TUTI

SCHOOL OF COMPUTATION, INFORMATION AND
TECHNOLOGY — INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Information Systems

Iterative Quantum Optimization Algorithms
for the Knapsack Problem

Nico Stabla

D



TUTI

SCHOOL OF COMPUTATION, INFORMATION AND
TECHNOLOGY — INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Information Systems

Iterative Quantum Optimization Algorithms for the
Knapsack Problem

Iterative Quantenoptimierungsalgorithmen fiir das

Knapsack Problem
Author: Nico Stabla
Examiner: Prof. Dr. Christian Mendl
Supervisor: Jernej Rudi FinZgar, M.Sc.

Submission Date: 10.12.2024

D



I confirm that this bachelor’s thesis is my own work and I have documented all sources

and material used.

Munich, 10.12.2024 Nico Stabla


Mobile User


Abstract

We propose and implement a family of iterative quantum optimization algorithms
tailored to the Knapsack Problem (KP), a combinatorial optimization problem with
applications in logistics, supply chain management, finance, and resource allocation.
Efficiently solving KP is critical for maximizing resource utilization and dynamically
adapting to constraints, especially in scenarios where classical methods face challenges
in scalability and real-time responsiveness.

Our approach leverages the Quantum Approximate Optimization Algorithm (QAOA)
to extract correlations from quantum states, providing probabilistic insights into the
likelihood of items contributing to the optimal solution. These correlations inform
problem-specific update steps in an iterative process to simplify the problem.

We benchmark our algorithms against classical heuristics, such as the Greedy algo-
rithm, across general and special scenarios using quantum simulation. General cases
utilize 12 to 24 qubits and are created randomly within that boundary. Special cases
utilize 12 qubits and focus on challenging configurations in that the Greedy algorithm
fails to find the optimal solution, such as misleading value-to-weight ratios. Our results
demonstrate that the solution quality improves with increasing circuit depth (up to
3) in many cases and showcase the competitiveness of our algorithms with classical
heuristics, particularly in complex scenarios. While all of our algorithms are able
to improve their solution quality for higher depths p, one of our algorithms fails to
improve upon solution quality for higher depths in general cases.

This work positions iterative quantum optimization algorithms as a framework for
solving the KP, with the promise of further scalability and practicality as hardware
advances.

1ii



Abbreviations

BnB Branch-and-Bound

DP Dynamic Programming

KP Knapsack Problem

QAOA Quantum Approximate Optimization Algorithm
QIRO Quantum Informed Recursive Optimization
QUBO Quadratic Unconstrained Binary Optimization

RQAOA Recursive Quantum Approximate Optimization Algorithm

v



Contents

Abstract

Abbreviations

1 Introduction
1.1 Motivation . . . . . . . . . e e
1.2 Related Work . . . . . . . . . e

2 Background

2.1 Quadratic Unconstrained Binary Optimization Problem . ... ... ..
22 KnapsackProblem . ... ... ...... .. .. ... ... ... ...
221 Definition . ... ... . .
2.2.2 Translation into a Quadratic Unconstrained Binary Optimization

Problem . . . . . . ..

2.3 Classical Solvers for the Knapsack Problem . . . . . ... ... ......
23.1 Greedy Algorithm . . ... ........ ... .. . o L.
2.3.2 Advanced Greedy Algorithm . . . . ... ..............
23.3 Dynamic Programming . . .. ... ... ..............
234 Branch-and-Bound . . ... ... .. ... ... ... . ...
2.3.5 Computational Complexity of Classical Solvers . . ... ... ..
2.4 Quantum Optimization Algorithms . . . . . ... ... .. .. ... ..
241 Quantum Approximate Optimization Algorithm . ... ... ..
2.4.2 TIterative Quantum Algorithms . . . .. .. ... ... ... ... ..

3 Quantum Enhanced Algorithms

3.1 Genera

I Procedure . . . . . . . . . . . e

3.2 Detailed Procedure . . . . . . . . . . . ..

3.2.1
3.2.2
323
324
3.25

Problem Creation . . . ... ......................
Quantum State Preparation . . . . ... ... .. ... .......
UpdateRules . . ... ............... .. ... .. ...
Algorithm-Specific Procedures . . . . .. ... ... ........
General Algorithm Workflow . . . . ... ... ........ ...

iii

iv

N

Q1 U1 &= W=

O 0 NI NI N G




Contents

3.3 Other Tested Approaches . . . ... .. ... ... ... ... .......

3.3.1 Ignoring Slack Variables

3.3.2 Very Greedy Quantum Algorithm
333 UpdateRules . ... .. .............. ... . ......

4 Results

4.1 Required Number of Qubits for the Knapsack Problem
42 Benchmarking Procedure . . ... ... ...................
43 GeneralCases . . .. .. ... ... .. ... ...
43.1 Small Case with 12 Required Qubits
43.2 Medium Case with 16 Required Qubits
433 Large Case with 24 Required Qubits
44 Special Cases . ... ... ... .. ... e
441 High Value-to-Weight Ratio Leading to Suboptimality
442 High-Value, Large-Weight Items
443 Competing Small and Large High-Value Items

5 Discussion
6 Conclusion
List of Figures

Bibliography

20
20
20
21
21
22
24
25
25
26
28

30

32

33

34

Vi



1 Introduction

In this introduction chapter, we will present the importance of quantum optimization
and the Knapsack Problem (KP). We also explain related or similar approaches to ours
in the related work section.

1.1 Motivation

Many combinatorial optimization problems are known to be NP-Hard, meaning their
solution times increase exponentially with problem size [1]. This computational bottle-
neck makes it challenging to solve large instances within practical timeframes. In fields
like logistics, finance, telecommunications, and healthcare, these optimization prob-
lems arise frequently and require near-instantaneous solutions to adapt to changing
conditions.

For example, consider a parcel delivery company in Munich. The company assigns
one hundred thousand parcels to a hundred drivers each day, but if a driver has an
accident mid-shift, the company must quickly reallocate parcels among the remain-
ing drivers to maintain punctual deliveries. In such scenarios, time constraints add
complexity to the optimization problem, requiring both speed and flexibility. Whereas
this example requires many optimization algorithms, KP plays a significant role in
optimally packing and distributing the parcels among the drivers that spontaneously
drive to the location of the accident.

Traditional computing methods, while effective for smaller instances, struggle with
large, real-time optimization tasks. Methods such as Dynamic Programming (DP) [2] or
Branch-and-Bound (BnB) [3] often cannot provide timely solutions for very large-scale
problems, resulting in reduced operational flexibility. Quantum computers might be
able to solve certain large optimization problems faster to optimality than traditional
methods. In this work, we try to understand, if iterative quantum algorithms are able
to solve the KP to optimality.

This thesis explores iterative quantum algorithms for solving the KP, building on
advancements in quantum optimization algorithms. Specifically, it extends previous
approaches such as the QAOA [4] and Recursive Quantum Approximate Optimization
Algorithm (RQAOA) [5]. The iterative algorithms proposed by FinZgar et al. [6] and




1 Introduction

Brady et al. [7], which have shown promise in tackling other NP-hard problems (e.g.,
the Maximum Independent Set problem), serve as a foundation for this work.

1.2 Related Work

Quantum computing has shown potential in addressing complex combinatorial op-
timization problems such as the KP. Existing approaches can be divided into these
categories: quantum annealing, extensions of QAOA, quantum-enhanced classical
techniques, and quantum tree generator.

