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A B S T R A C T   

Spectroscopy in visible (Vis) and near-infrared (NIR) provides a rapid, timely, non-destructive, low-preparation, 
and less expensive analysis of soil samples in comparison with traditional laboratory analysis. Therefore, the 
objectives of this study were to predict basic physical and chemical properties of calcareous soils using Vis-NIR 
spectral reflectance data by applying partial least square regression (PLSR) and stepwise multiple linear 
regression (SMLR) approaches and finally to develop spectrotransfer functions (STFs). The target soil properties 
including sand, silt, clay, pH, electrical conductivity (EC), calcium carbonate equivalent (CCE), and water-soluble 
sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg), in 234 soil samples, and DTPA-extractable iron 
(Fe), manganese (Mn), copper (Cu), and zinc (Zn), in 161 soil samples, were measured using standard laboratory 
procedures in calcareous soils of Fars province, Iran. The spectra of soil samples in Vis-NIR region (400–2500 
nm) were collected using Rapid Content Analyzer spectrophotometer (NIRS XDS model) apparatus. Results 
revealed the better performance of developed PLSR models compared to STFs to predict most of the target soil 
properties; however, their capability differences were not significant. The STFs predicted sand, clay, and CCE 
with very good accuracy (0.78 ≤ determination coefficient of validation dataset, R2

val ≤ 0.83); pH, K, Mg, Fe, Mn, 
Cu, and Zn with good accuracy (0.65 ≤ R2

val ≤ 0.71); and silt, EC, Na, and Ca with acceptable accuracy (0.55 ≤
R2

val ≤ 0.63). It is strongly recommended to use the related STFs for predicting sand, clay, CCE, pH, K, Mg, Fe, Mn, 
Cu, and Zn of calcareous soils in order to save time and costs, less use of chemicals, and mapping large areas.   

1. Introduction 

Spectroscopy-based studies have recently become an interesting and 
useful topic in soil science (Vasava et al., 2019). In comparison with 
many traditional laboratory analysis, spectroscopy in the visible (Vis) 
and infrared (IR) light spectrum enables rapid, timely, non-destructive, 
low-preparation, and less expensive analysis of soil samples (Hobley and 
Prater, 2019; Zhao et al., 2020). In contrary, measuring soil physical and 
chemical properties by traditional methods is expensive and time and 
energy consuming, which needs to use chemicals that are harmful for 
human health and environment (Conforti et al., 2018; Adeline et al., 
2017). Therefore, it seems that the prediction of basic soil physical and 
chemical properties using spectroscopy-based methods is useful and 

advantageous. There are many studies in literature that show the 
capability of spectroscopy-based methods to predict different soil 
properties (Khayamim et al., 2015; Conforti et al., 2018; Hobley and 
Prater, 2019; Ostovari et al., 2018; Guo et al., 2019; Munawar et al., 
2020; Pyo et al., 2020). 

One of the important aspects in predicting different soil properties 
using spectroscopy-based methods is the number of individual single 
bands as independent variables at a specific range of spectra. For 
instance, in Vis (350–700 nm) and near-infrared (NIR, 700–2500 nm) 
ranges, totally we are facing 2150 single bands (with data point interval 
of 1 nm). Analyzing and recognizing the effective single bands for pre-
dicting different soil properties by common methods is difficult due to 
multi-collinearity between spectra. Therefore, different methods like 

* Corresponding author. 
E-mail addresses: aamousavi@gmail.com, aamousavi@shirazu.ac.ir (A.A. Moosavi).  

Contents lists available at ScienceDirect 

Geoderma 

journal homepage: www.elsevier.com/locate/geoderma 

https://doi.org/10.1016/j.geoderma.2022.116174 
Received 25 January 2022; Received in revised form 1 September 2022; Accepted 8 September 2022   

mailto:aamousavi@gmail.com
mailto:aamousavi@shirazu.ac.ir
www.sciencedirect.com/science/journal/00167061
https://www.elsevier.com/locate/geoderma
https://doi.org/10.1016/j.geoderma.2022.116174
https://doi.org/10.1016/j.geoderma.2022.116174
https://doi.org/10.1016/j.geoderma.2022.116174
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geoderma.2022.116174&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Geoderma 428 (2022) 116174

2

partial least square regression, PLSR (Ostovari et al., 2018), support 
vector machines, SVM (Xu et al., 2017), fuzzy rule-based models (Tsa-
kiridis et al., 2019; Heil et al., 2019), and artificial neural networks, 
ANNs (Nawar and Mouazen, 2017) were employed to easily analyze the 
spectral data. It should be pointed out that some of the mentioned ap-
proaches (i.e., PLSR, SVM, and ANNs) have black box nature (Han et al., 
2005; Park et al., 2010). Therefore, there is a lack of simple, easy to use, 
and applicable models for predicting soil properties by spectral data in 
literature. With applying PLSR (as a black box-nature approach) to 
analyze the spectral data, it is possible to recognize the effective and 
important single bands to predict different soil properties and to develop 
multiple linear models, the so-called spectrotransfer functions (STFs). It 
is noteworthy to mention that predicting soil properties by STFs as 
compared to predicting by PLSR models is i) simpler, ii) more appli-
cable, iii) easier to use, and iv) no needs to use complicated computer 
software. 

In literature, there are numerous attempts to predict different soil 
properties using spectroscopy data coupled with PLSR approach. For 
instance, organic carbon (OC) and extractable forms of potassium (K), 
sodium (Na), magnesium (Mg), and phosphorous (P) (Mouazen et al., 
2010; Vohland et al., 2014); soil texture (Pinheiro et al., 2017; Zhang 
et al., 2017; Hobley and Prater, 2019; Xu et al., 2018a; Jaconi et al., 
2019); bulk density (BD), pH, soil organic matter (SOM), total N, K, P; 
cation exchange capacity (CEC), free iron (Fe), water-soluble salts, 
available P, exchangeable aluminum (Al) and hydrogen, Al saturation, 
and base saturation (Vohland et al., 2014; Pinheiro et al., 2017; Zhang 
et al., 2017; Xu et al., 2018a, 2018b); calcium carbonate equivalent 
(CCE) and gypsum (Khayamim et al., 2015; Ostovari et al., 2018; Mina 
et al., 2021; Mozaffari et al., 2022c); microbial biomass-C (Vohland 
et al., 2014); and gravimetric and volumetric water contents (Zhang 
et al., 2017), among others, have been predicted with acceptable (0.50 
≤ R2 < 0.65), good (0.65 ≤ R2 < 0.75), or very good (0.75 ≤ R2 < 0.90) 
accuracies. 

Although these studies are informative and improve our knowledge 
about spectroscopy-based approach, there is still lack of information 
regarding prediction of different soil properties in calcareous soils. In 
calcareous soils by using Vis-NIR spectral reflectance data, Ostovari 
et al. (2018) predicted soil erodibility, SOM, and CaCO3 values with 
acceptable and good accuracies in southern part of Iran by PLSR method. 
Khayamim et al. (2015) reported reasonably good prediction of car-
bonates and gypsum by PLSR method in the central parts of Iran. Mina 
et al. (2021) used PLSR and SVM methods to predict clay, CaCO3 and 
threshold friction velocity and predicted the mentioned properties with 
good accuracy in soils of Fars Province (southern parts of Iran). 
Furthermore, Mozaffari et al. (2022c) predicted CCE and SOM contents 
with excellent; clay with relatively well; and pH and near-saturated and 
saturated hydraulic conductivity with poor accuracies using PLSR 
method in the soils of Fars Province, Iran. 

In addition to the mentioned limitation, there are a few studies in 
literature to develop STFs, which are simple, easy to use, and applicable 
to predict different soil properties e.g., soil bacterial abundance and 
diversity (Yang et al., 2019), hydraulic properties (Babaeian et al., 
2015), erodibility factor (Ostovari et al., 2018; Salehi-Varnousfaderani 
et al., 2022), threshold friction velocity (Mina et al., 2021) and SOM 
(Mozaffari et al., 2022a). In fact, this gap emphasizes the essential de-
mand for developing specific STFs to easily predict basic soil physical 
and chemical properties in order to save time and costs and lesser use of 
chemicals. Therefore, objectives of the present study were: i) to evaluate 
the capability of Vis-NIR spectral reflectance data to predict basic soil 
physical and chemical properties including sand, silt, clay, pH, electrical 
conductivity (EC), CCE, water-soluble Na, K, calcium (Ca) and Mg, and 
DTPA-extractable Fe, manganese (Mn), copper (Cu), and zinc (Zn) by 
PLSR method in calcareous soils, ii) to develop the STFs using the 
effective and important Vis-NIR spectral reflectance bands to predict the 
mentioned soil properties using stepwise multiple linear regression 
(SMLR) method, and iii) to compare the capability of PLSR method and 

SMLR-STFs to predict the mentioned soil properties in calcareous soils. 

2. Material and methods 

2.1. Study area 

A total of 234 soil samples were collected from different locations of 
Fars Province, which is located in 50◦ 30′-55◦ 38′ E and 27◦ 03′-31◦ 42′

N in the south to southwest parts of Iran. The study area has an arid and 
semi-arid climate with the annual precipitation ranging from 50 to 1000 
mm (MPB, 1994). The mean annual temperature of the study area is 
17.5 ◦C (Gandomkar and Dehghani, 2012). The elevation of the southern 
and northern parts of the Fars Province varies between nearly 500 to 
4000 m above the mean sea level, respectively (Khormali and Abtahi, 
2003). The Fars Province experiences xeric, ustic, and aridic soil- 
moisture regimes along with mesic, thermic, and hyperthermic soil- 
temperature regimes (Banaei, 1998). Soils of the study area are calcar-
eous and relatively calcareous (Mozaffari et al., 2021b; Ostovari et al., 
2022), formed from soluble dolomite and calcite limestone with calcium 
carbonate (e.g., in the present study the soil CCE values were in range of 
12.5–70.6 %). According to the Soil Taxonomy classification (Soil Sur-
vey Staff, 2014), the soils in the study area are mainly classified as 
Inceptisols (175 soils), Entisols (42 soils), and Aridisols (17 soils), which 
comprise 75, 18, and 7 % of the studied soils, respectively (Khormali and 
Abtahi, 2003; Natural Resources and Forestry Organization of Fars 
Province, 2010). 

