performance. The predicted data is visualized and analysed in the GIS platform for 

detailed interpretation.  

4.4 Model Validation in Maikäfersiedlung 

The case study location of the climate-neutral housing project at St Michael Strasse 

(Maikäfersiedling) was selected, and the extent of the project area of the case study 

was 0.35 sq. km. This project area is proposed to focus on climate-neutral 

neighbourhood studies, and one objective of the study is to identify suitable locations 

for tree planting in the neighbourhood. [109]. Hence, this study validated the model in 

this area on the prospect of insights for future studies with data from authorities. 

The feature engineering dataset was prepared using the methodology section for this 

area. The Structured feature-engineered dataset of the validation case study area is 

prepared with all the features mentioned in the main study section, except the target 

feature, “greening potential”. The actual target variable, “greening potential,” values of 

the location are also derived in the data preparation process so that they can be used 

to compare with the predictions made. This dataset is loaded into the trained model to 

predict the “greening potential” at each point based on the input dataset. The output 

data is checked for model prediction performance, and the predicted data is visualized 

in the GIS platform to interpret the data. Figure 11 highlights the location, extent of the 

validation study area, and the data used to build the dataset for testing.  
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4.5 Comparison of the Model training using 

NN and Decision Tree Regression Model 

The model training process used in the main study condition 1 is applied to another ML 

algorithm, the Decision tree regression model, to compare it with the performance of the 

NN model. This study was done to affirm the choice of the model used for this study. 

using the Decision Tree Regression model. Both the models are run with the same 

dataset prepared for condition 1 of the main study. The model performance is evaluated 

to identify the better-performing model.  

 

Figure 11 | Area selected for Validation study and the data used in Validation study 
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5. Results 

After executing the model training, the outputs from the model training are interpreted 

using different plotting methods and results are documented. Different iterations of 

various studies and optimization of feature engineering based on the SHAP values and 

visualization are done to improve the performance. The results of various sections are 

discussed in different sections. Results are discussed in the order of the methodology 

and progress of workflow of the various study areas.  

5.1 Results from the Pilot Study 

The following section presents the outputs of the FNN model training used in the Pilot 

study, focusing on the model’s performance and the evaluation of the outputs. The 

results of approach 1 of the pilot study are first discussed, followed by approach 2. 

5.1.1  Results from Pilot Study, Approach 1 

Model Training performance 

The NN model was trained for 50 epochs and was configured to monitor the validation 

loss. The training performance shows that the “final training loss” achieved was 0.0037, 

and the “validation loss” was 0.0025. The lower values of “validation loss” and “training 

loss”, along with the convergence of these values across the epoch of training, indicate 

that the model can effectively generalize the learning data without overfitting. Table 6 

shows the training results from the pilot study approach 1. 

Model Testing Evaluation 

The model was evaluated on the test set, and the R² score given for the testing is 0.9632. 

This indicates that the model was able to explain approximately 96.32% of the variance 

in the target variable and a higher degree of prediction accuracy (greening potential). 

The “test loss” MSE value was found to be 0.0026, which is similar to the validation loss, 

implying the efficiency of model architecture in predicting the target variables more 

accurately. 
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Table 6 | Model Training Results for Pilot Study Approach 1 

 Training Loss 
Validation 

Loss 

Test Loss 

(MSE) 
R² Score 

Output value 0.0037 0.0025 0.0026 0.9632 

 

Interpretation of the Test Results with Plot Diagram 

For a detailed interpretation and to interpret the model's performance from the pilot 

study, the prediction from the test data set is plotted against the actual values of the 

target variable (greening potential). A jitter scatter plot was plotted with the actual target 

variable values of the test dataset (Actual Greening potential) in the x-axis against the 

predicted values of the model (Predicted Greening potential) based on the test dataset. 

A 45-degree line was also plotted to interpret the uniformity of the prediction and actual 

greening potential values. Refer to the jitter scatter plot in Figure 12. In the scatter plot, 

since the actual greening potential values were restricted only to 0.9, 0.5,0.1, there was 

no continuous data distribution across the x-axis. The model predicted values outside 

the actual values of 0.9,0.5, and 0.1, with a continuous distribution of predicted values 

ranging from 0 to 1. In the scatter plot, a higher density of points was observed along 

the 45-degree line, implying better prediction values in line with the actual values. The 

distribution of the points away from the 45-degree line was of lesser density, suggesting 

that only some predictions have more significant deviations from the actual values. 
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Figure 12 | Jitter Scatter Plot: Actual vs. Predicted Greening Potential values for pilot 

study approach 1 

5.1.2 Results from Pilot Study Approach 2 

Model Training performance 

The methodology of defining the target variable (greening potential) defined in this study 

is the basis for all the studies to follow. Hence, the results of the studies are looked into 

to get maximum insight for improvement and optimization. This NN model was also 

trained for 50 epochs and was configured to monitor the validation loss. The training 

performance shows that the “final training loss” achieved was 618.47, and the “validation 

loss” was 609.46. The higher values of “validation loss” and “training loss”, along with 

less convergence of these values across the epoch, indicate the model is overfitting the 

learning data, and there is room for improving feature engineering data and model to 

avoid unwanted overfitting of the model. Table 7 shows the training results from the pilot 

study approach 2. 

Model Testing Evaluation 

The model was evaluated on the test set, and the R² score given for the testing is 0.6463. 

This indicates that the model was able to explain approximately 64.63% of the variance 
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in the target variable and suggests moderate performance, indicating partial alignment 

of the prediction with actual values (greening potential). These results suggest 

improvement in the overall model building and dataset preparation. The “test loss” MSE 

value was 591.62, and slight convergence with validation loss suggests the average 

performance of the model's architecture. These results indicated the need for further 

optimization. 

Table 7 | Model Training Results for Pilot Study Approach 2 

 Training Loss 
Validation 

Loss 

Test Loss 

(MSE) 
R² Score 

Output value 618.47 609.46 591.62 0.6463 

 

Interpretation of the Test Results with Plot Diagram 

The scatter plot considers a continuous distribution of actual greening potential values 

ranging from 0 to 100 for model training. The model predicted values ranging from 0 to 

100 as well. A scatter plot was plotted with the actual target variable values of the test 

dataset (Actual Greening potential) in the x-axis against the predicted values of the 

model (Predicted Greening potential) based on the test dataset. Figure 13 shows the 

scatter plot diagram showing the distribution of the results in the graph. The scatter plot 

had a comparable concentration of point distribution along the 45-degree line. However, 

many outliers suggested more refinement of the training dataset and optimizing the 

model. Also, there was a high degree of over-prediction and underprediction, as 

observed from the graph, where there is a higher concentration of points lying as outliers 

at actual potential values of 0 and 100.  
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Figure 13 | Scatter Plot: Actual vs. Predicted Greening Potential values for pilot study 

approach 2 

5.2 Results from the Main Study 

The following section presents the outputs of the FNN model training used in the main 

study, focusing on the model’s performance and the evaluation of the outputs. The 

results of various conditions of the main study are discussed in the order of condition 1, 

condition 2 and condition 3, respectively. 

