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J. Herb a, Y. Périn a, S. Yum b, A. Mylonakis c, C. Demazière c,*, P. Vinai c, M. Yu d, J. Wingate d, 
M. Hursin e 

a Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Boltzmannstr. 14, 85748 Garching bei München, Germany 
b Technische Universität München (TUM), 85748 Garching bei München, Germany 
c Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden 
d University of Lincoln, Brayford Pool, LN6 7TS Lincoln, UK 
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A B S T R A C T   

In the CORTEX project, methods to simulate neutron flux oscillations were enhanced and machine-learning based 
tools to determine the causes of measured neutron flux oscillations were developed, using the results of simu
lations as training and validation data. For a selected combination of those methods and tools, several sensitivity 
analyses were performed to assess their robustness and trustworthiness. The neutron flux oscillations were 
simulated using the tool CORE SIM+. It calculates the three-dimensional field of the neutron flux oscillations, 
which can be used to determine the response of neutron detectors at given locations. For the sensitivity analysis, 
the neutron flux oscillations were assumed to be caused by the vibration of one fuel element. It was investigated 
how selected input parameters like the core loading pattern, the burn up of the fuel elements, the neutronic core 
data, the geometry details of the vibrating fuel element, the chosen detectors, and other noise source parameters 
like the amplitude of the fuel element vibrations, affect the simulated neutron flux oscillations. A three 
dimensional fully convolutional neural network had been developed and trained during the CORTEX project to 
determine the cause and location of perturbations causing given measurements of in-core detectors in pressurized 
water reactors. The robustness of this network was tested by applying it to the simulated detector readings 
created during the sensitivity analysis.   

1. Introduction 

In the CORTEX project, different machine learning techniques have 
been developed to identify the causes of neutron flux noise in research 
and power reactors. These methods are based on their training with 
simulated noise data for the corresponding reactors for a defined set of 
possible causes. The inputs for the methods are measurements of the 
thermal neutron noise at given detector locations. 

For a power reactor, it is not possible to create a complete training/ 
validation set of all possible causes of the noise (including variations of 
the exact definition of the source, the characteristics of the detectors, the 
operational conditions, and other factors) by only relying on measured 
plant data. The reason lies with the impossibility of controlling the 
perturbations and, if they exist, the absence of their knowledge and 
characteristic features. The training and validation of machine learning- 

based techniques thus need to be based on simulation data for postulated 
anomalies. To assess the quality and robustness of the machine learning 
tools, it is therefore of interest to determine their sensitivity to different 
factors like the exact definition of the neutron noise source, the char
acteristics of the detector and changes in the simulation setup used for 
training/validation. 

Among the machine learning methods developed in CORTEX are 
deep neural networks which identify the cause of neutron flux oscilla
tions and their location inside the reactor based on the thermal neutron 
flux measured by in-core detectors of a pressurized water reactor (PWR). 
One example of such a deep neural network is the three dimensional 
fully convolutional neural network (3D-FCNN) to which the sensitivity 
analyses is applied in this paper. It was trained for a special PWR with 36 
in-core neutron flux detectors. To train this 3D-FCNN, neutron flux noise 
simulations for different operational states and different neutron noise 
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causes had been performed. Then the neutron flux at the detector lo
cations was extracted to be used for the training. 

To assess the sensitivity of the trained neural network, it was first 
investigated how sensitive the used simulation tool itself reacts to 
changes in different simulation parameters. These parameters are 
related to nuclear data, the source of the neutron noise and the detectors 
to measure the noise. The influence of these factors on the noise was 
quantified and the factors were ranked. In a second step, it was inves
tigated how robust the 3D-FCNN can identify the noise source if simu
lation results based on these varied inputs were fed as input. 

The paper is organized in the following way. Section 2 introduces the 
simulation method for the neutron flux, the methodology of the sensi
tivity analysis, the assumption to create the inputs of the sensitivity 
analysis, and the setup of neural-network-based machine learning 
method. In Section 3 the results of the sensitivity analysis applied first to 
the simulation tool of the neutron flux and then on the neural network 
are determined and discussed. The paper ends with some conclusions 
and outlook. 

2. Methodology and preparation of analysis 

2.1. Modelling of reactor neutron noise 

The target reactor considered hereafter is the Gösgen Nuclear Power 
Plant, also referred to as ‘Kernkraftwerk Gösgen (KKG)’. The plant is 
located in the Däniken municipality in Switzerland. It is operated by the 
Kernkraftwerk Gösgen-Däniken AG since the start of its operation in 
1979 (Kernkraftwerk Gösgen-Däniken AG (KKG), 2016). The reactor is 
licensed to operate at a nominal thermal power of 3002 megawatts. The 
reactor is a pressurized water reactor delivered by German Kraftwerk 
Union AG. It contains 177 fuel assemblies (with control rods that can be 
inserted in 48 of those assemblies). Each fuel assembly contains 205 fuel 
rods, which consist of enriched UO2 fuel with fissile uranium-235 or 
MOX fuel with a proportion of fissile plutonium. However, MOX fuel has 
not been used since 2012. 

In the context of the CORTEX project, the Paul Scherrer Institute 
(PSI) provided the necessary core data, which include three-dimensional 
distribution of the nodal macroscopic cross-sections in two-energy 
groups and the kinetic parameters. Different core conditions and cy
cles were considered: cycle 39 (Middle Of Cycle – MOC and End Of Cycle 
– EOC) and cycle 40 (Beginning Of Cycle – BOC, MOC and EOC). The 
analyses reported hereafter are based on these core conditions and 
cycles. 