2.2. Determining physical and chemical properties 

The soils (~2 kg) were randomly sampled by spade from the surface 
layer (0–20 cm depth) and different predominant land uses including 
cultivated fields of wheat, barley, corn, alfalfa, rice, and fallow fields 
(126 soil samples or 53.83 % of the total 234 soil samples), rangelands 
(69 soil samples or 29.5 % of the total samples), pear orchard garden (23 
soil samples or 9.83 % of the total samples), and oak forests (16 soil 
samples or 6.84 % of the total samples) to cover a wide range of 
calcareous soils and land uses in the study area (Ostovari et al., 2021; 
Mozaffari et al., 2022b) during summer (August and September 2019). 
Samples were air dried, passed through a 2 mm sieve, and selected 
physical and chemical properties were determined using the common 
standard methods (similar to those used by Mozaffari et al., 2021a, 
2022d), which are summarized in Table 1. 

Table 1 
Studied physical and chemical properties of the soil samples along with the 
methods used for their determination and the relevant references.  

Property Method Reference 

Texture (sand, silt, and clay 
contents) based on USDA 
classification system 

Combination of the wet-sieving 
and sedimentation method by 
hydrometer 

Gee and 
Bauder (1986) 

pH of saturated paste by H2O Glass electrode pH-meter Thomas 
(1996) 

Electrical conductivity (EC) of 
saturated extract 

EC-meter Rhoades 
(1996) 

Calcium carbonate equivalent 
(CCE) 

Back titration with HCl Loeppert and 
Suarez (1996) 

Water-soluble sodium (Na) 
and potassium (K) 

Flame photometry Helmke and 
Sparks (1996) 

Water-soluble calcium (Ca) 
and magnesium (Mg) 

Titration with EDTA† Richards 
(1954) 

DTPA††-extractable iron (Fe), 
manganese (Mn), copper 
(Cu), and zinc (Zn) 

Atomic absorption 
spectrometry 

Lindsay and 
Norvell (1978) 

Soil organic matter (SOM) Walkley-Black wet combustion Nelson and 
Sommers 
(1996) 

†: Ethylene Diamine Tetraacetic Acid. 
††: Diethylene Triamine Pentaacetic Acid. 

H. Mozaffari et al.                                                                                                                                                                                                                              



Geoderma 428 (2022) 116174

3

2.3. Vis-NIR spectral data 

Nearly 25 g of air-dried, 2 mm sieved, and thoroughly mixed soil 
samples were placed in the glassy container with about 4 cm diameter. 
Spectral absorbance of the soils were determined by a spectrophotom-
eter apparatus (Rapid Content Analyzer, NIRS XDS model, Metrohm 
company, Switzerland) in 4200 wavelengths within a Vis-NIR range of 
400–2500 nm with data point interval of 0.5 nm, wavelength accuracy 
of <0.05 nm, and band pass of 8.75 nm. In order to reduce the 
complexity, the spectra with 1 nm increment were considered as inde-
pendent variables. 

For each soil sample, three scans were taken to get an average 
absorbance spectrum. The spectral absorbance obtained at ranges of 
400–417 nm and 2483–2500 nm were removed in order to eliminate 
noises. The reflectance (R) data were calculated by absorbance ones (A) 
and using a 1/10 A relation. Fig. 1 shows the mean, the mean ± standard 
deviation, the minimum, and the maximum of Vis-NIR reflectance 
spectra versus wavelengths along with four significant absorption bands 
in the studied soil samples. The pre-processing techniques including 
Savitzky-Golay derivative and smoothing methods (Savitzky and Golay, 
1964) were used on spectral data with five smoothing points and zero- 
order Savitzky-Golay filter to eliminate fluctuations and noises and 
improve the quality of spectral data and predictions. It should be noted 
that all pre-processing procedures were performed after reducing the 
complexity and taking data with 1 nm increment. All of the pre- 
processing techniques were carried out using Unscrambler X v. 9.7 
software package (CAMO, Technologies Inc., 2013). 

2.4. Partial least squares regression (PLSR) 

The PLSR is a multivariate statistical method commonly used for 
correlating soil spectral reflectance data to individual soil parameters 
and to predict the soil parameters, mainly due to its superiority over 
traditional methods in dealing with high dimensional multi-collinearity 
(Stenberg, 2010; Bilgili et al., 2011). In the PLSR method, the relation-
ship between two matrices X (independent variables) and Y (dependent 
variables) is created through a multivariate linear relationship (Bilgili 
et al., 2011). The PLSR model decomposes the matrices of zero-mean 
variables X and Y into the following forms: 

X = T PT + E (1)  

Y = U QT + F (2)  

where the T and U are matrices of the extracted score vectors (compo-

nents, latent vectors). The P and Q denote matrices of orthogonal 
loadings and E and F are the matrices of residuals. Regarding the weight 
vectors w and c, which present the corresponding score vectors by t =
Xw and u = Yc, the PLSR method can be developed as an optimization 
problem as follows: 

(w, c) = argmax
||w|| = ||c||=1

{Cov(Xw, Yc) }2 (3) 

There are some algorithms such as NIPALS (nonlinear iterative PLS), 
SIMPLS (statistically inspired modification of the PLS), and kernels al-
gorithms (Wold et al., 1983; de Jong, 1993; Rannar et al., 1994) for 
PLSR. The NIPALS and kernels algorithms are available in the Un-
scrambler software for this purpose. Having w and c, the response (Ŷ) 
can be estimated as follows: 

Ŷ = X B (4)  

where 

B = w
(
PT w

)− 1c = XT U
(
TT X XT U

)− 1TT Y (5) 

In the present study, for developing different regression models, soil 
physical and chemical properties were considered as dependent vari-
ables (Y) and spectral reflectance bands in Vis-NIR region were 
considered as independent variables (X). All data were randomly 
divided into two subsets containing 75 % (calibration dataset) and 25 % 
(validation dataset) of the whole dataset. It should be pointed out that, 
the selected calibration and validation datasets were the same (constant) 
for predicting all of the studied soil properties. To the best of our 
knowledge, in PLSR analysis, selecting the best latent variables (LVs) is 
one of the most important steps in modeling procedure. The LVs are 
linear combinations of the original variables (Li et al., 2001), which are 
imported to PLSR models in the hidden layer. In order to optimize this 
hyper-parameter (number of LVs) for predicting a specific property, we 
developed PLSR models using calibration dataset with maximum 40 
levels of LVs. The cross validation R2 (R2

cv) criterion was used to compare 
the accuracy of the developed PLSR models by each LVs level. The best 
number of LVs was the minimum one that resulted in the highest R2

cv 
(Viscarra Rossel et al., 2006; Xu et al., 2018a). After optimizing the LVs 
for predicting a specific soil property, the PLSR model again was 
developed by calibration dataset and using the optimized number of 
LVs. After that, the models were tested using the validation datasets. All 
of the PLSR modeling procedures were performed in Unscrambler X v. 
9.7 software package. 

In order to recognize the important and effective Vis-NIR spectral 
reflectance single bands to predict a specific soil property, the plot of 
regression coefficient (B) values versus wavelengths obtained from PLSR 
analysis and Unscrambler X v. 9.7 software was used (see right hand side 
of Figs. 4, 6, 8, and 10). According to the addressed plots, there are 
several peaks showing the possibility of existing positive or negative 
correlations between spectral reflectance bands at recognized peak 
wavelengths and target properties. Therefore, all these recognized 
spectral reflectance values at peak wavelengths, as effective and 
important single bands, were imported to stepwise multiple linear 
regression (SMLR) models. Finally, some of the most important single 
bands (but not all of them) were appeared in the STFs (Ostovari et al., 
2018; Mozaffari et al., 2022a). It should be noted that, all PLSR analysis, 
including developing the models and obtaining B plots to recognize the 
effective and important bands, for predicting the studied soil properties 
were performed using the processed reflectance spectra. 

2.5. Derivation of spectrotransfer functions (STFs) 

The SMLR approach was used to develop STFs according to the 
maximum correlation between the studied soil properties and the 
effective spectral reflectance single bands. The following SMLR model 
was used to develop the STFs: 

Fig. 1. The mean (Mean), mean ± standard deviation (Mean ± SD), minimum 
(Min.), and maximum (Max.) values of the reflectance spectra versus wave-
lengths in the studied soil samples. 
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Soil attribute = a0 + a1Rs1 + a2Rs2 + ...+ amRsm (6)  

where Rs1 to Rsm are the effective and important spectral reflectance 
single bands, a0 to am are regression coefficients, and m is the number of 
appeared spectral reflectance single bands in the STF. It should be noted 
that the input independent variables of the above-mentioned equation 
were the recognized effective spectral reflectance bands obtained from 
PLSR analysis. In the present study, the forward SMLR method was used. 
In this method, the variables were added according to a tolerance sig-
nificance level, based on the F-test probability, which was set to 0.05. It 
should be noted that, the F-test is used for comparing variance of two 
statistical communities and testing whether the developed regression 
model between dependent and independent variables is significant or 
not. For performing this test, at first, the F statistic would be calculated 
based on the standard deviation of the observed and predicted values of 
a property. Then, the calculated F is compared with F statistic in the 
Fisher table at a specific probability level (0.05 in present study). If the 
calculated F be lesser than Fisher F statistic, the zero-significance 
assumption of regression model is accepted and vice versa. In other 
words, the developed regression model by independent variables can 
define the changes in dependent variable at a specific confidence level (i. 
e., 95 % in the present study). To put it simply, in STATISTICA software 
package (version 8.0) that we used for developing STFs, it is possible to 
easily recognize those X variables that have statistical significant rela-
tionship with Y variable in multiple linear regression by performing F- 
test. For instance, if the calculated p-level values be <0.05, for a specific 
X variable (i.e., appeared single bands in the developed STF), therefore 
the relationship between that X variable and the target attribute (Y) is 
statistically significant. All p-level values were calculated during 
developing the STFs in STATISTICA (version 8.0) software package. To 
develop STFs, the same (constant) calibration dataset with PLSR anal-
ysis, was used. After that, the developed models were tested using the 
validation dataset (same as the PLSR analysis). Generally, Fig. 2 illus-
trates the steps for preparing datasets, PLSR procedure, and developing 
STFs to predict soil properties. 

2.6. Evaluation of the models 

Some goodness of fit criteria including the determination coefficient 
(R2), normalized root mean square error (NRMSE), Nash-Sutcliffe co-
efficient (NS), ratio of performance to interquartile range (RPIQ), and 
mean error (ME) were used to evaluate the models performance (Eqs. (7) 
to (11)). 