5.2.1  Results from Condition 1 model training 

Model Training performance 

This NN model was trained with call-back functions to avoid overfitting and was 

configured to monitor the validation loss. Advanced optimization techniques like 

regularization, early stopping function, and one-hot encoding were utilized to prevent 

overfitting techniques such as regularization. The training performance shows that the 

“final training loss” achieved was 312.06, and the “validation loss” was 312.69. The 

“validation loss” and “training loss” converge steadily. Similar training and validation loss 

indicate the model has better architecture, and the model was capable of learning data 
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without much overfitting compared to the model trained in the pilot study approach 2. 

Table 8 shows the model training results for the main study, condition 1 

Model Testing Evaluation 

The model was evaluated on the test set, and the R² score given for the testing was 

0.7716. This indicates that the model could explain approximately 77.16% of the 

variance in the target variable and had good performance, indicating better alignment 

of the prediction data with actual target values (greening potential). This result suggests 

further scope for improvement in the overall model building and dataset preparation. 

The “test loss” MSE value was 311.52, and convergence with validation loss suggests 

better performance of the model's architecture without much overfitting. The presence 

of the multiple categorical features in this model and their one-hot encoding approach 

to make the data compatible with the model was found to add up the input shape size 

of the NN model, which envisaged the lesser flexibility of the model in the application of 

areas which do not contain all the categorical features like the study area in which the 

model was trained. 

Table 8 |  Model Training Results for Main Study, condition 1 

 Training Loss 
Validation 

Loss 

Test Loss 

(MSE) 
R² Score 

Output value 312.06 312.69 311.52 0.7716 

 

Interpretation of the Test Results with Plot Diagram 

The SHAP values are derived for the model training for data exploration, debugging and 

explanation. A bee-swarm plot was derived, which gives an overview of all predictions 

with all the SHAP value features. The waterfall plot of a particular model prediction was 

also plotted to identify the feature dependencies in model training. 
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Figure 14 | Bee-swarm plot of SHAP values of all features showing an overview of 

prediction derived for model trained for condition 1 dataset of the main study 

Figure 14 shows the bee swarm plot of the SHAP values for the condition 1 main study, 

indicating that the subsections of the categorical features are identified as separate 

features by the model due to one-hot encoding of the categorical features. In this case, 

the Urban typology features are now divided into multiple features like  

“Urban_typology_open or green space”, “Urban_typology_water”, 

“Urban_typology_network”, etc. This indicates the model is less flexible in other areas. 

The Features like surface imperviousness (impervious_ grid code), vegetation data like 

crown area (Crown_area), distance to the nearest tree (Tree_Dist), and building 

footprint (Within_building) are found to be the most significant factors influencing the 
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predictions with the consistent distribution of SHAP values. The higher surface 

imperviousness values negatively impacted the greening potential, while the higher 

values of the crown area positively impacted the prediction. 

 

Figure 15 | Waterfall plot of SHAP values of a single sample of prediction derived for  

model trained for condition 1 dataset of the main study 

Fig 15 illustrates the waterfall plot of the SHAP value of a single prediction, which 

exemplifies how the SHAP values of each contributing feature affect the prediction of 

the greening potential at that particular point. The analysis of the SHAP plot and the 

dataset of that particular point revealed that the point had higher imperviousness values 

and a low value of the crown area, along with other features, contributing to a lower 

greening potential for that point.   

The predicted test data of the model is extracted into CSV file format and exported into 

the GIS platform for further visualization and analysis. The subtraction difference 

between the predicted greening potential and actual greening potential values of each 

point is visualized in ArcGIS for interpretation (Refer to Figure 16).  
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Figure 16 | Subtraction difference between the predicted Greening potential and Actual 

greening potential values of each point is visualized in ArcGIS for the model trained for 

Condition 1 of the main study 

The test data prediction visualization helps to identify locations with over-predictions and 

under-predictions. The overprediction and underprediction areas were mainly found 

near the “open or green spaces” and “forestry” land typologies, which can be looked 

upon for further optimization efforts by thoroughly investigating the datasets with extra 

information and data.  

5.2.2  Results from Condition 2 model training 

Model Training performance 

The NN model trained in condition 1 is not flexible enough to be tested for predictions 

involving small-scale areas, which do not encompass all the land typology and street 

types it was trained for. This condition is employed to increase the model's flexibility, in 

which the categorical feature data is converted to numerical data. To avoid overfitting, 

the NN model is trained with early stopping functions and regularization techniques such 

as dropout. It was also configured to monitor the validation loss. The training 
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performance shows that the “final training loss” achieved was 316.06, and the “validation 

loss” was 332.13. The “validation loss” and “training loss” value convergence was 

comparable to condition 1. Still, it was slightly less, suggesting the NN model has 

learned unintended relationships from the numerically encoded categorical data. Table 

9 shows the model training results for the condition 2 of the main study. 

Model Testing Evaluation 

The model was evaluated on the test set, and the R² score given for the testing was 

0.7557. This indicates that the model was able to explain approximately 75.57% of the 

variance in the target variable and good performance, indicating better alignment of the 

prediction data with actual values (greening potential). Still, its test performance is less 

than the condition 1 model. This result suggests improvement in the overall model 

building and dataset preparation. The “test loss” MSE value was 333.23, and 

convergence with validation loss suggests better performance of the model due to the 

robust architecture of the model. 

Table 9 | Model Training Results for Main Study, condition 2 

Training Loss 
Validation 

Loss 

Test Loss 

(MSE) 
R² Score 

Output value 316.06 332.13 333.23 0.7557 

Interpretation of the Test Results with Plot Diagram 

The SHAP values are derived for the model training for data exploration, debugging and 

explanation. A bee-swarm plot was derived, which gives an overview of all predictions 

with all the SHAP value features. The waterfall plot of a particular model prediction was 

also plotted to identify the feature dependencies in model training. 
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Figure 17 | Bee-swarm plot of SHAP values of all features showing an overview of 

prediction derived for model trained for condition 2 dataset of the main study 

Figure 17 shows the bee swarm plot of the SHAP values for condition 2 of the main 

study, indicating the issue of multiple subsections for the categorical, like Urban typology 

and street type features, is now resolved, indicating the flexibility in other areas due to 

the maintenance consistent input shape read by the model for the dataset according to 

the framework. The Features like surface imperviousness (impervious_ grid code), 

vegetation data like crown area (Crown_area), distance to the nearest tree (Tree_Dist), 

built-up area imperviousness(Built_up_impervious) and building footprint 

(Within_building) are found to be the most significant factors influencing the predictions 

with the consistent distribution of SHAP values. The higher surface imperviousness 

values negatively impacted the greening potential, while the higher values of the crown 

area positively impacted the prediction.  
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Figure 18 | Waterfall plot of SHAP values of a single sample of prediction derived for  

model trained for condition 2 dataset of the main study 

Fig 18 illustrates the waterfall plot of the SHAP value of a single prediction, which 

exemplifies how the SHAP values of each contributing feature affect the prediction of 

the greening potential at that particular point. The analysis of the SHAP plot and the 

dataset of that particular point revealed that the point had higher imperviousness values 

and a low value of the crown area, along with other features, contributing to a lower 

greening potential.   

