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ABSTRACT

The global polarization of A hyperons along the total orbital angular momentum of a relativistic heavy-
ion collision is presented based on the high statistics data samples collected in Au+Au collisions at
J/SNN = 2.4 GeV and Ag+Ag at 2.55 GeV with the High-Acceptance Di-Electron Spectrometer (HADES)
at GSI, Darmstadt. This is the first measurement below the strangeness production threshold in nucleon-
nucleon collisions. Results are reported as a function of the collision centrality as well as a function of the
hyperon’s transverse momentum (pt) and rapidity (ycwm) for the range of centrality 0-40%. We observe a
strong centrality dependence of the polarization with an increasing signal towards peripheral collisions.
For mid-central (20 - 40%) collisions the polarization magnitudes are (PA)(%) = 6.8 £ 1.3 (stat.) +
2.1 (syst.) for Au+Au and (P, )(%) = 6.2 £ 0.4 (stat.) = 0.6 (syst.) for Ag+Ag, which are the largest values
observed so far. This observation thus provides a continuation of the increasing trend previously observed
by STAR and contrasts expectations from recent theoretical calculations predicting a maximum in the
region of collision energies about 3 GeV. The observed polarization is of a similar magnitude as predicted
by 3D-fluid-dynamics and the UrQMD plus thermal vorticity model and significantly above results from
the AMPT model.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The conversion of orbital angular momentum of a rotating rigid
body into the spins of the individual particles, is rooted back to
the Barnett effect, discovered already in 1915 [1]. Recently, this ef-
fect of mechanically induced spin polarization has been observed
for electrons in liquid mercury [2] and for protons in fast rotat-
ing water [3]. Here, the orbital angular momentum manifests itself
in the formation of the fluid vorticity, describing the rotation of
the velocity field. A similar effect is expected in relativistic heavy-
ion collisions, where orbital angular momenta of 10° — 10°h are
reached for center-of-mass energies in the nucleon-nucleon col-
lision system of /sy = 1 GeV-1 TeV [4]. At collision energies
JSNN 2 10 GeV a nearly perfect fluid characterized by a very
small shear viscosity to entropy density ratio and known as the
quark-gluon plasma (QGP), is formed which might result in a spin
polarization of the produced particles, commonly referred to as the
global polarization [5-7].

While the initial velocity fields in relativistic heavy-ion colli-
sions result in a large anisotropy probed by collective flow, its curl,
the vorticity, might cause a spin polarization of the produced par-
ticles. Temperature gradients might also contribute significantly to
the formation of vorticity similar to shear forces [8-11]. Most of
the contributions will not be oriented along the orbital angular
momentum direction, but might have non-zero parallel compo-
nents and may depend on the location in phase-space from which
the particles are emitted. Taken all together, the vorticity field can
have a complex structure [12-14].

The spin polarization of the produced particles can be calcu-
lated from the vorticity field, i.e. the thermal vorticity [15]. Under
the assumption of local thermal equilibrium including the spin
degrees of freedom, the vorticity field is integrated over the freeze-
out hypersurface to calculate the particles’ polarization in the final
state [16,17]. Since dissipative effects are neglected, this will not
produce a realistic situation. Furthermore, the separated consider-
ation of spin potentials might be important [18]. For the global
polarization the amount of orbital angular momentum converted
to vorticity and finally to polarization of the emitted particles is
relevant. The rate of conversion is expected to grow as the col-
lision energy is decreased and should have a maximum value at
midrapidity due to the increasing role of baryon stopping [19]. The
trend can be estimated using the collision energy dependence of
the directed flow [20], which is also related to the velocity fields.

Experimentally, the global polarization has been observed in
Au+Au collisions by the STAR Collaboration in the beam energy
scan phase | (BES-I) from ./s\v = 40 GeV down to /SN =
7.7 GeV [21]. While the QGP component can be present at all en-
ergies covered by BES-I and thus can be the main cause of the

observed polarization, at lower energies the created matter will
be of hadronic nature, dominated by baryons. A recent measure-
ment by STAR at ,/syny = 3 GeV shows an increase of the global
A polarization to 5% [22]. For higher collision energies of /SN =
200 GeV a significant global polarization has been measured and
determined to be at the 1073 level [23]. At energies of a few TeV
the polarization measurements by ALICE are compatible with zero
and are thus consistent with an extrapolation of the energy de-
pendence observed by STAR [24]. In this work we investigate the
global A polarization at even lower collision energies with the
aim to establish whether a QGP-component is mandatory for high
vorticities and shed a light on the fluid-like properties of dense
baryonic matter.