R2 =

( ∑n
i=1(Oi − O)(Pi − P)

)2

∑n
i=1(Oi − O)2 ∑n

i=1(Pi − P)2 (7)  

NRMSE (%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(Oi − Pi)
2

n

√

O
× 100 (8)  

NS = 1 −
∑n

i=1(Oi − Pi)
2

∑n
i=1(Oi − O)2 (9)  

RPIQ =
IQ

RMSE
=

Q3 − Q1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(Oi − Pi)
2

n

√ (10)  

ME =

∑n
i=1Pi − Oi

n
(11)  

where Oi and Pi are the observed and predicted values, respectively; n is 
the number of data; and Q3 and Q1 are the third (75 %) and first (25 %) 
quartiles of samples, respectively. The NRMSE, which is a measure of 
error between the observed and the predicted values, varies between 
zero (the highest accuracy) to infinity. The NRMSE (%) ranges of 0–10, 
10–20, 20–30 and > 30 are classified as excellent, good, fair, and poor 
classes, respectively (Bannayan and Hoogenboom, 2009). The NS sta-
tistic, which is a measure of model efficiency, changes from one (the 
highest accuracy) to negative infinity (Ritter and Muñoz-Carpena, 2013; 
Feng et al., 2017). According to Ritter and Muñoz-Carpena (2013), the 
NS values of 0.9–1, 0.8–0.9, 0.65–0.8, and <0.65 are classified as very 
good, good, acceptable, and unsatisfactory, respectively. The RPIQ is 
based on quartiles, which better represents the spread of the population. 

Fig. 2. Flowchart of the steps for preparing the dataset, the partial least square regression (PLSR) procedure, and developing spectrotransfer functions (STFs) to 
predict soil properties by Vis-NIR reflectance spectra. 
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This statistic is commonly used as a better indication for non-normal 
variables (Briedis et al., 2020) and should fall between 1.5 and 3 for 
an acceptable model (Jia et al., 2017). Generally, we considered five 
levels of accuracy based on R2 values including: excellent (0.90 ≤ R2 <

1); very good (0.75 ≤ R2 < 0.90); good (0.65 ≤ R2 < 0.75); acceptable, 
moderate, or fair (0.50 ≤ R2 < 0.65); and poor (R2 < 0.50). Excel 
(version 2013) software package was used for curves fitting and calcu-
lating the mentioned statistics. 

3. Results 

3.1. Descriptive statistics and correlation between properties 

Table 2 shows the summary statistics and normality test criteria of 
the studied soil properties. The lowest and the highest coefficient of 
variations (CV) were related to pH (4.54 %) and Mg (393 %), respec-
tively. According to Wilding (1985), pH and ln(Ca) fall in the low 
variability class (0 < CV ≤ 15 %); (sand)0.5, silt, CCE, ln(Fe), and ln(Zn) 
fall in the moderate variability class (15 < CV ≤ 35 %); and the other 
studied soil properties fall in the high variability class (CV > 35 %). The 
CV values of 0.1 to 109 % (Moosavi and Sepaskhah, 2012) and 2 to 92 % 
(Rezaee et al., 2020a) have been reported for physicochemical/hy-
draulic properties of gravelly calcareous and paddy soils, respectively. 
Furthermore, Rezaee et al. (2020b) reported the CV values of 2 to 56 % 
for physicochemical attributes of their studied paddy soils. 

As the Kolmogorov-Smirnov normality test shows, the sand, EC, Na, 
K, Ca, Mg, Fe, and Zn did not follow a normal distribution. They became 
close to normal distribution by the mentioned different transformations 
(Table 2). 

Furthermore, Table 3 shows the Pearson correlation coefficients (r) 
among the studied soil properties. It should be noted that, in the present 
study, we performed Pearson correlation test between the normalized 
forms of variables, which is the first assumption for performing linear 

regression and correlation test. As can be seen, the ln(Fe), Mn, Cu, and ln 
(Zn) are positively correlated with SOM (r > 0.4) and negatively with 
CCE (with r values between − 0.19 to − 0.33). In addition, clay had a 
positive and significant correlation with Cu and ln(Fe) with r values of 
0.27 and 0.45, respectively. According to literature, particle-size dis-
tribution (PSD), lime (CaCO3) and SOM are well-known soil properties 
affecting the soil spectral reflectance data across the full range of spectra 
(Viscarra Rossel, 2007; Žížala et al., 2017; Ostovari et al., 2018). 
Therefore, it can be expected that the DTPA-extractable micronutrients 
be predicted with reasonable accuracy using spectroscopy-based 
methods. 

3.2. PLSR analysis to predict soil properties using Vis-NIR reflectance 
spectra 

3.2.1. Sand, silt, and clay contents 
The relatively same standard deviation values of the calibration and 

the validation datasets for predicting the studied soil properties showed 
that the selected validation data were not concentrated in a specific 
small range and were able to test full range of the data. Fig. 3 shows the 
R2

cv values of PLSR analysis for predicting sand0.5, silt, and clay contents 
using Vis-NIR spectral reflectance bands by applying different values of 
LVs. The optimum numbers of LVs for predicting sand0.5, silt, and clay 
contents were 11, 13, and 9, respectively. 

Fig. 4 shows the predicted versus observed sand0.5, silt, and clay 
contents using Vis-NIR spectral reflectance bands (left panel) along with 
their plots of regression coefficients (B) versus wavelengths (right panel) 
according to PLSR analysis. As can be seen, the sand0.5, silt, and clay 
were predicted with R2

val (the subscript val shows the validation dataset) 
values of 0.83, 0.67, and 0.81; NRMSEval values of 16.3, 11.1, and 17.0 
%; NSval values of 0.80, 0.67, and 0.81; RPIQval values of 3.31, 2.32, and 
4.26; and MEval values of 0.18 %0.5, − 0.47 %, and − 0.62 %, 
respectively. 

Table 2 
Summary statistics and fitting parameters of the normal distribution for the studied soil properties.  

Propertyy Unit N Min Max Mean SD CV (%) VC SK KR KSyy

Sand % 234 2.28 76.8 17.4 11.9 68.4 High 1.59 4.75 0.110** 

(Sand) 0.5 (%) 0.5 234 1.51 8.76 3.94 1.38 35.0 Moderate 0.36 0.30 0.087 ns 

Silt % 234 23.2 91.0 55.5 11.0 19.8 Moderate 0.42 1.06 0.086 ns 

Clay % 234 4.88 56.8 27.3 11.3 41.4 High − 0.14 − 0.86 0.085 ns 

pH – 234 6.60 8.21 7.61 0.35 4.60 Low − 0.40 − 0.38 0.081 ns 

EC dS m− 1 234 0.26 33.3 1.34 3.19 238 High 7.17 59.2 0.367** 

EC -1 dS-1 m 234 0.03 3.90 1.61 0.81 50.3 High 0.27 − 0.02 0.053 ns 

CCE % 234 12.5 70.6 42.6 9.74 22.9 Moderate 0.23 0.81 0.081 ns 

Na mg L-1 234 3.00 676 55.2 90.0 163 High 3.98 19.5 0.251** 

ln(Na) ln(mg L-1) 234 1.10 6.52 3.30 1.16 35.2 High 0.28 − 0.07 0.058 ns 

K mg L-1 234 1.32 135 16.4 19.0 116 High 3.18 13.4 0.218** 

ln(K) ln(mg L-1) 234 0.28 4.91 2.38 0.87 36.6 High 0.48 − 0.07 0.082 ns 

Ca mg L-1 234 32.0 944 140 131 93.6 High 3.43 14.4 0.219** 

ln(Ca) ln(mg L-1) 234 2.48 6.80 4.68 0.63 13.5 Low 0.94 1.03 0.077 ns 

Mg mg L-1 234 4.80 3456 63.5 250 394 High 11.5 150 0.407** 

ln(Mg) ln(mg L-1) 234 1.57 8.15 3.21 1.13 35.2 High 0.57 1.40 0.111 ns 

Fe mg kg− 1 161 1.25 49.1 15.8 10.7 67.7 High 0.90 0.06 0.132** 

ln(Fe) ln(mg kg− 1) 161 0.83 3.89 2.55 0.70 27.5 Moderate − 0.33 − 0.41 0.070 ns 

Mn mg kg− 1 161 1.56 26.0 10.3 5.83 56.6 High 0.78 0.12 0.084 ns 

Cu mg kg− 1 161 0.21 3.77 1.82 0.83 45.6 High 0.42 − 0.08 0.068 ns 

Zn ×102 mg kg− 1 161 9.20 243 52.4 40.5 77.3 High 2.17 5.98 0.166** 

ln(Zn) ln(×102 mg kg− 1) 161 2.22 5.49 3.73 0.66 17.7 Moderate 0.31 − 0.21 0.081 ns 

SOM % 102 0.17 4.26 1.74 1.21 69.5 High 0.73 − 0.06 0.104 ns 

†: Sand: sand content; Sand0.5: square root of sand content; Silt: silt content; Clay: clay content; pH: pH of saturated paste; EC: electrical conductivity of saturated 
extract; EC-1: inverse of electrical conductivity of saturated extract; CCE: calcium carbonate equivalent (lime); Na, K, Ca, and Mg: water-soluble sodium, potassium, 
calcium, and magnesium, respectively; ln(Na), ln(K), ln(Ca), and ln(Mg): natural logarithms (ln) of water-soluble sodium, potassium, calcium, and magnesium, 
respectively; Fe, Mn, Cu, and Zn: DTPA-extractable iron, manganese, copper, and zinc, respectively; ln(Fe) and ln(Zn): natural logarithms of DTPA-extractable iron and 
zinc, respectively; SOM: soil organic matter. 
††: N, Min., Max., Mean, SD, CV, VC, SK, KR, and KS are the number of soil samples, minimum, maximum, mean, standard deviation, coefficient of variations, 
variability classes according to Wilding (1985), skewness coefficient, kurtosis coefficient, and the statistics of Kolmogorov-Smirnov normality test, respectively. ns 
means lack of significant difference with the normal distribution, ** and * show significant differences with the normal distribution (departure from normal distri-
bution) at the probability levels of 1 and 5 %, respectively (which became normal with the mentioned different transformation). 
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3.2.2. pH, electrical conductivity (EC), and calcium carbonate equivalent 
(CCE) 

According to Fig. 5, in PLSR analysis using Vis-NIR reflectance 
spectra, the optimum numbers of LVs to predict pH, EC-1, and CCE were 
17, 18, and 10, respectively. 

The capability of PLSR method to predict pH, EC-1, and CCE prop-
erties using Vis-NIR spectral reflectance bands along with the goodness 
of fit criteria and plots of B values versus wavelengths are shown in 
Fig. 6. The PLSR method predicted pH, EC-1, and CCE by R2

val values of 
0.71, 0.63, and 0.82; NRMSEval values of 2.32, 35.8, and 9.67 %; NSval 
values of 0.71, 0.63, and 0.80; RPIQval values of 3.34, 2.17, and 2.52; 
and MEval values of − 0.02, 0.03 dS-1 m, and 0.72 %, respectively. 

