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Abstract

Climate change and sustainability have become societal focal points in the last decade. Consequently, companies have been
increasingly characterized by non-financial information, such as environmental, social, and governance (ESG) scores, based on
which companies can be grouped into ESG classes. While many scholars have questioned the relationship between financial per-
formance and risks of assets belonging to different ESG classes, the question about dependence among ESG classes is still open.
Here, we focus on understanding the dependence structures of different ESG class indices and the market index through the lens of
copula models. After a thorough introduction to vine copula models, we explain how cross-sectional and temporal dependencies can
be captured by models based on vine copulas, more specifically, using ARMA-GARCH and stationary vine copula models. Using
real-world ESG data over a long period with different economic states, we find that assets with medium ESG scores tend to show
weaker dependence to the market, while assets with extremely high or low ESG scores tend to show stronger, non-Gaussian
dependence.
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Sustainability and climate change has gained importance for companies, investors, practitioners, and academics.
Concurrently, non-financial information, including environmental, social, and governance (ESG) data, has been
increasingly included in the investment decision making process’ in general and for socially responsible funds” in
particular. Following the 2020 Global Sustainable Investment Review, sustainable investment reached USD 35.3
trillion in five major markets at the beginning of 2020, and 35.9% of total assets under management are invested
sustainably.’

ESG scores aim to measure the level of ESG performance of a company.” The scores are available from different
rating institutions (e.g., Refinitiv by Thomson Reuters, Bloomberg, Sustainalytics), which use different quantitative and
qualitative methods to assign an ESG score to a company. In brief, a high ESG score indicates ESG responsible
behavior, while a low ESG score indicates ESG irresponsible behavior. Typically a company is associated with a rating
class (e.g., A, B, C, or D) based on its ESG score. For example, within Refinitiv, assets are given a D grade for an ESG
score lower than 25, C for an ESG score between 25 and 50, B for an ESG score between 50 and 75, and finally, A for an
ESG score higher than 75.

As the economic and financial markets become more intertwined, and rapid advancements in technology and data
processing are happening, academics and practitioners must find ways to model complex and interconnected systems.
Traditional dependence measures often fail to create a complete understanding; therefore, copula models have been
highlighted in the research community and gained popularity (e.g., Patton,* McNeil et al,” Cherubini et al® for financial
and risk applications).

A big advantage of copula models, proven by Sklar’; is that they can separately model marginal distributions and
dependence structures of a given data. However, standard copula models cannot accommodate asymmetric tail
dependence. Vine copula models were designed to increase the flexibility of these models. They rely on a pair copula
construction and allow for modeling d-dimensional dependence structure by using two-dimensional building blocks
and conditioning.’ Standard vine copula models can assess only cross-sectional dependence. However, Nagler et al'’
derived a stationary (S-) vine copula model that allows for simultaneously modeling cross-sectional and temporal
dependencies. By showing that invariance is a sufficient condition for stationarity in this copula class, both types of
dependencies can be modeled concurrently. The S-vine copula model includes a general vine structure for cross-
sectional dependence and leaves flexibility for linking them across time.

While the ESG literature is dominated by various analyses on the relationship between ESG scores and financial
performance or risk measures, the number of works combining vine copulas and ESG scores has increased too. These
include but are not limited to Bax et al,"’ who used vine copulas to introduce new risk measures to assess if companies
with similar ESG scores share similar risk characteristics. Further, LO6f et al'” used copula-augmented predictive

? The terms company and asset will be used interchangeably.
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models and ESG-constrained optimization to assess the portfolio performance, focusing on timber and forestry stocks.
Also, Gorka and Kuziak'” included copulas to model volatilities and find diversification benefits. Others have focused
on explaining how ESG scores are combined using a Random Forest algorithm.'*

We focus on exploring complex dependencies between ESG indices and the market using different classes of vine
copula models. More specifically, we use an ARMA-GARCH vine copula model as well as a S-vine copula model in
our illustrations. This allows a first analysis of the inherent dependencies in ESG finance. Moreover, we guide how such
models can be used in future research for this domain. In our analysis, we present that especially the extreme ESG
classes (i.e., A and D) show strong cross-sectional dependencies with the US market, while the B class exhibit weaker
dependence. Further, using dynamic vine copulas, we highlight that temporal dependence in the US market exists and is
strongest in times of crisis and the most recent years.

The remainder is structured as follows. Section 2 gives a thorough introduction to dependence modeling with vine
copulas. After discussing the ESG data set in Section 3, we build and interpret two different types of vine copula models
for the dependence between ESG indices. In Section 4, we model temporal dependence for each index with ARMA-
GARCH models and capture cross-sectional dependence between indices by a vine copula for the time series residuals.
In Section 5, we explain and apply stationary vine copulas, which capture both types of dependence in a single model.
Section 6 summarizes the paper and gives a future outlook.

2. Introduction to vine copula models

Copulas. The copula approach for constructing multivariate models is useful if we need to build a joint model with
heterogeneous components such as for assets from different sectors and markets or from different ESG classes. Here
arbitrary models for each component can be used. They are linked with a copula characterizing the dependence among
the components. A d-dimensional copula C is a multivariate distribution function with values in [0,1]¢ with uniformly
distributed margins. In the continuous case (which we assume from now on) the copula density can be obtained by
partial differentiation. A fundamental representation of any distribution function in terms of a copula and its margins
were proven in Ref . In particular we have for a d-dimensional random vector X with joint and marginal distribution
functions given by F and F), respectively and copula C

Fxy, .. xg) = C(F(x1), - Fa(xa))- (1)

This implies the multivariate density fixy, ..., Xg) = c(Fi(x1), ..., Fa(x2))fi(x1)---fa(x4), where f; are marginal densities
and c the copula density. By inversion of (1) we can use any d-dimensional distribution function to obtain the cor-
responding copula. Examples are the multivariate Gaussian and the Student ¢ copula. Generator functions are used for
the class of parametric Archimedean copulas, which includes the Gumbel, Clayton and Frank copula families. Two-
parameter BB copula class allows for different, non-zero upper and lower tail behavior'”; (Section 5.2).

To enhance the flexibility of bivariate copulas their survival and reflection versions can used. For example, the
survival version of a bivariate copula density c is given by c(uy, up) = c(1 — uy, 1 — up).

The case d = 2 plays a special role by being the building block for vine copulas. Further we need the conditional
density fj, and distribution function F, given by

fuz(xl 1X2) = cio(F1(x1), Fa(x2)fi (x1) @)

0
Fip(xi]x) = ECIZ(FI (1) V)|V=F2(x2)- (3)

Dependence measures. Since copulas capture non linear dependence, the linear Pearson correlation dependence
measure is inappropriate, instead Kendall’s 7 is often utilized. It is defined as

(X1, X5) = P(X11 — X21)(X12 — X22) > 0) = P(X11 — X51)(X12 — X22) < 0),

where (X1, X12) and (X5, X»,) are independent and identically distributed copies of (X, X;). Kendall’s 7 is invariant
with regard to marginal distributions and, therefore, depends only on the underlying copula. In finance we are interested
in the dependence among extreme events and thus bivariate measures such as the tail dependence coefficients given by
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Fig. 1. Examples of marginally normalized contour plots. From left to right: Independence, Gaussian, Gumbel, Student ¢ copulas.
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are of interest. The Gaussian and Frank copulas do not exhibit tail dependence, while the Student 7 copula has
symmetric tail dependence. The Clayton and Gumbel copula have only lower or upper tail dependence, respectively.

Visualizing copulas. Marginally normalized contour plots are used to compare bivariate copula families visually. For
this we need the marginally normalized scale (Z;, Z;) = ((D_I(F 1(XD), @1 (F(X,)), where @ denotes the N0, 1)
distribution function. Since (Z;, Z,) has N(0, 1) margins and so any non-elliptical contour indicates a deviation from
Gaussian dependence. Fig. 1 shows normalized contour plots for some bivariate families. The circle in the leftmost panel
corresponds to independence; the elliptical shape in the next panel to a Gaussian copula. Deviations from Gaussian
dependence are visible in the two right panels. The first, a Gumbel copula, shows a spike in the upper-right tail indicating
upper tail dependence. The rightmost panel is a Student ¢ copula, which has symmetric tail-dependence in both tails.