Quantum Annealing for the Knapsack Problem

Quantum annealing, implemented on hardware such as D-Wave quantum computers,
has been investigated as a potential solution for NP-hard problems like the KP. Bozejko
et al. [8] demonstrated the feasibility of solving the binary KP using quantum annealing,
leveraging a Branch-and-Bound solver to optimize solutions. Their work highlights the
ability of quantum annealers to solve Quadratic Unconstrained Binary Optimization
(QUBO) formulations.

Unlike Bozejko et al., our work relies on iteratively solving and simplifying the
QUBO problem. Besides, we limit our work to simulated quantum devices on classical
hardware.

Quantum Approximate Optimization Algorithm Extensions

Extensions to the standard QAOA have been proposed to improve its performance on
constrained optimization problems like the KP. Van Dam et al. [9] introduced xQAOA,
which integrates preconfigured initial states generated through classical heuristics, such
as greedy algorithms, and employs custom mixer Hamiltonians.

Similarly, Awasthi et al. [10] explored warm-started QAOA for the multi-KP, leverag-
ing classical preprocessing to initialize the quantum circuit.

Our work does not warm-start QAOA, but iteratively applies QAOA to solve the KP.
However, warm-starting QAOA marks a future work of our algorithms.

Iterative Quantum Optimization Algorithms

Iterative quantum optimization approaches, such as Quantum Informed Recursive
Optimization (QIRO) and MinQ), have been developed by FinZzgar et al. [6] and Brady et
al. [7], respectively. These algorithms iteratively refine solutions by leveraging quantum
correlations from low-energy states to simplify the problem space progressively. The




1 Introduction

quantum correlations are calculated using QAOA. While originally designed for
problems like Maximum Independent Set, they lay a strong foundation for iterative
methods in quantum optimization.

Because these methods are not specifically tailored to the KP, their iterative frame-
work serves as a foundation to this work.

Quantum Tree Generator for the Knapsack Problem

Wilkening et al. [11] introduced a novel quantum tree generator that constructs all
feasible solutions for the binary KP in quantum superposition. This technique offers
exponential memory savings.

The primary connection to our work lies in addressing the KP.




2 Background

In the following chapter, we explain concepts that are required to understand this
work. We start with defining QUBO problems [12] that we need to solve the KP using
quantum technologies. Then, we define the KP and reformulate it so that we can solve
it using quantum devices. Besides, we introduce important classical solvers to the
KP and summarize the computational complexity of classical optimal solvers. Lastly,
we introduce quantum algorithms that are relevant to our work. The foundation lays
QAOA [4] and iterative quantum approaches such as QIRO [6] and MinQ [7].

2.1 Quadratic Unconstrained Binary Optimization Problem

Quadratic Unconstrained Binary Optimization (QUBO) is an NP-hard optimization
problem that represents a wide variety of combinatorial optimization tasks [12]. The
objective of a QUBO problem is to find the binary vector x € {0,1}" that minimizes a
quadratic polynomial over binary variables. It can be expressed as:

folx) =xTQx=Y"Y" Qjxix;

i=1j=1

where x; € {0,1} are binary decision variables, and Q is an n X n matrix that encodes
the quadratic relationships between the variables [12]. The diagonal terms in the matrix
represent one-point correlations, while the off-diagonal terms in the matrix represent
two-point correlations. The goal is to determine the values of the binary variables x;
that minimize this quadratic expression.

Relation to the Ising Model

The Ising model, originally formulated in statistical physics to describe the behavior of
spins in a magnetic system, is closely related to QUBO. The key difference lies in the
domain of the variables: QUBO uses binary variables x; € {0,1} , while the Ising model
uses spin variables s; € {—1,+1} [13]. Mapping binary variables to Ising variables,
we can represent a QUBO problem as a Ising model. Quantum annealers are able to
find the ground state of Ising models [14]. The ground state is the lowest energy state




2 Background

of a quantum system and represents the binary vector x € {0,1}" that minimizes a
quadratic polynomial over binary variables. In short: the ground state represents the
optimal solution of a QUBO problem.

2.2 Knapsack Problem

The Knapsack Problem (KP) is one of the most extensively studied and significant
NP-Hard optimization problems, with numerous real-world applications such as cryp-
tography [15]. It is recognized as the simplest form of a maximization problem [16]. In
this section, the problem will be formally defined and translated into a Hamiltonian
that represents the QUBO problem in Ising form.

2.2.1 Definition

Given N items labeled by &, each with an integer weight w, and an integer value c,, the
objective is to select a subset of these items such that the total weight does not exceed
a specified maximum capacity W, and the total value is maximized. We introduce a
binary variable x,, where x, = 1 if item a is included in the knapsack and x, = 0
otherwise. Each item can be included at most once. [16]

The mathematical formulation of the KP is presented below:

N
max. ) CaXe
a=1

N
subject to Z Wexy < W

a=1

xy €{0,1} Va=1,...,N.

2.2.2 Translation into a Quadratic Unconstrained Binary Optimization
Problem

As mentioned in 2.1, a QUBO problem can be formulated as an Ising model. Further-
more, quantum annealers are able to find the ground state of Ising models, which
means that it can find its minimal state. Thus, a quantum annealer can find the optimal
solution of a QUBO problem. Because we want to find the optimal solution of the
KP using quantum devices, we formulate the KP into a QUBO problem with Ising
variables. From Lucas et al. [13], we know that the KP can be translated into a QUBO
problem.




2 Background

For the translation of a KP to a QUBO problem, we introduce Ising variables, v, = £1
indicating if the total weight of the knapsack is exactly n (1 < n < W). Furthermore,
we perform the mapping z, = 2x, — 1 to Ising variables z, = +1. The Hamiltonian
H = Hj + Hp represents the QUBO problem in Ising form. H,4 ensures constraint
enforcement so that the weight of the items in the knapsack match the claimed weight
and that the weight can only take on one value [13].

Based on Lucas et al. [13], we get:

W 2 w N 2
HA:A<1—Zyn> +A<Znyn—2waza> . (2.1)
n=1 a=1

n=1

The second part Hp of the Hamiltonian ensures objective maximization so that the
total value of the knapsack is maximized [13]. Formally:

N
Hp = —B Z CoaZy- (2.2)
a=1

Parameters A and B can be fine-tuned for each problem to increase solution quality.
0 < Bmax(cq) < A applies [13].

Translation into a Matrix

We want to represent the Hamiltonian H = H4 + Hp as a matrix that represents the
energy of the system in order to find the low-energy state.

In the following, we translate all z,, w, and y, into corresponding vectors, and we
introduce the vector 4 to ensure dimensionality.

For H,, we start with Equation 2.1:

W 2 W N 2
HA:A<1—Z]/”) +A(Znyn—2waza>
n=1 a=1

n=1

W 2 w N 2
:A<1—Zanyn> —l—A(Znyn—Zwaza)
n=1 n=1 a=1

= A1 -d"g)’ + A"y - @'Z)°
= A(1-2a"y+g" (da")g) + A(y' (7" )j — 24" (Aw")Z + 2T (Wa")Z)

withd = (1,..., D)%, i = (1,.., W)T.




2 Background

For Hg, we start with Equation 2.2:

N
Hg = —B Z CaZu
a=1

= —B(c2).