3.2.3. Water-soluble sodium (Na), potassium (K), calcium (Ca), and 
magnesium (Mg) 

The R2
cv values showed that the optimum numbers of LVs for 

predicting ln(Na), ln(K), ln(Ca), and ln(Mg) using PLSR and Vis-NIR 
spectral reflectance data were 19, 13, 24, and 11, respectively (Fig. 7). 

According to Fig. 8, the PLSR method using Vis-NIR spectral reflec-
tance bands predicted ln(Na), ln(K), ln(Ca), and ln(Mg) by R2

val values of 
0.74, 0.70, 0.62, and 0.71; NRMSEval values of 17, 20, 8.08, and 16.8 %; 
NSval values of 0.73, 0.68, 0.62, and 0.67; RPIQval values of 2.65, 2.43, 
2.21, and 2.36; and MEval values of − 0.13, − 0.11, − 0.02, and − 0.20 ln 
(mg L-1), respectively. 

3.2.4. DTPA-extractable iron (Fe), manganese (Mn), copper (Cu), and zinc 
(Zn) 

As can be seen in Fig. 9, the optimum numbers of LVs for predicting 
ln(Fe), Mn, Cu, and ln(Zn) using PLSR method and Vis-NIR reflectance 
spectra were 17, 20, 15, and 11, respectively. 

Fig. 10 demonstrates scatter plots of the observed versus predicted 
values of ln(Fe), Mn, Cu, and ln(Zn) and models performance using Vis- 
NIR spectral reflectance bands by applying PLSR method (left panel) 
along with plots of B values versus wavelengths (right panel). The 
models were developed by R2

val values of 0.74, 0.70, 0.74, and 0.69; 
NRMSEval values of 14.8, 32.4, 22.7, and 10.4 %; NSval values of 0.71, 
0.70, 0.72, and 0.69; RPIQval values of 2.96, 2.32, 3.37, and 2.70; and 
MEval values of − 0.03 ln(mg kg− 1), − 0.02 mg kg− 1, − 0.10 mg kg− 1, and 
− 0.02 ln(mg kg− 1) for predicting ln(Fe), Mn, Cu, and ln(Zn), 
respectively. 

3.3. Developing STFs to predict soil properties using Vis-NIR reflectance 
spectra 

3.3.1. Sand, silt, and clay contents 
The B values (Fig. 4), which were obtained from PLSR analysis, 

demonstrated several effective and important spectral reflectance bands 
in full range of spectra (420–2480 nm) to predict soil textural compo-
nents (i.e., sand0.5, silt, and clay contents) and to develop STFs. Based on 
the obtained effective bands from PLSR analysis, the following STFs 
(Eqs. (12) to (14)) were developed using 13, 17, and 13 spectral 
reflectance bands and SMLR method to predict sand0.5, silt, and clay, 
respectively.     

Table 3 
Pearson correlation coefficients (r) between the studied soil properties.   

(Sand)0.5 Silt Clay pH EC-1 CCE ln(Na) ln(K) ln(Ca) ln(Mg) ln(Fe) Mn Cu ln(Zn) 

Silt  − 0.83**              

Clay  − 0.15  − 0.39**             

pH  − 0.01  0.03  − 0.09            
EC-1  0.12  − 0.22*  0.27**  0.50**           

CCE  0.32**  − 0.28**  − 0.02  − 0.08  − 0.02          
ln(Na)  − 0.10  0.23*  − 0.31**  − 0.36**  − 0.75**  0.11         
ln(K)  0.09  0.05  − 0.28**  − 0.32**  − 0.77**  0.04  0.66**        

ln(Ca)  − 0.17  0.30**  − 0.31**  − 0.58**  − 0.84**  0.02  0.89**  0.68**       

ln(Mg)  − 0.14  0.24*  − 0.27**  − 0.49**  − 0.66**  0.00  0.81**  0.48**  0.82**      

ln(Fe)  − 0.16  − 0.05  0.45**  − 0.30**  0.19*  − 0.26**  − 0.38**  − 0.36**  − 0.25**  − 0.18     
Mn  0.01  0.04  0.01  − 0.30**  − 0.27**  − 0.33**  0.02  0.40**  0.21*  0.03  0.23*    
Cu  − 0.10  − 0.00  0.27**  − 0.25*  − 0.08  − 0.32**  0.01  0.05  0.05  0.02  0.66**  0.33**   

ln(Zn)  0.06  0.06  − 0.16  − 0.18  − 0.30**  − 0.19  0.26**  0.56**  0.31**  0.15  0.02  0.49**  0.37**  

SOM  − 0.02  − 0.05  0.23*  − 0.34**  − 0.24*  − 0.21*  − 0.02  0.35**  0.12  − 0.04  0.44**  0.74**  0.47**  0.54** 

†: Sand0.5: square root of sand content; Silt: silt content; Clay: clay content; pH: pH of saturated paste; EC-1: inverse of electrical conductivity of saturated extract; CCE: 
calcium carbonate equivalent (lime); ln(Na), ln(K), ln(Ca), and ln(Mg): natural logarithms (ln) of water-soluble sodium, potassium, calcium, and magnesium, 
respectively; ln(Fe) and ln(Zn): natural logarithms of DTPA-extractable iron and zinc, respectively; Mn and Cu: DTPA-extractable manganese and copper, respectively; 
SOM: soil organic matter. ††: * and ** demonstrate the significant correlation between properties in probability levels of 5 and 1 %, respectively. 

Fig. 3. The cross validation determination coefficient (R2) values of the partial 
least square regression (PLSR) analysis for developing models to predict square 
root of sand content, sand0.5; silt; and clay contents using Vis-NIR spectral 
reflectance bands by applying 1–40 latent variables (in each case the bold black 
spot shows the best number of latent variables). 
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Fig. 4. The partial least square regression (PLSR) analysis results, including scatter plots, goodness of fit criteria, and plots of regression coefficients (B) versus 
wavelengths, to predict square root of sand content, sand0.5 (a and b); silt (c and d); and clay (e and f) contents using Vis-NIR spectral reflectance data (the subscripts 
cal and val show the calibration and validation datasets, respectively). 

[Sand (%)]
0.5

= 4.2 + 195 (R438) − 207 (R485) − 30.2 (R525) + 318 (R636) − 341 (R698)

+90.9 (R919) − 16.8 (R1943) + 49.2 (R2207) − 261 (R2288) + 234 (R2325)

− 256 (R2346) + 278 (R2380) − 45.9 (R2480)

i = 25

m = 13
(12)   
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Clay (%)=26.5 − 1932 (R420)+2495 (R484)− 1414 (R580)+1009 (R693)

− 667 (R836)+1096 (R1381)− 3554 (R1872)+1032 (R1910)

+3151 (R2152)− 502 (R2214)+897 (R2343)− 349 (R2388)

− 1398 (R2460)

i=13

m=13

(14)  

where, Rs, i, and m show the spectral reflectance value at wavelength s, 
number of the selected effective single bands from PLSR analysis (B plot) 
which were imported to SMLR model, and number of the appeared 
effective single bands in the developed STF, respectively. Capability of 
the STFs to predict sand0.5, silt, and clay is shown in Fig. 11. The 
developed STFs predicted sand0.5, silt, and clay by R2

val values of 0.78, 
0.62, and 0.81; NRMSEval values of 17.3, 11.9, and 17.3 %; NSval values 
of 0.77, 0.62, and 0.80; RPIQval values of 3.11, 2.16, and 4.18; and MEval 
values of 0.11 %0.5, − 0.43 %, and − 0.62 %, respectively. 

3.3.2. pH, EC, and CCE 
As can be seen in Fig. 6 (right panel), the important and effective 

bands for predicting pH, EC-1, and CCE were mostly in wavelength 
ranges of 420–1100 and 1900–2480 nm and around 1400 nm. Using the 
effective spectral reflectance bands based on the B values and SMLR 
method, the following STFs (Eqs. (15) to (17)) were developed to predict 
pH, EC-1, and CCE. As it is demonstrated, 11, 16, and 15 spectral 
reflectance bands were appeared in the STFs to predict pH, EC-1, and 
CCE, respectively.   

CCE (%)=1.15 − 928 (R420)+1017 (R500)− 615 (R584)+1352 (R684)

− 1134 (R789)+763 (R1105)− 1695 (R1386)+1172 (R1428)

+185 (R1796)− 387 (R1927)+110 (R2222)− 343 (R2335)

+80.7 (R2372)+1650 (R2412)− 1267 (R2480)

i=18

m=15

(17) 

The scatter plots of the observed versus predicted values along with 
goodness of fit criteria for predicting pH, EC-1, and CCE using STFs are 
shown in Fig. 12. These properties were predicted by their related STFs 

with R2
val values of 0.66, 0.55, and 0.83; NRMSEval values of 2.51, 39.9, 

and 9.97 %; NSval values of 0.66, 0.53, and 0.80; RPIQval values of 3.09, 
1.92, and 2.40; and MEval values of − 0.01, 0.10 dS-1 m, and 1.07 %, 
respectively. 

3.3.3. Water-soluble Na, K, Ca, and Mg 
There were several effective bands in full range of spectra for pre-

dicting natural logarithm forms of studied water-soluble cations when 
PLSR method was used (Fig. 8). According to Eqs. (18) to (21), the 
numbers of effective spectral reflectance bands appeared in STFs were 
14, 15, 16, and 15 for predicting ln(Na), ln(K), ln(Ca), and ln(Mg), 
respectively. 

