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A B S T R A C T

Chimera states, important forms of spatiotemporal self-organization in ensembles of identical oscillators, have
been found in a wide variety of systems, provided that the coupling between the oscillators was nonlocal
or global. Therefore, it is generally assumed that a locally coupled oscillatory medium, as described by the
complex Ginzburg–Landau equation (CGLE), does not support chimera states. Here we show an alternative
mechanism that does indeed lead to chimera states in a purely locally-coupled system, namely the interaction
of an oscillatory medium, in the present case the CGLE, with a bistable internal degree of freedom.
1. Introduction

Chimera states in ensembles of identical nonlinear oscillators have
been the subject of intense theoretical and experimental research
(see [1–5] for excellent reviews). The term chimera was first coined
in [6] in relation to previous results by Kuramoto and his coworkers [7,
8]. In a chimera state, an ensemble of identical oscillators splits into
two domains, one consisting of synchronous oscillators and the other
of incoherent ones [6].

Chimeras have been associated with a variety of systems, ranging
from biological and neuronal, to ecological and technological [9].
Initially, they were considered a peculiar coexistence of synchronized
and desynchronized states, but after one decade chimera states turned
out to be an important new paradigm of nonlinear dynamics at the
interface of physical and life sciences [4]. Chimeras have been dis-
cussed to be related to uni-hemispheric sleep of aquatic mammals and
migratory birds [10] and electrocorticographic recordings of epileptic
seizures [11,12]. Chimera states have also been linked to power grid
outages and optomechanics [4].

In the early work, a nonlocal spatial coupling of the oscillators
was believed to be an essential feature for the occurrence of chimera
states [6–8,13–17]. Meanwhile, however, many examples of chimera
states are known to emerge under a strictly global coupling [18–21].
This is in contrast to the case of ‘true’ or ‘genuine’ nearest-neighbor,
i.e. local or diffusive, coupling, where chimeras have not been reported
yet. With ‘true’ we indicate here that there is no time-scale separa-
tion because it is not possible to adiabatically eliminate fast diffusive
degrees of freedom, which constitutes an effective nonlocal spatial
coupling [7]. Formation of chimera states under local coupling with
time-scale separation in the dynamics was discussed by Laing in [22].

∗ Corresponding author.
E-mail addresses: vladimir.garcia@uv.es (V. García-Morales), jose.a.manzanares@uv.es (J.A. Manzanares), krischer@ph.tum.de (K. Krischer).

In this article we describe a new, robust mechanism for the emer-
gence of chimera states in a spatially-extended system. Contrarily to
all previous works, this mechanism requires no special form of spatial
coupling, i.e., it works for strictly local coupling as well and it is
thus not linked to any specific interaction function (or, in a wider
sense, network topology). Rather, it assumes a local dynamics that
requires three variables, the third variable introducing a bistability
which allows the coexistence of qualitatively different oscillatory be-
haviors, among them synchrony and turbulence. The novel mechanism
here reported also works as a general model for coexisting dynamical
regimes. No-time scale separation is present in the purely local coupling
of the identical oscillators. We call this a genuine local coupling and we
demonstrate below the emergence of chimeras under these conditions.
Key for the formation of these chimera states are the nonlinearity
and the control parameters that set the oscillatory regime close to a
supercritical pitchfork–Hopf bifurcation [23]. To observe this bifur-
cation, in addition to some base oscillator, that needs at least two
variables, a third variable is needed that modifies the local properties
of the oscillator. Thus, in chemical systems, for example, a minimum of
three chemical species is needed (in electrochemical systems, since the
double layer potential is also a dynamical variable [24], a minimum of
two chemical species would be needed).

The outline of this article is as follows. In Section 2 we present
our model and discuss its most prominent features. In Section 3, the
uniform solution is described and its stability in parameter plane is
established. In Section 4 we show numerical simulations of the model
that confirm the intuitions conveyed in Section 3. In Section 5 we
establish another important result: a criterion to find chimera states in
the parameter plane in our model. Finally, in Section 6 we describe how
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the model can be used to describe the coexistence of qualitatively differ-
ent dynamical behaviors which we illustrate with other spatiotemporal
patterns.