As mentioned earlier, the detection of anomalies in power reactors 
can be most efficiently carried out by first building a database of spatial 
neutron noise responses for various postulated anomalies, and then 
building a machine learning architecture aimed at identifying, from the 
plant measurements, the spatial neutron noise pattern resembling a 
postulated anomaly. For creating the necessary database, simulations 
are used, as annotated plant data, i.e., plant measurements for which the 
anomaly is known, do not exist or are not available. 

The modelling of neutron noise can be performed in various ways, 
depending on the level of refinement in the representation of the spatial, 
angular, and energy variables associated to the neutron flux. Moreover, 
the simulations can be performed either in the time-domain or in the 
frequency-domain, using either deterministic or probabilistic (i.e., 
Monte Carlo) methods, using linear theory or not. 

Nevertheless, as the number of simulations required to build the 
database is extremely large, fast running algorithms are required. In the 
present work, the CORE SIM+ code is thus used for the generation of the 
database. It is a frequency-domain code relying on the two-group 
diffusion equation in linear theory (Mylonakis, et al., 2021). 
Regarding the spatial discretization, finite differences are used. 
Although the core is typically represented by a set of large homogeneous 
regions, of typical characteristic length in the range of 10 cm, the use of 
finite differences requires a mesh size of 1–2 cm for guaranteeing the 

accuracy of the solution. Moreover, and as will be illustrated hereafter, 
noise sources are defined on very small subdomains. CORE SIM+ makes 
thus use of dedicated numerical techniques that allow to refine the mesh 
in some selected parts of the system. We refer to (Mylonakis, et al., 2021) 
for further details on CORE SIM+. 

In the present analysis, the following types of noise sources were 
considered and modelled in CORE SIM+:  

⋅ Generic “absorber of variable strength”, where a spatial Dirac-like 
perturbation is assumed. All possible locations of the perturbation 
were considered for frequencies ranging from 0.1 to 25 Hz.  

⋅ Axially travelling perturbations at the velocity of the coolant flow, 
where a perturbation is created at some spatial location in the core 
and travels upwards with the flow through the core. All possible 
locations of the perturbation were considered for frequencies 
ranging from 0.1 to 25 Hz.  

⋅ Fuel assembly vibrations, for which the lateral movement of fuel 
assemblies was modelled according to the following modes of vi
brations: the cantilevered beam mode (for frequencies ranging from 
0.6 to 1.2 Hz), the simply supported on both sides mode (with its two 
first harmonics – frequencies ranging from 0.8 to 4.0 Hz for the first 
mode and frequencies ranging from 5.0 to 10.0 Hz for the second 
mode), and the combined simply supported and cantilevered beam 
mode (with its two first harmonics – frequencies ranging from 0.8 to 
4.0 Hz for the first mode and frequencies ranging from 5.0 to 10.0 Hz 
for the second mode) (see Fig. 1). All possible locations of the 
vibrating fuel assembly were modelled.  

⋅ Control rod vibrations, where a partially inserted control rod is 
assumed to laterally vibrate in the core. All possible locations of the 
vibrating control rod were considered for frequencies ranging from 
0.1 to 20.0 Hz.  

⋅ Core barrel vibrations, where the core barrel was assumed to vibrate 
in the beam or pendular mode for frequencies ranging from 7 to 13 
Hz. 

The generation of the spatial noise responses as described above are 
detailed in (Mylonakis, et al., 2021). 

For the considered reactor, the creation of the database was carried 
out at four core conditions: Mid of Cycle 39 (MOC39), End Of Cycle 39 
(EOC39), Beginning of Cycle 40 (BOC40) and End Of Cycle 40 (EOC40). 

In the following of this paper, one out of the considered scenarios 
described above is also given special attention, as the parameters used 
for defining the noise source were perturbed, with the objective to 
perform a sensitivity analysis on those. Moreover, the impact of such 
perturbations onto the results of the machine learning unfolding will be 
assessed in the remaining of this paper. The scenario singled out cor
responds to fuel assembly vibrations. Only one vibrating fuel assembly 
and one oscillation mode were considered: the cantilevered beam mode 
at a frequency of 1 Hz. The axial shape of the displacement for that kind 
of oscillation is given as defined in (Demazière & Dokhane, 2019): 

Fig. 1. Idealized fuel assembly oscillation modes (Bläsius et al., 2022).  
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{cos(κ1z) − cosh(κ1z) − γ1[sin(κ1z) − sinh(κ1z) ] }

with κ1 =
1.8751

H
and γ1 =

cos(κ1H) + cosh(κ1H)

sin(κ1H) + sinh(κ1H)
(1) 

In the equations above, z represents the axial elevation in the core 
and H is the core height. The axial shape of the displacement is given in 
Fig. 2, together with the radial location of the moving assembly. The 
moving assembly is located at equilibrium position 53.9 cm from the 
center of the core, whereas the vibration is assumed to only occur along 
the x-direction. 

In terms of CORE SIM+ nodalization, 76 × 51 × 102 nodes are used 
to represent the core in the x-, y- and z-directions, respectively. The area 
around the neutron noise source is modelled with refined mesh cells of 
size 4.3 mm, whereas the other parts of the core have mesh sizes varying 
between 3 and 10 cm. Fig. 3 shows the nodalization of the core at the 
axial mid-point. 