Silt (%) = 54.1 + 1885 (R420) − 2484 (R496) + 1545 (R562) − 795 (R641)

+395 (R794) − 143 (R897) − 4545 (R1398) + 4347 (R1434) + 2475 (R1762)

− 2341 (R1934) + 882 (R1998) − 981 (R2044) − 2649 (R2130) + 634 (R2180)

+530 (R2351) − 609 (R2379) + 2228 (R2480)

i = 22

m = 17
(13)   

pH = 8.34 − 35.5 (R442) + 35.5 (R488) − 25.5 (R637) + 15.7 (R680) + 30.8 (R1497)

− 36.8 (R1885) + 8.96 (R1967) − 40.7 (R2220) + 76.2 (R2290) − 118 (R2325)

+84.2 (R2352)

i = 24

m = 11
(15)  

EC− 1 (
dS− 1 m

)
= 1.23 + 0.142 (R450) + 70 (R682) − 113 (R757) + 114 (R1386) + 116 (R1426)

− 92.2 (R1494) − 203 (R1877) + 15.5 (R1911) + 45 (R1970) − 133 (R2035)

+231 (R2149) − 68.3 (R2208) + 121 (R2290) − 177 (R2327) + 141 (R2351)

− 68.9 (R2452)

i = 20

m = 16
(16)   

Fig. 5. The cross validation determination coefficient (R2) values of the partial 
least square regression (PLSR) analysis for developing models to predict pH of 
saturated paste, pH; inverse of electrical conductivity of soil saturated extract, 
EC-1; and calcium carbonate equivalent, CCE using Vis-NIR spectral reflectance 
bands by applying 1–40 latent variables (in each case the bold black spot shows 
the best number of latent variables). 
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Fig. 6. The partial least square regression (PLSR) analysis results, including scatter plots, goodness of fit criteria, and plots of regression coefficients (B) versus 
wavelengths, to predict pH of saturated paste, pH (a and b); inverse of electrical conductivity of soil saturated extract, EC-1 (c and d); and calcium carbonate 
equivalent, CCE (e and f) values using Vis-NIR spectral reflectance data (the subscripts cal and val show the calibration and validation datasets, respectively). 

ln
[
Na

(
mg L− 1)] = 2.69 + 12.9 (R452) + 122 (R586) − 498 (R682) + 416 (R757)

+14 (R905) − 311 (R1386) + 225 (R1534) − 105 (R1804)

+57.8 (R1920) + 146 (R2045) − 79.9 (R2352) + 266 (R2378)

− 302 (R2417) + 37.6 (R2453)

i = 28

m = 14
(18)   
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To predict ln(Na), ln(K), ln(Ca), and ln(Mg) using the STFs, the R2
val 

values were 0.63, 0.65, 0.60, and 0.66; NRMSEval values were 20.7, 
21.5, 8.34, and 18.3 %; NSval values were 0.60, 0.63, 0.60, and 0.61; 
RPIQval values were 2.18, 2.26, 2.14, and 2.17; and MEval values were 
− 0.18, − 0.12, 0.00, and − 0.24 ln(mg L-1), respectively (Fig. 13). 

3.3.4. DTPA-extractable Fe, Mn, Cu, and Zn 
The B values demonstrated the effective spectral reflectance bands 

for predicting ln(Fe), Mn, Cu, and ln(Zn) were mostly in the wavelength 
ranges of 420–900 and 1900–2480 nm and around 1400 nm. The 
developed STFs (Eqs. (22) to (25)) showed that the numbers of the most 
important spectral reflectance bands for predicting ln(Fe), Mn, Cu, and 
ln(Zn) were 12, 17, 15, and 11, respectively.   

Mn
(
mgkg− 1)=21.1+945(R420)− 1136(R489)+608(R569)− 520(R662)

+564(R720)− 543(R811)+553(R1154)− 915(R1389)+891(R1601)

− 183(R1747)+834(R1894)− 6.29(R1926)− 943(R2077)+418(R2199)

− 746(R2255)+548(R2318)− 261(R2371)

i=19

m=17

(23)   

ln
[
K

(
mg L− 1)] = − 0.6 − 48.5 (R969) + 108 (R1098) − 108 (R1431) − 252 (R1697)

+370 (R1863) + 175 (R1910) − 110 (R1922) − 20.6 (R1943)

+107 (R2163) + 102 (R2208) − 276 (R2226) − 301 (R2312)

+395 (R2328) − 217 (R2350) + 79 (R2425)

i = 31

m = 15
(19)  

ln
[
Ca

(
mg L− 1)] = 5.13 + 57.4 (R448) − 63 (R489) + 20.2 (R634) + 3.9 (R685)

− 47.5 (R1385) + 177 (R1403) − 190 (R1427) − 118 (R1803)

+259 (R1875) − 44.6 (R1972) − 11.3 (R2199) − 33.9 (R2270)

− 116 (R2312) + 210 (R2327) − 165 (R2350) + 65.7 (R2453)

i = 25

m = 16
(20)  

ln
[
Mg

(
mg L− 1)] = 2.66 − 258 (R420) + 337 (R477) − 110 (R538) − 308 (R699)

+361 (R743) − 157 (R975) + 212 (R1093) − 416 (R1384)

+207 (R1495) + 373 (R1748) − 326 (R1837) + 146 (R1902)

− 236 (R1975) + 181 (R2048) − 31.4 (R2257)

i = 24

m = 15
(21)   

ln
[
Fe

(
mg kg− 1)] = 3.95 + 65.5 (R420) − 84.8 (R451) + 77 (R582) − 86 (R678)

+58.2 (R890) − 83.4 (R1426) + 57.5 (R1922) − 54.8 (R2166)

+105 (R2222) + 58 (R2315) − 42 (R2349) − 76.1 (R2480)

i = 20

m = 12
(22)   

Cu
(
mg kg− 1) = 2.19 + 51.6 (R447) − 47.6 (R497) − 34.3 (R786) + 92.9 (R882)

− 121 (R1103) + 201 (R1404) − 106 (R1429) − 45.4 (R1779)

− 68.7 (R2220) − 57 (R2243) + 138 (R2272) + 111 (R2340)

− 253 (R2385) + 330 (R2431) − 188 (R2480)

i = 26

m = 15
(24)  

ln
[
Zn

(
× 102 mg kg− 1)] = 7.39 + 130 (R442) − 137 (R488) + 27.7 (R548) − 18 (R666)

− 6.79 (R1405) + 49.1 (R1472) + 54.2 (R1900) − 57.8 (R1927)

− 54.8 (R2155) − 36.3 (R2314) + 58.8 (R2480)

i = 18

m = 11
(25)   
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Results showed that accuracy of the STFs for predicting the 
mentioned DTPA-extractable micronutrients were close to PLSR results 
(Fig. 14). As can be seen, developed STFs had R2

val values of 0.70, 0.70, 
0.71, and 0.68; NRMSEval values of 15.2, 32.2, 23.4, and 10.6 %; NSval 
values of 0.69, 0.70, 0.70, and 0.67; RPIQval values of 2.87, 2.34, 3.27, 
and 2.65; and MEval values of − 0.04 ln(mg kg− 1), − 0.28 mg kg− 1, 
− 0.07 mg kg− 1, and − 0.03 ln(mg kg− 1) for predicting ln(Fe), Mn, Cu, 
and ln(Zn), respectively. 

3.4. Comparing capability of the developed PLSR models and STFs to 
predict soil properties 

The R2
val values of the developed PLSR models and STFs (Eqs. (12) to 

(25)) using Vis-NIR reflectance spectra for predicting the studied soil 
properties were compared in Fig. 15. The maximum value of R2

val (0.83) 
was observed for predicting sand0.5 (by PLSR) and CCE (by STF) and the 
minimum value of R2

val (0.55) was obtained for predicting EC-1 (by STF). 

4. Discussion 

4.1. Prediction of soil properties using spectroscopy-based methods 

4.1.1. Sand, silt, and clay contents 
According to the NRMSE classification guideline, the PLSR models 

and STFs predicted sand0.5, silt, and clay contents with good accuracy 
(NRMSEval values of 10–20) using Vis-NIR reflectance spectra. In addi-
tion, based on the NS classification, the sand0.5 (by PLSR model) and 
clay (by both PLSR model and STF) were predicted with good (NSval 
values of 0.80–0.90); sand0.5 (by STF) and silt (by PLSR model) with 
acceptable (NSval values of 0.65–0.80); and silt (by STF) with unsatis-
factory (NS < 0.65) accuracies. Generally, the values of R2

val and RPIQval 
illustrated very good predictions of sand0.5 and clay (by both PLSR 
models and STFs); good prediction of silt (by PLSR model); and 
acceptable (fair or moderate) prediction of silt (by STF) using Vis-NIR 
reflectance spectra. A bit overestimation of sand0.5 and a bit underesti-
mation of silt and clay were observed when these texture components 
were predicted by both mentioned spectroscopy-based approaches due 
to positive and negative values of MEval, respectively. 

Normally, high content of clay and low content of sand may cause 
darker color in soil due to different mineralogical structure. In general, 
an object (e.g., soil) with darker color tends to has lesser value of Albedo 

coefficient. This is noteworthy to mention, the Albedo coefficient rep-
resents the degree of brightness and changes between 0 (absolute 
darkness) to 1 (absolute brightness). Therefore, different mineralogy 
and physico-chemical properties in soil directly affect soil color and 
consequently affect the absorption/reflection of electromagnetic waves 
in Vis-NIR region. As can be seen from Fig. 1, the mean reflectance 
spectra of the soil samples showed four significant absorption bands 
around 1416, 1915, 2212, and 2340 nm wavelengths. Gomez et al. 
(2008) and Ostovari et al. (2018) stated that these absorption bands are 
mainly related to the overtone of OH stretches (moisture adsorbed to 
clay surface), combination of OH stretches and H-O-H in water mole-
cules trapped in the clay crystal lattice, O-H-metal band and OH stretch 
combinations, and CO3

2– groups in carbonate minerals, respectively. As 
can be seen in Fig. 4, there are several significant B values around 1416, 
1915, and 2212 nm wavelengths to predict soil texture components by 
PLSR approach. According to Eqs. (12) to (14), different reflectance 
bands around these wavelengths were appeared in the developed STFs 
to predict soil texture components, i.e., at 1943 and 2207 nm for sand0.5; 
at 1398, 1434, 1934, and 2180 nm for silt; and at 1381, 1910, and 2214 
nm for clay contents. Although the clay content was predicted with very 
good accuracy by spectroscopy-based methods (R2

val values of 0.81 for 
both developed PLSR model and STFs), but still it is not excellent pre-
diction due to dispersion of the predicted versus the observed points 
around 1:1 line (Fig. 4e and Fig. 11c). It may be due to the type of clay 
minerals. According to Khormali and Abtahi (2003), the major clay 
minerals in the study area (Fars Province) are illite and chlorite with 
some evidences to form smectites (in well drained Alfisols, somewhat 
poorly drained Mollisols, and Calcixerepts with high precipitation). 
They reported the mean value of cation exchange capacity (CEC) in soils 
of Fars Province as 43 cmol(+) kg− 1. The type of major clay minerals and 
relatively low CEC values in the soils of study area show low amount of 
negative charge at clay surface unit, low adsorption capacity for bipolar 
water molecules, and consequently, low absorption of Vis-NIR spectra 
(especially around 1416, 1915, and 2212 nm wavelengths) by soil. 
Generally, with having high CEC value and high adsorption of water 
molecules at clay surface, the absorption of spectra at wavelengths of 
1416, 1915, and 2212 nm can be high and consequently the prediction 
of clay content by Vis-NIR spectra can be accompanied with high ac-
curacy. According to Stenberg et al. (2010) absorption between 1300 
and 1500 nm mainly corresponds to hydroxyl groups in clay minerals 
and water; the strong absorption near to 1900 nm is due to water (hy-
groscopic water and water held within clay mineral structures); and 
absorption between 2100 and 2500 nm is due to the clay minerals (e.g., 
kaolinite, illite, and smectite), carbonates, and organic compounds. 
Mina et al. (2021) and Salehi-Varnousfaderani et al. (2022) found that 
the soils with higher content of clay showed lower values of spectral 
reflectance in Vis-NIR region. Regarding applying PLSR method by using 
Vis-NIR spectral reflectance bands to predict soil texture, Pinheiro et al. 
(2017), in the central Amazon, Brazil, accurately predicted clay (R2

val =

0.78), while moderately predicted sand (R2
val = 0.62) and poorly pre-

dicted silt (R2
val = 0.36). Xu et al. (2018a) reported acceptable to good 

predictions of soil texture components (0.57 ≤ R2 ≤ 0.71) in southeast of 
China. According to Hobley and Prater (2019) in soils of Germany, the 
PLSR method has more capability to predict clay and sand fractions, 
whereas random forest regression performs better for predicting silt 
fraction using Vis-NIR spectra. 