Several models have been used to describe the trend of the
polarization [25,26]. The evolution above this energy in the in-
termediate range up to RHIC energies is very uncertain. Different
scenarios are predicted by the available models, thus stressing the
importance to collect new experimental data in this energy re-
gion. A study of thermal and kinematic vorticity within the UrQMD
model [27] resulted in a maximum value of the global polarization
at around ./sNN = 3-5 GeV, depending on the collision central-
ity [28]. Calculations using a 3D-fluid-dynamics model based on
a thermodynamic approach and taking the non-equilibrium effects
at the early stages of the collision into account by two counter-
streaming baryon-rich fluids, predict the maximum at ,/Syy =
2.4 GeV [29]. Another study using the AMPT model [30] locates the
maximum around ,/syy = 7.7 GeV [31]. Hence, global polarization
measurements at collision energies ,/sny < 7.7 GeV will provide
important constraints on the model calculations and will further
promote our understanding of the nature of QCD matter created
at collision energies of a few GeV. Studies should also be made as
a function of centrality, as the global polarization is expected to
approach zero in central collisions and increase linearly towards
peripheral events together with the orbital angular momentum
increase. A weak dependence with respect to the transverse mo-
mentum is expected, as particles with pr = 0 are still subject to
the vorticity of the surrounding matter.

In this letter, differential results are presented as functions of
transverse momentum (pt) center-of-mass rapidity (ycm) and col-
lision centrality for the global A polarization in Ag+Ag collisions at
A/SNN = 2.55 GeV and Au+Au collisions at /SNy = 2.42 GeV mea-
sured with HADES. Data are placed in the context of results from
other experiments and compared to modern model calculations.
Information on the flow pattern at lower energies is provided by
detailed measurements with HADES for protons, deuterons and tri-
tons [32].
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Fig. 1. Diagram showing the notations for the different angles adopted in this paper.
The laboratory frame is defined by the x, y, and z (beam direction) axes. p’;, is
the decay proton 3-momentum in the A rest frame. The reaction plane is spanned
by the impact parameter b and the beam direction. The normal to the reaction
plane defines the direction of the system’s orbital momentum L. Reversal of the
orbital momentum, L — -L, corresponds to changing the reaction plane angle by
Wrp — Wgp + 7.

The measurement of the global A polarization is performed
using the self-analyzing weak decay A — p + m—, in which the
daughter proton is preferentially emitted along the A spin direc-
tion in the A rest frame. The orientation of the orbital angular
momentum is estimated via the reaction plane (RP), spanned by
the impact parameter of the colliding nuclei and the beam direc-
tion. The RP is approximated by the event plane (EP), which can
be reconstructed from the deflection of the projectile spectators in
the direction of the impact parameter [33].

The global polarization observable is defined by [34]:

i *
p 8 (sint¥e —0p) )
oA Rep

Here ap =0.732 +0.014 [35] is the A decay parameter, Wgp the
event plane angle, ¢; the azimuthal angle of the proton in the A
rest frame, Rgp the resolution of the event plane angle and the
brackets (.) denote the average over all produced A hyperons. A
schematic drawing of the geometrical measures is shown in Fig. 1.
As the polarization is measured in %, we will give absolute num-
bers and omit the “%” at the end to avoid confusion, whenever
effects of corrections or systematic uncertainties are discussed in
the following.

HADES is a fixed-target experiment located at GSI, Darm-
stadt [36]. Its acceptance is well suited for midrapidity measure-
ments of A hyperons. It has a large polar angle (6) coverage of 18°
to 85° and a full coverage in the azimuthal angle. A 15-fold seg-
mented target is used to increase the interaction rate and to allow
for the use of thin target foils which guarantee a sufficient vertex
position resolution along the beam axis to identify weakly decay-
ing particles. The Multi-Wire Drift Chambers (MDCs), two in front
and two behind the toroidal magnetic field, allow for tracking and
momentum determination. A measurement of the time-of-flight is
performed with the Resistive Plate Chamber (RPC), which covers
the polar angle region of 18° < 6 < 45° and the Time-Of-Flight de-
tector (TOF) covering 44° < 6 < 85°. Combining the information
of these two subsystems with the measurement of the start time
of the collision provided by the mono-crystalline diamond based
(START) detector allows for particle identification. The EP is recon-
structed using the spectator projectiles measured by the Forward
Wall (FW) detector, which is placed 6.8 m behind the target and
covers 0.34° <0 < 7.4°.