2.3 Classical Solvers for the Knapsack Problem

In the following, classical approaches to solve the KP are introduced that we later
use to compare our algorithms with. First, we introduce the Greedy and Advanced
Greedy algorithm. Then, we introduce DP and BnB. There also exist many more
classical solvers that we will not investigate in this work. In the end of this section, we
summarize the computational complexity of optimal solvers.

2.3.1 Greedy Algorithm

The Greedy algorithm addresses the KP by prioritizing items based on their value-to-
weight ratios [17].
The procedure involves the following steps:

1. Calculation of value-to-weight ratio: For each item &, compute the value-to-
weight ratio given by .

2. Sorting of items: Sort the items in descending order according to their calculated
value-to-weight ratios.

3. Selection of items: Sequentially add items to the knapsack, starting with those
having the highest value-to-weight ratios. Continue this process until the total
weight of the selected items reaches or approaches the maximum weight constraint
W.

By systematically selecting items that provide the greatest value per unit of weight,
the Greedy algorithm efficiently constructs a solution with a worst-case runtime of
O(nlogn). However, it does not guarantee to find the optimal solution.

2.3.2 Advanced Greedy Algorithm

The Advanced Greedy algorithm was introduced by Glover [18] and extends the
conventional Greedy approach by integrating the following key steps:




2 Background

1. Initialization:

¢ Set the remaining capacity of the knapsack RHS to the maximum allowable
weight W.

¢ Initialize an empty solution list, to store the indices of selected items.

2. Sorting and labeling;:

* Sort the items in ascending order based on their weights. This facilitates the
identification of items that occupy the least space, potentially allowing for
the inclusion of more items within the weight constraint.

¢ Label the items with j starting with the first item of the list.

3. Capacity-based allocation:
e For each item, calculate the maximum number of times it can fit into the

RHS J

remaining capacity RHS, denoted as n; = L w;

¢ Determine ng, the largest index such that the cumulative weight of the
smallest items does not exceed RHS.
4. Priority metric calculation:

* Compute a priority metric Py; for each item, defined as:
Pxj = ¢j x min(n;, no)

where ¢; is the value of item j. This metric balances the item’s value with its
potential contribution based on the remaining capacity and the distribution
of weights.
5. Selection of items:
* Sort the items in descending order based on their calculated Py; values.

¢ [teratively select items from the sorted list, adding an item to the solution
if its weight does not exceed the remaining capacity RHS. After selection,
update RHS, total value, and total weight.

The Advanced Greedy algorithm does not guarantee to find the optimal solution.

2.3.3 Dynamic Programming

Dynamic Programming (DP) is a robust algorithmic paradigm for solving complex
optimization problems [2]. Its key principle is solving each sub-problem once and




2 Background

storing the result. For DP to work, a problem must have a solution that can be built
from optimal solutions of its sub-problems, a property known as optimal substructure.
Due to the optimal substructure, DP guarantees to find the optimal solution. The KP
fulfills this requirement [2].

Algorithmic Approach

Based on Kellerer et al. [2], the DP approach for the KP involves the following steps:

1.

Problem decomposition: Divide the original KP into smaller sub-problems. Each
sub-problem represents the decision of whether to include an item « in the
knapsack given a remaining weight capacity W.

Recursive relation: Establish a recursive relationship that relates the solution of a
sub-problem to the solutions of its smaller sub-problems. The recursive relation
can be defined as:

ci+Knap(i—1,w—w;), ifw; <w

Knap(i =
ap(i,w) max{ Knap(i — 1,w), otherwise

where Knap(i, w) represents the maximum value achievable with the first i items
and a weight capacity w, c; is the value of item i, and w; is its weight.
Memorization: Store the solutions of the sub-problems in a table.

Iterative computation: Fill the table iteratively based on the recursive relation.

Solution construction: Reconstruct the optimal solution by tracing back through
the table to determine which items were included in the knapsack.

2.3.4 Branch-and-Bound

Branch-and-Bound (BnB) solves problems based on an intelligent complete enumeration
of the solution with the guarantee that the parts not considered for optimality are no
subsets of the optimal solution [3]:

* Branching: The solution set is divided into smaller subsets, repeatedly, until

each subset contains a single feasible solution. Through considering all possible
solutions, the best global solution is picked and thus BnB guarantees to find the
optimal solution.

Bounding: Upper and lower bounds are calculated for each subset of the solution
space. A lower bound may be the best solution found so far, and an upper bound
exceeds the problem constraints.




2 Background

In this work, we will not further investigate Branch-and-Bound because we focus on
small instances that DP can solve to optimality fast.

2.3.5 Computational Complexity of Classical Solvers

For the KP no polynomial time algorithm is known for computing its optimal solution
and there is evidence that none exists [16]. However, the most efficient classical
solvers for the KP have a pseudo-polynomial runtime complexity [19]. This means
that the running time is bounded by problem size and one or several other input
variables. The DP for the KP is bounded by the size of the item set and the knapsack
capacity in worst-case scenarios, in short: O(NW) [2]. Also, we want to note that BnB
has a non-polynomial worst-case runtime of O(2") meaning that the runtime grows
exponentially. Please note that approximation algorithms exist that are polynomial but
do not guarantee to find the optimal solution [20].

2.4 Quantum Optimization Algorithms

In this section, we introduce important quantum optimization algorithms that serve
as a foundation to this work. We start with the QAOA [4], then we describe Iterative
Quantum Algorithms. QAOA serves as a foundation to Iterative Quantum Algorithms
by calculating necessary quantum correlations between qubits.

2.4.1 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) is a hybrid quantum-
classical algorithm designed to solve combinatorial optimization problems by approxi-
mately finding the lowest energy state of a quantum system. As described by Farhi et
al. [4], the algorithm combines quantum evolution and classical optimization to find
an optimal solution by alternating between quantum and classical computation: the
quantum computer evaluates the energy for a given set of parameters (B, ), and the
classical optimizer adjusts the parameters to minimize the energy.

The QAOA is a local algorithm, meaning that qubits can only interact if they are
connected by less than a certain distance in the interaction graph that represents the
optimization problem.

In this context, the problem is formulated as finding the ground state (the lowest
energy state) of a cost Hamiltonian H,. For example, when the problem is expressed in
a QUBO form, the cost Hamiltonian is given as:

H. = Z]ijzizj + Zhizi
ij i

10



2 Background

where:
e 7; are the Pauli-Z operators acting on qubit i,
* Jij represents the interaction between qubits i and j,
* h; represents the linear bias on qubit i.

The mixer Hamiltonian H,,;, is introduced to enable exploration of the solution space
by allowing transitions between different quantum states. It is defined as:

n
Hyix = — Z >A(i
i=1
where X; are the Pauli-X operators, which flip the state of qubit i. The mixer Hamilto-
nian helps to explore different configurations and avoid getting stuck in local minima
by flipping the qubits, creating a mixing effect.
The intuition of the QAOA algorithm is that it alternates between applying the cost
Hamiltonian H,., which drives the system toward lower energy solutions, and the mixer
Hamiltonian H,,;,, which promotes exploration of the solution space.

Quantum Approximate Optimization Algorithm Circuit and Quantum State
Preparation

The initial state of the system, denoted as ¢y, is a uniform superposition over all
possible bit strings:

o) = [+)®"

where |+) = %(]0) +11)), and 7 is the number of qubits. This state is easy to prepare
and gives equal probability to all potential solutions.
For a given depth p, the quantum state produced by QAOA is given by:

|l/J(IB, r),)> — e_iﬁpHnrixe_i7pHc . e_i/ngmixe_i'Ych |¢0> .