2.2. Methodology of sensitivity analysis 

Various correlations which measure the influence of a given input 
parameter to an output variable, and consequently, rank the importance 
of input parameters, can be applied for sensitivity analyses. Amongst the 
available options, the Pearson Correlation Coefficient (PCC) is selected 
for sensitivity measures because of its simplicity. The availability and 
the compatibility that PCC has in analysing the correlation between the 
input and output parameters under the neutron noise condition have 
been confirmed in (Yum, et al., 2022). The PCC is a measure of linear 
correlation between two sets of data and its value is estimated as the 
covariance of the two sets, divided by the product of their standard 
deviations (Conover, 1980) (Anon., n.d.). The PCC (commonly repre
sented by the Greek letter ρ) between two random variables (X,Y) can be 
defined as follows: 

ρX,Y =
cov(X, Y)

σXσY
(2)  

where cov is the covariance and σX and σY are the standard deviations of 
X and Y, respectively. 

Additionally, a Z test is carried out to determine whether the ob
tained correlation coefficients are statistically significant. The test re
quires the setting of a significance level, i.e., a threshold of probability 
that is used to decide whether the null hypothesis (the coefficients are 
significant) is accepted or rejected. Following a general guideline, the 
significance level is taken as 5 % and, given an estimation of PCC based 

on samples of 300 values, this leads to a critical value equal to 0.11 
(Ramsey, 1989) (Kajuri, 2018). This means that, if the absolute value of 
the PCC calculated with samples of 300 values is larger than 0.11, the 
input and output variables can be regarded as “correlated” with a 5 % 
probability that the result is not true (95 % confidence level). 

As a last step, the calculated coefficient is squared to represent the 
“sensitivity index”, which expresses what fraction of the variation of the 
dependent variable is explained by the variation in the independent 
variable (Bluman, 2009). 

2.3. Inputs for sensitivity analyses (nuclear uncertainties, oscillation 
parameters, reactor/measurement geometry 

Fig. 4 shows a schematic flow chart of the developed methodology, 
including the expected outcomes from each step. The subsections below 
describe the important points involved in the various steps. 

The final output (neutron noise) is a complex quantity, since CORE 
SIM+ performs the calculation in the frequency domain. Therefore, the 
complex values are converted into amplitude and phase of neutron noise 
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Fig. 2. Radial location of the considered vibrating assembly (left) and axial shape of the maximum lateral displacement of this assembly.  

Fig. 3. Description of the radial nodalization around the noise sources at mid- 
core elevation. 
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via post-processing. The focus of the current study is limited to the 
thermal neutron noise since the detectors in the reactor are essentially 
sensitive to thermal neutrons. 

2.3.1. Uncertain parameters 
The input parameters for the target reactor and transient are inves

tigated according to expert judgement as summarized in Table 1. The 
distribution information of each input parameter was defined in some 
earlier work (Yum, et al., 2022). The oscillating amplitude and fre
quency are thus perturbed with a standard deviation of 5 % around their 
nominal values, while the specific location (noise source and detectors) 
is perturbed with an uncertainty of 1 mesh around its ideal location. The 
scope of the present work is a sensitivity analysis to identify the most 
important input parameters. An uncertainty analysis to quantitatively 
assess its results would require a more detailed analysis of the distri
butions of the input parameters. 

The Swiss 3-loop pre-Konvoi reactor KKG has a total of 36 in-core 
neutron detectors. They are installed in 6 different axial positions and 
each axial position consists of 6 detectors in different radial positions, 
see Fig. 5 (Gösgen, 2018). In the simulations, the 36 detecting locations 
are perturbed between − 1 mesh and +1 mesh from the ideal locations, 

in the x − , y − and z − directions. 

2.3.2. Generation of random samples 
In the Simple Random Sampling (SRS) method, random sets of per

turbed input parameters are generated using the distribution informa
tion listed in Table 1. The nuclear data uncertainties are treated in a 
distinct manner, which is described thereafter. 

The direct treatment of the nuclear data uncertainty would lead to a 
very large number of uncertain parameters (e.g., in the covariance data 
provided by SCALE: 94 nuclides, typically 2–8 reactions per nuclide, 44 
energy groups per reaction). CORE SIM+ uses 2-energy group, homog
enized macroscopic nuclear parameters, which are: Dfast, Dthermal, 
Σabs,fast, Σabs, thermal, Σnufis, fast, Σnufis, thermal, Σrem. The uncertainties of 
the nuclear data are propagated to the macroscopic nuclear parameters 
needed for CORE SIM+ simulations in order to study their impact. 

For this purpose, the SAMPLER module from the SCALE code pack
age is applied. SAMPLER is a stochastic uncertainty quantification tool 
(Rearden & Jessee, 2016) sections, fission yield, decay data, and any 
user input parameter of a SCALE component. This study only considers 
the neutron cross section uncertainty. This is achieved by using the 
master sample file included in SCALE. This master file contains 1000 
samples of perturbation factors for all energy groups and reactions in all 
materials. These factors have been pre-computed with the Medusa 
module of the XSUSA program using the 44-group covariance data 
provided by SCALE using the 44-group covariance data provided by 
SCALE. 

All SCALE models use thermal–hydraulic conditions representative 
of core-averaged conditions at Hot Full Power, namely a fuel tempera
ture of 900 K and a moderator density of 707 kg/m3. Since all the fuel 
assembly types from these two cycles differ only slightly in enrichment, 
two SCALE fuel assembly models are considered using the minimum and 
maximum enrichments (4.90 % and 5.06 %) found in cycles 39 and 40. 
No information is available regarding the burnup distribution for either 
cycle. Therefore, the effect of burnup on the neutron cross section un
certainty is treated by considering fresh fuel and fuel at 30 MWd/tHM. 
The test matrix presented in Table 2 gives a representation of which 
parameter combinations are studied. 