The global polarization results presented here are based on
11 x 109 Ag+Ag collisions recorded at /Syy = 2.55 GeV by HADES
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in 2019, and 2 x 10° Au+Au collisions recorded at A/SNN = 2.42 GeV
in 2012. The energy of the Aut+Au collisions is below the nucleon-
nucleon production threshold for the A hyperon of 2.55 GeV, and
the energy is exactly at threshold for the Ag+Ag collisions. The col-
lision centrality is determined using the hit multiplicity of the TOF
and RPC by using calculations with the Glauber model [37]. Events
within 0 —40% centrality are used in this analysis. The event selec-
tion has been further optimized to reject reactions with the carbon
holder and pile-up events.

The A hyperons are reconstructed via their weak decay A —
p + . The decay products are identified using loose cuts on the
reconstructed mass determined from the time-of-flight together
with the measured momenta. Subsequently, the decay products
are combined and a set of parameters describing the decay topol-
ogy are calculated and used in a multi-variate analysis (MVA) in
order to distinguish true A hyperons from the combinatorial back-
ground [38,39]. A selection efficiency of 60% (87%) is achieved at a
background suppression rate of 97% (92%) for the Aut+Au (Ag+Ag)
data, respectively.

The overall reconstruction efficiency depends on the transverse
momentum and rapidity and ranges from 3 to 12% in Au+Au and
5 to 15% in Ag+Ag [40]. Fig. 2 (top panels) shows an example of
the invariant mass distribution of A hyperons after efficiency cor-
rection. The combinatorial background is described by a Landau
function fit to the mixed-event data. The signal peak has been fit-
ted with a double Gaussian function, and a 20 range is used to
determine the significance and signal-to-background ratio. In to-
tal, 0.19M (1.5M) A hyperons with a signal-to-background ratio
of 2.3 (5.0) are reconstructed in the 10 — 40% centrality range
for Au+Au (Ag+Ag). Besides the difference in the overall num-
ber of events, the multiplicity of A hyperons per event is lower
in AutAu collisions since the beam energy is below the thresh-
old for A production [38]. Due to the larger system size, the
combinatorial background is increased with respect to the Ag+Ag
data. The polarization of the A hyperons, being proportional to
Csig = (sin(Wegp — ¢p)) in Eq. (1), was extracted using the invariant-
mass fit method [41,42]. The signal contribution Csjg to the total
correlation Crot(Mipy) = (sin(Wgp — ¢;))Tot is separated from the
background contribution Cgg(Miny) = (sin(Wgp — d);))gg as a func-
tion of the invariant mass according to:

Crot(Mipy) = fSig(MInv)CSig + fBg(Mlnv)CBg(Mlnv)- (2)

Here, fsi; and fpg are the corresponding signal and background
fractions as extracted from the fit in Fig. 2 (top). The background
correlation is observed to be non-zero, i.e. Cgg(Miny) # 0. Cgg has
been investigated using Monte Carlo (MC) simulations to study
correlations between polarization, anisotropic flow and detector
acceptance [40]. The invariant mass dependence of Cgg has been
reproduced and traced back to a mismatching of decay daugh-
ters from polarized A hyperons combined to primary particles.
Thereby, the dominant contribution has been identified to be com-
binations of m~ from polarized A hyperons with protons not
emerging from A decays due to the large amount of primary pro-
tons in the collision. To describe the background correlation in the
experimental data, a linear dependence Cpg(Miny) = o + 8 My is
assumed as shown in Fig. 2 (bottom).

Crot(Myny) has been weighted by the inverse of the event plane
resolution, efficiency and radial distance asymmetry (RDA) [40].
The event plane resolution is determined by randomly grouping
FW hits in two equally sized sub-events A and B and then cal-
culating Rgp = (cos(Wp — Wp)) as described in [33]. Rgp has been
calculated for centrality classes with 5% width, and for mid-central
collisions the values range from 0.82-0.88 (0.66-0.75) for Au+Au
(Ag+Ag) [32]. The efficiency correction is applied as a function of
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Fig. 2. Illustration of the performance of the A hyperon reconstruction and polarization extraction of signal events using data taken with HADES. Only statistical uncertainties
are shown. The top panels show the pion-proton invariant-mass distribution for selected candidates with 0.2 < pr < 1.5 GeV/c and —0.5 < ycm < 0.3 in Au+Au (left) and
Ag+Ag (right) collisions at /syy = 2.4 and 2.55 GeV with the centrality 10-40%. The bottom panels show the invariant mass dependence of the Crot(Miny) = (sin(Wgp — ¢;))

from Eq. (1) for the same A candidates selection as depicted in the top panel.

rapidity and transverse momentum. Only relative variations of the
efficiency for the different selected phase-space regions are taken
into account. The RDA correction is related to the cross product
of the proton track direction and the beam axis. Depending on its
sign, a strong variation of the A polarization and yield is observed.
The latter is used to derive the correction applied to the polar-
ization averaged over the full RDA range. The same dependence is
reproduced in MC simulations and is related to a strong correla-
tion of the RDA to the directed flow of the particles. Therefore, the
data have been corrected for the RDA resulting in an enhancement
of the extracted polarization signal of +0.2 in both data sets.