This alternating sequence of applying the mixer Hamiltonian and the cost Hamiltonian
creates a quantum circuit of depth p, where the parameters 71, ..., v, determine how
long the cost Hamiltonian H, is applied during each layer, while B, ..., B, determine
how long the mixer Hamiltonian H,;, is applied during each layer.

11



2 Background

Classical Optimization of Parameters

The parameters (B, y) are optimized using a classical routine. The goal of the classical
optimizer is to minimize the expectation value of the cost Hamiltonian in the quantum
state |(B,v)), which corresponds to finding the best approximation of the ground
state. This optimization is formalized as:

min (p(B, 7)| He [#(B, 7)) -
This expectation value represents the average energy of the quantum state, and the
classical optimizer searches for the parameter set (f,y) that minimizes this energy.
The algorithm alternates between quantum and classical computation: the quantum
computer evaluates the energy for a given set of parameters (B,7), and the classical
optimizer adjusts the parameters to minimize the energy.

Recursive Quantum Approximate Optimization Algorithm

There also exists a recursive approach to QAOA proposed by Bravyi et al. [5], known
as RQAOA, which simplifies the problem at each recursion step by solving a smaller,
reduced version of the original problem. At each step, RQAOA prepares the QAOA
state for that iteration and minimizes the cost function. The RQAOA is a non-local
algorithm, meaning that the distances between nodes decrease with each iteration as
other nodes are removed. Thus, it allows communications between more qubits in the
interaction graph that represents the optimization problem than QAOA.

2.4.2 Iterative Quantum Algorithms

FinZgar et al. [6] and Brady et al. [7] proposed iterative variations of the QAOA that
incorporate quantum information from low-energy quantum states to guide the classical
optimization process in a problem-specific manner. Unlike the RQAOA approach, these
methods make problem-specific updates. The iterative variations are motivated by
Greedy algorithms and aim to perform similar for low depth p = 1 but are expected
to return higher solution qualities for higher depths p > 1. There are four different
algorithms that differ in problem simplification: QIRO, MinQ, MaxQ and MMQ. We
will start with the general procedure of those algorithms, which is the same. Then, we
introduce the differences in algorithm specific simplification strategies.

General Procedure

Repeat the following as long as the problem size is larger than 0:

12



2 Background

1. Create a problem specific quantum Hamiltonian H.
2. Prepare a low-energy quantum state |¢) using QAOA.
3. Store the correlations of |¢) in a Matrix M.

4. Perform problem and algorithm specific simplification based on M.

Meaning of One-Point and Two-Point Correlations

The quantum state |¢) is used to extract information. This information comes in the
form of:

* One-point correlations (1| Z;|1), which measure the expected value of the Pauli-
Z operator for qubit i, indicating whether the qubit tends to be in the |0) or |1)
state. One-point correlations are stored diagonally in matrix M.

¢ Two-point correlations (¢|Z;Z;|ip), which capture the correlations between pairs
of qubits i and j. These indicate whether two qubits are likely to be in the same
or opposite states. Two-point correlations are stored off-diagonally in matrix M.

Algorithm Specific Simplification

* QIRO: Sort the correlations in M in ascending order and consider one- and
two-point correlations. Pick the highest correlation entry. If it is a one-point
correlation, and it is positive, add the corresponding entry to the solution. If it is
a two-point correlation, perform simplification based on both entries, e.g., merge
or delete entries. In every case, delete it from the problem.

* MinQ: Sort the correlations in M in ascending order and only consider one-
point correlations. First, consider positive correlations (intuition: first take a
look at items that positively contribute to the optimal solution). Pick the highest
correlation entry and add it to the solution if it is positive. Delete it from the
problem.

* MaxQ: Sort the correlations in M in descending order and only consider one-
point correlations. First, consider negative correlations (intuition: first take a
look at items that negatively contribute to the optimal solution). Pick the highest
correlation entry and add it to the solution if it is positive. Delete it from the
problem.

13



2 Background

* MMAQ: Sort the correlations in M in ascending order and only consider one-point
correlations. Pick the highest correlation entry and add it to the solution if it is
positive. Delete it from the problem.

14



3 Quantum Enhanced Algorithms

In this chapter, we present four quantum-enhanced algorithms specifically designed for
optimizing the KP. Our algorithms employ iterative update rules, which progressively
simplify the KP by leveraging quantum correlations to guide the selection of items.

This chapter first outlines the general steps underlying these algorithms, followed by
a detailed procedural explanation. Last, we will introduce other approaches that we
tested during our implementation phase.

3.1 General Procedure

—>
6|
prune problem

capacity: 10 capacity: 10

reiterate with smaller problem calculate correlations 1

add items to knapsack
1 7

capacity: 2 capacity: 10

BER
BEN

Figure 3.1: Illustration of the item selection procedure for the KP using our algorithms.
The blue rectangles represent items, with their weight and value. For sim-

plicity, value and weight are equal. The green box represents the knapsack
subject to capacity constraints.

15



3 Quantum Enhanced Algorithms

In Figure 3.1, we provide an overview of the typical workflow. Initially, items
exceeding the weight constraint are excluded through pruning. Next, we compute one-
and two-point correlations using the QAOA. These correlations inform our update
rules, determining item inclusion in or exclusion from the knapsack. In that way, we
decrease the problem size with each iteration. We repeat the previously mentioned
steps as long as there still are items in the problem left that fit into the knapsack.

3.2 Detailed Procedure

Our algorithms solve the KP by iteratively pruning infeasible items, formulating the
problem as a quantum Hamiltonian, preparing quantum states, and applying update
rules based on computed quantum correlations. We will introduce necessary steps here
and put them together in the end in Algorithm 1.

3.2.1 Problem Creation

The KP is created with a weight constraint W, and a set of items &, each with weight
w, and value c,. Items exceeding the weight constraint W are pruned. Specifically, for
each item «, if w, > W, it is excluded from consideration. Fine-tuning parameters A
and B are set according to Equations 2.1 and 2.2, and the problem is reformulated into
a quantum Hamiltonian H (based on 2.2.2).

3.2.2 Quantum State Preparation
Using the pruned Hamiltonian H, an initial quantum state |¢p) = |+>®" is prepared.
Then, the low-energy state |¢) is calculated using QAOA (as explained in 2.4.1).

This process computes one-point correlations (¢|Z;|y) and two-point correlations
(YlZiZ[y).

3.2.3 Update Rules

The quantum correlations inform update rules for including or excluding items. The
rules vary based on one- or two-point correlations. Please note that other rules are also
possible and might achieve a higher solution quality for some instances.

One-Point Correlations

One-point correlations (1| Z;|1) can be interpreted as follows:

o (¥|Zi|p) > 0: Ttem i positively contributes to optimization.

16



3 Quantum Enhanced Algorithms

o (¥|Zi|p) < 0: Item i negatively contributes to optimization.

e (| Z;|p) = 0: Item i has a neutral effect.

The corresponding update rules are:
e Include item i in S if (¢|Z;|¢) > 0 and w, < W.
e Exclude item i if (y|Z;|p) < 0.

* Delete item i if (y|Z;|p) = 0.

Two-Point Correlations

Two-point correlations (i|Z;Z;|yp) describe relationships between items:

J (1,U|Z-Z]-]1p> > 0: Including item i (or j) increases the likelihood of item j (or 1)
positively contributing to the optimal solution.