In total 300 varied macroscopic cross-sections were generated using 
SAMPLER for each of the 3 cases presented above. From those 300 
samples of macroscopic cross-sections, relative variations from the 
reference version of the nuclear data libraries are computed and are 
applied to vary the macroscopic cross sections for CORE SIM +. The 
standard deviation of ratios between the samples and the reference case 
is presented in Table 3. The standard deviations remain low (maximum 
< 0.3 %) for all group constants. The effect of the burnup on the stan
dard deviation is larger than the effect of the enrichment. The resulting 
sensitivity of the neutron noise phase and amplitude is presented in the 
following sections. 

Fig. 4. Flow chart for the sensitivity analysis.  

Table 1 
The distribution information of selected uncertain parameters.  

Parameter Distribution Unit Mean Standard 
deviation2 (Lower/ 
Upper limit3) 

Nuclear data4     

Oscillating 
amplitude 

Normal cm Inherent 
oscillating curve 
in Fig. 2 

5 % 

Oscillating 
frequency 

Normal Hz 1 0.05 

Location of 
noise source 

Uniform Mesh Ideal oscillating 
boundary 

− 1/+15 

Detecting 
location (x- 
axis) 

Uniform Mesh Ideal detecting 
location 

− 1/+1 

Detecting 
location (y- 
axis) 

Uniform Mesh Ideal detecting 
location 

− 1/+1 

Detecting 
location (z- 
axis) 

Uniform Mesh Ideal detecting 
location 

− 1/+1 

1This column shows the value of lower and upper limit in case of having uniform 
distribution. 
2Nuclear data uncertainties are treated in a distinct manner and the detailed 
information regarding the uncertainty propagation process is provided in Sec
tion 2.3.2. 
3–1/+1 correspond to − 0.43/+0.43 cm. 
4The computation time is identical for all core conditions and fuel cycles. 
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2.4. Setup of deep neural network and its training 

To classify and localize multiple, simultaneously occurring pertur
bations in the nuclear core, we borrow the idea of semantic segmenta
tion. In our case, each semantic label represents the perturbation 
scenario, with its location in the volume/voxel (i, j, k) in a nuclear core 
representing where this perturbation originated. For achieving semantic 
segmentation (working out which perturbation scenario occurs at which 
volume/voxel), a 3D Fully Convolutional Neural Network (3D-FCNN) as 
in (Durrant, et al., 2019), has been developed as shown in Fig. 6. From 
comprehensive evaluation/comparison studies in (Durrant, et al., 2019), 
it has been shown that the 3D-FCNN can effectively classify/locate 
various types of perturbation types effectively. 

Compared with other deep learning techniques (Caliva et al., 2018; 
Demazière et al., 2020), the 3D-FCNN technique (Durrant, et al., 2019) 
can classify/locate the occurrence of multiple simultaneous perturba
tions in the core. And as in (Durrant, et al., 2019), the 3D-FCNN achieves 
a very high accuracy (more than 99 %) for perturbation detection based 
on 44 ex/in-core sensors. 

The network follows a traditional encoder-decoder structure found 

in semantic segmentation. The encoder extracts and constructs high- 
dimensional spatial feature representations of the frequency domain 
input volume, whilst the decoder utilizes these features to construct a 
prediction mask with the same dimensions as the input, indicating the 
types of perturbation in different voxels/volumes in the core. Both the 
encoder and decoder are constructed of 3D CNN layers, which are ideal 
for learning spatial information to extract representative features. 

The model proposed is inspired from (Kaul, et al., 2020) by intro
ducing the spatial pyramid pooling block (four bottom blocks of the 
network), which learns rich semantic features at various scales, using 
four CNN layers with differing kernel size, stride, and dilation to capture 
varying information at different granularities. Additionally, to capture 
greater spatial information given the limited number of detectors, 
dilated convolutions (Wang, et al., 2019) are employed to increase the 
receptive field of the convolution operator whilst maintaining compu
tational efficiency. 

The 3D-FCNN is trained to minimize the below focal loss between a 
voxel-wise prediction and ground truth semantic labels. The stochastic 
gradient descent (SGD) algorithm is applied for minimizing the loss 
function. 

L FL(y, ŷ)= −
1
P

∑P

p=1

[
ypαp

(
1 − ŷp

)γlog
(

ŷp
)
+
(
1 − yp

)(
1 − αp

)
ŷγ

plog
(
1 − ŷp

)]

(3)  

3. Results of the analysis 

To confirm how the core condition affects the sensitivity of input 
parameters to the neutron noise, three out of five core conditions 

Fig. 5. Locations of in-core detectors in axial and radial direction of the core. On the left: values in percent (%) indicate “% active fuel length”; “A.P.” and “R.P.” 
denote “axial position” and “radial position”, respectively. 

Table 2 
Test matrix.   

Fuel burnup 

Enrichment 5.06 % Enrichment @ 0MWd/t 
Burnup 

5.06 % Enrichment @ 30MWd/t 
Burnup 

4.9 % Enrichment @ 0MWd/t 
Burnup   

Table 3 
Propagation of nuclear data uncertainty to nuclear parameters for CORE SIM+ (standard deviation of ratios between 300 samples and nominal case).   

Dfast Dthermal Σabs, fast Σabs, thermal Σnufis, fast Σnufis, thermal Σrem 

5.06 %@0MWd/t 4.35E-04 9.22E-04 4.12E-03 7.07E-04 2.63E-03 1.32E-03 1.16E-03 
5.06 %@30MWd/t 4.85E-04 8.17E-04 4.10E-03 7.73E-04 2.18E-03 2.11E-03 1.50E-03 
4.9 %@0MWd/t 4.37E-04 9.20E-04 4.18E-03 7.02E-04 2.62E-03 1.31E-03 1.16E-03  
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provided (see Section 2.1) are selected from the viewpoint of fuel 
loading pattern and fuel burn-up: to check the influence of loading 
pattern, EOC 39 and EOC 40 are selected, while BOC and EOC in cycle 40 
are considered to confirm the fuel burnup effect. For the noise simula
tion with CORE SIM+ at each core condition, the homogenized nuclear 
data generated at the corresponding condition are used as nominal data. 