For the evaluation of the systematic uncertainties the Barlow
criterion [43] was used to determine whether a given variation
of Py relative to the measured value Py with corresponding sta-
tistical uncertainties oy and oy is statistically significant: By =

|Pm — Py lo — o] Variations with Berie > 1 were added in

quadrature to obtain the total systematic uncertainty. A detailed
description of all systematic sources considered including a sum-
mary table can be found in [40]. Among the sources of systematic
uncertainties are those originating from the selection of the A hy-
perons, with the most prominent one being the selection on the
distance of closest approach (DCA) of the proton track to the event
vertex, which contributed £0.72 (+0.28) to the overall systematic
errors for Au+Au (Ag+Ag) collisions. In Au+Au collisions, the varia-
tion of the MVA response and the effect of the efficiency correction
cause systematic uncertainties of similar magnitude, +0.59 and
40.66 respectively. Both contributions were found to be negligible
in Ag+Ag. A second method, the Ag¢-extraction method [33], has
been used to evaluate systematic uncertainties originating from the
method applied. No significant variation beyond statistical fluctu-
ations in comparison to the invariant-mass fit method has been
observed. This is also valid for variations of the RDA correction
procedure which do not pass the Barlow criterion. In the system-
atic uncertainty, a variation of the decay parameter by +0.014 [35]
and of the event plane resolution by 3% (5%) relative variation for
Au+Au (Ag+Ag) collisions are included. The latter is based on the
variations of Rgp using sub-divisions of the FW hits according to
the different cell sizes and comparing the results between differ-
ent combinations of the subevents.

For the differential analysis in Ag+Ag, most of the systematic
variations are propagated from the integrated result in order to re-
duce statistical fluctuations due to the smaller data sets for the
individual bins. Only those sources expected to depend on phase-
space or centrality respectively, are re-evaluated bin-by-bin [40],
as for example the uncertainty on the correction for the event
plane resolution ranges from 15% (0-10% centrality) to 3% (30-40%
centrality) in relative numbers. Other sources are related to the
background determination which can be very different depend-
ing on phase-space and centrality. These are: the modeling of the
background shape in the invariant-mass fit method, the RDA and
efficiency correction as well as the A¢-extraction method.

To quantify the interplay between polarization and directed
flow, the analysis is also performed as a function of ¢, — ¢;. From
this distribution a Fourier decomposition can be performed, where
the constant term allows to extract the overall polarization P4.
Even though a significant contribution from the directed flow is
observed, it is only reflected in the relative modulations of P, as
a function of ¢ — @5 but not in the integrated result.

Due to the lower charged-particle multiplicity in Ag+Ag colli-
sions the peripheral events are contaminated with Ag+C events of
similar multiplicity originating from collisions of beam ions with
the carbon target holder. These collisions are in general not sym-
metric with respect to the beam line and therefore covered by the
RDA correction. The effect of the RDA correction is +0.2 of the
extracted polarization signal which is within the assigned total sys-
tematic uncertainty.

Fig. 3 shows the collision energy dependence of P,. The HADES
data are shown for 0.2 < pt < 1.5 GeV/c and —0.5 < ycm < 0.3 in
the 10-40% centrality range. The data from the RHIC BES-I pro-
gram and fixed-target run by the STAR collaboration and the mea-
surements by ALICE at LHC are shown for comparison. The ALICE
measurements are scaled with the latest PDG value of the hyperon
decay constant [24]. To avoid premature conclusions on the lo-
cation of the maximum global polarization, the HADES data are
shown for 20-40% centrality too. A clear enhancement with respect
to the 10-40% results is observed indicating the strong centrality
dependence of the global A polarization. This is also important
for the comparison to other measurements, especially to the STAR
3 GeV result which is shown for 20-50% centrality. The 20-40%
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Fig. 3. Global polarization of A hyperons as a function of the center-of-mass energy
above 2my, where my is the nucleon mass. Statistical uncertainties are indicated
by the error bars attached to the data points and the systematic uncertainties are
represented by the boxes. All results are scaled to the currently accepted value of
the decay parameter ovp = 0.732 [35]. The model calculations based on 3D-fluid-
dynamics [29] are shown as solid lines (green, blue, brown) for three different EoS.
The red solid line represents the prediction by the AMPT model, assuming a direct
connection between the polarization vector and the thermal vorticity in thermal
equilibrium [31].