Estimation. For parametric models with a small number of parameters in Equation (1) both the marginal and copula
parameters can be estimated jointly by maximum likelihood. If this is not the case a two step approach is more tractable.
In particular, we use independent and identically distributed (i.i.d.) observations x; = (X;, ..., Xig), i = 1, ..., n to
estimate the marginal parameters for the d marginal models separately yielding estimated marginal distribution
functions F »j =1,...,d. They are used to create the pseudo copula data

;= (i, oo ttig) = (Fi1(), oo Fa(id)), i=1,.n. @)

Copula parameter estimates are then based on the data from Equation (4). If parametric margins are used, the
approach is known as inference for margins (IFM) approach,'® while the semiparametric approach uses empirical
margins.'’

Pair copula decompositions. There are many choices for bivariate parametric copula families, but this is not true for
d > 2. This raises the question: Can we utilize only bivariate copulas as building blocks to construct a d dimensional
copula? In Joe,'® conditioning was used for such a construction, and the first pair copula construction for distribution
functions was given, while Bedford and Cooke'’ developed them for densities and provided a framework to identify all
possible constructions. For the convenience of the reader, we show the basic ideas for d = 3 by utilizing the recursive
factorization

Sfx1,x2,x3) =f3|12(x3 |x1,xz)fz|1(xz|xl i(x) (%)

and evaluate each term separately using F and f;, for the conditional distribution or density function of X; given
Xp, respectively. For f31,(x3lx;, x5), we consider the bivariate conditional density fi3.(x1, x3lx2). The copula density
c13:2(+, -5 x2) denotes the copula density associated with the conditional distribution of (X;, X3) given X, = x,. Using the
density representation of (1) for fi35(x1, x3lx,) we have

fl3|2(X1,X3 |X2) = C13;2(F1\2(X1 |X2), F3|2(x3|x2);x2)ﬁ|2(x1 |x2)f3|2(x3 |X2)- (6)
The density of X5 given X; = x1, X, = x,, denoted by f512(x3lx1, x3), is determined from (2) applied to (6), yielding

S (xs)xy, x2) = cizp(Frp (x| x2), F3p(x3]x2)500)f30(x3]x2). (7
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Finally, direct application of (3) allows f51(x2lx;) and f35(x3lx,) to be expressed in terms of bivariate copulas. Using
this together with (7) results in a pair copula decomposition of fix, x,, x3) as

F 1, x0,x3) = ci3p(Fiip(x1%2), Fap(3]%2)502) X 03(Fa(x2), F3(x3)) (8)
Xen(Fi(x1), Fa(x2))fs (x3)fa(x2)fi (x1)-

Thus, the joint density can be expressed in terms of bivariate pair copula densities, marginal densities, and con-
ditional distribution functions. It is not unique, since reordering the variables in (5) gives two further decompositions:

St X2, X3) = o351 (Fon (2|1, 31 (x3[%1)5 1) X e13(Fi (x1), F3(x3)) )
X (F1(x1), F2(x2)f3(3)fa () (x1)

(1,20, x3) = C1o3(Fii3(x1 [x3), Fap (a2 ]x1)5.x3) X c13(Fi1 (x1), F3(x3)) (10)
XC23(Fa(x2), F3(x3))f3(x3)fa (x2)f1 (x1)

Pair copula constructions. All decompositions have a conditional copula term c;..(-, -; xx). To facilitate estimation,
we normally neglect the dependence on the specific conditioning value x;. This is called the simplifying assump-
tion.”">*" Under this assumption we have the simplified pair copula construction with copula parameter vector @ = (65,

053, 0,,.3)

Fx1,x0,x330) = c13;2(F”2(x| [2), F3o(x3 |x2);013;2) X €23(Fa(x2), F3(x3);053) (11)
Xcn(Fi(x), Fa(x2), 012)f3(x3)f(x2)f (x1).

Here ¢13.0(:, 3 013.2), c12(-, -3 012) and ¢23(+, -; @3) are arbitrary parametric bivariate copula densities. The dependence
on marginal parameters has been suppressed to ease notation. This is no longer a decomposition but a construction,
where the dependence on x; in ¢13.0(F1p(x11x2), F32(x3lx2); 013.) is solely captured by the arguments. If the margins in
Equation (11) are uniform (i.e., f; = 1), we have a three-dimensional parametric copula density.

Parameter estimation. To estimate the parameter @ using the i.i.d. sample x; = (x;1, X;», X;3), i = 1, ..., n the two-step
approach is followed. For this we construct the associated pseudo data u;; as in (4) yielding the joint (pseudo-)like-
lihood for the copula density associated with (11) as

£(Gu) = H013;2(C1|2(Mi,1 |1i25012), C3o (11 |Mi,2§023)§013;2) (12)
i=1
X3 (Ui, 1i33023) X c1a(Uy 1, uin3012).

The joint maximum likelihood estimator § maximizes Equation (12). We describe now the alternative sequential
estimation method, which remains computationally tractable in high dimensions. Maximizing over €, and 0,3,
respectively,

n n
H Clz(ui,b Mi,2§012) and I | e, Mi,3;023)
i=1 i=1

to obtain @1, and @,3. Then we create pseudo observations

oo = Cipp(ui|u;2;01,) and o = Cap(ui|uin; 0:3), (13)

fori =1, ..., n. This is an approximate i.i.d sample from the pair copula Cy3., under the simplifying assumption.

Additionally, the marginal distribution of the pseudo observations (13) is approximately uniform, since (13) is a

probability integral transform with estimated parameter values. Thus, we estimate the parameter(s) of the pair copula
132 by maximizing

n

Cipl — ~,Uu ~ '013;2
H ( 012,01 032,02 )

i=1
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Fig. 2. Graphical representation of the pair copula constructions in three dimensions (left) c1, — ¢33 — ¢13.2, (middle) ¢35 — ¢y — ¢23.1, and (right)

€13 — €23 — C12;3-

over 63.,, i.e. @ can be estimated by solving three simpler problems. This estimate can also be used as a starting
value for joint maximum likelihood estimation. A similar approach can also be followed when estimating pair copulas
nonparametrically.”*

Regular vine structures. In higher dimensions we need a graphical tool to identify different pair copula construc-
tions. Such a tool was developed by Cooke and Bedford” and is called the vine tree structure. The corresponding tree
structure consisting of two trees for the constructions (8)—(10) (from left to right) are shown in Fig. 2. The first tree
identifies unconditional pairwise dependencies and the second tree conditional dependencies. More precisely, the nodes
of the first tree indicate the variables X, X, and X3, respectively. The edges correspond to unconditional pair copulas.
For example, (8) has the pair copulas ¢, and c¢,3, which are represented by the edges 1 — 2 and 2 — 3 in the left panel of
Fig. 2 in Tree 1. For Tree 2 edges of Tree 1 are turned into nodes for Tree 2, i.e. the edges 1-2 and 2-3 in Tree 1 become
nodes in Tree 2 which are connected by an edge representing the pair copula c¢;3.5(-, -; Xx»). Here the conditioning
variable 2 is identified as the common element of the nodes 1, 2 and 2, 3 in Tree 2. From this we see that the product of
all pair copulas associated with edges in the vine tree structure give the joint vine copula density. The two right panels of
Fig. 2 represent (9) and (10), respectively.

Vine tree structures can also be defined in d dimensions consisting out of d — 1 linked trees. The linking consists of
turning edges in Tree (j — 1) into nodes of Tree j. The edges of Tree j have then to satisfy the proximity condition. This
condition only allows edges in Tree j between two nodes a an b if the two nodes considered as edges in the Tree (j — 1)
share a common node. The precise mathematical definition of these R-vine tree structures were developed by Bedford
and Cooke’ and illustrations are given Chapter 5 of Czado.”*

There are two subclasses of R-vine tree structures. A canonical (C-) vine tree structure consists of stars for all trees.
So in every tree there is a single node, called the root, that is connecting all the others. A C-vine tree structure can be
identified by the order of root nodes. We will later use such a structure in 5 dimensions (Fig. 4).