Meanwhile, in (Yum & Perin, 2021), it is confirmed that neither a 
core condition considered to generate the nuclear data uncertainties, nor 
a way to apply the nuclear data uncertainties to fuel rods (an identical 
uncertainty for all FAs or different uncertainty for each FA) does affect 
the results in a significant manner. Accordingly, further analyses at BOC 
and EOC will only consider the nuclear data uncertainties generated at 
the core conditions of 5.06 %-wt & 0 MWd/t and 5.06 %-wt & 30 MWd/t 
(introduced in Section 2.3.2), respectively, assuming that all the fuel 
assemblies have identical nuclear data uncertainties. These combina
tions are made to perform the analysis at the specific core condition with 

the nuclear data uncertainties generated from the burnup condition 
mostly similar to the given core condition within the available options 
suggested in Table 2. 

3.1. Convergence/sensitivity test 

A series of convergence tests are performed by varying the sample 
size. This test is necessary to find out an optimal sample size which 
strikes a balance between computational cost and reliability of the 
calculated sensitivity index. The tests are carried out with different 
sample sizes between 10 and 500, which are sampled randomly from 
500 existing data sets, under the conditions of BOC 40. The sampling of 
equivalent sample size is repeated for 1000 times using bootstrapping 
with replacement (Sarrazin, et al., 2016). Afterwards, the 2.5th and 
97.5th percentile of the 1000 sensitivity indices are identified to build 
95 % confidence interval. Fig. 7 shows the converging trend of two 

Fig. 6. The sketch diagram of the 3D-FCNN architecture.  

Fig. 7. Convergence of sensitivity indices with 95% confidence interval (“SI” denotes “sensitivity index”).  
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representative sensitivity indices to the amplitude of the thermal 
neutron noise: “detecting location (y-axis)” which has relatively small 
index and “location of noise source” which has relatively large index at 
the detector location of A.P. #1 and R.P. #2. 

The confidence interval decreases as the sample size increases. When 
the sample size is larger than 300, the difference between the calculated 
confidence interval (with a sample size larger than 300) and the final 
estimation with 500 samples becomes smaller than 0.15. Considering 
the small difference with the final estimation, the further analyses will 
be carried out using a sample size of 300 whose computation time is 
equivalent to 2.5 days for both steady-state and noise calculation.1 

3.2. Results from sensitivity analysis 

3.2.1. Analysis at BOC 40 
Fig. 8 shows the radial distribution of the thermal neutron noise in 

the core for the nominal condition without uncertainties. 
To get a better understanding on the noise behaviour at the detector 

locations, correlation matrices for the amplitude and phase of the 
thermal neutron noise are calculated based on 300 data sets as shown in 
Fig. 9 (Yum & Perin, 2021). This correlation information helps to infer 
the noise behaviour at the specific detector location by reading the 
signals from the correlated detectors. Additionally, it enables to perform 
the group-wise uncertainty analyses, which simplifies the interpretation 
process of the calculation results. 

In case of the amplitude of thermal neutron noise, the detectors can 
be radially divided into three groups according to three different cor
relations: group 1 consists of the signal at the radial position #1, group 2 
consists of the signals at the radial positions #2, #5 and #6, group 3 
consists of the signals at the radial positions #3 and #4. 

Meanwhile, the phase data show simpler correlations than the 
amplitude data. The data at radial positions #2 to #6 have almost 
perfect positive linear correlations among each other and have perfect 
negative linear correlations with the value at radial position #1. The 
latter is explained by the out-of-phase behaviour existing between the 
radial position #1 and all other radial positions, as shown in Fig. 8b. 

Since correlations exist between the thermal neutron noise at the 
detector locations, the uncertainties of the noise (distribution range of 
the neutron noise) are also expected to show correlated responses at the 
detector locations. That is, when the signals from two detectors are 
correlated, their uncertainties respond in the same direction, either in
crease or decrease, as the input parameters are perturbed. As a result, 
the correlated detector signals are expected to have similar sensitivities 
to the input parameters, which will be investigated in the following 
sections. 

Simplified approach with grouped parameters 
A groupwise sensitivity analysis is conducted to investigate the 

relative effects of the different groups of parameters. The 13 input pa
rameters listed in Table 1 are grouped into three groups according to the 
similarities they have in between: (1) group of nuclear data, (2) group of 
noise source data, (3) group of detecting locations. The group of detector 
locations includes the perturbation of the location in the x − , y − and z −
directions. The group of noise source data includes the oscillating 
amplitude, the oscillating frequency, and the location of the noise 
source. The uncertainties of thermal neutron noise obtained for the three 
different groups are compared in Fig. 10. The neutron noise is calculated 
with the perturbation of parameters belonging to a given group, while 
the remaining input parameters are fixed at their nominal values. The 
neutron noise uncertainties are obtained following 1st order Wilks’ 
formula for two-sided limits, for which the required number of code runs 
corresponds to 93. 

The graph showing the results for the detector locations consists of 6 
blocks along the x − axis (Fig. 11), where each block corresponds to each 

axial position shown in Fig. 5. Each block contains the values from the 6 
radial detectors located in this axial position and the corresponding 
radial position is represented with ascending order, from position #1 
(very left value in the block) to #6 (very right value in the block). 