The predicted test data of the model is extracted into CSV file format and exported into 

the GIS platform for further visualization and analysis. The subtraction difference 

between the predicted greening potential and actual greening potential values of each 

point is visualized in ArcGIS for interpretation (Refer to Figure 19).  
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Figure 19 | Subtraction difference between the predicted Greening potential and Actual 

greening potential values of each point is visualized in ArcGIS for the model trained for 

Condition 2 of the main study 

The test data prediction visualization helps identify locations with over-predictions and 

under-predictions for detailed analysis to optimise the model’s performance. In Figure 

19, the red colour points mark the points that underpredict the greening potential, and 

the dark blue represents the areas that are making overpredition. The light blue and 

orange points represent the area with slight overprediction and underprediction, 

respectively. The white points mark the locations where the model could make 

predictions aligned with the actual greening potential values. The overprediction and 

underprediction areas were mostly found near the “open or green spaces” and “forestry” 

land typologies, which can be looked upon for further optimization efforts through a 

thorough investigation with broader datasets.  
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5.2.3  Results from condition 3 model training 

Model Training performance 

This NN model was also trained with advanced optimization techniques to avoid 

overfitting and was configured to monitor the validation loss. The condition 3 model 

takes all the advantages of the condition 2 model to further optimization efforts. The 

training performance shows that the “final training loss” achieved was 233.58, and the 

“validation loss” was 229.68. The “validation loss” and “training loss” converge steadily, 

the model has better architecture than the rest of the conditions, and the model is the 

learning data better than the rest. The “final training loss” and the “validation loss” are 

remarkably lower than the rest of the conditions, and this model is also flexible. Table 

10 shows the model training results of the condition 3 model. 

Model Testing Evaluation 

The model was evaluated on the test set, and the R² score given for the testing was 

0.7916. This indicates that the model was able to explain approximately 79.16% of the 

variance in the target variable and better performance among all the other models, 

indicating better alignment of the prediction data with actual values (greening potential). 

This result suggests improvement in the overall model building and dataset preparation. 

The “test loss” MSE value was 228.68, and convergence with validation loss suggests 

better performance of the model's architecture. 

Table 10 |  Model Training Results for Main Study, condition 3 

 Training Loss 
Validation 

Loss 

Test Loss 

(MSE) 
R² Score 

Output value 233.58 229.68 228.68 0.7916 

 

Interpretation of the Test Results with Plot Diagram 

The SHAP values are derived for the model training for data exploration, debugging and 

explanation. A bee-swarm plot was derived, which gives an overview of all predictions 

with all the SHAP value features. The waterfall plot of a particular model prediction was 

also derived to interpret the feature dependencies of the model training.  
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Figure 20 | Bee-swarm plot of SHAP values of all features showing an overview of 

prediction derived for model trained for condition 3 dataset of the main study 

Figure 20 shows the bee swarm plot of the SHAP values for the condition 3 model of 

the main study, explaining the advantages of the condition 2 model and the better 

generalizability of the model. The Features like surface imperviousness (impervious_ 

grid code), vegetation data like crown area (Crown_area), distance to the nearest tree 

(Tree_Dist), proximity to near green space (NEAR_Green_space), built-up area 

imperviousness(Built_up_impervious) and building footprint (Within_building) are found 

to be the most significant factors influencing the predictions with the consistent 

distribution of SHAP values. The higher surface imperviousness values negatively 

impacted the greening potential, while the higher values of the crown area positively 
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impacted the prediction. The urban typology features’ SHAP value distribution also 

showed better consistency in the distribution of the feature values for making predictions 

compared to the other 2 bee swarm plots of other models. Also, the lower values of the 

proximity to green spaces (NEAR_Green_space) positively impacted the greening 

potential predictions, suggesting that the greening potential prediction is positively 

impacted at locations closer to green spaces.  

 

 

Figure 21 | Waterfall plot of SHAP values of a single sample of prediction derived for  

model trained for condition 3 dataset of the main study 

Fig 21 illustrates the waterfall plot of the SHAP value of a single prediction, which 

exemplifies how the SHAP values of each contributing feature affect the prediction of 

the greening potential at that particular point. The analysis of the SHAP plot and the 

dataset of that particular point revealed that the point had higher imperviousness values, 

a low value of the crown area, and features suggesting that the point is within the 

building footprint, resulting in the prediction of lower greening potential at that point.   

The predicted test data of the model is extracted into CSV file format and exported into 

the GIS platform for further visualization and analysis. The subtraction difference 

between the predicted greening potential and actual greening potential values of each 

point is visualized in ArcGIS for interpretation (Refer to Figure 22).  
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Figure 22 | Subtraction difference between the predicted Greening potential and Actual 

greening potential values of each point is visualized in ArcGIS for the model trained for 

Condition 3 of the main study 

The test data prediction visualization helps identify locations with over-predictions and 

under-predictions for detailed analysis to optimise the model’s performance. In Figure 

22, the red colour points mark the points that underpredict the greening potential, and 

the dark blue represents the areas that are making overpredition. The light blue and 

orange points represent the area with slight overprediction and underprediction, 

respectively. The white points mark the locations where the model could make 

predictions aligned with the actual greening potential values. The removal of data in the 

areas of land typology, “open or green spaces”, and “forestry” for model training resulted 

in the model better generalizing the data to make predictions. The areas with over-

predictions and under-predictions also decreased. Further optimization of the locations 

with overprediction and underprediction can be looked at through a thorough 

investigation with broader datasets, which is scope for further studies.  
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5.3 Results from the Validation Study 

The models trained based on Condtion 2 and Condtion 3 of the main study could be 

used in testing the model at the validation site as these models were flexible. The model 

trained for condition 2 is tested on the dataset prepared from the validation study to 

make predictions on the greening potential, and the resulting R2 score for predicting the 

data was 0.385. The lower value suggests the overfitting of the model, which suggests 

more optimization. 