J (1/J|Z-Z]-|1p> < 0: Negative relationship; including one decreases the likelihood of
the other contributing to the optimal solution.

* (Y|ZiZ;|p) = 0: Neutral relationship between i and j.
The update rules are:

e For (|Z;Zj|y) > 0: Include the item with the higher one-point correlation if it
fits in the knapsack.

e For <1p|Z'Z]-|1[J> < 0: Delete the item with the lower one-point correlation.

e For (|Z;Zj|y) = 0: Prioritize the item with the higher one-point correlation and
delete the lower one-point correlation item.

3.2.4 Algorithm-Specific Procedures

Each algorithm prioritizes items based on specific rules:
* QIRO: Pick the highest two- or one-point correlation entry based on QAOA.
Perform the update rules on the picked correlation item.

* MinQ: First consider positive correlations. Pick the highest one-point correlation
entry based on QAOA and perform update rules on it.

* MaxQ: First consider negative correlations. Pick the lowest one-point correlation
entry based on QAOA and perform update rules.

* MMQ: Pick the highest one-point correlation entry based on QAOA and perform
update rules on it.

17



3 Quantum Enhanced Algorithms

3.2.5 General Algorithm Workflow

The overall workflow is shown in Algorithm 1.

Algorithm 1 Iterative Quantum Optimization Algorithm for the KP

Require: A set of items a with weights w, and values v,, and a maximum weight
constraint W
Ensure: Solution set S containing selected items
1: Initialize the solution set S = @
2: while 3 & with w, < W do
3: Prune items: exclude any item a for which w, > W
Formulate the pruned problem as a quantum Hamiltonian H
Prepare initial quantum state |¢p) = |+>® "
Apply QAOA to obtain a low-energy quantum state |¢(B,y))
Store the one- and two-point correlations (y|Z;|¢) and (|Z;Z;|¢) in matrix M
Apply algorithm specific simplifications based on the correlation matrix M
9: Update W based on items added to S in this iteration
10: end while
11: return Solution set S containing the final selection of items

3.3 Other Tested Approaches

In this section, we introduce approaches that we tried out during the implementation
phase of this work. We investigated all of those approaches and decided not to follow
them more in detail. The approaches include: ignoring slack variables to lower the
required number of qubits, a very greedy quantum algorithm that only requires one
iteration and, different update rules.

3.3.1 Ignoring Slack Variables

We found that slack variables v, . ..,y can be omitted by directly (classically) encoding
the weight constraint. This was achieved by validating whether an item’s weight w,
satisfies the remaining capacity condition, w, < W. For consistency, we included slack
variables to our implementation.

18



3 Quantum Enhanced Algorithms

3.3.2 Very Greedy Quantum Algorithm

In our efforts to accelerate the solution of the KP using quantum technology, we
proposed an approach that computes the quantum correlations once, sequentially
adding items with the highest correlation values to the solution until the knapsack
capacity is reached. However, Fischer et al. [21] demonstrated that the solution quality
of such algorithms is significantly lower compared to that of shrinking algorithms,
which iteratively simplify the problem. Consequently, this type of algorithm is not
further explored in this work.

3.3.3 Update Rules

The update rule for one-point correlations is straightforward; defining an effective
update rule for two-point correlations is more complex. Here, we propose approaches
that work, but with a lower solution quality compared to our rules.

In the case of positive two-point correlations, we explored merging correlated items,
because adding one item increases the likelihood that including the other also con-
tributes to the optimal solution. However, we observed that the newly created merged
item often had a lower one-point correlation than its individual components. This
reduction in correlation sometimes caused other items to be prioritized in the selection
process, potentially resulting in a full knapsack before the merged item could be added
(leading to non-optimality).

For negative two-point correlations, we initially attempted to remove both correlated
items in a single iteration. However, we found that it is generally preferable to add
more items to the solution rather than deleting many items simultaneously. Excessive
deletion can lead to situations where the knapsack still has available capacity, but no
items remain in the problem for selection. Additionally, correlations tend to become
more accurate with each iteration, particularly enhancing the reliability of one-point
correlations. Consequently, we chose to delete items only when there is confidence in
their irrelevance to the optimal solution.

19



4 Results

This chapter presents the results of numerical simulations comparing the performance
of quantum algorithms (QIRO, MinQ, MMQ), and MaxQ) against classical heuristics
(Greedy and Advanced Greedy) for the KP. To validate solution quality, we use DP
to compute the optimal solution, leveraging its guaranteed optimality based on the
optimal substructure property of the KP [2].

For additional context, other potential comparison techniques include approximation
algorithms and schemes, which offer alternative solution strategies for the KP [20].

We first benchmark general cases that are randomly created within a given problem
size. Those general cases aim to represent simple scenarios. Then, we analyze special
cases in that the Greedy algorithm fails to find the optimal solution. In those special
cases, we aim to show that our algorithms return a similar solution quality for low
depth p = 1, but return a higher solution quality for higher depths 1 < p < 3. This
is of our interest because it might show that the algorithms can make more accurate
decisions by leveraging quantum information.

All simulations were executed on a MacBook Air with an M1 chip, 8 GB of RAM,
and macOS Sequoia (15.1).

4.1 Required Number of Qubits for the Knapsack Problem

To ensure compliance with the weight constraint, the KP formulation uses slack vari-
ables. Each slack variable corresponds to a distinct weight in the range 1,..., W,
requiring one qubit per slack variable, as indicated in Equations 2.1 and 2.2. Besides,
every item requires one qubit indicating if it is part of the solution. Consequently, the
total number of required qubits is W + N. Our analysis focuses on small problem in-
stances with up to 24 qubits because we use quantum simulation on classical hardware
which is memory-intensive.

4.2 Benchmarking Procedure

Our benchmarking process first obtains the optimal solution through DP, then runs
each algorithm to assess approximation quality. For each case, the parameter A is

20



4 Results

fine-tuned to enhance solution quality and B = 1 for simplicity. If the returned solution
of one depth p is not optimal, we run our algorithms for higher depths p. We define
the approximation ratio AR in percent as follows:

Vi
DP

AR = * 100

where Vpp represents the optimal solution value from DP and V; denotes the value
returned by algorithm i € {QIRO, MinQ, MMQ, MaxQ}.

4.3 General Cases

This section introduces our general test cases and presents their benchmarking results.
The following cases aim to construct simple scenarios. We try to show that leveraging
quantum information might lead to higher solution quality in comparison to simple
heuristics like the Greedy algorithm. To align with classical hardware constraints for
the quantum simulation, we limit the maximum number of qubits to 24. Item weights
are randomly selected within the range {1,..., W}.

4.3.1 Small Case with 12 Required Qubits

In this test case, we examine four small KP instances where N + W = 12:

Case | Number of Items (N) | Maximum Weight (W) | Value Assignment
1 2 10 Weight equals value
2 2 10 Value random (0-200)
3 3 9 Weight equals value
4 3 9 Value random (0-200)

21



4 Results

Approximation Ratio (%)

100 9 ™ Algorithm| Depth 1 | Depth 2 | Depth 3
80 _ Greedy 100
IAdvanced] 100
60
QIRO 100
40 ~ MinQ | 100
[ Classical Results
20 H EEE Depth p=1 MMQ | 83.93 | 85.08 | 94.59
= Depth p=2
X1 Depth p=3 MaxQ | 60.56 | 68.40 | 42.77
0 nE o

b\\ GA O Q o Q

Q@Q’ O@Q’ X & @ @'5\-
L
C
QO
&fo
v
Algorithms

Figure 4.1: Approximation ratios in percent for small-sized cases with A = max(c,)
for QIRO, MinQ and MaxQ, A = max(c,) + 1 for MMQ. The table lists the
approximation ratios in percent, with "Depth 1" also representing classical
results for simplicity.