For both the amplitude and phase of the neutron noise, the un
certainties propagated from the group of noise source data show the 
largest value in all detector locations, while they are followed by the 
uncertainties from the group of nuclear data. The uncertainties by group 
of nuclear data become larger at radial position #3 at low axial posi
tions, still, they are not remarkably different from the uncertainties from 
the group of noise source data. Accordingly, the obtained results can be 
simply interpreted as the neutron noise being mainly driven by the 
group of noise source data. 

Approach with quantitative measure 
Based on the results obtained from the simplified approach, an 

additional analysis with quantitative measure is carried out. Here, the 
parameter which contributes to the neutron noise the most within the 
group of noise source data is quantitatively identified. This can be done 
by calculating the sensitivity indices for each input parameter. The 
calculated sensitivity indices between the three noise source parameters 
and the neutron noise are summarized in Fig. 12 and Fig. 13 with 95 % 
confidence intervals. 

The main findings can be explained in connection with the correla
tion among the detector locations shown in Fig. 9. For the neutron noise 
amplitude, the oscillating amplitude dominates in all axial positions at 
radial position #1, while the location of the noise source is always 
dominating at radial positions #3 and #4. However, at radial positions 
#2, #5 and #6, the location of noise source dominates at the lowest 
position and becomes weaker at higher axial positions. The decreasing 
effect is caught up by the increased effect of the oscillating amplitude 
and at higher axial locations, eventually, the oscillating amplitude be
comes the main contributor. 

The phase data at all detector locations are strongly dependent on the 
location of noise source, which supports the correlation information 
shown in Fig. 9. 

3.2.2. Analysis at EOC 40 
The sensitivity analysis with an identical procedure as the one 

adopted in Section 3.2.1 is repeated at the core conditions of EOC 40. 
The different core conditions are reflected in the different values of the 
two-group nuclear data of the core, resulting in different noise behav
iour as shown in Fig. 14. The considered event (one FA oscillation) in 
this study brings about a larger amplitude of neutron noise at the core 
condition of EOC 40 than at BOC 40 (see Fig. 8). 

Problematic point in analysis 
As shown in Fig. 8-b and Fig. 14-b, CORE SIM + predicts an “out-of- 

phase” behaviour between two core regions because of a vibrating fuel 
assembly. The boundary of these two regions is determined by the 
location of the noise source, which is one of the input parameters 
considered in this study. However, the boundary reacts sensitively to the 
uncertainty of the noise source location, although this uncertainty cor
responds to only ±4.3mm. The modification of the boundary can change 
the phase region that the detector actually sees, therefore, it can affect 
the phase signal measured by the core detectors. Fig. 15 shows the 
variation of the boundary according to the perturbation of the noise 
source location at the bottom position of the detector installation (Yum 
& Perin, 2021): radial positions #2, #4 and #5 can belong to two 
different phase regions depending on the location of noise source. 

Consequently, when the location of the noise source is perturbed 300 
times within its uncertainty range, the obtained 300 noise solutions at 
these problematic detectors’ locations show a discontinued distribution 
as shown in Fig. 16. The histogram of amplitude data confirms that if a 
certain location may belong to two different phase regions depending on 
the change of the oscillating boundary, the amplitude also encounters a 
similar issue, which results in a discontinuity of the calculated data. 

The discontinuity existing among the calculated output data makes it 1 The computation time is identical for all core conditions and fuel cycles. 
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impossible to adopt the regression-based approach for the further 
sensitivity analysis, since this approach is only valid on the premise that 
there is a linear relationship between the inputs and the outputs. 
Accordingly, the following sensitivity analysis is carried out only for the 
detectors which are not having this property (i.e., radial positions #1, 
#3 and #6). 

Approach with quantitative measure 
For the sake of conciseness, only the results of the noise source data 

are dealt with hereafter and discussed. The sensitivity indices are 
calculated and compared to those at BOC 40 in Fig. 17 and Fig. 18, in 

order to understand the findings in connection with an effect of “fuel 
burnup”. The comparison is made only at the radial locations where the 
relevant sensitivity indices at EOC 40 are available, namely R.P. #1, #3 
and #6. 

First of all, the noise signals at the detector locations which are 
excluded here (radial positions #2, #4 and #5) are more sensitive to the 
location of the noise source than any other input parameters. That is, 
despite not carrying out further statistical analysis with the data at the 
radial positions #2, #4, and #5, the main contributing parameter at 
these locations can be determined as being the location of noise source. 
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In Fig. 17, the oscillating amplitude becomes less influential at EOC, 
while the effect from the location of the noise source is increased in most 
detector locations. Meanwhile, there is no remarkable change in the 
phase (Fig. 18), and the location of the noise source still maintains its 
dominant effect. A possible reason why the influence from the location 
of the noise source at EOC has been increased will be discussed in Sec
tion 3.3. 

3.2.3. Analysis at EOC 39 
Fig. 19 shows the distribution of the thermal neutron noise in the 

radial core direction under unperturbed conditions. 
Problematic point in analysis 

The same issue as reported at EOC 40 is found at EOC 39 with a 
different pattern as shown in Fig. 20. The problematic point is found at 
the radial position #1 between the mid-height and the top of the core 
(Yum & Perin, 2021). Therefore, the following sensitivity analysis is 
carried out for all detectors except for those at radial position #1. 

Approach with quantitative measure 
To study the effect of fuel loading pattern, the sensitivity indices 

obtained for the case of EOC 39 are compared with those for EOC 40. 
Only the radial locations with relevant sensitivity indices are taken, i.e., 
RP #3 and #6. The results at each axial point are shown in Fig. 21 and 
Fig. 22. 