The model trained for condition 3 is tested on the dataset prepared from the same 

validation study to make predictions on the greening potential, and the resulting R2 score 

for predicting the data was 0.485. The R2 score improved, but the model still needs to 

be improved, and the overfitting of the data needs to be improved to reduce overfitting. 

Figure 23 | Subtraction difference between the predicted Greening potential and Actual 

greening potential values of each point is visualized in ArcGIS. Prediction from the model 

on validation dataset, trained with Condition 2 of the main study 
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The prediction data of both models is visualized in the GIS platform. The prediction 

values are compared with that location's actual greening potential values. Fig 23 

represents the subtraction difference between the predicted Greening potential and 

Actual greening potential values of each point visualized in ArcGIS. Predictions were 

derived from the model on the validation dataset and trained with condition 2 of the main 

study. In Figures 23 and 24, the red colour points mark the points that underpredict the 

greening potential, and the dark blue represents the areas that are making 

overpredictions. The light blue and orange points represent the area with slight 

overprediction and underprediction, respectively. The white points mark the locations 

where the model could make predictions aligned with the actual greening potential 

values. From Figure 23, we can infer that the model was able to predict many locations 

with precision as there were many white points, which indicates that the predictions of 

those locations were in line with the actual target variable values.  

Figure 24 | Subtraction difference between the predicted Greening potential and Actual 

greening potential values of each point is visualized in ArcGIS. Predictions from the model 

on validation dataset, trained with Condition 3 of the main study 
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The Condition 2 model had comparatively more underprediction than the Condition 3 

model in the validation study dataset. Fig 24 represents the subtraction difference 

between each point's predicted Greening potential and Actual greening potential values, 

visualized in ArcGIS. Predictions were derived from the model on the validation dataset 

and trained with Condition 3 of the main study. From Figure 24, we can infer that the 

model could predict many locations with precision as there were many white points, 

which indicates that the predictions of those locations were in line with the actual target 

variable values. Also, the model highlighted some locations with positive predictions 

where there was no existing vegetation. These overpredicted areas are marked in blue 

points, which can be further looked upon for potential locations for tree planting as these 

areas demonstrated properties for the better potential for tree planting such as lower 

surface imperviousness and land typologies like “linear building” which had better tree 

density as explained in table 3. 

5.4 Results from Comparison of the model 

training using NN and Decision Tree 

Regression model 

The dataset used in condition 1 of the main study is used for training the two models, 

and the prediction performance of the two model types is recorded in Table 11. The R2 

score and Test MSE values are better for NN, indicating its better performance and 

architecture. 

Table 11 | Comparison results of model performance of NN and DecisionTree Regression 

model 

  Neural Network Model Decision Tree Regression Model 

Test MSE 310.41 328.80 

R² Score 0.7725 0.7590 
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6. Discussion 

This study explored advanced machine learning techniques, including FNN, to predict 

the city's greening potential. The research focused on understanding predictive 

accuracy, feature importance, and the role of the city's various physical and spatial 

features contributing to greening potential. The methodology involved a rigorous 

pipeline of data preprocessing, model training, evaluation, and explainability analysis 

using SHAP values. 

6.1 Comparison of different models 

The NN model exhibited a lower MSE and higher R² score compared to the decision 

tree regression model, suggesting better predictive accuracy and superior architecture 

of the NN model. The training process of FNN included advanced optimization 

techniques such as dropout layers and early stopping, which likely contributed to its 

improved generalization and performance. The relatively low MSE indicates that the 

model's predictions are closer to the actual values, while the higher R² value reflects a 

better fit of the model, which enables making predictions which are comparatively better 

aligned with actual values. The better performance and architecture suggest the FNN 

model's suitability for this study, which encompassed the datasets containing complex 

feature-engineered data containing multiple non-linear relationship features. 

The decision tree regression model had a slightly higher MSE and a lower R² score than 

the neural network. While the decision tree is a more straightforward and more 

interpretable model, it might have suffered from overfitting or could not capture the 

complexity of the relationships in the data. This explains the decision tree model’s 

struggle in generalizing large datasets involving complex relationships within data.  

 The FNN had advanced techniques, such as dropout layers and early stopping, which 

helped curb the model's overfitting. The results suggest that for the chosen model for 

study, FNN are better suited for the created structured feature-engineered dataset. This 

finding underscores the importance of the selection of the right model according to the 

datasets and objectives. The FNN’s ability to learn non-linear relationships, generalize 

complex data, advanced techniques to curb overfitting, scalability and predictive 

accuracy makes FNN better suited for this study. 
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With reference to the state-of-the-art section, ensemble models like Random Forest also 

performed for similar GIS-based studies. Their performance comparison with FNN can 

also be evaluated with the same dataset and feature engineering, which is a further 

scope of the study.  

6.2 Framework for Model Creation 

Several methodological aspects and references to similar studies have been dealt with 

to create a robust framework for the study, which focuses on combining GIS and ML to 

determine the target variables of the study. The methodological flow and division of 

various tasks established in the study helped assess the model's efficiency and scope 

for optimization as well as further data processing in intermediate stages. Data 

processing steps, including normalization and one-hot encoding of categorical features, 

ensured data quality and flexibility without compromising on the compatibility of data for 

model training. Multiple methodological aspects were considered in deriving the 

methodological flow chart of the tasks, which helped in the framework‘s reliability and 

adaptability for iterative tasks to improve the model. The feature engineering used for 

defining the target variable “greening potential”  with respect to the crown projection 

area of the existing tree within the GIS environment was found to be a better practice, 

which reduces the load on human efforts, which further concretes the framework's 

stability. Tree canopy as an indicator was used in similar studies which focused on tree 

planting [62]. The methodological framework for defining spatial relationships and 

feature engineering the multiple features to make it compatible with model training has 

proven to be a solid approach, and the results of the study corroborate the effectiveness 

of the framework. This framework also provides a versatile approach, which can help in 

adjusting the model to perform diverse tasks as it leverages the scope for data scalability 

and flexibility. 

The neural network’s architecture, incorporating multiple dense layers and dropout for 

regularization, demonstrated the ability to generalize well on unseen data. Additionally, 

early stopping functions were introduced to mitigate the overfitting of the model, 

improving model efficiency and robustness (Refer to Appendix 1 for the code used for 

model training). SHAP values enriched the study by making the predictions 

interpretable. The SHAP values interpretation of the features affecting the prediction of 

the model was in line with similar GIS-based studies. This is discussed in the coming 

section. 
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6.3 Creation of a flexible model based on 

improvement and validation 

This study emphasizes the importance of iterative improvement and validation to 

develop a flexible machine-learning model capable of predicting greening potential 

effectively across diverse scenarios. The investigation involved three conditions which 

progressively optimized the model by modifying feature engineering and training 

methodologies. Each condition of the main study contributed unique insights. Condition 

1 model training established a baseline by encoding categorical data using one-hot 

encoding, converting them into a format suitable for machine learning algorithms. 