2. Model

The nonlinear oscillators are modeled by an order parameter 𝑊 (𝑥, 𝑡)
∈ C and an internal degree of freedom 𝜂(𝑥, 𝑡) ∈ R where 𝑥 is the position
of each oscillator and 𝑡 time. The order parameter 𝑊 = |𝑊 |ei𝜑, with
amplitude |𝑊 | and phase 𝜑, is the solution of a complex Ginzburg–
Landau equation (CGLE) [25–27]. The spatiotemporal evolution of the
system is governed by the equations

𝜕𝑡𝑊 = 𝑊 + (1 + i𝑐1)𝜕2𝑥𝑊 − (1 + i𝑐2(𝜂))|𝑊 |

2 𝑊 , (1)

𝜕𝑡𝜂 = 𝜇𝜂 + 𝜕2𝑥𝜂 − 𝜂
3, (2)

where

𝑐2(𝜂) = 𝑎𝜂 − 𝑏 (3)

and 𝑐1, 𝜇, 𝑎, 𝑏 ∈ R are constants. The combination of a CGLE with
an imperfect pitchfork bifurcation has previously been used, with a
different coupling between 𝑊 and 𝜂, to describe birhytmic dynamics
in a reaction–diffusion system [28,29].

The oscillators are identical because Eqs. (1) and (2) are invariant
under the simultaneous translation transformations 𝑊 (𝑥, 𝑡) → 𝑊 (𝑥 −
𝑑, 𝑡) and 𝜂(𝑥, 𝑡) → 𝜂(𝑥 − 𝑑, 𝑡). The internal variable 𝜂 is analogous
to a locally-averaged magnetic dipole moment of the oscillators. The
ensemble behaves, with respect to 𝜂, like a ‘ferromagnetic substance’
in the absence of an externally-applied magnetic field. The value 𝜇 =
0 of the control parameter corresponds then to a critical point in a
continuous phase transition.

We note that Eq. (1) is coupled to Eq. (2) only through the function
𝑐2(𝜂). Eq. (2) is decoupled from Eq. (1) and can be studied separately.
The local dynamics of Eq. (2) is given by �̇� = 𝜇𝜂 − 𝜂3, which is the
normal form of a supercritical pitchfork bifurcation. For 𝜇 < 0, the
unique fixed point 𝜂∗0 = 0 is stable. For 𝜇 > 0, the fixed point 𝜂∗0
is unstable and there are two stable, symmetry-breaking fixed points
𝜂∗+ =

√

𝜇 and 𝜂∗− = −
√

𝜇. The spatiotemporal dynamics of Eq. (2),
with its diffusion term, is then easily understood. For 𝜇 < 0 and any
arbitrary initial condition, 𝜂(𝑥, 𝑡) reaches the stationary and spatially-
homogeneous profile 𝜂∗(𝑥) = 𝜂∗0 . For 𝜇 > 0, the stationary state reached
depends on the initial condition 𝜂(𝑥, 0). On the one hand, both uniform
nontrivial steady states (𝜂∗+ or 𝜂∗−) are stable. On the other hand, there
is also a wide variety of stable non-uniform profiles consisting of a
collection of spatial domains (fronts) whose bulks are, alternatively, in
states 𝜂∗+ and 𝜂∗− (domains with bulk value 𝜂∗0 being absent) separated
by an even number of stationary (Ising) walls. We shall call a domain
with bulk value 𝜂∗+ a plus-domain and a domain with bulk value 𝜂∗− a
minus-domain.