As shown in Figure 4.1, QIRO and MinQ achieve optimal solutions at low depth
p = 1. For MMQ, the solution quality improves slightly at higher depths, as we expect
due to quantum correlations that consider more information about the problem for
higher depths p. However, MaxQ does not show improvement at increased depths,
its returned value even decreases, which is unexpected behavior. Because of this
unexpected behavior, we investigated MaxQ with different values for the fine-tuning
parameters A but we were not able to find a significantly improved solution. We do
not understand the behavior of MaxQ fully yet and it needs further investigation.

4.3.2 Medium Case with 16 Required Qubits

For medium instances where N + W = 16, we use the following configurations:

22




4 Results

100 A Algorithm| Depth 1 | Depth 2 | Depth 3
&\o, 30 - - Greedy | 89.58
i)
E IAdvanced| 79.58
c 60 N
i) QRO | 88.74 | 99.03 | 9657
)
©
g 40 A MinQ | 68.98 | 85.91 | 100.00
o
s [ Classical Results
g. 20 { EEE Depth p=1 MmQ | 94.10 | 68.86 | 91.39
= Depth p=2
X1 Depth p=3 MaxQ | 75.68 | 68.23 | 23.98
0 T o
) N) @) Q Q
&S & & & V@“ 3
@ @ o A\ 3
Q) )
Q/é
O
’OQ
Q)
)
v
Algorithms

Figure 4.2: Approximation ratios in percent for medium-sized cases with A = max(c,)
for QIRO, MMQ and MaxQ and A = max(c,) + 1 for MinQ algorithms.
The table lists the approximation ratios in percent, with "Depth 1" also
representing classical results for simplicity.

Case | Number of Items (N) | Maximum Weight (W) | Value Assignment
1 4 12 Weight equals value
2 4 12 Value random (0-200)
3 6 10 Weight equals value
4 6 10 Value random (0-200)

In Figure 4.2 we see, that for medium cases, the solution qualities for QIRO and MinQ
improve at higher depths p, while other algorithms show stable or reduced performance
at higher depths. Notably, QIRO, MinQ, and MMQ outperform the Advanced Greedy
algorithm. The increasing values that MinQ returns for increasing depths is how we
expect the algorithms to work, as they gain more accurate correlations for higher depths
p and thus can make higher quality decisions. Interestingly, the solution quality of
MMQ roughly stays constant for higher depths p and the solution quality of MaxQ

23




4 Results

even decreases (as in 4.3.1) for higher depths p. We explored the approximation ratio
for MaxQ using different values for the fine-tuning parameter A but the decreasing
performance pattern stayed similar. Again, the behavior of MaxQ is weird and yet, we

do not fully understand it.

4.3.3 Large Case with 24 Required Qubits

80 A

60 -

40 -

Approximation Ratio (%)

[ Classical Results
Il Depth p=1
e e

Figure 4.3: Approximation ratios in percent for large cases with depth p = 1 and
A = max(cy) + 1. The table lists the approximation ratios in percent, with

O
o§2~

&

of
Ny

)

Algorithms

Q
>

Algorithm Depth 1

Greedy 80.97

Advanced 91.21

QIRO 88.74

MinQ 94.10

MMQ 94.10

MaxQ 75.68

"Depth 1" also representing classical results for simplicity.

In large cases with N + W = 24, we analyze the following instances:

Case | Number of Items (N) | Maximum Weight (W) | Value Assignment
1 8 16 Weight equals value
2 8 16 Value random (0-200)
3 10 14 Weight equals value
4 10 14 Value random (0-200)

24




4 Results

Due to the computational intensity of simulating 24 qubits, we limit the depth
exploration to p = 1, as simulating larger depths demands exponentially greater
resources [22]. As shown in Figure 4.3, our algorithms, except MaxQ, return solutions
with higher approximation ratios than the greedy algorithm at low depth p = 1. Most
interestingly, we see that MinQ and MMQ return a slightly higher value than Advanced
Greedy. QIRO returns a value in between Greedy and Advanced Greedy. MaxQ returns
a lower total value than all other algorithms. This case indicates, that QIRO, MinQ
and MMQ might be competitive to traditional heuristics for small problem instances
regarding their returned value.

4.4 Special Cases

In this section, we present benchmarks on special cases that the Greedy algorithm fails
to solve to optimality. The goal of our algorithms in those special cases is to return
at least the same solution quality as the Greedy algorithm for low depth p = 1 but a
higher solution qualtiy for higher depths 1 < p < 3. Those cases are important because
they provide us with insights if our proposed algorithms can leverage added quantum
information to improve upon the solution quality of classical heuristics in challenging
cases.

4.4.1 High Value-to-Weight Ratio Leading to Suboptimality

In this scenario, the weight constraint is W = 9, with N = 3 items requiring N + W = 12
qubits. We use the following items:

Item | Weight (w) | Value (c) | Value-to-Weight Ratio (c/w)
1 6 30 5
2 2 14 7
3 3 18 6

25



4 Results

Approximation Ratio (%)

Algorithm Depth 1
Greedy 66.67
Advanced 100
QIRO 100
MinQ 100
MMQ 100
MaxQ 100

Figure 4.4: Approximation ratios in percent for the high value-to-weight ratio leading to
suboptimality case with A = max(c,) + 4 for QIRO, MinQ and MMQ and
A = max(cy) + 2 for MaxQ. The table lists the approximation ratios in
percent, with "Depth 1" also representing classical results for simplicity.

8 O&

100 A =
80
60
40 4
20 -
[ Classical Results
| Depth p=1
0 I I
@\Q

v“

o
é\\’o
v.

Algorithms

The Greedy algorithm selects items 2 and 3, resulting in a suboptimal total value of
32. However, the optimal solution consists of items 1 and 3, achieving a total value of
48. The failure of the Greedy algorithm is due to its reliance on value-to-weight ratios,
which prioritize smaller, high-ratio items over larger, higher-value items. As shown in
Figure 4.4, QIRO, MinQ, MMQ and MaxQ identify the optimal solution at low depth
p = 1. Showcasing, that our algorithms can find the optimal solution in this confusing
value-to-weight ratio scenario for the greedy algorithm using low depth p = 1.