Condition 2 sought to address the limitation of the baseline model by replacing one-hot 

encoding with numerical encoding for categorical features, thereby reducing the feature 

sparsity and enabling the model to generalize to regions with limited urban 

characteristics and scales. Condition 3 focused on avoiding features that could lead to 

overfitting and hinder the model's performance. Excluding land typologies like “open or 

green spaces” and “forestry” during model training was beneficial for improving the 

learning of the model. This step enhanced the performance of the model in generalizing 

the learning data and reducing the tendency of the model to learn noises in the data. So 

careful data assessment and feature engineering of the datasets according to the 

reviewed results can help create much more competent ML models for greening 

potential predictions.  

This study emphasises the various challenges in the course of the study while 

implementing the model to make predictions on urban spatial data, which can be used 

as a roadmap for further studies in this field. This study also addresses the challenges 

faced, such as data sparsity, flexibility of the model in diverse conditions, overfitting of 

the model, and how these challenges are tackled through systematic approaches within 

the framework of the study. The validation of the model in entirely unseen data and its 

satisfactory performance underscores the objectives of this research study. This 

emphasises the transparency and trustworthiness of the model in the context of practical 

usage in urban planning.  
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6.4  Interpretation of the Feature importance   

SHAP in urban Tree planting prediction  

Understanding the influence of individual independent variables/ features in making 

predictions on target variables by the model in regression tasks is crucial for improving 

and interpreting the performance and trustworthiness of the model. SHAP values are 

used to give insights into the significance of each independent contributing feature 

towards the prediction of the model in this study. The key features influencing the 

predictions in this study were the Crown area, surface imperviousness, number of 

nearby trees, distance or proximity to nearby green spaces and locations within building 

footprints.  

The SHAP analysis of the prediction of the Condition 3 model in this study suggests that 

the large positive feature values crown area of the trees positively impact the greening 

potential. The higher crown area features indicate that space for expansion is not 

constrained and explain an area with existing UGI that needs proper maintenance. 

Similar observations were found in the study of urban tree crown development in urban 

environments where the positive impact of crown geometry of existing vegetation was 

influenced in that machine learning model [110].  

The surface imperviousness feature also had a higher influence on the greening 

potential predictions as the SHAP plots suggest that the higher surface imperviousness 

values negatively impact the greening potential due to limited plantable area. Studies 

done by R Retiberger & et al. [39]  suggested threshold values of surface 

imperviousness up to 81% were more suitable for tree planting, and above that limit, it 

may negatively affect tree planting possibilities. Another study done on combining 

multisource GIS methods and deep learning for spatial analyses in urban and greening 

changes found that increased built-up areas correlate with a decline in vegetation covers 

[111]. The within-building footprint feature is also similarly explained as the surface 

imperviousness feature. 

Other major positively impacting features were the number of nearby trees and the 

proximity to existing green spaces. Their positive impact suggests the suitability for 

further planting of trees and emphasising the benefits of connected green spaces within 

urban areas. These observations aligned with the Urban tree planting suggestion and 

principles derived from the study by Rieke Hansen & et al. [22, 23]. A study using deep 

learning models on green view indices using Google Earth data found that proximity to 
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green spaces enhances the urban greenery assessments, which aligns with the findings 

of SHAP values of this study. These supporting studies and SHAP values interpretation 

of this study, validate the ML model’s trustworthiness and robustness. 

6.5 Data-Driven Decision-making 

Integrating GIS and ML models in UGI studies can facilitate data-driven decision-making 

by urban planners and authorities, which can help optimise resource allocation and 

judicious planning for UGI. The model trained in this study is capable of identifying areas 

with higher greening potential by analyzing the significant spatial features like existing 

tree data and surface imperviousness data. The approach of using model predictions to 

identify locations which support high greening potential can ensure the resources are 

deployed to locations identified by the model, which can achieve the most significant 

impact, thus achieving resource efficiency in UGI development. Studies have shown 

that tree planting without a holistic approach has resulted in 50 per cent of the newly 

planted trees being lost within 5 years after planting due to above- and below-ground 

stressors  [23, 40]. With this model prediction, urban areas can optimize the site 

selection and resource allocation for UGI development. 

The SHAP analysis inferred that the model could explain the significance of existing 

vegetation and surface imperviousness features. This model and data framework can 

be used to identify locations with higher surface imperviousness and low vegetation, 

which can help in tree-planting efforts to mitigate UHI. A similar objective was used in a 

study that used GIS-based approaches to identify ideal tree planting locations along the 

streets, which incorporated multiple spatial and temporal data to plant trees to reduce 

temperature along streets[18, 32]. The validation study on the model revealed that the 

model was able to predict locations which have a higher greening potential with low 

vegetation cover. From the visualization of the prediction data in the validation study, it 

was observed that regions categorized as public property and “residential and linear 

building” land use showed positive trends in greening potential. Referring to Figure 24, 

in the validation study section, the locations with overprediction can also be overlooked 

and utilized for new tree planting locations. This emphasises a new possibility of the 

model to get an overview of the locations for new greening potential opportunities. These 

findings can aid in studies done by Dexter & et al. [27], which prioritized tree planting 

sites based on goals such as the needs of the community and the suitability of the 

locations. The provision of the model output integrated with the GIS tools also helped in 
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the geospatial visualization of each location's greening potential, which further 

enhances the data-driven knowledge and decision-making for urban planners. The 

model explained and incorporated multiple objectives, thus enabling better decision-

making for the holistic development of the UGI.  

6.6 Adaptability of this study in other cities 

Cities with the availability of similar GIS data can utilize a similar methodology and 

framework to create an AI model to predict the greening potential of the city's expanding 

areas and improve the UGI within its existing area. This model can be utilized but with 

some adjustments involving fine-tuning the weights or retraining the model to account 

for geographical and region-specific features. Despite these changes, the applicability 

of the architecture of the current model looks promising and robust, owing to the 

flexibility of the model. This is of a further scope of study and detailed research. 

Urban planners can employ this framework and methodology established in this to 

replicate it in other cities, as it follows a versatile approach. The results of this study 

suggest that by leveraging the GIS-based above-ground data and ML techniques, we 

can create a flexible model which can predict the greening potential of multiple cities, 

and this can form a guiding tool for the sustainable development of the cities.  

6.7 Limitations of the study 

The study provides insights into the Greening potential of the city with an ML model 

trained on GIS-based, data, but there is still room for improvement of the model and 

methodology. The validation study results showed that the model is still overfitting and 

suggested further feature engineering with comprehensive data. The dataset's reliance 

on specific spatial and physical features limits generalizability to areas where such data 

might not be available. Also, the quality of the model predictions depends on the quality 

of the data source from which the dataset for training is derived. So, if there are any 

shortcomings or deviations in the data used for training, it can affect the model’s 

performance.   