In a drawable (D-) vine tree structure all trees are paths. In a D-vine tree sequence, the proximity condition implies
that the specification of Tree 1 determines all other trees. To characterize a D-vine structure, we therefore only need to
specify the path in the first tree, called the order of a D-vine. The tree structure of a D-vine can be drawn in a way that
resembles a grape vine giving its name.'” For d = 3 the C-vine and D-vine tree structure coincide (see Fig. 2).

Regular vine copulas and distributions. The R-vine tree structure is the building plan of a regular (R-) vine distribution
for the random vector X = (X, ..., X;). This distribution is specified by three components: (1) a set of marginal distributions,
(2) a specified R-vine tree sequence and (3) a set of specified pair copulas c, . for each edge in the R-vine tree sequence.
Here a and b are singletons and D is a set of indices from {1, ..., d} without a and b. Each such pair copula c,, ;.o represents
the copula of the conditional distribution of X, and X,, given X,. Under the simplifying assumption each conditional pair
copula ¢, 5.p does not depend on the specific conditioning value of X, = x. In Bedford and Cooke,’ the existence of such
distributions were shown and a representation of the joint density given. It involves only products of marginal densities and
pair copulas ¢, ;.p. For example, for C- and D-vine structures with (root) order 1, ..., d, respectively,

d-1 d—j d
fi.a(x1s - Xa) H HC_f,_f+i;1,m,j—1] X ka(xk)],
=1 =1 k=1
1 d—j d
Ci,(i+j);(i+1)...,(i+j—1):|'[ ka(xk)]-
k=1

[ J=1

Here the index j identifies the tree level and the index i is used to enumerate the edges of that tree. The arguments of the
copula terms were omitted in the last display. In general, these terms take the form c,p;0(Fap(X4|%p), Frip(xs|Xp)). The
conditional distribution functions in the arguments of ¢, ;. p can be determined recursively from conditional distributions of
pair copulas occurring in earlier vine trees as shown in'>. More details can be found in Chapter 5 of Czado.”*

QL ~
Tl

Sia(xn, o)
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Estimation and model selection. To apply vine copula models in practice, we have to perform three tasks of
increasing complexity: (1) estimate parameters of a given pair copula model, (2) select an appropriate parametric family
for a given pair copula, (3) decide on the tree structure determining which pair copulas are part of the model.

Task (1) is solved using the sequential estimation approach discussed earlier. Here we extend the construction of the
pseudo data from tree T, given in (13) to trees T to T,;_; using estimated conditional copula distribution functions. This
is fast, since it allows to estimate the parameters of each pair copula term separately, starting from tree 7 until 7,,_;. The
asymptotic properties of such parameter estimators, including standard errors are studied.”>*°

For task (2), we also proceed sequentially and consider each pair copula separately. We fit the parameters for each
family of the candidate list and choose the one which minimizes the Akaike Information Criterion (AIC)27 or the
Bayesian Information Criterion (BIC).”®

Task (3) is the most challenging, since the number of vine tree structures grows superexponentially.”’ For d = 10 the
number of regular vine tree structures is approximately 5 x 10'*. Even if we restrict to C- and D-vines, there are almost
2 million structures to be investigated. A greedy selection algorithm, called the Dissmann algorithm, has been
developed in Dissmann et al.”’ It fits the strongest dependencies first. This is natural since estimation errors are
propagated in the sequential estimation approach, and we may hope to find sparse models. To measure the strength of
dependence, the empirical Kendall’s 7 is used. The Dissmann algorithm selects tree 7 by using a maximal spanning
tree algorithm with weights given by the absolute value of empirical Kendall’s 7 between any pair of variables. Once
tree T is determined, all pair copula families and parameters are selected and estimated using the approaches outlined
for Tasks (1) and (2). For tree 7>, all possible edges allowed by the proximity condition are considered. On them, we
find a spanning tree maximizing the absolute Kendall’s 7 computed from the pseudo data as defined in (13). We
continue that way until all trees, pair copula families and its parameters are selected.

These methods are implemented very efficiently in C++ with interface to R in rvinecopulib,”' which we will utilize for
our data analyses. The computational demand typically scales quadratically with the dimension d, but the library has been
applied for dimensions about d = 400. Other open source implementations in Matlab and Python are available.”>**

3. Data

In both illustrations in Sections 4 and 5.2, the data of ESG scores has been provided by Refinitiv, the risk business
unit of Thomson Reuters. ESG scores are rank based, have values between zero and 100 and aim to measure the
company’s relative ESG performance, commitment, and effectiveness across ten main topics (e.g., emissions, resource
use, and human rights).”* Over time companies have improved their ESG scores as visible in Fig. 3 since they are under
much pressure from the public and investors, and sustainability has become a core topic to deal with explicitly.

ESG Score Distribution

2021 = o e e

I .
2020 = a-e :I:

o — T e
1 1 1

0 25 50 75
ESG Score

Year

Fig. 3. Distribution of ESG scores of 330 assets of the S&P 500.

315



C. Czado, K. Bax, O. Sahin et al. The Journal of Finance and Data Science 8 (2022) 309-330

In our analyses, we consider the ESG class indices, which we compute using daily logarithmic returns and yearly
ESG data of 330 US companies (j = 1, ..., 330), constituents of the S&P 500 index, from 4 January 2007 to 31
December 2021.” Additionally, we record the economic sector information of each asset and its market capitalization
weights. Further we download the S&P 500 index for the same period to act as the market index (17 ') in our models
from Thomson Reuters.

The chosen period (2007-2021) allows for having the largest number of assets and longest period to get a complete
picture of crisis versus non-crisis times. We do so by splitting the overall period into five parts to compare different
economic periods g: g; = 2007-2009, g, = 2010-2012, g3 = 2013-2015, g4 = 20162018 and g5 = 2019-2021. Here
q captures the financial crisis period, and g5 captures the beginning of the Covid-19 crisis. ESG scores in periods g4 and
gs are not definitive as they were not yet five years old when retrieving the data.’* The data provider is, therefore, still
able to modify these scores post-publication.

To compute the ESG class indices, we start by computing the mean ESG score (E SG ) for each asset Jjin each period
q. Then, since ESG scores are computed differently given the sector they belong to (see Refinitiv'?), we d1v1de the
assets into ten economic sectors. Within each sector, we rank the assets according to thelr mean ESG score (E SG ) and
group them into four d1fferent quartiles in each period ¢: assets with the highest £ SG are grouped in ESG class A,
assets with the lowest E SG in ESG class D, and the assets with the second to hlghest and second to lowest perfor-
mance in ESG classes B and C, respectively, in each sector. We use quartiles to cluster the assets and not just the
thresholds defined by Refinitiv since ESG scores tend to improve over time as seen in Fig. 3. Hence, otherwise, we
would have only a small number or even zero assets in class D in the last years. This process also allows us to take care
of any sectorial differences.

Now we compute the ESG class indices per ESG class k and period g (7 1) as alinearly weighted combination of the
daily (#) asset returns in the same ESG class, using the assets’ market capltahzatlon weights. For instance, the ESG class
index A in period g on trading day ¢ is / Z 4~ Since these steps are done individually for each period ¢, assets can change
the ESG class between periods and do not necessarily have to stay within the same class.

The input data for the vine copula based models is always the daily ESG class indices, Izk, in each period gq.
However, due to the differences in modeling, the data processing is not identical. Therefore, we add a flowchart in
Figure A.6 to make for an easier understanding and illustrate the process in each corresponding section.

4. Vine copula based modeling with ARMA-GARCH margins

Marginal modeling. While the estimation and selection approach detailed in Section 2 are suitable for multivariate
i.i.d. data, a filtering step is needed for time series observations, as is the case for the ESG data. To apply vine copulas,
we choose an appropriate time series model, such as an ARMA-GARCH model,* for each univariate time series. Such
an application removes the temporal dependence in each series. Then, using the innovation distribution in the ARMA-
GARCH model, we construct standardized residuals (see the right branch of Figure A.6). The standardized residuals of
each series will be approximately i.i.d. After transforming them to the copula scale, they will form the input of a vine
copula model. We call this approach the ARMA-GARCH vine copula modeling approach. A short review of ARMA-
GARCH models is given in Appendix D.3.