4.4.2 High-Value, Large-Weight Items

For this case, we set W = 10 with N = 2 items, requiring N + W = 12 qubits:

26




4 Results

100 A
80

60 -

o]

Approximation Ratio (%)

[ Classical Result
20 { Il Depth p=1
= Depth p=2

Depth 2 | Depth 3

50 100

< IAlgorithm| Depth 1

N

\ Greedy 50

N

\ IAdvanced| 100

N

\ QIRO 100
MinQ 100
MMQ 50
MaxQ 50

S
X1 Depth p=3
0 e e

100

Q Q
@Q ®§\ +

®) o
e‘b&\ eeé\\ N
e &
e
&
,OO
s
v
Algorithms

@’b

Figure 4.5: Approximation ratios in percent for the high-value, large-weight items case
with A = max(c,) + 3 for all algorithms. The table lists the approximation
ratios in percent, with "Depth 1" also representing classical results for

simplicity.
Item | Weight (w) | Value (c) | Value-to-Weight Ratio (c/w)
1 9 100 11.1
2 2 50 25

The optimal solution includes item 1, which provides the highest total value. However,
its large weight and lower value-to-weight ratio lead the Greedy algorithm to select
item 2, resulting in a suboptimal solution. At low depth p = 1, QIRO and MinQ find
the optimal solution by selecting item 2. As the depth p increases, MMQ and MaxQ are
also able to find the optimal solution. This improvement demonstrates that MMQ and
MaxQ in this case are able to improve their decisions using more quantum information.
Finding the optimal solutions using increasing depths p is how our algorithms ideally

work.

27




4 Results

4.4.3 Competing Small and Large High-Value Items

100 ~

80 A

60 -

Approximation Ratio (%)

40 A
20 A H

[ Classical Result

Depth 1

40

100

100

100

100

Figure 4.6: Approximation ratios in percent for the competing small and large high-value
items case with A = max(c,) for QIRO, MinQ and MMQ and A = max(c,) +
3 for MaxQ. The table lists the approximation ratios in percent, with "Depth

100

] Algorithm
Greedy
Advanced
QIRO
MinQ
MMQ
S
Il Depth p=1 MaxQ
0—+ m
3 o) O o o
() O\.Q~ @ @@ @’0
Algorithms

1" also representing classical results for simplicity.

Here, the weight constraint is W = 9 with N = 3 items, requiring N + W = 12 qubits:

Item | Weight (w) | Value (c) | Value-to-Weight Ratio (c/w)
1 8 100 11.1
2 1 20 20
3 2 30 15

The optimal solution consists of item 1, which has the highest total value. However,
the Greedy algorithm selects items 2 and 3 due to their higher value-to-weight ratios,

resulting in a suboptimal solution. As shown in Figure 4.6, all quantum algorithms

successfully identify the optimal solution at low depth p = 1. This result shows the

28




4 Results

ability of our algorithms to outperform Greedy in this case at low depths p without
leveraging quantum information.

29



5 Discussion

Reflecting on the results of our benchmarking, we observe that the solution quality of
our algorithms QIRO and MinQ generally improves with increasing depth p. However,
for MMQ, our results do not generally indicate improved behavior for higher depths p
as it stagnates in the general medium case (as observed in section 4.3.2). For MaxQ, we
observed weird behavior in general cases, as the approximation ratios often decreases
for higher depths p. Yet, we do not fully understand this behavior and it requires
further investigation. While the performances in the general cases are sometimes weird,
the performances for special cases suggest expected behavior and our algorithms are
able to find the optimal solution for every case and for increasing depths p. Due to this
observation, we expect the application of our algorithms to be niche and tailored to
special cases.

One significant factor contributing to the returned solutions of our algorithms lies in
the update rules. While our rules are designed to generalize across KP instances, they
may not be equally effective for all problem types. Individualized update rules tailored
to specific problem structures or instances could potentially enhance performance.

Hardware limitations also played a role in constraining our experiments. Due to
the current error-prone nature of quantum devices, we relied exclusively on quantum
simulations, which, in our case, were limited to 8 GB of RAM. This constraint likely
impacted both the execution time and the scalability of our simulations, as quantum
simulations are memory-intensive. With access to larger memory resources, we antici-
pate that simulation times could be significantly reduced, enabling the exploration of
more complex problem instances and higher-depth circuits. As a future work, it would
be interesting to run our algorithms on real quantum devices that are not constrained
by memory-size and compare those results to our results.

This work opens several avenues for future research. For instance, extending MinQ
and MaxQ to incorporate two-point correlations could improve execution efficiency
by allowing the simultaneous inclusion or exclusion of multiple items per iteration.
This modification could accelerate convergence while maintaining or even improving
solution quality. Furthermore, a deeper investigation into fine-tuning could reveal
patterns for specific problem categories, enabling the development of adaptive tuning
strategies that optimize performance across a wider range of problem instances.

Another promising extension involves integrating classical heuristics with quantum

30



5 Discussion

algorithms through warm-starting techniques. By leveraging classical methods to
generate an initial solution, the quantum algorithm could begin with a meaningful
starting point, potentially enhancing its ability to converge on superior solutions. This
hybrid approach could combine the strengths of classical and quantum optimization,
offering improved performance.

Different methods of calculating the quantum correlations are also a matter of future
exploration. For instance, FinZgar et al. [23] propose a new method to design quantum
annealing schedules based on Bayesian optimization. This and other approaches could
improve our work in regard to solution quality.

31



6 Conclusion

This thesis explored the application of iterative quantum optimization algorithms for
solving the KP. By leveraging quantum computing paradigms, specifically the QAOA
and its iterative extensions, we developed and benchmarked algorithms capable of
incorporating quantum correlations to iteratively simplify and solve the KP.

The results demonstrate that the solution quality of the proposed quantum algorithms,
including QIRO, MinQ, MMQ, and MaxQ), generally improves with increasing circuit
depth p in special cases. However, in general cases, the performance of MMQ suggests
that its returned value stagnates in some cases for increasing depth p. For MaxQ), the
solution quality decreases for higher depths p in general cases, which is unexpected
behavior and requires further investigation. The performance of QIRO and MinQ
align with the theoretical premise that higher depths enable the capture of more
complex problem-specific correlations in both special and general cases. We expect our
algorithms to have applications in niche cases that classical heuristics fail to solve to
optimality.

The study underlined the critical role of update rules informed by one- and two-
point quantum correlations. While these rules performed effectively in guiding item
inclusion and exclusion, the results suggest opportunities for improvement, particularly
in addressing negative correlations and multi-item interactions, which could further
enhance algorithm robustness. The algorithms effectively addressed specifically de-
signed toy scenarios where the Greedy algorithm failed to find the optimal solution.
Fine-tuning parameterization emerged as a critical factor in balancing solution quality
and computational efficiency, marking further investigation into systematic fine-tuning
methodologies.

This work extends the scope of quantum optimization by introducing and benchmark-
ing iterative quantum algorithms tailored to the KP. By demonstrating the feasibility
of leveraging quantum correlations to simplify complex optimization problems, it
provides a foundation for future research into hybrid quantum-classical optimization
strategies.

32



List of Figures

3.1

4.1

4.2

4.3

44

4.5

4.6

[lustration of the item selection procedure for the KP using our algo-
rithms. The blue rectangles represent items, with their weight and value.
For simplicity, value and weight are equal. The green box represents the
knapsack subject to capacity constraints. . . ... ... ... ... ....