Neural networks demonstrated sensitivity to hyperparameters, requiring careful tuning 

to achieve optimal performance. The results and evaluation of the training process 

suggested overfitting the data as the Neural network training was stopped in fewer 

epochs with early stopping functions. Models trained with fewer epochs or inappropriate 
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dropout settings performed poorly, indicating the need for computational resources and 

expertise. 

This model and study were studied and applied only in one city, and the features 

available for Munich are considered for the study. Hence, it limits the understanding of 

how the model will perform on other cities and how it perform for entirely different urban 

topographies of other cities. Also, the readily available and open-source data are 

considered for creating the datasets as other potential parameters influencing the tree 

planting locations or greening potential predictions such as socio-economic factors, 

participation of non-governmental organization, communities, demographic features, 

meteorological or soil data and other parameters that can influence tree planting 

possibilities are not considered in developing this model [29].  

 Physical validation, like on-ground verification of the model's prediction on various sites, 

was not done. On-site verification of the model’s prediction with the actual scenario of 

the site is crucial for the practical applicability and feasibility of the model. 

Model applications in another area outside of the training area also require the process 

of creating a structured dataset similar to the training dataset but without the target 

variable. This dataset creation demands knowledge and is time-consuming to prepare 

similar datasets.  
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7 Conclusion 

This study underscores the successful integration of ML techniques, particularly FNN, 

with Geographic Information Systems (GIS) to predict urban greening potential. The 

study's main objective was to create a framework that enables automation using AI on 

GIS-based data to predict the greening potential or locations suitable for new tree 

planting, which was accomplished through the methodology of this study. The model 

was able to generalize the data from GIS based above ground data to predict the 

possible locations for new tree planting sites based on effective data processing and 

feature engineering. Through iterative model improvements and rigorous evaluations, 

we demonstrated that FNN outperformed other models, such as decision tree 

regression, in predictive accuracy, robustness, and flexibility. The advantage of iterative 

methods in improving the model performance and the flexibility of being applied in 

different locations suggests the robustness and effectiveness of the framework used in 

this study. The results illustrate how physical, spatial, and categorical features contribute 

to greening potential in urban environments, enabling informed decision-making for 

urban planners and tree managers. 

The results and discussion on the model's performance and flexibility indicate the 

study's strategically structured methodology and framework. The division of various 

methodology tasks and assigning the working environments for various tasks helped 

create a solid framework for model training and troubleshooting. The data preparation 

part enabled flexibility in integrating multiple datasets in the GIS platform, and their 

feature engineering using Geoprocessing tools helped in deriving the preliminary 

structured datasets for model training. The simplicity of Microsoft Office in handling 

structured datasets gives the advantage of the framework in scope for troubleshooting 

and easy data processing to make the datasets compatible with data training. The ML 

model selection based on the perspective of literature review and datasets further 

helped in model optimization through advanced techniques in model training. The study 

demonstrated the benefits of replacing one-hot encoding with numerical encoding to 

make the model adaptable to areas with diverse or missing land typologies and street 

classifications. This flexibility is essential when applying the model to cities with varying 

urban landscapes. Regularization techniques and early stopping functions enhanced 

model generalization and prevented overfitting in the model training. Model prediction 

visualization and SHAP analysis in the methodology adopted helped the study to explain 
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the predictions and trustworthiness of the model trained. The methodology used in the 

study employs a systematic approach, and the results from the study suggest a robust 

framework for the study.   

The FNN models trained under three conditions progressively improved in accuracy, 

with the Condition 3 model achieving the best performance of the study with an R² score 

of 0.7916 and a mean Squared Error of 228.68. This highlights the importance of refining 

feature engineering, avoiding overfitting by excluding certain land types and adopting 

numerical encoding for categorical data, which helped improve the performance and 

flexibility of the model on diverse datasets. Furthermore, the SHAP analysis provided 

valuable insights into the influence of various features, offering interpretability and 

transparency for urban planning applications. The main contributing features, as 

explained using SHAP, emphasize that the data on existing nearby vegetation data, 

surface imperviousness data, building data, and proximity of the location to nearby 

green spaces had crucial and consistent effects on the prediction results.   

Urban planners can utilize the data-driven decision-making insights provided by this 

model to prioritize greening efforts in the study area. The model can guide interventions, 

such as an overview of the existing greening potential of the area and locations with the 

potential for further tree planting based on the predictions from the model. From the 

visualization of the prediction data in the validation study, it was observed that regions 

categorized under public property and residential zones, like land typologies “linear 

building,” showed positive trends in greening potential. Excluding land typologies like 

“open or green spaces” and “forestry” during model training of Condition-3 models was 

found beneficial for improving the performance of the model (the “open or green spaces” 

and “forestry” land typologies are easily accessible for the planners (justification for 

exclusion)). Planners should carefully assess data features to prevent the ML models 

from overfitting and remain broadly applicable across different areas. Planners can 

focus and decide on under-served areas to build and develop UGI greening initiatives 

in these areas while ensuring a distributed network of urban greenery across all 

socioeconomic zones. integrating GIS for spatial data visualization and interpretation 

gives an extra overview to identify precise greening locations.  

The model trained in this study is flexible to the varying test conditions, and this 

approach can be used in diverse urban areas within the city boundary. The model and 

framework used in this study, along with further research, can be made compatible with 

other cities with similar urban landscapes and the availability of GIS-based data.  
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The study also emphasizes the challenges faced during the model training and suggests 

ways to handle these challenges to create a flexible model that can predict greening 

potential. The study also comments on the limitations of the study, like the sparsity of 

data, physical validation on-site, and inferences made based on the use of the model in 

only one city. The study also comments on the sensitivity of the NN model and the 

chances of the model learning unintended relationships, leading to overfitting and 

underfitting of the model. It also comments on another downside of this study, which is 

the preparation of the dataset used for testing the model in other parts, which is a time-

consuming process. 

This study underlines that Urban planners should use GIS platforms with ML models for 

detailed project planning and monitoring, which can save resources and time. 

Integration of advanced technologies like ML with GIS data can help in the drive for a 

sustainable city with a holistic view.  
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8 Outlook and Further Research 

This study focuses on creating a framework and methodology to integrate ML models 

with GIS-based data to derive automated models that predict the city's greening 

potential. This study emphasizes the importance of this study for the use of such models 

in practical application in urban areas, which can support the drive for sustainable cities 

with better development and management of UGI. The study also comments on various 

further scopes of this study and related research fields, which can help urban planners 

make data-driven decisions to develop sustainable cities. 