From Eq. (2) the shape of the stationary Ising walls 𝜂∗IW(𝑥) is given
by the solution of 0 = 𝜇𝜂∗IW + 𝜕2𝑥𝜂

∗
IW − (𝜂∗IW)3. For a wall centered at

𝑥 = 𝑥0 the solutions read 𝜂∗IW(𝑥) = ±
√

𝜇 tanh
[

(𝑥 − 𝑥0)
√

𝜇∕2
]

where
the positive sign (resp. negative) describes the wall obtained in passing
from a minus-domain to a plus-domain (resp. from a plus-domain to a
minus-domain) with increasing 𝑥.

In Fig. 1 we illustrate the behavior of Eq. (2) for 𝜇 > 0. The initial
condition is a pulse of the form 𝜂(𝑥, 0) = sech 𝑥2 + 𝜉(𝑥) with 𝜉(𝑥) is
a small-amplitude uniform noisy signal. We consider a 1D ring with
periodic boundary conditions for simplicity. Then, the order parameter
𝜂(𝑥, 𝑡) evolves to a stationary profile 𝜂∗(𝑥) formed by one plus and one
minus domain separated by Ising walls.
2

Fig. 1. (a) Spatiotemporal evolution of 𝜂 (shown are 100 time steps) as provided by
Eq. (2) for a ring of size 𝐿 = 100, 𝜇 = 1 and a real-valued initial condition consisting
of a pulse at 𝑥 = 0 plus added noise; (b) Spatial distribution of 𝑐2 given by Eq. (3)
once the stationary spatial profile is reached.

3. The synchronous oscillation and its stability

Let us now evaluate the impact of this behavior in Eq. (1) as the
parameter 𝜇 is varied in Eq. (2). When 𝜇 < 0, since 𝜂∗(𝑥) = 0, after a
transient from Eq. (3) we have that 𝑐2 = −𝑏 in Eq. (1). We note that, in
this regime the uniform, synchronous oscillation of the trivial state

𝑊 (𝑥, 𝑡) = e−i𝑐2𝑡 = ei𝑏𝑡 (4)

is a solution of Eq. (1). This synchronous oscillation is linearly stable if

𝑐1𝑐2 = −𝑐1𝑏 > −1 (5)

and unstable otherwise. The line 𝑐1𝑐2 = −1 is the Benjamin–Feir
(BF) line, that gives the transition from a stable uniform oscillation
to instability in the form of turbulence [25]. If 𝑐2 = −𝑏 is fixed and
𝑐1 is increased, a transition from synchrony to turbulence is observed:
gradually more Fourier modes become unstable as Eq. (5) is more
strongly violated. We thus observe either synchrony or turbulence and
no coexistence between the two is possible.

We note that, for 𝜇 < 0, at the stationary state of Eq. (2), Eq. (1)
has an S1 symmetry because it is equivariant under a change 𝑊 (𝑥, 𝑡) →
ei𝜙𝑊 (𝑥, 𝑡) (where 𝜙 ∈ R is an arbitrary constant). Besides, it has an O(2)
symmetry generated by translation invariance 𝑊 (𝑥, 𝑡) → 𝑊 (𝑥−𝑑, 𝑡) and
reflection, 𝑊 (𝑥, 𝑡) → 𝑊 (−𝑥, 𝑡). The consequence of these symmetries is
that spatiotemporal nontrivial solutions of Eq. (1) for 𝑊 (𝑥, 𝑡) live on a
two-torus with S1 × O(2) symmetry.