Approximation ratios in percent for small-sized cases with A = max(cy)
for QIRO, MinQ and MaxQ, A = max(c,) + 1 for MMQ. The table lists
the approximation ratios in percent, with "Depth 1" also representing
classical results for simplicity. . . . . ... ... .. ... ... .. ...
Approximation ratios in percent for medium-sized cases with A =
max(c,) for QIRO, MMQ and MaxQ and A = max(c,) + 1 for MinQ
algorithms. The table lists the approximation ratios in percent, with
"Depth 1" also representing classical results for simplicity. . . ... ...
Approximation ratios in percent for large cases with depth p = 1 and
A = max(cy) + 1. The table lists the approximation ratios in percent,
with "Depth 1" also representing classical results for simplicity. . . . . .
Approximation ratios in percent for the high value-to-weight ratio leading
to suboptimality case with A = max(c,) + 4 for QIRO, MinQ and MMQ
and A = max(c,) + 2 for MaxQ. The table lists the approximation ratios

22

23

24

in percent, with "Depth 1" also representing classical results for simplicity. 26

Approximation ratios in percent for the high-value, large-weight items case
with A = max(c,) + 3 for all algorithms. The table lists the approxima-
tion ratios in percent, with "Depth 1" also representing classical results
for simplicity. . . . .. ... .. L
Approximation ratios in percent for the competing small and large high-
value items case with A = max(c,) for QIRO, MinQ and MMQ and
A = max(cy) + 3 for MaxQ. The table lists the approximation ratios in
percent, with "Depth 1" also representing classical results for simplicity.

28

33



Bibliography

(1]

[10]

E. Kaya, B. Gorkemli, B. Akay, and D. Karaboga, A review on the studies employing
artificial bee colony algorithm to solve combinatorial optimization problems, 2022. por:
https://doi.org/10.1016/j.engappai.2022.105311.

H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 2004,
pp. 20-26.

H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 2004,
pp. 27-29.

E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algo-
rithm, 2014. arXiv: 1411.4028 [quant-ph].

S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, Obstacles to variational quantum
optimization from symmetry protection, Dec. 2020. po1: 10.1103/PhysRevLett.125.
260505.

J. R. Finzgar, A. Kerschbaumer, M. J. Schuetz, C. B. Mendl, and H. G. Katzgraber,
Quantum-informed recursive optimization algorithms, May 2024. por: 10 . 1103/
PRXQuantum.5.020327.

L. T. Brady and S. Hadfield, Iterative quantum algorithms for maximum independent
set, Nov. 2024. por: 10.1103/PhysRevA.110.052435.

W. Bozejko, A. Burduk, J. Pempera, et al., Optimal solving of a binary knapsack
problem on a d-wave quantum machine and its implementation in production systems,
Published online, awaiting volume and page numbers, 2024. por: 10. 1007/
510479-024-06025-1.

W. van Dam, K. Eldefrawy, N. Genise, and N. Parham, Quantum optimization heuris-
tics with an application to knapsack problems, 2022. arXiv: 2108.08805 [quant-ph].

A. Awasthi, F. Bér, J. Doetsch, H. Ehm, M. Erdmann, M. Hess, J. Klepsch, P. A.
Limacher, A. Luckow, C. Niedermeier, L. Palackal, R. Pfeiffer, P. Ross, H. Safi, J.
Schonmeier-Kromer, O. von Sicard, Y. Wenger, K. Wintersperger, and S. Yarkoni,
Quantum computing techniques for multi-knapsack problems, 2023. por: 10.1007/978-
3-031-37963-5_19.

34


https://doi.org/https://doi.org/10.1016/j.engappai.2022.105311
https://arxiv.org/abs/1411.4028
https://doi.org/10.1103/PhysRevLett.125.260505
https://doi.org/10.1103/PhysRevLett.125.260505
https://doi.org/10.1103/PRXQuantum.5.020327
https://doi.org/10.1103/PRXQuantum.5.020327
https://doi.org/10.1103/PhysRevA.110.052435
https://doi.org/10.1007/s10479-024-06025-1
https://doi.org/10.1007/s10479-024-06025-1
https://arxiv.org/abs/2108.08805
https://doi.org/10.1007/978-3-031-37963-5_19
https://doi.org/10.1007/978-3-031-37963-5_19

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

S. Wilkening, A.-I. Lefterovici, L. Binkowski, M. Perk, S. Fekete, and T. J. Osborne,
A quantum algorithm for the solution of the 0-1 knapsack problem, 2023. arXiv: 2310.
06623 [quant-ph].

E. Glover, G. Kochenberger, and Y. Du, A Tutorial on Formulating and Using QUBO
Models, Nov. 2018. por: 10.48550/arXiv.1811.11538. arXiv: 1811.11538 [cs.DS].

A. Lucas, Ising formulations of many np problems, 2014. por: 10.3389/fphy.2014.
00005.

A. Cervera-Lierta, Exact Ising model simulation on a quantum computer, Dec. 2018.
DOI: 10.22331/9-2018-12-21-114.

M. Assi and R. A. Haraty, A survey of the knapsack problem, 2018. por: 10.1109/
ACIT.2018.8672677.

H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 2004, pp. 1-
5.

H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 2004,
pp- 15-16.

E. Glover, Advanced greedy algorithms and surrogate constraint methods for linear and
quadratic knapsack and covering problems, 2013. por: 10.1016/j.ejor.2013.04.010.

H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 2004,
pp. 11-14.

H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 2004,
pp. 29-42.

V. Fischer, M. Passek, F. Wagner, J. R. Finzgar, L. Palackal, and C. B. Mendl, The
role of quantum and classical correlations in shrinking algorithms for optimization, 2024.
arXiv: 2404 .17242 [quant-ph].

Y. Zhou, E. M. Stoudenmire, and X. Waintal, What limits the simulation of quantum
computers? Nov. 2020. por: 10.1103/PhysRevX.10.041038.

J. R. FinZgar, M. ]. A. Schuetz, ]J. K. Brubaker, H. Nishimori, and H. G. Katzgraber,
Designing quantum annealing schedules using bayesian optimization, Apr. 2024. por:
10.1103/PhysRevResearch.6.023063.

35


https://arxiv.org/abs/2310.06623
https://arxiv.org/abs/2310.06623
https://doi.org/10.48550/arXiv.1811.11538
https://arxiv.org/abs/1811.11538
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.22331/q-2018-12-21-114
https://doi.org/10.1109/ACIT.2018.8672677
https://doi.org/10.1109/ACIT.2018.8672677
https://doi.org/10.1016/j.ejor.2013.04.010
https://arxiv.org/abs/2404.17242
https://doi.org/10.1103/PhysRevX.10.041038
https://doi.org/10.1103/PhysRevResearch.6.023063

	Abstract
	Abbreviations
	Contents
	Introduction
	Motivation
	Related Work

	Background
	Quadratic Unconstrained Binary Optimization Problem
	Knapsack Problem
	Definition
	Translation into a Quadratic Unconstrained Binary Optimization Problem

	Classical Solvers for the Knapsack Problem
	Greedy Algorithm
	Advanced Greedy Algorithm
	Dynamic Programming
	Branch-and-Bound
	Computational Complexity of Classical Solvers

	Quantum Optimization Algorithms
	Quantum Approximate Optimization Algorithm
	Iterative Quantum Algorithms


	Quantum Enhanced Algorithms
	General Procedure
	Detailed Procedure
	Problem Creation
	Quantum State Preparation
	Update Rules
	Algorithm-Specific Procedures
	General Algorithm Workflow

	Other Tested Approaches
	Ignoring Slack Variables
	Very Greedy Quantum Algorithm
	Update Rules


	Results
	Required Number of Qubits for the Knapsack Problem
	Benchmarking Procedure
	General Cases
	Small Case with 12 Required Qubits
	Medium Case with 16 Required Qubits
	Large Case with 24 Required Qubits

	Special Cases
	High Value-to-Weight Ratio Leading to Suboptimality
	High-Value, Large-Weight Items
	Competing Small and Large High-Value Items


	Discussion
	Conclusion
	List of Figures
	Bibliography