On the other hand, Bilgili et al. (2010) observed the highest corre-
lation between clay content and spectral reflectance at 450 nm wave-
length in Turkish soils, which is in line with our results. Our results are 
also in line with the findings of Xu et al. (2018a) who reported that the 
effective spectral bands for predicting soil texture components are near 
to 480, 920, 1910, and 2200 nm for sand; 780 nm for silt; and in range of 
410–580 nm and at 1410, 1900, 2200, and 2400 nm for clay. Hobley and 
Prater (2019) also reported that the region around 1910 and 2190 nm 
are effective bands to predict clay content. Conforti et al. (2018) 
observed the largest correlation coefficient between sand, silt, and clay 

Fig. 7. The cross validation determination coefficient (R2) values of the partial 
least square regression (PLSR) analysis for developing models to predict natural 
logarithm forms of water-soluble sodium, ln(Na); potassium, ln(K); calcium, ln 
(Ca); and magnesium, ln(Mg) using Vis-NIR spectral reflectance bands by 
applying 1–40 latent variables (in each case the bold black spot shows the best 
number of latent variables). 
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Fig. 8. The partial least square regression (PLSR) analysis results, including scatter plots, goodness of fit criteria, and plots of regression coefficients (B) versus 
wavelengths, to predict natural logarithm forms of water-soluble sodium, ln(Na) (a and b); potassium, ln(K) (c and d); calcium, ln(Ca) (e and f); and magnesium, ln 
(Mg) (g and h) values using Vis-NIR spectral reflectance data (the subscripts cal and val show the calibration and validation datasets, respectively). 
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and Vis-NIR spectra at 1810, 430, and 1840 nm, respectively in soils of 
southern Italy. 

4.1.2. pH, EC, and CCE 
The Vis-NIR reflectance spectra-derived PLSR model and STF pre-

dicted pH with excellent and acceptable accuracies based on the NRMSE 
and NS classification guidelines. Overall, according to R2

val and RPIQval 
values, the pH was predicted with good accuracy by both developed 
PLSR model and STF using Vis-NIR reflectance spectra as predictor. The 
negative values of MEval (− 0.02 and − 0.01 for developed PLSR model 
and STF, respectively) showed a very low underestimation of pH by both 
mentioned spectroscopy-based approaches. According to Viscarra Ros-
sel et al. (2006) and Vohland et al. (2014), intense fundamental mo-
lecular frequencies related to soil components occur in the mid-infrared, 
MIR (2500–25,000 nm) region. They stated that the MIR region is more 
capable to predict soil pH in comparison with Vis-NIR region. It should 
be noted that, although the pH was predicted with good accuracy (based 
on the calculated goodness of fit criteria) by the developed PLSR model 
and STF, the points of predicted versus observed values were not 
concentrated on 1:1 line and they were dispersed (Figs. 6a and 12a). This 
may correspond to low variability of pH in our soil samples. Gomez et al. 
(2012) and Pinheiro et al. (2017) poorly predicted the pH (R2 ≤ 0.40) in 
French and Brazilian soils, respectively, while Conforti et al. (2018) and 
Xu et al. (2018a) predicted pH with good (R2 = 0.70) and very good (R2 

= 0.86) accuracies using Vis-NIR spectroscopy data and PLSR method. 
Our results were in accordance with that of Vohland et al. (2014) who 
reported some key wavelengths to predict pH in range of 1915–2465 
nm. Xu et al. (2018a) also reported several effective spectral data around 
wavelengths of 480, 780, 1120, 1910, 2200, and 2390 nm for predicting 
pH. 

The calculated goodness of fit criteria for validation dataset showed 
that the EC-1 was predicted with poor and unsatisfactory accuracies by 
both developed PLSR model and STF using Vis-NIR reflectance spectra 
based on the NRMSE (>30 %) and NS (<0.65) classification guidelines, 
respectively. Although the NRMSE and NS values were disagreed with 
good prediction of EC-1, generally the mentioned parameter was pre-
dicted with acceptable accuracy by both applied spectroscopy-based 
methods according to R2

val and RPIQval values. In addition, the values 
of MEval (0.03 and 0.1 dS-1 m) showed a bit overestimation of EC-1 when 
both PLSR model and STF were used. Electrical conductivity (EC) is a 
measure of salinity and water-soluble salts values. In calcareous soils of 

arid and semi-arid regions, alkaline water-soluble salts of NaCl, KCl, 
CaCl2, and MgCl2 are predominant and result in the lighter color of soil. 
Therefore, high light color water-soluble salts result in high EC values 
and consequently soil absorb less and reflect more electromagnetic 
waves in Vis-NIR range. The moderate (acceptable) accuracy for pre-
dicting EC-1 by spectroscopy-based methods in the present study can be 
due to the effects of water-soluble salts on soil color and the significant 
correlation of EC-1 with clay and SOM content (with r values of 0.27 and 
− 0.24, respectively). There are several studies in literature, which pre-
dicted EC values moderately with R2 values between 0.45 and 0.61 
(Bilgili et al., 2010; Gholizade et al., 2013; Seifi et al., 2020) and 
accurately with R2 values between 0.69 and 0.94 (Cozzolino et al., 2013; 
Nawar et al., 2014; Nawar et al., 2015; Feyziyev et al., 2016; Srivastava 
et al., 2017; Vibhute et al., 2018) using Vis-NIR spectra and PLSR 
method. In literature, several effective bands have been reported for 
predicting EC in wavelength ranges of 1062–1894 and 1914–2420 nm 
(Zovko et al., 2018); 400–1891, 2017–2165, and 2280–2359 nm (Seifi 
et al., 2020); 417–980 nm (Vibhute et al., 2018); and at wavelengths of 
440 and 490 nm (Gholizade et al., 2013); and 1400 and 2400 nm (Sri-
vastava et al., 2017), which mostly match with our results. 

According to the NRMSE and NS classification guidelines, the CCE 
was predicted with excellent and good accuracies, respectively using 
Vis-NIR reflectance spectra as predictor and by the developed PLSR 
model and STF. Anyway, the CCE was accurately predicted (based on the 
R2

val and RPIQval values) by both developed PLSR model and STF. An 
overestimation was observed for predicting CCE by both mentioned 
spectroscopy-based approaches with positive values of MEval. The car-
bonates, which is represented by CCE in the present study, is a well- 
known soil property that affects spectral reflectance across Vis-NIR re-
gion. Therefore, one of the most obvious absorption bands around 2340 
nm (Fig. 1) is related to carbonates groups (Viscarra Rossel, 2007; Žížala 
et al., 2017; Ostovari et al., 2018). As it is demonstrated, the reflectance 
value at 2335 nm wavelength was appeared in the developed STF (Eq. 
(17)) for predicting CCE. In addition, there were 14 other single bands 
across the full range of spectra in Vis-NIR region that were included to 
develop CCE-STF. It may be due to significant effects of CCE on soil 
color. Generally, soils with high contents of sand and lime (CaCO3) and 
low contents of clay and SOM have lighter color and consequently 
absorb less and reflect more electromagnetic waves in the Vis-NIR range 
(Mozaffari et al., 2022c). Very good prediction of CCE in a wide range 
(12.5–70.6 %) by using 15 single bands can be very useful in deter-
mining this property in calcareous soils with less usage of chemicals, 
while saving time and costs. Khayamim et al. (2015) and Bilgili et al. 
(2010) predicted CCE with acceptable accuracy in Iranian and Turkish 
soils (R2 values of 0.54 and 0.65, respectively). While, Ostovari et al. 
(2018) and Mina et al. (2021) in calcareous soils of Iran, Summers et al. 
(2011) in Australian and Gomez et al. (2012) in French soils accurately 
predicted CCE (0.69 ≤ R2 ≤ 0.76) using Vis-NIR spectroscopy combined 
with PLSR method which are in line with our result. Regarding the 
effective single bands to predict CCE, Bilgili et al. (2010) observed 
relatively high correlations between CaCO3 and spectral reflectance 
bands in the Vis (350–700 nm) and at the end of NIR (near 2500 nm) 
ranges. Ostovari et al. (2018) highlighted CaCO3 content has a signifi-
cant (p < 0.05) correlation with some spectral bands at 571, 645, 805, 
1418, and 2348 nm wavelengths. Summers et al. (2011) and Khayamim 
et al. (2015) also reported the high correlation between CaCO3 and 
spectral data at 2325 and 2338 nm wavelengths. The appeared effective 
bands in Eq. (17) are close to those reported by the mentioned 
researchers. 