For 𝜇 > 0 the stationary state 𝜂∗(𝑥) = 𝜂∗0 = 0 of Eq. (2) loses stability
and, for suitable perturbations, a continuous stationary profile 𝜂∗(𝑥)
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Fig. 2. Spatiotemporal evolution of the absolute value |𝑊 | (left panels) and the phase
𝜑 (right panels) of the complex order parameter 𝑊 for 𝑎 = 0.2, 𝑏 = 0.5 (a); 𝑎 = 0.75,
𝑏 = 2.25 (b) and 𝑎 = 0.75, 𝑏 = 1.2 (c). Other parameter values are 𝜇 = 1 and 𝑐1 = 0.7.

emerges which consists of domains with bulk values 𝜂∗± = ±
√

𝜇 sep-
arated by Ising walls, as described above. Since now, at the stationary
state of Eq. (2), 𝑐2(𝑥) = 𝑐2(𝜂∗) = 𝑎𝜂∗(𝑥) − 𝑏 is spatially dependent, the
O(2) symmetry of Eq. (1) is broken. The consequence of this symmetry
breaking is that the oscillators arrange into two different kinds of
domains (plus and minus-domains) whose qualitative features depend
on whether the bulk value is 𝜂∗+ or 𝜂∗−. This O(2) symmetry breaking is
the essence behind the separation of the, otherwise identical, oscillators
into two distinguished groups. Note that the system of Eqs. (1) and (2)
is always O(2) invariant, regardless of the value of 𝜇, but Eq. (1) taken
alone is O(2) invariant only for 𝜇 < 0, once the stationary state of Eq. (2)
is reached.

4. Numerical integration of the model

To better understand the implications of this emergence of different
domains, we show in Fig. 2 the spatiotemporal evolution of the absolute
value |𝑊 | (left panels) and the phase 𝜑 (right panels) of the complex
order parameter 𝑊 for 𝜇 = 1 and 𝑐1 = 0.7 and different choices of
the parameters 𝑎 and 𝑏. The initial condition for 𝜂 is the same as in
Fig. 1. The spatiotemporal evolution is obtained by using a spectral
3

Fig. 3. Average frequency of the oscillators depending on their spatial position 𝑥 for
the chimera pattern of Fig. 2(c).

method with 1024 Fourier modes, periodic boundary conditions and,
in Fourier space, the so-called exponential time stepping algorithm
ETD2RK described in [30]. In Fig. 2a the parameter values 𝑎 = 0.2, 𝑏 =
0.5 lead to the stationary bulk values 𝑐2(𝜂∗+) = −0.3 and 𝑐2(𝜂∗−) = −0.7.
These bulk values refer to spatial domains with qualitatively different
behavior: Since, locally, 𝑐1𝑐2 > −1 for these two bulk values, the homo-
geneous oscillation is locally stable to long-wavelength perturbations
in both domains separately. Besides, other individual Fourier modes
can be stable in these domains (depending on their size). This leads
to the formation of coherent structures on each of the two phases.
In Fig. 2a it is seen that the plus-domain (𝑥 ∈ [−30, 15]) displays a
homogeneous oscillation while the minus-domain presents a stationary,
coherent structure with different spatial periodicity but with the same
frequency as the plus domain.

In Fig. 2b the parameter values 𝑎 = 0.75, 𝑏 = 2.25 lead to the
stationary bulk values 𝑐2(𝜂∗+) = −1.5 and 𝑐2(𝜂∗−) = −3. Since now
𝑐1𝑐2 < −1 for either 𝑐2 value, the uniform oscillation is everywhere
unstable, the whole ring being in a turbulent regime. However, since
𝑐2(𝜂∗−) < 𝑐2(𝜂

∗
+), the minus-domain is deeper within the turbulent regime

than the plus-domain. This is compellingly reflected by the fact that
the average density of phase defects [31] is higher in the minus-
domain than in the plus-domain. Two different turbulent phases coexist
spatially in a stable manner. To the very best of our knowledge, such
a spatiotemporal pattern of qualitatively different coexisting turbulent
phases has not been reported before.

In Fig. 2c the parameter values 𝑎 = 0.75, 𝑏 = 1.2 lead to the
stationary bulk values 𝑐2(𝜂∗+) = −0.45 and 𝑐2(𝜂∗−) = −1.95. We now have
𝑐1𝑐2(𝜂∗+) > −1 but 𝑐1𝑐2(𝜂∗−) < −1. This means that the homogeneous
oscillation is stable in the plus-domain and unstable in the minus-
domain. The behavior of the plus-domain is coherent while that of the
minus-domain is incoherent. This situation describes a chimera state,
as shown in the figure.