To illustrate the ARMA-GARCH vine copula modeling approach, we use the ESG class and market indices IZ,(
described in Section 3 as input data. For this data, ARMA(1,1)-GARCH(1,1) models with skewed Student innovations
(sssd) were sufficient to remove the serial dependence for each of the five components. The estimated parameters are
given in Table D.13. Next standardized residuals are used to form the pseudo copula data.

Vine structure. We now select the vine tree structure for ESG data: Since we expect the market index (S&P
500) to influence the different ESG class indices, we choose a star structure in the first tree to model their
dependence, inducing a C-vine tree structure. Now we only need to select the root nodes of the remaining trees.
Since there is a natural order among the four different ESG classes, the root nodes obey that order, e.g., the
conditional dependence of the ESG class A given the market is modeled in the second tree. Fig. 4 shows the
imposed vine tree structure, where the ESG class and market indices IZk are abbreviated by k € {A, B, C, D, M}
for easier notation.

® Date of retrieval was 28 April 2022.
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Tree 2
Tree 1 ( C.M
Tree 4

Tree 3

Fig. 4. Vine tree structure of the static vine copula model used in the dependence analysis of market and ESG class indices.

We can now study whether assets with different ESG classes show similar or different dependencies with the market
index in various periods. In addition, the higher trees allow us to model other complex structures, such as the con-
ditional dependence of the ESG classes C and D given others. The structure can, however, be adapted depending on
which dependencies one is most interested in. Moreover, the vine structure can be chosen by the heuristic Dissmann
algorithm as explained in Section 2. Thus, we also allow the vine tree structure to be chosen by this algorithm.

Estimation and model selection. We select the pair copula families and their parameters of the associated vine tree
structure tree by tree, starting from Tree 1, as proposed in”’. For the pair copula family selection, we allow all bivariate
copula families implemented in”' and choose the one with the lowest AIC. The pair copula family and its parameter(s)
for each edge in the vine structure are selected and estimated as discussed in Section 2.

The results for the vine structures imposed and chosen by the heuristic Dissmann algorithm in terms of the AIC and
BIC are given in Appendix D.2. We find that the imposed C-vine tree structure in Fig. 4 provides better model fits than
the other in all periods but 2019-2021.

Interpretation. Results of the imposed C-vine tree structure (Fig. 4) for the first three trees are in Tables 1-3. We
report the selected pair copula families, their estimated dependencies and the resulting lower and upper tail dependence
coefficients. For easier understanding, we color the edges of the first tree of Fig. 4, whose results in Table 1 have the
same color.

Table 1 shows that the market index has the strongest dependence on the ESG classes C and A during the crisis
(2007-2009) and A and B during the Covid-19 period (2019-2021). ESG class D has the smallest dependence on the
market index in these two crisis periods. During calm periods (2010-2012 and 2013-2015), we find the strongest
dependence in the extreme ESG classes A and D. Moreover, in these calm periods, the market index and ESG class C
show the lowest dependence compared to the other classes. In the most recent period, the ESG classes A and B and the
market index M show the strongest dependence. A similar result is also visible for the lower and upper tail dependence
coefficients. The lower and upper tail dependence coefficients between an ESG class and market indices are the highest
for C and A during the crisis (2007-2009), while D exhibits the weakest dependence.

Some explanation of these results could be related to the size effect. Research has shown that larger companies are
more likely to be awarded an ESG score’® while other scholars have shown that companies with higher market
capitalization tend to have higher ESG scores.”’ We would like to note that also, in our sample, the assets in class A tend
to have the largest market capitalization compared to assets in other ESG classes.” These companies tend to have more
capital and managerial support to push for sustainability changes and disclosure. Additionally, these companies tend to
be more in the spotlight and feel societal pressure to make a positive change. Moreover, investors tend to flight to
quality (i.e., class A); therefore, a lot of attention is given to ESG Class A during crisis periods, especially recent ones,

¢ Results are available upon request by the authors.
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ARMA-GARCH vine copula results ESG data for Tree 1 in different periods (rot = family’s rotation, ltaildep/utaildep = lower/upper tail dependence

coefficients).

Table 2

Period conditioned family rot tau Itaildep utaildep
Y : 0 067 057 057
BB7 0 082 093 087
2007-2009 BB1 0 070 073 0.64
AL M BB7 0 081 092 087
D, M BB7 180 080 088 0.9
¢ 0 070 067 067
2010-2012 BB7 0 074 084 0.0
A M BB7 180 081 088  0.90
D, M BB7 180 080 087 088
¢ 0 070 065  0.65
2013-2015 ¢ 0 071 068  0.68
A M BB7 180 079  0.87  0.87
D, M BB1 0 077 078 074
¢ 0 067 062 062
2016-2018 BB1 180 0.76  0.74 0.7
AL M BB7 180 072 088  0.00
D, M : 0 065 039 039
BB7 0 073 084  0.79
2019-2021 BB7 180 080  0.88  0.88
AL M BB7 180 080 088  0.87

ARMA-GARCH vine copula results ESG data for Tree 2 in different periods (rot = family’s rotation, ltaildep/utaildep = lower/upper tail dependence

coefficients).

Period conditioned conditioning family rot tau Itaildep utaildep
2007-2009 D, A M BBS 180 0.124 0 0

C A M t 0 0.003 0.046 0.046

B, A M Frank 0 0.084 0 0
2010-2012 D, A M t 0 —0.057 0.017 0.017

C, A M Frank 0 —0.171 0 0

B, A M t 0 —0.216 0 0
2013-2015 D, A M t 0 —0.056 0.008 0.007

C, A M t 0 —0.065 0.001 0.001

B, A M Frank 0 —0.133 0 0
2016-2018 D, A M Joe 0 0.025 0 0.058

C A M Gumbel 90 —0.061 0 0

B, A M Indep. 0 0 0 0
2019-2021 D, A M BB1 180 0.065 0.087 0

C, A M t 0 0.123 0.036 0.036

B, A M t 0 —0.078 0.016 0.016
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Table 3
ARMA-GARCH vine copula results ESG data for Tree 3 in different periods (rot = family’s rotation, ltaildep/utaildep = lower/upper tail dependence
coefficients).

Period conditioned conditioning family rot tau Itaildep utaildep
2007-2009 D, B A,M t 0 0.258 0.116 0.116

C, B AM Clayton 0 0.044 0.001 0
2010-2012 D,B A,M t 0 —0.130 0.001 0.001

C, B A,M BB8 180 0.080 0 0
2013-2015 D,B A,M Gumbel 90 —0.147 0 0

C B AM BB7 90 —0.098 0 0
2016-2018 D, B A,M t 0 —0.252 0 0

C, B A,M Joe 180 0.054 0.120 0
2019-2021 D,B A,M t 0 —0.113 0 0

C, B AM Gumbel 90 —0.116 0 0

while such behavior is not needed in calmer periods. Thus, the size effect can offer some explanation to the results;
however, as we use only a subset of the constituents of the S&P 500, there must also be additional factors involved that
we cannot fully comprehend yet.

In Tree 2, ESG classes A and D conditioned on the market M show the strongest absolute dependence in crisis period
2007-2009 (Table 2). In the following two calm periods, the strongest absolute dependence is between ESG classes A
and B conditioned on the market M. Even though the strongest absolute dependence is between the ESG classes A and C
conditioned on the market M in the most recent period, such dependencies are lower than the strongest absolute
dependence of the other periods. Moreover, the negative dependence of ESG classes A and B conditioned on the market
M in 2010-2012 and 2013-2015 might imply that investors change their investment preferences among assets in high
ESG classes during the calm periods.

In Tree 3 (Table 3), the strongest absolute dependence over all periods is between ESG classes B and D conditioned
on the market M and A in 2007-2009. The large absolute dependencies of the ESG classes A and D (and, to an extent, C)
can be explained by looking at investor behavior and preferences. As companies are under pressure to improve their
ESG performance, investors increasingly focus on assets with a high ESG performance.' These assets, therefore,
receive much attention. While assets in the lower ESG class experience the opposite effect by often being excluded
from investment portfolios," assets that are neither good nor bad in their ESG performance often do not play an
important role in investment choices. By showing that these assets have low dependence on the market (Table 1), they
could be used in hedging and mitigating market risk.