This study outlines the scopes for scaling these models and the framework to employ 

them in other cities and urban areas by using the localized data of that particular city or 

urban area. Using this similar approach on various cities can create cross-city 

comparisons of the model and approach for better inference and to make decisions on 

the practical employability of the model in various terrains. Another scope would be 

training the model on urban landscapes, which are developed for their best potential of 

greening / UGI and assessing the models' prediction on regions, which are 

underdeveloped for UGI. 

The study emphasises the scope of incorporating additional features to enhance the 

model’s performance and efficiency. The features which can influence tree planting/ 

greening potential include land surface temperatures, tree growth patterns, soil data, 

underground, demographic features, surface imperviousness data with better 

resolution, etc. These features can help further optimise the model to attain a higher R2 

score without overfitting the data. The model can further be optimized for real-life usage 

by adopting input from active players in the cities, such as citizens, stakeholders, or 

organizations who are directly involved in the efforts for tree planting and maintenance. 

Their needs and insights can further help in incorporating more localized data into the 

model to enhance the practical usage of the model’s predictions. 

Some urban-based ML studies using GIS data also suggest the performance of 

EnsembleML models like Random Forest and Gradient Boosting machines [64]. These 

models can also be trained with similar datasets used in this study to evaluate the 

performance of those models in comparison with the FNN model used in this study. This 

can create more insights into the ML models, which can better generalize the large 

datasets.   
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Research can be done in the scope for building APIs for integrating this model with GIS 

tools, which can help in much better utilization of the model with real-time prediction and 

visualizations. Deploying the model to GIS tools or any other visualization tools using 

API can help the planners identify the gaps in greening potential within the cities. As a 

step after detailed optimization of the model, it can be used in tandem with augmented 

Reality or Virtual Reality to simulate greening potentials for better interpretation and 

visualization of the potential locations for UGI development.  

Further scope involves the physical validation of the predictions made by the model on-

site with careful assessment of the various factors affecting greening potential on-site. 

Further optimization based on these studies can help the model to be deployed for 

practical and policy making purposes.  
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Appendix  1 | Script Used for 

Study  

Neural Network Model code used for Main Study 

import pandas as pd 

import numpy as np 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Input 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

from sklearn.metrics import mean_squared_error, r2_score 

import shap 

import matplotlib.pyplot as plt 

from google.colab import files  # Only if you're using Google Colab as 

IDE 

from google.colab import drive 

# Mount your Google Drive 

drive.mount('/content/drive') 

# Load the data 

file_path = '/content/drive/MyDrive/Colab Notebooks/Main_study.xlsx' 

data = pd.read_excel(file_path) 

# Assuming `data` is your DataFrame 

features = [ 

 'OBJECTID', 'Centroid', 'Centroid_y', 'No_of_Trees', 'Tree_DIST', 

'Crown_area', 

 'Tree_h', 'NEAR_ANGLE', 'Within_building', 'Build_DIST', 

'Built_up_impervious', 
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 'Street_DIST', 'Street_type', 'cycle_track_DIST', 

'impervious_gridcode', 

 'Urban_typology', 'NEAR_Green_space', 

] 

# Categorical features (One-Hot Encoding) 

categorical_features = ['Public_area'] 

data_encoded = pd.get_dummies(data[categorical_features]) 

# Normalize NEAR_ANGLE to be within [0, 360] 

data['NEAR_ANGLE'] = data['NEAR_ANGLE'] % 360 

# Combine numerical and categorical features 

X = pd.concat([data[features], data_encoded], axis=1) 

y = data['Greening_potential'] 

# Split training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

test_indices = X_test.index  # Store original test set indices 

# Standardize the data 

scaler = StandardScaler() 

X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

# Verify Within_building is in the dataset 

assert 'Within_building' in X.columns, "Within_building is not in the 

feature list!" 

# Define the neural network model 

model = Sequential([ 

 Input(shape=(X_train_scaled.shape[1],)),  # Explicitly define input 

shape 
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 Dense(128, activation='relu'), 

 Dropout(0.4), 

 Dense(128, activation='relu'), 

 Dropout(0.4), 

 Dense(64, activation='relu'), 

 Dense(1)  # Output layer for regression (1 output node) 

]) 

# Compile the model 

model.compile(optimizer='adam', loss='mean_squared_error', 

metrics=['mean_squared_error']) 

# Early stopping callback to prevent overfitting 

early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 

patience=3) 

# Train the model 

model.fit(X_train_scaled, y_train, epochs=50, batch_size=32, 

validation_split=0.2, callbacks=[early_stopping]) 

# Evaluate the model on the test set 

test_loss, test_mse = model.evaluate(X_test_scaled, y_test, verbose=0) 

print(f'Test set loss: {test_loss}') 

# Make predictions on the test set 

y_pred = np.clip(model.predict(X_test_scaled), 0, 100) 

# Calculate Mean Squared Error and R^2 Score 

mse = mean_squared_error(y_test, y_pred) 

r2 = r2_score(y_test, y_pred) 

print(f"Mean Squared Error: {mse}") 

print(f"R^2 Score: {r2}") 

# Save the model 
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model.save('my_model_new.h5') 

# Save the model and weights in Google Drive (if using Colab) 

model.save('/content/drive/MyDrive/Colab Notebooks/my_model_new.h5') 

model.save_weights('/content/drive/MyDrive/Colab 

Notebooks/my_model_weights.h5') 

# Retrieve original test set coordinates using stored indices 

coordinates_test = data.loc[test_indices, ['Centroid', 'Centroid_y']] 

# Create a DataFrame with actual and predicted values 

results_df = pd.DataFrame({ 

 'X_Coordinate': coordinates_test['Centroid'], 

 'Y_Coordinate': coordinates_test['Centroid_y'], 

 'Actual_Greening_Potential': y_test.values, 

 'Predicted_Greening_Potential': y_pred.flatten() 

}) 

# Save the results DataFrame as CSV 

results_df.to_csv('greening_potential_results_final_new.csv', 

index=False) 

# Trigger download (for Google Colab only) 

files.download('greening_potential_results_final_new.csv') 

# SHAP Analysis 

explainer = shap.KernelExplainer(model.predict, X_train_scaled[:100]) 

# Using a subset of training data for the background 

shap_values = explainer.shap_values(X_test_scaled[:100]) # Compute 

SHAP values for a test set subset 

# Reshape SHAP values if necessary 

shap_values_correct = np.squeeze(np.array(shap_values)) # Ensure 

correct dimensions 
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print(f"SHAP values reshaped: {shap_values_correct.shape}")  # Should 

match (100, number of features) 

 

# Limit X_test_scaled to the first 100 rows to match SHAP values 

X_test_scaled_subset = X_test_scaled[:100]  # Subset of test data to 

match SHAP values 

 