In Fig. 3, the average frequency of the oscillators in the chimera
state of Fig. 2c is shown. The oscillators within the plus-domain are all
phase-locked and oscillate synchronously with the average frequency
𝜔av = −𝑐2(𝜂∗+) = 0.45 as predicted by Eq. (4). However, the oscillators
in the minus-domain are randomly drifting and do not maintain any
constant phase difference. These oscillators are in the defect-turbulence
regime of the CGLE. Consequently, the average frequency of the oscilla-
tors in the minus-domain present noticeable fluctuations for any finite
time series both in space and time around a mean value that is about
unity. This is half the value 𝜔av = −𝑐2(𝜂∗−) = 1.95 predicted by Eq. (4).
This deviation is not surprising since the homogeneous oscillation is
not stable in the minus-domain.
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5. A criterion to find chimera states

We thus observe that finding chimera states within our model is
aided by a selection of the parameters 𝑎 and 𝑏 for fixed 𝑐1, 𝜇 > 0 such
that the plus-domain satisfies 𝑐1𝑐2(𝜂∗+) = 𝑐1

(

𝑎
√

𝜇 − 𝑏
)

> −1 while the
minus-domain satisfies 𝑐1𝑐2(𝜂∗−) = 𝑐1

(

−𝑎
√

𝜇 − 𝑏
)

< −1. In this way, the
plus-domain is coherent and the minus-domain incoherent. These two
inequalities can be unified in the following single inequality
(

1
𝑐1

− 𝑏
)2

− 𝜇𝑎2 < 0,
(

𝑐1 > 0
)

(6)

The parameter values for the chimera in Fig. 2c satisfy Eq. (6). The ones
in Figs. 2a and 2b do not satisfy it and, therefore, Eq. (6) provides a
straightforward guide to find pairs of values such that chimera states
arise spontaneously from a large basin of attraction of initial conditions.

Chimera states can thus be directly understood from the CGLE.
Indeed, by the methods in [25] (section 3.5), it can be shown that by
writing 𝜑 ∶= 𝜔0𝑡 + 𝜓 , Eq. (1) can be reduced to the nonlinear phase
diffusion equation

𝜕𝑡𝜓 = (1 + 𝑐1𝑐2(𝜂))𝜕2𝑥𝜓 + 𝜔0(𝑐2(𝜂) − 𝑐1)(𝜕𝑥𝜓)2 (7)

from which it is observed that when 1+ 𝑐1𝑐2(𝜂) < 1, one has a negative
phase diffusion coefficient, which implies turbulence and when 1 +
𝑐1𝑐2(𝜂) > 1 the phase diffusion coefficient is positive and one has
synchrony. Eq. (6) exactly captures these behaviors providing a direct
understanding of chimera states from the CGLE and the bistability
induced by the internal degree of freedom 𝜂. This compellingly shows
how, indeed, chimera states are the ‘natural link between coherence
and incoherence’ [32].

6. Coexistence of other spatiotemporal patterns

A knowledge of the phase diagram of the CGLE alone [26] is helpful
to design patterns with coexisting domains with qualitatively different
dynamical behavior separated by walls. For example, it is known that
traveling coherent structures called Bekki–Nozaki holes (BNHs) are
obtained from the CGLE for 𝑐1 = 0 and 𝑐2 = 0.5 [33]. Choosing 𝑎 = −1
and 𝑏 = −0.5 yields 𝑐2(𝜂∗−) = 0.5 for the minus-domain and, therefore,
it is reasonable to expect that this phase will contain such coherent
structures. Since 𝑐2(𝜂∗+) = −0.5, the plus-domain will also be composed
of coherent oscillators, although the coherent structures found will be
similar to those of Fig. 2a. This intuition is confirmed by numerical
solution of the CGLE for the initial condition of Fig. 1 and the parameter
values 𝜇 = 1, 𝑐1 = 0, 𝑎 = −1, 𝑏 = −0.5. In Fig. 4 is observed that a
BNH is confined to the minus-domain alone while the plus-domain is a
standing wave like the one found in the minus-domain of Fig. 2a. The
traveling BNH is long lived and is deflected by the walls separating the
phases, so that the standing wave in the plus-domain is forever stable
and does not interact with the hole solution, which is present only in
the minus-domain. This behavior is new but is clearly understood by
the role that the supercritical pitchfork bifurcation of Eq. (2) plays in
Eq. (1) breaking its O(2) symmetry.