While we find some symmetric tail dependence (Student ¢ copula) in each period, mostly BB7 and BB1 copulas with
asymmetric tail dependence were fitted in the first tree in Table 1. In Table 2, we find that the dependence between class
B, class C, class D and class A conditioned on the market is also non-Gaussian. Likewise, the dependence between class
B and class C, as well as class B and class D conditioned on class A and market, is non-Gaussian as seen in Table 3. Such
results show that a multivariate Gaussian distribution to model such dependencies cannot be adequate.

The results from Tree 4 are added to Appendix C for completeness.

5. Stationary vine copula based modeling
5.1. Stationary (S-) vines

The approach from the previous section separates modeling of dependence within a single time series from modeling
the dependence across series. We can also build a single vine copula model for both types of dependence. In 2015, three
such models were independently proposed by Beare and Seo,’® Brechmann and Czado,”” and Smith," and later
generalized to the class of stationary vines or S-vines by Nagler et al.'’

Suppose we observe a multivariate time series X, = (X, 1, ..., X, 4), t = 1, ..., T. The general idea is to build one large
vine copula over all variables j = 1, ..., d observed at all time points ¢t = 1, ..., 7. In such a model, each variable is
identified by a tuple (¢, j), where ¢ is the time index and j the variable index. Naively, such a model requires the
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specification of T X d marginal distributions, a T X d-dimensional vine structure, and 7d(7d — 1)/2 pair-copulas, which
is an intractable problem. However, time series usually have more structure, which might lead to simplifications. In
particular, one normally assumes the time series to be stationary, i.e., the distribution of the variables is invariant to
shifts in time. This imposes restrictions on both the marginal distributions and the pair-copulas. First, the marginal
distributions F,; of the variables X,; has to be independent of the time index ¢. Hence, we only have to specify
d marginal distributions Fj, j = 1, ...d. Similarly, the (conditional) dependence between variables has to be invariant to
shifts in time. For example, the dependence between variables X, ; and X, ; ; conditional on X, ; must be the same as
the dependence between X, 5; and X, .5, conditional on X, ,s; for any 8. Hence, the corresponding pair-copulas
have to be identical as well. This restriction is called translation invariance of the pair-copulas.”®'"

It was shown in Nagler et al'” that stationarity of dependence is difficult to enforce for general vine structures. The
reason is that only some of the (conditional) dependencies are explicit in the model (i.e., given by a specific pair-
copula). However, they derived the maximal class of vine structures where translation invariance of the pair-copulas
is sufficient to ensure stationarity of the full dependence structure. This is the class of S-vine structures. S-vines
follow an intuitive building plan. First, we build a full vine structure VO for the variables (X1.1, .-+, X1,4), which we call
the cross-sectional vine. This structure is copied to all time lags (X, 1, ..., X, 4), t = 2, ..., T. Next, we build a full vine
structure for the variables (X i, ..., X1 4, X2.1, ..., X2,4) that contains the two copies of V© and additional edges linking
them. The additional d* edges have to be chosen in such a way that a valid vine tree structure for the 2d variables are
obtained. Then this structure is copied across all lags, etc. More technical definitions and formal results can be found in
Nagler et al '. An example of such a structure with cross-sectional C-vines is shown in Fig. 5 and will be discussed in
more detail shortly.

We can simplify the model further by assuming that the multivariate time series is a Markov chain. The series
(X);=1,..7 is called p-Markovian if the last p time points are sufficient for prediction, i.e.,

PX,<x|X\—, ... X)) = P(X, <x|X,_y, ... X,-,) forallx € R

Theoretically, this condition implies a large number of independence copulas in higher trees of the S-vine model (see
Nagler et al'” for more details). Practically, this means that we only need to build models for p + 1 consecutive time
points (instead of all T time points).

The stationary D-vine and M-vine models of Beare and Seo’® and Smith*” are two special cases of S-vines, where
the cross-sectional structure V%) is a p-vine. They differ only in how the cross-sectional parts are linked across time
points. The COPAR model of Brechmann and Czado’ follows a similar idea with cross-sectional C-vines, but links the
cross-sectional trees in a way that does not ensure stationarity for an arbitrary choice of the set of translation invariant
pair-copulas.

5.2. Illustration of stationary vine copula modeling in sustainable finance

We now illustrate how to build, fit, and interpret S-vine copula models on the ESG data of Section 3 using the
svines R-package by."' This package is also based on the rvinecopulib library’' and similarly efficient.

Marginal modeling. As usual, the first step is to find appropriate marginal models. Compared to the ARMA-
GARCH vine models from Section 4, this is a lot easier, since we do not have to account for serial dependence. We
merely have to find marginal distributions Fj for the ESG class and market indices IZk, k € {A, B, C, D, M}. By the
assumption of stationarity these distributions are invariant with respect to the time index ¢. For each index and period,
we shall assume a parametric model F7(-;#), where 7] is the parameter vector for the k-th margin and g-th period. The
parameters can be estimated by maximum-likelihood-type estimators

;iz = arg max Z hlfk(l:],k;”)’
n teT,

where the summation index runs over all tlme points 7, in period g and f7 is the associated density to F}. The
estimated model for index k and period ¢ is then F! « =FlGs nZ) To find appropriate parametric models, we select from
a set of suitable parametric families. Financial time series are known to exhibit heavy tails, so (skew) logistic, Student ¢
or generalized error distributions may qualify. For each index and period, we choose the one that minimizes the AIC
criterion. The marginal distributions and parameters used for the ESG data are given in Appendix B.
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|(B —1).(D—1);(A—1)(M — 1)\ [(A— 1), (A—2);(M —1)(M 72)\

(B=2),(C—2;(M-2)(A-2) (B —2), (M = 3);(M = 2)(M —3) (B=3),(C—3)(A—
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(B—2),(M —1);(M —2)(A—2) (B—3),(M —2);(M —3)(A—3)

Fig. 5. Vine tree structure (the first four trees) of the dynamic vine copula used in the dependence analysis of market and ESG class indices on three
time points (days).

As an alternative, one could also employ a nonparametric approach and model the margins by the empirical dis-
tribution function

IA?Z(X) |T | Zﬂ(lzk—

where the summation index ¢ runs over all 7, time points in period g. This approach prevents misspecification of the
parametric model, but cannot reproduce the heavy tails observed in financial time series well.

From the estimated marginal distribution functions F! ©» We now generate pseudo-observations for the copula using
vl = Bl e,

The S-vine structure. We move on to modeling the dependence. As explained in Section 5.1, S-vines follow a
specific building plan. In particular, we have to specify the cross-sectional structure and the links across time points.
Fig. 5 shows the first four trees of an S-vine structure for the indices {M, A, B, C, D} observed at three points in time. For
example, the node M — 2 corresponds to the market index at time ¢ = 2. If we focus on only a single time point, we see a
star-shaped graph corresponding to the cross-sectional C-vine. Copies of this C-vine appear on all three time points. It
was shown in Nagler et al'’ that the links across time points are fully characterized by two permutations 7" and 7™ of
the indices {A, B, C, D, M}. The first entry in the permutations is the index, where two adjacent time points are linked in

321



C. Czado, K. Bax, O. Sahin et al. The Journal of Finance and Data Science 8 (2022) 309-330

the first tree level of the vine. In Fig. 5, the connecting edge goes from node M — 1 at the first time point (so 7" = M) to
node M — 2 at the second (so ﬂ'iln = M). This edge correspond to a node (M — 1, M — 2) in the second tree of the
structure. The second entries of the permutation indicate which variables are connected to this edge. There is an edge
going from node (A — 1, M — 1) into (M — 1, M — 2) (so 73" = A) and another edge from (M — 1, M — 2) to (M — 2,
A—2)(so 7[12“ = A). The full permutations are 7°"' = a"= (M, A, B, C, D). In general, the two permutations do not have
to coincide and other permutations than the one in our example are possible. However, the permutations have to comply
with the proximity condition mentioned in Section 2; a formal condition for compatibility is given in Nagler et al.'’