# SHAP Summary Plot 

plt.figure(figsize=(12, 6)) 

shap.summary_plot(shap_values_correct, X_test_scaled_subset, 

feature_names=X.columns, max_display=30) 

plt.show() 

 

# SHAP Dependence Plot for Within_building 

plt.figure(figsize=(8, 6)) 

shap.dependence_plot('Within_building', shap_values_correct, 

X_test_scaled_subset, feature_names=X.columns) 

plt.show() 

 

# SHAP Waterfall Plot for a specific instance (e.g., the first test 

sample) 

shap.plots._waterfall.waterfall_legacy( 

    explainer.expected_value[0], 

    shap_values_correct[0], 

    X_test_scaled_subset[0], 

    feature_names=X.columns 

) 

Decision Tree Model code used for Main Study 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.preprocessing import StandardScaler 
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from sklearn.metrics import mean_squared_error, r2_score 

import shap 

import matplotlib.pyplot as plt 

from google.colab import files  # Only if you're using Google Colab 

# Assuming `data` is your DataFrame 

features = [ 

 'OBJECTID', 'Centroid', 'Centroid_y', 'No_of_Trees', 'Tree_DIST', 

'Crown_area', 

'Tree_h', 'NEAR_ANGLE', 'Within_building', 'Build_DIST', 

'Built_up_impervious', 

'Street_DIST', 'Street_type', 'cycle_track_DIST', 

'impervious_gridcode', 

 'Urban_typology', 'NEAR_Green_space', 

] 

# Categorical features (One-Hot Encoding) 

categorical_features = ['Public_area'] 

data_encoded = pd.get_dummies(data[categorical_features]) 

# Normalize NEAR_ANGLE to be within [0, 360] 

data['NEAR_ANGLE'] = data['NEAR_ANGLE'] % 360 

# Combine numerical and categorical features 

X = pd.concat([data[features], data_encoded], axis=1) 

y = data['Greening_potential'] 

# Split training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, 

test_size=0.2, random_state=42) 

test_indices = X_test.index  # Store original test set indices 

# Standardize the data 

scaler = StandardScaler() 
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X_train_scaled = scaler.fit_transform(X_train) 

X_test_scaled = scaler.transform(X_test) 

 

# Verify Within_building is in the dataset 

assert 'Within_building' in X.columns, "Within_building is not in the 

feature list!" 

 

# Define the Decision Tree Regressor 

dt_model = DecisionTreeRegressor(max_depth=10, random_state=42) 

 

# Train the model 

dt_model.fit(X_train_scaled, y_train) 

 

# Make predictions on the test set 

y_pred = np.clip(dt_model.predict(X_test_scaled), 0, 100) 

 

# Calculate Mean Squared Error and R^2 Score 

mse = mean_squared_error(y_test, y_pred) 

r2 = r2_score(y_test, y_pred) 

print(f"Mean Squared Error: {mse}") 

print(f"R^2 Score: {r2}") 

 

# Retrieve original test set coordinates using stored indices 

coordinates_test = data.loc[test_indices, ['Centroid', 'Centroid_y']] 

 

# Create a DataFrame with actual and predicted values 

results_df = pd.DataFrame({ 

    'X_Coordinate': coordinates_test['Centroid'], 

    'Y_Coordinate': coordinates_test['Centroid_y'], 

    'Actual_Greening_Potential': y_test.values, 

    'Predicted_Greening_Potential': y_pred.flatten() 

}) 

 



 

110 

# Save the results DataFrame as CSV 

results_df.to_csv('greening_potential_results_dt.csv', index=False) 

 

# Trigger download (for Google Colab only) 

files.download('greening_potential_results_dt.csv') 

 

# SHAP Analysis 

explainer = shap.Explainer(dt_model, X_train_scaled)  # Provide the 

model and scaled training data 

shap_values = explainer(X_test_scaled)  # Compute SHAP values for the 

scaled test set 

 

# SHAP Summary Plot 

plt.figure(figsize=(12, 6)) 

shap.summary_plot(shap_values, X_test_scaled, feature_names=X.columns, 

max_display=30) 

plt.show() 

 

# SHAP Dependence Plot for Within_building 

plt.figure(figsize=(8, 6)) 

shap.dependence_plot('Within_building', shap_values.values, 

X_test_scaled, feature_names=X.columns) 

plt.show() 

 

# SHAP Waterfall Plot for a specific instance (e.g., the first test 

sample) 

shap.waterfall_plot( 

    shap.Explanation( 

        values=shap_values.values[0], 

        base_values=shap_values.base_values[0], 

        data=X_test_scaled[0], 

        feature_names=X.columns 

    )) 
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Appendix 2 | Structured Feature 

Engineered Dataset Used for 

Model Training 

Table 12 | Description mapping of the Features used for model Training with the 

column names 

Feature Description Column Name 

Unique identifier for each point feature. OBJECTID 

X-coordinates of the point. Centroid_x 

Y-coordinates of the point. Centroid_y 

Number of trees within the square grid. No_of_Trees 

Distance from the point to the nearest tree. Tree_DIST 

The crown area of the nearest tree. Crown_area 

Height of trees within the grid. Tree_h 

The angle of the location of the nearest tree with respect to 
the reference point. 

NEAR_ANGLE 

Field specifying whether the point is within a building. Within_building 

Distance from the point to the nearest building. Build_DIST 

The built-up imperviousness feature of the reference point. Built_up_impervious 

Distance from the point to the nearest street. Street_DIST 

The type of the nearest street to the point. Street_type 

The distance to the nearest cycle track. cycle_track_DIST 

The scale imperviousness of the location of the point of the 
study. 

impervious_gridcode 

Classification of Land Use Type / Urban Typology. Urban_typology 

The distance to the nearest green or open space. NEAR_Green_space 

Field specifying whether the location of the point of the study 
is public property. 

Public_area 

Greening potential of the grid (target variable for the model). Greening_potential 
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Figure 25 | Appendix - Dataset used for main study model training 
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Figure 26 | Appendix - Dataset used for pilot study model training approach 1 
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Appendix 3 | Street type data 

numerical encoding  

Table 13 | Numerical encoding of street-type data 

Street Type Numerical encoding 

none 0 

track 21 

bridleway 21 

cycleway 43 

trunk_link 43 

footway 44 

path 45 

living_street 51 

tertiary_link 53 

steps 60 

pedestrian 65 

motorway 71 

motorway_link 72 

construction 76 

secondary_link 77 

unclassified 78 

platform 86 

residential 87 

trunk 91 

proposed 93 

service 94 

corridor 95 

tertiary 95 

primary_link 96 

secondary 99 

primary 99.5 

bus_stop 99.8 
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