4.1.3. Water-soluble Na, K, Ca, and Mg 
The PLSR approach by using Vis-NIR reflectance spectra predicted ln 

(Na), ln(K), and ln(Mg) with good and acceptable accuracies, while 
predicted ln(Ca) with the excellent and unsatisfactory accuracies based 
on NRMSE and NS classification guidelines, respectively. Generally, the 
PLSR approach showed a good capability for predicting ln(Na), ln(K), 

Fig. 9. The cross validation determination coefficient (R2) values of the partial 
least square regression (PLSR) analysis for developing models to predict natural 
logarithm of DTPA-extractable iron, ln(Fe); DTPA-extractable manganese, Mn; 
and copper, Cu; and natural logarithm of DTPA-extractable zinc, ln(Zn) using 
Vis-NIR spectral reflectance bands by applying 1–40 latent variables (in each 
case the bold black spot shows the best number of latent variables). 
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Fig. 10. The partial least square regression (PLSR) analysis results, including scatter plots, goodness of fit criteria, and plots of regression coefficients (B) versus 
wavelengths, to predict natural logarithm of DTPA-extractable iron, ln(Fe) (a and b); DTPA-extractable manganese, Mn (c and d); and copper, Cu (e and f); and 
natural logarithm of DTPA-extractable zinc, ln(Zn) (g and h) values using Vis-NIR spectral reflectance data (the subscripts cal and val show the calibration and 
validation datasets, respectively). 
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and ln(Mg) and acceptable capability for predicting ln(Ca) according to 
R2

val and RPIQval values. Prediction of all natural logarithm forms of 
water-soluble cations by PLSR method was accompanied by underesti-
mation with − 0.2 ≤ MEval ln(mg L-1) ≤ -0.02. On the other hand, the 
developed STFs predicted ln(Na) and ln(K) with fair accuracy; ln(Ca) 
with excellent accuracy; and ln(Mg) with good accuracy based on the 
classification guideline of NRMSE. While, according to NS classification, 
all natural logarithm forms of water-soluble cations were predicted with 
unsatisfactory accuracy by the developed STFs. In general, there were an 
acceptable accuracy for predicting ln(Na) and ln(Ca) and good accuracy 
for predicting ln(K) and ln(Mg) based on R2

val and RPIQval criteria by 
STFs and Vis-NIR reflectance spectra. Similar to PLSR results, un-
derestimations of ln(Na), ln(K), and ln(Mg) were observed with the 
negative values of MEval when STFs were used, while the MEval value for 
predicting ln(Ca) was zero. 

The extractable Na, K, Ca, and Mg can be assessed with reflectance 
data based on clay, SOM, and CCE to which they are correlated, but with 
due consideration of the lack of physical causality (Bilgili et al., 2010). 
In the present study, the water-soluble forms of these base cations were 
investigated. Table 3 shows that the ln(Na), ln(K), ln(Ca), and ln(Mg) 
negatively correlated with clay content (r values of − 0.31, − 0.28, 

− 0.31, and − 0.27, respectively). It can be concluded that, in soils with 
high content of clay, these bases were predominantly adsorbed to 
negatively charged clay surfaces and lesser values remain in the soil 
solution. In addition, the ln(K) positively correlated with SOM content 
(r = 0.35). Furthermore, the mentioned cations are the predominant 
water-soluble bases in calcareous soils of the arid and semi-arid regions. 
These water-soluble salts can result in lighter color of soils that directly 
affect the absorption/reflection of spectra in Vis-NIR region. The 
acceptable to good prediction accuracies for these cations (0.60 ≤ R2

val ≤

0.74) using Vis-NIR reflectance spectra by applying PLSR models and 
STFs may be due to the mentioned reasons. It is expected that predicting 
exchangeable forms of the mentioned bases using spectroscopy-based 
methods be more accurate than that of their water-soluble forms due 
to more correlation between their exchangeable forms and clay and 
SOM contents which can be accurately assessed by Vis-NIR spectra. 
Regarding capability of PLSR using Vis-NIR spectra as predictor to 
predict alkaline cations, similar to our results, Mouazen et al. (2010), in 
soils of Belgium and Northern France, predicted exchangeable Na, K, 
and Mg with acceptable, good, and very good accuracies (0.60 < R2 <

0.80) and reported some effective spectral bands in wavelength ranges 
of 453–900 and 1400–2448 nm for their prediction. While, Pinheiro 

Fig. 11. Scatter plots of the observed versus predicted (a) square root of sand content, sand0.5 (Eq. (12)); (b) silt (Eq. (13)); and (c) clay (Eq. (14)) contents using 
effective Vis-NIR spectral reflectance bands as predictors by applying the stepwise multiple linear regression (SMLR) method along with the goodness of fit criteria 
(the subscripts cal and val show the calibration and validation datasets, respectively). 
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et al. (2017) poorly predicted exchangeable Ca, by some effective 
spectral reflectance bands in wavelength ranges of 400–1000 and 
2100–2500 nm, and Mg, by these in full range of spectra, (R2 values of 
0.40 and 0.33, respectively). Srivastava et al. (2017) in Indian soils 
accurately predicted water-soluble Na and Ca + Mg by R2

val values of 
0.86 and 0.83, respectively. Bilgili et al. (2010) poorly predicted 
exchangeable Na and K (R2 values of 0.19 and 0.38, respectively), while 
predicted exchangeable Ca and Mg with good and acceptable accuracies 
(R2 values of 0.68 and 0.55, respectively). They reported significant 
correlation between spectral reflectance data with exchangeable Na 
near 350 nm and in 1500–2000 nm range; with exchangeable K and Mg 
in 350–1500 nm range; and with exchangeable Ca in 350–500 and 
1800–2500 nm ranges. 

4.1.4. DTPA-extractable Fe, Mn, Cu, and Zn 
The developed PLSR models and STFs using Vis-NIR reflectance 

spectra predicted ln(Fe) and ln(Zn) with good; Mn with poor; and Cu 
with fair accuracies based on the NRMSE. Furthermore, based on the NS 
classification guidelines the mentioned approaches predicted all of the 
mentioned soil properties, acceptably. Overall, according to the values 
of R2

val (0.68–0.74) and RPIQval (2.32–3.37), the ln(Fe), Mn, Cu, and ln 
(Zn) were predicted by good accuracy using the applied spectroscopy- 

based approaches and the spectral reflectance data in Vis-NIR region. 
In addition, the negative values of MEval indicated that there was a bit 
underestimation for predicting of the studied soil properties using the 
mentioned approaches. The DTPA-extractable micronutrients can 
adsorb onto clay and SOM surfaces due to their positive charges. As can 
be seen in Table 3, the ln(Fe), Mn, Cu, and ln(Zn) are highly correlated 
with SOM with r values of 0.44, 0.74, 0.47, and 0.54, respectively. 
Single-site studies have shown that SOM enhances the metal concen-
tration and bioavailability in soils (Marschner and Kalbitz, 2003; 
Loveland and Webb, 2003; Luo et al., 2016). The direct and positive 
effects of SOM on ln(Fe), Mn, Cu, and ln(Zn) availability may be 
attributed to the capacity of SOM to form soluble complexes with metals, 
thus decreasing their sorption and increasing their mobility (Habiby 
et al., 2014; Moreno-Jiménez et al., 2019; Tayebi et al. 2021). 
Furthermore, the positive correlation between clay content and ln(Fe) 
and Cu (with r values of 0.45 and 0.27, respectively) and negative cor-
relation between CCE and ln(Fe), Mn, Cu, and ln(Zn) (with r values of 
− 0.26, − 0.33, − 0.32, and − 0.19, respectively) are other reasons for 
good predictions of DTPA-extractable micronutrients by spectral 
reflectance data in Vis-NIR range. In addition to these reasons, these 
micronutrients can directly affect soil color, i.e., Fe and Cu make soils to 
have stronger color (red to brown); Mn makes soils darker; and Zn makes 

Fig. 12. Scatter plots of the observed versus predicted (a) pH of saturated paste, pH (Eq. (15)); (b) inverse of electrical conductivity of saturated extract, EC-1 (Eq. 
(16)); and (c) calcium carbonate equivalent, CCE (Eq. (17)) values using effective Vis-NIR spectral reflectance bands as predictors by applying the stepwise multiple 
linear regression (SMLR) method along with the goodness of fit criteria (the subscripts cal and val show the calibration and validation datasets, respectively). 
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soils lighter. According to Table 3, the correlations of DTPA-extractable 
micronutrients with SOM content were ranked as: Mn > ln(Zn) > Cu ≈
ln(Fe); and with clay content were ranked as: ln(Fe) > Cu > ln(Zn) >
Mn. In addition, the mentioned micronutrients were correlated with 
CCE as: Mn ≈ Cu > ln(Fe) > ln(Zn). Therefore, the combination of 
correlations between micronutrients and basic soil properties (i.e., clay, 
SOM, and CCE) and their direct effects on soil color has resulted in 
relatively same levels of accuracy for predicting studied micronutrients 
using spectroscopy-based methods and Vis-NIR spectral reflectance 
data. The developed STFs (Eqs. (22) to (25)) are simple and easy to use 
with good capability to predict micronutrients, which are highly rec-
ommended to apply in calcareous soils. Therefore, our expectations 
regarding prediction of the mentioned micronutrients were met. 
Regarding PLSR capability to predict micronutrients, Johnson et al. 
(2019) reported poorly prediction of Mehlich-3 extractable Fe, Mn, Cu, 
and Zn with R2

cv values of 0.38, 0.32, 0.43, and 0.44 using NIR spectral 
reflectance bands for soils of 20 sub-Saharan African countries. Terra et 
al (2015) in Brazilian soils predicted DTPA-Triethanol Amine (TEA) 
extractable Fe and Zn with poor accuracy (R2

val values of 0.39 and 0.26), 
Mn with moderate accuracy (R2

val = 0.54), and Cu with good accuracy 

(R2
val = 0.69) using spectral reflectance bands in Vis-NIR range. Singh 

et al. (2019) in soils of Papua New Guinea predicted DTPA-extractable 
Fe, Mn, and Cu with substantial accuracy and predicted Zn with poor 
accuracy using NIR diffuse reflectance spectroscopy. In addition, Moron 
and Cozzolino (2003) in soils of Uruguay reported some important and 
effective bands in range of 400–800 nm, around 1100 and 1400 nm, and 
in range of 1900–2500 nm to estimate Fe, Cu, and Zn. They stated that 
strong correlation between micronutrients and spectral reflectance data 
at 1400 and 1900 nm and between 2200 and 2400 nm is attributed to 
the adsorption features of micronutrients oxides and with secondary 
clay mineral adsorption. Singh et al. (2019) stated that the characteristic 
absorption features around 550 and 850 nm may be linked with elec-
tronic transitions of Fe2+ and Fe3+. Wu et al. (2007) in eastern soils of 
China reported high correlation (r > 0.40) with spectral reflectance 
bands and values of Fe, Cu, and Zn (measured by inductively coupled 
plasma-atomic emission spectroscopy, ICP-AES method) in ranges of 
400–600 and 1000–2500 nm. 