Contrary to the results between different fuel burnup conditions (see 
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Fig. 17), only monotonous changes are found in Fig. 21. The oscillating 
amplitude at EOC 39 affects the amplitude of the noise in a significant 
manner, nonetheless, the location of noise source maintains its domi
nant effect at both core conditions. In the case of the phase (see Fig. 22), 
the oscillating frequency shows a visible influence at EOC 39, which 
decreases as the detecting position gets higher axially. However, the 
phase of neutron noise is mainly driven by the location of noise source at 
both EOC 39 and EOC 40. The following section discusses why the 
location of noise source remains as a main contributor to the neutron 

noise at EOC. 

3.3. Comparison between different cycles and reasons for differences 

A reason why the location of noise source at EOC has an increased 
influence on the neutron noise compared to BOC can be investigated in 
relation to the spatial distribution of the static flux. Both the static fast 
and the static thermal neutron fluxes affect the neutron noise in com
bination with the noise source. Depending on the position of the noise 
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source, the static flux can provide a different weight because of its 
spatial distribution. Accordingly, the gradient of the static flux is 
investigated within the uncertainty range of “location of noise source” in 
order to compare the “weighting factors” between two different core 
conditions: BOC and EOC. Fig. 23-a shows the perturbation of the 
oscillating boundary in two-dimensional meshes. “0 mesh” indicates the 

ideal location of the oscillating boundary without uncertainty pertur
bation, while “-1 mesh” and “+1 mesh” denote the relocation of the 
oscillating boundary by − 1 (to the core periphery) mesh and +1 (to the 
core centre) mesh, respectively. The ratios of static flux gradients be
tween the adjacent two meshes (between − 1 mesh and 0 mesh, and 
between 0 mesh and +1 mesh) are compared in Fig. 23-b (BOC 40 and 
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EOC 40) and Fig. 23-c (BOC 40 and EOC 39). 
A value larger than 1.0 signifies that the static flux gradient at EOC 

(cycle 40 and 39 in Fig. 23-b and -c, respectively) is larger than that at 

BOC. In most axial locations, both fast and thermal static fluxes at EOC 
have steeper gradients around the oscillating boundaries than at BOC 
40. Consequently, the noise source at the oscillating boundaries at EOC 
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is weighted more than at BOC 40 when the assigned location is per
turbed, which justifies the increased influence of “location of noise 
source” on the neutron noise. As will also be explained hereafter, a larger 
static flux gradient leads to a larger reactivity effect. This itself gives a 
larger amplitude in the point-kinetic response of the system to the 
perturbation – see below. 

3.4. Importance of sensitivity of phase results 

As Fig. 15 and Fig. 20 demonstrate, there is a significant dependence 
of the phase of the induced neutron noise on both the location of the 
noise source and the core conditions (cycle and burnup). This is 
explained by the fact that, in case of a vibrating fuel assembly, the 
response in neutron noise tends to be out-of-phase between the two 
regions of the core that originate from the oscillating movement of the 
fuel assembly. Nevertheless, this out-of-phase behaviour might be 
masked either partially or totally by the so-called point-kinetic compo
nent of the neutron noise, as explained hereafter (Demazière, et al., 
2021). 

Generally speaking, the induced neutron noise δϕ(r, t) in linear the
ory can be considered as the sum between a point-kinetic response 
δP(t)ϕ0(r) and the fluctuations of a so-called shape function δψ(r, t), i.e. 

δϕ(r, t) = δP(t)ϕ0(r) + δψ(r, t) (4) 

In the equation above, δP(t) represents the fluctuations of the 
amplitude factor and ϕ0(r) is the static flux. The amplitude factor and 
shape functions thus allow retrieving the space- and time-dependent 
neutron flux as. For this equation, the following normalization condi
tion was used (Bell and Glasstone, 1970): 

∂
∂t

∫

ϕ0(r)ψ(r, t)d3r = 0 (5) 

The fluctuations of the amplitude factor are themselves related, in 
the frequency domain, to the reactivity noise δρ(ω) via the zero-power 
reactor transfer function G0(ω) as: 

δP(ω) = G0(ω)δρ(ω) (6) 

with ω representing the angular frequency. The reactivity noise can 

Fig. 23. Comparison of ratios of static flux gradients.  
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be estimated using first-order perturbation theory as (Bell and Glass
tone, 1970): 

δρ(ω) =
∫ [

δνΣf (r,ω) − δΣa(r,ω)
]
ϕ2

0(r)d3r
∫

νΣf ,0(r)ϕ2
0(r)d3r

(7)  

where νΣf ,0(r) is the static macroscopic fission cross-section multiplied 
by the average number of neutrons emitted by fission, δνΣf (r,ω) is the 
corresponding noise and δΣa(r,ω) is the noise in the macroscopic ab
sorption cross-section. As Eq. (7) demonstrates, asymmetrical pertur
bations in, e.g., larger flux gradients give a larger reactivity noise, and 
thus, a larger point-kinetic component of the induced neutron noise – see 
Eq. (6). 

As Eq. (4) shows, the induced neutron noise is made of two terms 
having fundamentally different spatial dependence:  

• The space-dependence of the point-kinetic response is always given 
by the one of the static flux ϕ0(r) and is thus independent of the 
applied perturbation. Moreover, one notices that the point-kinetic 
response has correspondingly the same phase throughout the entire 
system.  

• The space-dependence of the fluctuations of the shape function can 
be any. In the case of vibrating fuel assemblies, the phase of the shape 
function between the two out-of-phase parts of the core that arise 
from the oscillating movement has a discontinuity. Correspondingly, 
only the fluctuations of the shape functions can carry some space- 
dependence in the phase. 