HADES data indicate a continuation of the increasing global A po-
larization towards lower collision energies.

The data are compared to different model calculations, per-
formed for the Au+Au system and averaged over impact parameter
to match 10-40% in collision centrality. Strikingly, our data confirm
that AMPT model calculations drastically underestimate the global
A polarization below ,/syy < 10 GeV. Such a discrepancy could
point to the presence of a significant effect related to the frictional
interaction of the participants with the spectators of the collision,
which increases the angular momentum transfer but is not in-
cluded in the calculations [31]. In contrast, calculations based on
3D-fluid dynamics [29] are able to reproduce the observed magni-
tude and the increasing trend towards SIS18 energies. Three differ-
ent assumptions on the equation-of-state (EoS), namely crossover,
first-order phase transition, and a purely hadronic, have been used
for these calculations but with the current precision of the HADES
measurements these scenarios cannot be distinguished.

Fig. 4 shows the results for P, as a function of collision cen-
trality, transverse momentum and rapidity in Ag+Ag collisions. To
illustrate the expected symmetry in ycy, the data points mirrored
around ycm = O are shown as open symbols. A strong central-
ity dependence is observed with the largest signal for mid-central
(30-40%) collisions and vanishing P, for central collisions. This is
consistent with the evolution of the orbital angular momentum,
which in a simplified approach is expected to grow linearly with
the impact parameter [4]. The centrality dependence in Ag+Ag at
J/SNN = 2.55 GeV is very consistent with the STAR 3 GeV measure-
ment in Au+Au, except for the most central collisions. Also, note
that the selected phase-space regions differ between the different
experiments as summarized in the legend of Fig. 3. The HADES
data do not show a strong variation of P, with pt or ycy within
acceptance, although a slight fall off towards higher pt and an
increase towards midrapidity cannot be excluded. In general, all
results can be reproduced by calculations based on the UrQMD
model plus thermal vorticity calculations [26].

In summary, the global polarization of A hyperons is mea-
sured in Au+Au collisions at /SNy = 2.42 GeV and Ag+Ag at
2.55 GeV by the HADES experiment at GSI, Darmstadt. The in-
tegrated hyperon global polarization (PA)(%) is found to be sig-
nificant and amounts to 5.3 £ 1.0 (stat.) £ 1.3 (syst.) for Au+Au
and (PA)(%) = 4.4 + 0.3 (stat.) &= 0.4 (syst.) for Ag+Ag collisions
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Fig. 4. Global polarization of A hyperons as a function of (top) collision central-
ity, (middle) transverse momentum and (bottom) rapidity for Ag+Ag collisions.
Results for the centrality dependence are shown for 0.2 < pr < 1.5 GeV/c and
—0.5 < ycm < 0.3 while results as a function of pt and ycvm are shown for the
10-40% centrality class. The reflected points are shifted for better visibility. The
centrality dependence measured by STAR in Au+Au at ./syny = 3 GeV is shown for
comparison [22]. The results are compared to UrQMD model calculations (light blue
band) based on the thermal vorticity approach [26].

in the centrality range 10-40%. In terms of the collision energy
dependence, the HADES results are in agreement with 3D-fluid-
dynamical calculations and disfavor the predictions based on the
AMPT model which systematically underestimate the global A po-
larization at the lower collision energies. The Ag+Ag data are also
reported as a function of the collision centrality, 0-40%, as a func-
tion of transverse momentum, 0.2 < pt < 1.5 GeV/c, and rapidity,
—0.7 < ycm < 0.3. The results are compatible with calculations
based on the UrQMD plus thermal vorticity model, although the
model slightly over-predicts the measured data. Nevertheless, the
agreement is remarkable as dissipative and non-equilibrium effects
have not yet been taken into account.

These HADES results on the global polarization open a new
window for the study of vortical structure of baryon dominated
matter created in heavy-ion collisions at the energies of a few
GeV per nucleon. Remarkably, the global polarization is found
to be highest around the strangeness production threshold of
+/SNN = 2.55 GeV, but in turn must vanish around /SNy ~ 2my ~
1.9 GeV. This poses puzzling questions on the origin of the polar-
ization mechanism, as the global A polarization increases continu-
ously from the deconfined matter (QGP) to the baryon-dominated
hadronic matter at lower collision energies. These results are es-
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sential for the extraction of details on equilibration time, evolution
dynamics, and the equation-of-state of QCD matter and extend the
set of existing measurements available towards lower energies.
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