The S-vine structure in Fig. 5 is a natural extension of the C-vine structure we identified as suitable for the ESG data
in Section 4. In particular, the C-vine from Section 4 is exactly the cross-sectional structure of the S-vine. Therefore, we
further decided to link the trees in an order that corresponds to the importance of the indices, where we assume the
market to be the main driver of dependence, followed by the ESG indices of decreasing quality.

Alternatively, one may also choose the S-vine structure in a data-driven manner. Similar to Dissman’s heuristic, we
then select the cross-sectional structure and connecting edges by building maximum-spanning trees according to
dependence measures like Kendall’s 7. The structure does influence not only model fit but also its interpretation; only
the explicit dependencies corresponding to edges in the structure can be interpreted easily. If a certain structure is
intuitive for the data, it is thus sometimes preferable to a data-driven choice. In the example of our ESG data, the custom
structure in Fig. 5 also seems to provide a better fit (see Table D.12).

Estimation and model selection. The parameters of an S-vine copula model can be estimated in a tree-wise manner,
similar to Section 2. The only difference is that many pair-copulas in the model are identical because of stationarity, so
they only have to be estimated once. Further, the pair-copula families can be selected tree-wise according to the AIC or
BIC criteria. Estimated pair-copulas for the first two trees on the ESG data are given in Tables 4 and 7. S-vine models
pose the additional problem of choosing an appropriate Markov order p. A straightforward approach is to fit models for a
few orders and select the order with the smallest AIC/BIC. For time series of financial returns, p = 1 or p = 2 is normally
sufficient. Results for the ESG data are provided in Table D.12 and indicate that p = 2 is preferred in most periods.

Interpretation. Let us now discuss the estimated model and draw some comparisons to the ARMA-GARCH vine
copula model from Section 4. The interpretation of cross-sectional pair-copulas in Tables 4 and 5 is rather straight-
forward: they describe the dependence between a (conditional) pair of indices, all observed at the same point in time.
There is an important difference to the ARMA-GARCH vine model, where the pair-copulas describe the dependence
between residuals of the marginal ARMA-GARCH models for each index. The dependencies in the S-vine model
therefore have a more direct interpretation. Nevertheless, we notice that the values in Table 4 are very similar to those of
the static vine copula model in Table 1. Thus, it turns out that the ARMA-GARCH effects are very small in our time
series (see Appendix D.3).

Again, for the crisis period 2007-2009, we find that ESG classes A and C show the strongest dependence; afterward,
it shifts to ESG classes A and D for the next three periods in the first tree in Table 4. Furthermore, the selected pair-
copula families all feature both lower and upper tail dependence, often with slightly stronger lower than upper tail
dependence. The cross-sectional pair-copulas of the second tree (Table 5) describe the dependence of two ESG indices
conditional on the market (read: after the influence of the market has been accounted for). The dependencies are all quite
weak. Though not yet negligible, this confirms our intuition that the market index drives much of the dependence
among the ESG indices. This simple interpretation is facilitated by the structure in Fig. 5. Other cross-sectional
structures would also feature conditional dependencies between the market and an ESG index conditional on
another ESG index, for example, the dependence between class A and the market M given class C. Such dependencies
are likely stronger and generally more difficult to interpret. The dependence between ESG classes A and B conditioned
on the market M is stronger than the others in the first two calm periods in Table 5. For the crisis period 2007-2009, the
strongest dependence is between ESG classes A and D conditioned on market M in the second tree. One possible
interpretation is that in times of crisis, investors might put more attention to the highest ESG class A, hoping they would
be more resilient or to the worst class D, considering them as the first investment option to discard. We omit results on
dependencies in higher trees because they are weaker and more difficult to interpret.

Tables 6 and 7 show those pair-copulas from the first two tree levels that describe dependence across time points. In
the first tree (Table 6), there is only one edge connecting subsequent time points, namely the one connecting the market
index at time ¢ and 7 + 1. In most periods, a Student 7 copula with weak negative dependence and a small degree of
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Dependence across indices for each period ¢ for Tree 1. These values and families are the same for A — 2, M — 2 and A — 3, M — 3 etc. as the tree
structure is the same. (rot = family’s rotation, Itaildep/utaildep = lower/upper tail dependence coefficients).

Table 5

Period conditioned family rot tau ltaildep utaildep
D-1, M-1 t 0 0.69 0.69 0.69
BB1 0 0.86 0.90 0.82
2007-2009 BB7 180 0.73 0.82 0.81
A-1, M-1 BB1 0 0.86 0.88 0.83
D-1, M-1 BB7 180 0.81 0.88 0.89
BB7 180 0.69 0.79 0.74
2010-2012 BB7 0 0.75 0.85 0.81
A-1, M-1 BB7 180 0.81 0.88 0.91
D-1, M-1 BB7 180 0.79 0.87 0.88
t 0 0.70 0.65 0.65
2013-2015 { 0 070 068  0.68
A-1, M-1 BB7 180 0.78 0.86 0.84
D-1, M-1 BB7 180 0.76 0.84 0.84
t 0 0.69 0.66 0.66
2016-2018 BB7 0 0.75 0.84 0.83
A-1, M-1 BB7 0 0.82 0.91 0.88
D-1, M-1 BB7 0 0.70 0.81 0.77
BB7 0 0.76 0.87 0.83
2019-2021 BB7 180 081 088  0.90
A-1, M-1 BB7 0 0.83 0.94 0.87

Dependence across indices for each period g for tree 2. These values and families are the same forD —2,A —2; M —2and D —3,A — 3; M — 3 etc. as
the tree structure is the same. (rot = family’s rotation, Itaildep/utaildep = lower/upper tail dependence coefficients).

Period ¢ conditioned conditioning family rot tau Itaildep utaildep
2007-2009 D-1, A-1 M-1 t 0 0.1397 0.042 0.042
C-1, A-1 M-1 t 0 —0.0028 0.011 0.011
B-1, A-1 M-1 t 0 0.0847 0.008 0.008
2010-2012 D-1, A-1 M-1 t 0 —0.0534 0.018 0.018
C-1, A-1 M-1 BBS8 270 —0.1778 0 0
B-1, A-1 M-1 t 0 -0.220 0 0
2013-2015 D-1, A-1 M-1 t 0 —0.0578 0.009 0.009
C-1, A-1 M-1 t 0 —0.0793 0.002 0.002
B-1, A-1 M-1 Frank 0 —0.137 0 0
2016-2018 D-1, A-1 M-1 Indep 0 0 0 0
C-1, A-1 M-1 BB7 90 —0.0955 0 0
B-1, A-1 M-1 t 0 —0.0334 0 0
2019-2021 D-1, A-1 M-1 BBS8 90 —0.0410 0 0
C-1, A-1 M-1 BB8 90 —0.1064 0 0
B-1, A-1 M-1 BBS8 270 —0.1598 0 0
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Table 6
Dependence across indices for each period ¢ for tree 1. These values and families are the same for M — 2, M — 3 as the tree structure is the same.
(rot = family’s rotation, ltaildep/utaildep = lower/upper tail dependence coefficients).

Period ¢ conditioned family rot tau Itaildep utaildep
2007-2009 M-2, M-1 t 0 —0.078 0.044 0.044
2010-2012 M-2, M-1 Joe 270 —0.040 0 0
2013-2015 M-2, M-1 t 0 —0.046 0.048 0.048
2016-2018 M-2, M-1 t 0 —0.044 0.106 0.106
2019-2021 M-2, M-1 t 0 —-0.076 0.137 0.137
Table 7

Dependence across indices for each period ¢ for tree 2. These values and families are the same forA —3, M —2; M —3and A — 2, M — 1; M — 2 as the
tree structure is the same. (rot = family’s rotation, Itaildep/utaildep = lower/upper tail dependence coefficients).