Fig. 13. Scatter plots of the observed versus predicted (a) natural logarithm forms of water-soluble sodium, ln(Na) (Eq. (18)); (b) potassium, ln(K) (Eq. (19)); (c) 
calcium, ln(Ca) (Eq. (20)); and (d) magnesium, ln(Mg) (Eq. (21)) values using effective Vis-NIR spectral reflectance bands as predictors by applying the stepwise 
multiple linear regression (SMLR) method along with the goodness of fit criteria (the subscripts cal and val show the calibration and validation datasets, respectively). 
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Fig. 14. Scatter plots of the observed versus predicted (a) natural logarithm of DTPA-extractable iron, ln(Fe) (Eq. (22)); (b) DTPA-extractable manganese, Mn (Eq. 
(23)); and (c) copper, Cu (Eq. (24)); and (d) natural logarithm of DTPA-extractable zinc, ln(Zn) (Eq. (25)) values using effective Vis-NIR spectral reflectance bands as 
predictors by applying the stepwise multiple linear regression (SMLR) method along with the goodness of fit criteria (the subscripts cal and val show the calibration 
and validation datasets, respectively). 

Fig. 15. Comparing the determination coef-
ficient of validation dataset (R2

val) values of 
the developed partial least square regression 
(PLSR) models and spectrotransfer functions 
(STFs) (Eqs. (12) to (25)) using Vis-NIR 
reflectance spectra to predict the studied 
soil properties (Sand0.5: square root of sand 
content; Silt: silt content; Clay: clay content; 
pH: pH of saturated paste; EC-1: inverse of 
electrical conductivity of saturated extract; 
CCE: calcium carbonate equivalent (lime); ln 
(Na), ln(K), ln(Ca), and ln(Mg): natural log-
arithms (ln) of water-soluble sodium, potas-
sium, calcium, and magnesium, respectively; 
ln(Fe) and ln(Zn): natural logarithms of 
DTPA-extractable iron and zinc, respectively; 
Mn and Cu: DTPA-extractable manganese 
and copper, respectively).   
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4.2. Comparing capability of the developed PLSR models and STFs to 
predict soil properties 

The PLSR models showed a better performance compared to STFs to 
predict sand0.5, silt, pH, EC-1, ln(Na), ln(K), ln(Ca), ln(Mg), ln(Fe), Cu, 
and ln(Zn) using Vis-NIR reflectance spectra with R2

val values increases of 
6.4, 8.1, 7.6, 14.5, 17.5, 7.7, 3.3, 7.6, 5.7, 4.2, and 1.5 %, respectively. In 
contrast, an increase of 1.2 % was observed in R2

val of STF compared to 
PLSR model developed for predicting CCE. In addition, there were no 
differences in R2

val values between the developed PLSR models and STFs 
to predict clay and Mn. Although the PLSR models resulted in better 
capabilities compared to STFs for predicting most of the studied soil 
properties, their capabilities differences were not significant. The 
maximum difference between capability of the developed PLSR model 
and STF was observed in predicting ln(Na) with a R2

val difference of 0.11 
(17.5 %). The better performance of PLSR models compared to STFs may 
be related to adding ≥ 10 LVs and including more bands in modeling 
procedure that have multi-collinearity. But the STFs are so easy to use 
and applicable with acceptable, good, and very good accuracies for 
predicting studied basic soil properties which shows our procedure to 
select the important and effective Vis-NIR reflectance single bands for 
developing STFs was sound and appropriate. All studied soil properties 
were predicted with R2

val values ≥ 0.55 using Vis-NIR spectra by both of 
the applied spectroscopy-based methods. Generally, the developed STFs 
(Eqs. (12) to (25)) predicted sand0.5, clay, and CCE with very good ac-
curacy; pH, ln(K), ln(Mg), ln(Fe), Mn, Cu, and ln(Zn) with good accu-
racy; and silt, EC-1, ln(Na), and ln(Ca) with acceptable accuracy using 
Vis-NIR reflectance spectra as predictor. 

Overall, the following points are recommended for future studies: 1) 
the new STFs be developed for predicting other soil physical and 
chemical properties, which have not been investigated in the present 
study; 2) the new STFs with various pre-processing techniques (e.g., the 
first-order derivative) be developed for predicting studied soil properties 
to test if it yields better results; 3) our developed STFs be tested for 
predicting different soil physical and chemical properties in the other 
regions including non-calcareous soils; 4) our procedure for selecting 
effective spectral single bands be used for developing STFs and pre-
dicting soil properties; and more importantly 5) for predicting different 
soil properties using spectroscopy-based methods, researchers pay spe-
cial attention to develop simple, easy to use, and applicable STFs. 

5. Conclusion 

Accurate prediction of basic soil physical and chemical properties 
using spectroscopy-based methods (as a rapid, timely, non-destructive, 
low-preparation, and less expensive analysis of soil samples) can be 
very valuable. The current study was carried out in order to predict basic 
soil properties of calcareous soils in Fars Province, Iran using Vis-NIR 
reflectance spectra. Results indicated that accuracy of the developed 
PLSR models were better than STFs for predicting most of the studied 
basic soil physical and chemical properties, however their performance 
differences were not significant. The STFs were developed using the 
minimum 11, for predicting pH and ln(Zn), and maximum 17, for pre-
dicting silt and Mn, effective spectral reflectance single bands in Vis-NIR 
region. The sand0.5, clay, and CCE were predicted with very good ac-
curacy (0.78 ≤ R2

val ≤ 0.83); pH, ln(K), ln(Mg), ln(Fe), Mn, Cu, and ln 
(Zn) were predicted with good accuracy (0.65 ≤ R2

val ≤ 0.71); and silt, 
EC-1, ln(Na), and ln(Ca) were predicted with acceptable (fair or mod-
erate) accuracy (0.55 ≤ R2

val ≤ 0.63) by STFs. The developed STFs are 
highly recommended for predicting sand0.5, clay, CCE, pH, ln(K), ln 
(Mg), ln(Fe), Mn, Cu, and ln(Zn) in calcareous soils in order to map soils 
in large scales as an easily approach without using chemicals for soil 
analysis, which are harmful for human health and environment, as well 
as saving time and money. The developed STFs may also work well in 
non-calcareous soils; however, their applicability should be tested 
before using. 
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Terra, F.S., Demattê, J.A.M., Viscarra Rossel, R.A., 2015. Spectral libraries for 
quantitative analyses of tropical Brazilian soils: Comparing vis-NIR and mid-IR 
reflectance data. Geoderma 255–256, 81–93. 

Thomas, G. W. (1996). Soil pH and soil asidity, in: Sparks, D.L., Page, A.L., Helmke, P.A., 
Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E. 
(Eds.), Methods of Soil Analysis, Part 3, Chemical and Microbiological Properties. 
American Society of Agronomy and Soil Science Society of America, Madison, 
Wisconsin, USA, pp. 475-490. 

Tsakiridis, N.L., Theocharis, J.B., Panagos, P., Zalidis, G.C., 2019. An evolutionary fuzzy 
rule-based system applied to the prediction of soil organic carbon from soil spectral 
libraries. Appl. Soft Comput. 81, 105504. 

Vasava, H.B., Gupta, A., Arora, R., Das, B.S., 2019. Assessment of soil texture from 
spectral reflectance data of bulk soil samples and their dry-sieved aggregate size 
fractions. Geoderma 337, 914–926. 

Vibhute, A.D., Kale, K.V., Mehrotra, S.C., Dhumal, R.K., Nagne, A.D., 2018. 
Determination of soil physicochemical attributes in farming sites through visible, 
near-infrared diffuse reflectance spectroscopy and PLSR modeling. Ecol. Process. 7, 
26. 

Viscarra Rossel, R.A., 2007. Robust modelling of soil diffuse reflectance spectra by 
“bagging-partial least squares regression”. J. Near Infrared Spectrosc. 15, 39–47. 

Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O., 
2006. Visible, near infrared, mid infrared or combined diffuse reflectance 
spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 
59–75. 

Vohland, M., Ludwig, M., Thiele-Bruhn, S., Ludwig, B., 2014. Determination of soil 
properties with visible to near- and mid-infrared spectroscopy: Effects of spectral 
variable selection. Geoderma 223–225, 88–96. 

Wilding, L.G., 1985. Soil spatial variability: Its documentation, accommodation and 
implication to soil surveys, in: Nielsen, D.R., Bouma, J. (Eds.), Soil Spatial Variability 

Proceedings of a Workshop of the ISSS and the SSA. Las Vegas PUDOC, Wageningen, 
USA, pp. 166-187. 

Wold, S., Martens, H., Wold, H., 1983. The multivariate calibration problem in chemistry 
solved by the PLS method, in: Kågström, B., Ruhe, A. (Eds.), Matrix Pencils, Lecture 
Notes in Mathematics. Springer, Heidelberg, Berlin, 973, pp. 286-293. 

Wu, Y., Chen, J., Ji, J., Gong, P., Liao, Q., Tian, Q., Ma, H., 2007. A mechanism study of 
reflectance spectroscopy for investigating heavy metals in soils. Soil Sci. Soc. Am. J. 
71, 918–926. 

Xu, D., Ma, W., Chen, S., Jiang, Q., He, K., Shi, Z., 2018a. Assessment of important soil 
properties related to Chinese Soil Taxonomy based on vis-NIR reflectance 
spectroscopy. Comput. Electron. Agric. 144, 1–8. 

Xu, C., Xu, X., Liu, M., Liu, W., Yang, J., Luo, W., Zhang, R., Kiely, G., 2017. Enhancing 
pedotransfer functions (PTFs) using soil spectral reflectance data for estimating 
saturated hydraulic conductivity in southwestern China. Catena 158, 350–356. 

Xu, S., Zhao, Y., Wang, M., Shi, X., 2018b. Comparison of multivariate methods for 
estimating selected soil properties from intact soil cores of paddy fields by Vis-NIR 
spectroscopy. Geoderma 310, 29–43. 

Yang, Y., Viscarra Rossel, R.A., Li, S., Bissett, A., Lee, J., Shi, Z., Behrens, T., Court, L., 
2019. Soil bacterial abundance and diversity better explained and predicted with 
spectro-transfer functions. Soil Biol. Biochem. 129, 29–38. 

Zhang, Y., Biswas, A., Ji, W., Adamchuk, V.I., 2017. Depth-specific prediction of soil 
properties in situ using vis-NIR spectroscopy. Soil Sci. Soc. Am. J. 81, 993–1004. 

Zhao, L., Hong, H., Fang, G., Algeo, T.J., Wang, C., Li, M., Yin, K., 2020. Potential of 
VNIR spectroscopy for prediction of clay mineralogy and magnetic properties, and 
its paleoclimatic application to two contrasting Quaternary soil deposits. Catena 
184, 104239. 
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