As demonstrated in (Demazière, et al., 2021), the relative weight of 
the point-kinetic component in relation to the shape function is 
responsible for the overall phase response of the induced neutron noise. 
For an overwhelming point-kinetic component, the phase would be 
constant throughout the core. Otherwise, the overall phase response will 
be the result of the competition between the point-kinetic response 
(having no phase variation) and the shape function (having a phase 
variation). The differences in relative weights between those two con
tributions at different core conditions or positions of the vibrating fuel 
assembly is the main reason why the space-dependence of the overall 
phase significantly varies accordingly. 

In order to study the competing effects between the point-kinetic 
component of the neutron noise and the shape function component, 
an additional sensitivity study was carried out. For this purpose, a new 
loading pattern, based on EOC 39 was created by putting all the fresh 
assemblies on the outermost ring of the core thus greatly increasing the 
neutron leakage and the flux gradient in the core (between the inner and 
the outer part) as shown in Fig. 24. 

The thermal neutron noise in the modified core loading is calculated 
and compared to the original EOC 39 results. The point kinetics and the 
shape function components of the neutron noise are evaluated for both 
the original EOC 39 core loading and the maximized neutron leakage 
one. Regarding the amplitude of the thermal neutron noise, presented in 
Fig. 25 and Fig. 27, for both core loadings the point kinetics and the 
shape function components are in opposite directions and compensate 
each other except near the source of the perturbations. In the original 
EOC 39 core loading, the phase of the thermal neutron noise (see Fig. 26) 
varies strongly especially with out-of-phase noise in the northern part of 
the core. In this case, the phase of the neutron noise is dominated by the 
shape function component over the point kinetics component, thus 
confirming the results of (Demazière, et al., 2021). In the modified core 
loading with increased leakage, the point kinetics component is largely 
dominating the phase (see Fig. 28), and as expected, no spatial de
pendency is observed (except, of course, near the source of the 
perturbations). 

3.5. Results of the application of the DNN on the sensitivity results (UoL) 
and the quality detection of source location 

We performed the sensitivity analysis of the developed 3D FCNN for 
perturbations detection and localization. Specifically, we introduced 
uncertainties on the input parameters, which are used to simulate the 
noises outputs generated by the vibration of a fuel assembly, based on 
the CORE SIM + modelling software. The training/validation data sets 
were not perturbed. Only the testing datasets were perturbed. The 
detailed parameter uncertainties used for the simulations are summa
rized in Table 1. 

300 trials of simulations under parameters uncertainties were per
formed for simulating cantilevered fuel assembly vibrations while the 
recordings by 36 sensors inside the core are obtained. The vibration 
location on the core cross-section plane is shown in Fig. 29a. The re
cordings of 36 sensors are used as the input of a trained 3D FCNN (based 
on a simulated dataset from the Swiss pre-KONVOI reactor without any 
parameters uncertainties) for classifying/detecting the vibration 
location. 

The ground-truth and the detected vibration locations for one of the 
simulations used for the sensitivity study by the 3D FCNN on the core 
cross-section plane with 16-by-16 divisions are shown in Fig. 29b. We 
can see that the vibration region can be successfully found out by the 3D 
FCNN network. 

Moreover, we performed a more comprehensive evaluation by 
assessing the vibration classification/localization performance of the 
proposed 3D FCNN for all 300 simulation scenarios under various 
simulation input parameters uncertainties, with the results being sum
marized in Table 4. We can see that the proposed 3D FCNN can achieve 
both a 100 % classification rate (the vibration type can always be 
identified) and a 100 % top-3 detection rate (indicating that the top 
three most likely detected regions cover the ground-truth vibration re
gion). In this Table, top-1 detection means that the actual noise source 
location was the one which was identified as the most likely and top-2 
means that the actual noise source was one of the two most likely 
detected. Results indicate that the proposed network is robust to the 
simulation input uncertainties for vibration classification and detection. 

4. Conclusion and outlook 

The sensitivity of the neutron flux oscillation simulations with CORE 
SIM+ was analysed for a selected perturbation. Besides variations of the 
parameters of the neutron noise source and the detectors, uncertainties 

Fig. 24. Relative difference of the thermal flux from the original cycle 39 core 
loading and the maximized neutron leakage core loading (at the mid-height 
position of the detector installation). 
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of the neuronic data were derived and used in the sensitivity analysis. 
The results of these simulations are the location-dependent phase and 
amplitude of the induced neutron noise. The phase is mostly sensitive to 
variations of the location of the noise source. For the amplitude, it was 
found that depending on the core loading and the corresponding static 
neutron flux field, both the location of the noise source and the ampli
tude of the fuel vibration can cause comparable quantitative changes. 
This analysis also reveals that a sufficient deviation from point-kinetics 
is observed in case of fuel assembly vibrations for large commercial 
reactors. It was also shown how variations of the core loading pattern 
can have an impact on this property. 

The deviation from point-kinetics is the primary reason why 
unfolding the noise source from very few detector readings is possible: 
the spatial signature of the induced neutron noise (amplitude and phase) 

is sufficiently different when the noise source position is changed. The 
dependence on the noise source location can thus be detected by the 
machine learning architectures. Using the simulation results created by 
the sensitivity analysis of CORE SIM+ it was found that the 3D-FCNN 
robustly detects the cause and the location of the perturbation causing 
the neutron flux oscillations. The variations of the test data via the 
sensitivity analysis represent uncertainties of the measured data which 
would be fed into the algorithm when applied to actual plant data. This 
demonstrates that these uncertainties should have a negligible effect on 
the detection and localization efficiency of the algorithm. 
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