Period ¢ conditioned conditioning family rot tau Itaildep utaildep
2007-2009 A-2, M-1 M-2 t 0 —0.035 0.023 0.023
M-2, A-1 M-1 t 0 0.054 0.018 0.018
2010-2012 A-2, M-1 M-2 Indep. 0 0 0 0
M-2, A-1 M-1 Indep. 0 0 0 0
2013-2015 A-2, M-1 M-2 BBS8 180 0.045 0 0
M-2, A-1 M-1 Indep. 0 0 0 0
2016-2018 A-2, M-1 M-2 Joe 90 —0.036 0 0
M-2, A-1 M-1 Indep. 0 0 0 0
2016-2018 A-2, M-1 M-2 BBS8 270 —0.048 0 0
M=-2, A-1 M-1 Indep. 0 0 0 0

freedom parameter was selected. Such a copula induces volatility clustering, which is typical in financial time series."”
In the second tree (Table 7), there are two connecting edges. Both describe conditional dependence between the ESG
class A index and the market index observed at different days. The first indicates how the market at time ¢ depends with
index A at time 7 + 1, conditional on the market at time ¢ + 1. The second indicates how the market at time 7 + 1 depends
with index A at time ¢ conditional on the market at time ¢. These pair-copulas serve two purposes at the same time. First,
they induce the serial dependence for the ESG class A index, but in an indirect way (conditional on the market). This
dependence is, therefore, rather difficult to interpret, which can be seen as a disadvantage compared to ARMA-GARCH
vine models. The second purpose, however, is to model the cross-serial dependence between the market and index A at
different time points, which can not be modeled explicitly in the former models. Overall, the results in Table 7 are rather
incoherent across periods. Notably, only during the financial crisis 2007-2009, we observe tail dependence.

6. Summary and outlook

Sustainable finance aims at explicitly considering environmental, social and governance (ESG) factors when
dealing with investments and companies. ESG scores and classes (A4, B, C, and D) have become relevant infor-
mation to take into account when making investment decisions and developing risk management and monitoring
tools. Therefore, understanding the complex dependence relationships among ESG class indexes and the market
index is of utmost importance, and vine copulas are possibly among the most appropriate tools to capture such
dependencies.

While ARMA-GARCH vine copulas allow for modeling cross-sectional dependence after temporal dependence has
been removed, stationary vine copulas allow for modeling both simultaneously. Based on the data provided by Refinitiv
for the S&P500 Index and constituents, we show that the stationary vine copula models often fit better than the others
concerning the AIC (Table D.12). Further, when modeling complex dependencies, the S-vine copulas allow for
pointing out both the dependence across time and indices, providing a complete picture. However, their complex
structure might make the interpretation harder than the ARMA-GARCH vine copula models.
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Overall we find in times of crisis that assets in ESG class A and market M, as well as in ESG class C and market
M show the strongest dependence. However, in calm periods, this relationship partially changes, and the strongest
dependence is found between ESG class A and market M, as well as between ESG class D and market M. Assets
not in the extreme ESG classes, which are neither very good nor bad, tend to show weaker dependence and could
be considered for hedging or risk mitigation strategies regarding the market. An explanation for the high
dependence in the extreme ESG classes could be investor preferences and attention to the most and least sus-
tainable assets. In fact, exclusionary screening and best-in-class are typical investment strategies widely used,
ending up putting more attention to the extreme classes during calm periods. During the crisis, ESG class D tends
to be more weakly dependent, while ESG class A still exhibits high dependence. As the investment world is trying
to get more sustainable, it is expected to observe such a level of pressure on assets in ESG class A as potentially
due to the size effect and considered a flight to quality, while it is interesting to note that ESG class D might result
in a weaker dependence.

Even though we focus on the dependence analyses of the ESG class indices and market index in the United States
using a single data provider, we list some future research directions in sustainable finance using vine and stationary
copulas as follows.

ESG risk dependence measures. From an investor’s point of view, it is important to manage ESG-related risks in a
portfolio. Thus, further analysis could focus on single assets to determine what part of ESG risk could be attributed to
dependencies among assets belonging to the same ESG class, as suggested by.'"' This could also disentangle ESG risk
dependence from the market and idiosyncratic risk. Naturally, as the model complexity increases, the model inter-
pretability might suffer, but a more realistic picture of dependencies could allow for the development of more
appropriate risk management and monitoring tools. Besides market risk, further applications might involve credit"” or
systemic risk.***

ESG data quality and measurement issues. Lately, there has been a hot debate about whether ESG scores are trustful
measurements of companies’ sustainable performance® and agreed upon by different data providers.”” The way ESG
scores are calculated and their impact on the financial performance or risk vary depending on the sector, topic, provider,
and country.****°" Another important research study could analyze the dependence structure of the assets’ ESG
disclosure quality on various topics. It would highlight what seems important to disclose in ESG-related topics for
companies.

Sustainable portfolio optimization. Optimal portfolio selection requires modeling dependence to promote diversi-
fication. Recently, numerous scholars, e.g., Pedersen et al’'; have proposed incorporating the ESG dimension into the
portfolio selection problem. Copulas are a natural way of capturing such dependence, and one can expect large ap-
plications soon. In a similar context, for example,”” compare the performance of ESG-based and conventional funds
using vine copulas.

Finally, we like to add some general remarks on vine based modeling. Vines have found many applications in
finance. For example, vines can be used to model market, credit, operational risk, and in portfolio optimization. The
reader is referred to Aas™ and Chapter 11 of Czado”* and references therein for applications.

Further, vine copula based models can be used in a rolling window setup instead of the fixed time period approach
followed here. This is very computationally costly and for the ARMA-GARCH vines this has been implemented in the
R-package portvine of Sommer™” to study forecasts of (conditional) risk measures in portfolios.
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Appendix A. Data processing of ARMA-GARCH and stationary vine copula models
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Figure A.6: Data processing differences between ARMA-GARCH and stationary vine copula models.

Appendix B. Marginal distribution and parameters from the stationary copula Modelling

Table B.8: Marginal distributions and parameters of the different indices per time period.

The Journal of Finance and Data Science 8 (2022) 309-330

Period ¢ Time Series Marginal Model u c v & loglik

2007-2009 Market Index Skew Student-t —0.0008 0.0364 2.1618 0.8919 2044.52
ESG Index A Skew Student-t —0.0005 0.0386 2.1465 0.9194 2027.26
ESG Index B Skew Student-t —0.0004 0.0256 2.5468 0.8524 1976.11
ESG Index C Skew Student-t —0.0009 0.0308 2.2964 0.8738 1990.76
ESG Index D Skew Student-t 0.0005 0.0257 2.6695 0.9893 1911.78

2012-2012 Market Index Skew Student-t 0.0004 0.0136 2.8494 0.9492 2348.93
ESG Index A Skew Student-t 0.0002 0.0124 3.2892 0.9511 2350.38
ESG Index B Skew Student-t 0.0005 0.0126 3.2176 0.9312 2345.92
ESG Index C Skew Student-t 0.0006 0.0141 3.6647 0.9501 2223.28
ESG Index D Skew Student-t 0.0005 0.0139 3.0558 0.9543 2295.54
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(continued)

The Journal of Finance and Data Science 8 (2022) 309-330

Period ¢ Time Series Marginal Model H" c v & loglik
2013-2015 Market Index Skew Student-t 0.0005 0.0082 4.8037 0.9216 2600.45
ESG Index A Skew Student-t 0.0006 0.0086 4.6482 0.9682 2563.70
ESG Index B Skew Student-t 0.0005 0.0087 5.0999 0.9089 2554.87
ESG Index C Skew Student-t 0.0008 0.0101 5.7737 0.9432 2426.42
ESG Index D Skew Student-t 0.0006 0.0085 5.6388 0.9449 2555.15
2016-2019 Market Index Skew Student-t 0.0006 0.0213 2.0820 0.9999 2659.57
ESG Index A Skew Student-t 0.0008 0.0136 2.3056 0.9774 2583.48
ESG Index B Skew Student-t 0.0007 0.0119 2.4545 0.9619 2577.86
ESG Index C Skew Student-t 0.0005 0.0109 2.8500 0.9252 2513.15
ESG Index D Skew Student-t 0.0005 0.0099 2.5922 0.9632 2655.08
2021-2022 Market Index Skew Student-t 0.0010 0.0195 2.2623 0.9300 2367.03
ESG Index A Skew Student-t 0.0011 0.0186 2.3355 0.9219 2334.40
ESG Index B Skew Student-t 0.0013 0.0189 2.3529 0.9349 2304.94
ESG Index C Skew Student-t 0.0010 0.0371 2.0551 0.9466 2393.14
ESG Index D Skew Student-t 0.0009 0.0216 2.2209 0.9622 2336.14

Appendix C. ARMA-GARCH Vine - Tree 4

Table C.9: Static vine copula fitting results in the dependence analysis of market and ESG class indices for Tree 4 in different periods. (rot = copula

family’s rotation, ltaildep/utaildep = lower/upper tail dependence coefficients).