BNHs constitute a one parameter family of traveling localized source
solutions which become a subfamily of the dark soliton solutions in the
nonlinear Schrödinger limit of the CGLE [34], which corresponds to
𝑐1 → ∞, 𝑐2 → ∞ in the latter. After rescaling of the time variable, the
nonlinear Schrödinger equation (NSE) is obtained

𝜕𝑡𝑊 = i
𝑐1
𝑐2
𝜕2𝑥𝑊 − i|𝑊 |

2 𝑊 , (8)

This NSE, and modifications of it including different potentials and/or
fractional dynamics, are of major importance in the study of wave
propagation in optical fibers [35,36] and soliton solutions [37–39],
for which there exists a vast literature (some recent relevant works
are [40–45]). Usually, to describe the co-propagation behavior of two
or more optical pulses in phase modulation systems, several NSEs are
4

Fig. 4. Spatiotemporal evolution of the absolute value |𝑊 | (left) and the phase 𝜑
(right) of the complex order parameter 𝑊 for 𝑎 = −1, 𝑏 = −0.5, 𝜇 = 1 and 𝑐1 = 0.

coupled [42] and higher dimensions are also considered, for example
in bullet-like solitons in three-dimensions [41]. We note that the NSE
can be obtained from our system of Eqs. (1) to (3) by taking 𝑐1 →

∞, 𝑎 → ∞ and 𝑏 → −∞ while keeping the quotient 𝑐1∕𝑐2(𝜂) finite.
If one or more such NSEs are coupled to Eq. (2), one can envisage
spatially confining the solitons to certain regions created by the bistable
dynamics of the internal degree of freedom 𝜂 although further research
is necessary to confirm this expectation. The general phase separation
mechanism here introduced can, indeed, be extended by coupling any
nonlinear partial differential equation (PDE) (or system of them) to
Eq. (2) so that the internal degree of freedom 𝜂 produces the sepa-
ration of different phases present in the bifurcation diagram of the
corresponding nonlinear PDE(s). Therefore, instead of the CGLE, other
pattern-forming nonlinear PDEs [46], such as the Korteweg–de Vries
equation [37,47], the Kadomtsev–Petviashvili (KP) equation [48,49] or
the Burgers system [50,51] can be investigated as well.

7. Conclusions

In this article, a new mechanism for the emergence of chimera states
has been described and the location of these states in parameter plane
has been established. Furthermore, a mechanism for phase separation
in a system governed by nonlinear PDEs has been sketched and illus-
trated by bringing into coexistence different qualitative behaviors of
the CGLE. The model is minimalistic and captures the essence of the
formation of domains with qualitatively different dynamical behavior.
The coupling of the identical oscillators is genuinely local, meaning
that, being purely diffusive, it is such that no time-scale separation
is present in the degrees of freedom of the system. Nonlocal [7] and
global [19] modifications of the complex Ginzburg–Landau equation
(CGLE) were previously introduced to describe chimera states. In this
work, we have shown that the CGLE together with a bistable, internal
degree of freedom, provides an alternative, ‘natural’ mechanism to
chimera states. Robust chimeras arise spontaneously in wide parameter
regimes with a large basin of attraction.
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