Period ¢ conditioned conditioning family rot tau Itaildep utaildep
2007-2009 D, C B, A M Joe 180 0.0736 0.162 0
2010-2012 D, C B, A M Joe 180 0.0481 0.109 0
2013-2015 D, C B, A M t 0 0.0074 0.001 0.001
2016-2018 D, C B, A, M Gauss. 0 —0.1842 0 0
2019-2021 D, C B,AM t 0 0.2740 0.005 0.005

Appendix D. Stationary Vine - Tree 4

Appendix D.1. Tree 4

Table D.10: Dependence across time for each period g for Tree 3. These values and families are the same forM —3,C—2;B—2,A —2, M — 2 as the
tree structure is the same. (rot = copula family’s rotation, ltaildep/utaildep = lower/upper tail dependence coefficients, Gumb = Gumbel,

Gauss = Gaussian, Indep = Independence).

Period ¢ conditioned conditioning family rot tau Itaildep utaildep
2007-2009 M-2, C-1 B-1, A-1, M-1 t 0 0.007 0.014 0.014
B-2, A-1 M-1, A-2, M-2 Indep. 0 0 0 0
A-2, B-1 A-1, M—1, M-2 Indep. 0 0 0 0
2010-2012 M-2, C-1 B-1, A-1, M-1 t 0 —0.023 0 0
B-2, A-1 M-1, A-2, M-2 Indep. 0 0 0 0
A-2, B-1 A-1, M—1, M-2 Indep. 0 0 0 0
2013-2015 M-2, C-1 B-1, A-1, M-1 Frank 0 —0.050 0 0
B-2, A-1 M-1, A-2, M-2 Gauss. 0 —0.042 0 0
A-2, B-1 A-1, M—1, M-2 Indep. 0 0 0 0
2016-2018 M-2, C-1 B-1, A-1, M-1 t 0 —0.014 0.002 0.002
B-2, A-1 M-1, A-2, M-2 t 0 —0.033 0.007 0.007
A-2, B-1 A-1, M—1, M-2 BB7 270 —0.032 0 0
2019-2021 M-2, C-1 B-1, A-1, M-1 Gumb. 180 0.024 0.033 0
B-2, A-1 M-1, A-2, M-2 t 0 —0.009 0.001 0.001
A-2, B-1 A-1, M—1, M-2 t 0 0.017 0.014 0.014

*Temporal Dependence.

327



C. Czado, K. Bax, O. Sahin et al. The Journal of Finance and Data Science 8 (2022) 309-330

Table D.11: Dependence across indices for each period ¢ for Tree 4. These values and families are the same forD —2,C—2;B—2,A —2, M —2 and
D —3,C—3;B—3,A—3,M—3etc. as the tree structure is the same. (rot = copula family’s rotation, ltaildep/utaildep = lower/upper tail dependence
coefficients, Clay = Clayton).

Period ¢ conditioned conditioning family rot tau Itaildep utaildep
2007-2009 D-1, C-1 B-1, A-1, M-1 Clay. 0 0.106 0.055 0
2010-2012 D-1, C-1 B-1, A-1, M-1 BB8 180 0.059 0 0
2013-2015 D-1, C-1 B-1, A-1, M-1 t 0 0.004 0.001 0.001
2016-2018 D-1, C-1 B-1, A-1, M-1 BB1 90 —0.166 0 0
2019-2021 D-1, C-1 B-1, A-1, M-1 t 0 0.296 0.019 0.019

*Dependence across indices.

Appendix D.2. Comparison of ARMA-GARCH and stationary vine copulas

Table D.12: AICs on the original scale allowing for all copula families in all models; Different Markov Orders for S-vines, the bold entries are the best
fitting model. The number of model parameters (copula and marginal) are reported in parenthesis below AIC values.

Structure Imposed No Yes No Yes

Type Dynamic Vine Copula Dynamic Vine Copula Static Vine copula
(S-Vine) (S-Vine) (ARMA-GARCH vine)

Markov p=1 p=2 p=1 p=2 _ _

Order

2007-2009 =27777.01 —27838.56 —27785.50 —27849.83 —27393.67 —27396.88
(71) 92) (67) (85) (42) (42)

2010-2012 —31067.84 —31137.60 —31059.51 —31116.09 —30919.05 —30921.14
(58) (69) (61) (72) (43) (43)

2013-2015 —32184.70 —32366.08 —32192.88 —32302.27 —32176.27 —32177.40
(56) (75) (57) (71) (41) (43)

2016-2018 —33027.62 —33056.91 —33051.04 —33098.55 —37269.62 -37277.00
(64) (80) (67) (81) (45) (46)

2019-2021 —32496.69 —32626.04 —32295.25 —32415.15 —31079.81 —31063.62
(65) (88) (67) (86) (46) (46)

Appendix D.3. ARMA-GARCH effects

The Autoregressive Moving Average model (ARMA(p, q)) is a combination of the AR order p and MA order g for the
time series {r;,, t = 1, ..., T} such that

)4 q
ry= ¢0 + Z ¢1rt—l +w, + Zekwl—k:
=1 k=1

where wtl'rl'vd N (O, 62) denotes white noise error terms. 6y, ..., 8,, ¢1, ..., ¢, are the parameters of the model, and ¢, is
the expectation of 7;.

To define the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model class, one splits the
model into two components.

=W, +w

If the mean equation is parameterized the resulting model is the ARMA-GARCH model. The parameterization of the
innovations w, = r, — yi, called the volatility equation is following a GARCH(m, s) model if it is given by

m s
2 2 2
w, =08, O, =0+ E aw,_; + E ﬁjc,_j.
i=1 j=1

‘ Ehus, the innovations w, are decomposed multiplicatively into a time dependent component ¢, and a white error term
Lid.
Er ~ N(O, 1).

Skewness (¢) and Kurtosis (p) are estimated as the third and fourth central moments.
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Table D.13: Different parameters of the variance, mean, distribution model for each time series and period.

Time series u ¢ 0 0] ¢ P a p
2007-2009 Market Index —0.0005 - - 0.0004 0.8883 2.4901 0.6048 -
ESG Index A —0.0003 - - 0.0004 0.9161 2.4671 0.7569 -
ESG Index B —0.0001 - - 0.0000 0.8584 2.1809 - 0.9964
ESG Index C —0.0004 - - 0.0004 0.8719 2.6573 0.5177 -
ESG Index D 0.0009 - - 0.0000 1.006 2.2100 - 0.9970
2010-2012 Market Index 0.0004 - - 0.0000 0.9484 3.2210 - 0.9951
ESG Index A 0.0002 - - 0.0000 0.9498 3.3824 - 0.9902
ESG Index B 0.0006 - - 0.0000 0.9327 3.5234 - 0.9955
ESG Index C 0.0005 - - 0.0000 0.9481 3.5528 - 0.9877
ESG Index D 0.0005 - - 0.0000 0.9549 3.2695 - 0.9945
2013-2015 Market Index 0.0005 - - 0.0000 0.9234178 4.4592 - 0.9902
ESG Index A 0.0007 - - 0.0000 0.9827 4.2107 - 0.9953
ESG Index B 0.0005 - - 0.0000 0.9058 4.4540 - 0.9990
ESG Index C 0.0008 - - 0.0000 0.9423 5.2483 - 0.9990
ESG Index D 0.0007 - - 0.0000 0.9426 6.2296 - 0.9975
2016-2018 Market Index 0.0006 - —0.0589 0.0000 0.9824 2.9890 - 0.9878
ESG Index A 0.0008 - —0.0626 0.0000 0.9664 2.9756 - 0.9947
ESG Index B 0.0007 - —0.0393 0.0000 0.9497 3.1752 - 0.9916
ESG Index C 0.0006 - —0.0258 0.0000 0.9232 3.6257 - 0.9914
ESG Index D 0.0005 —0.1380 0.0561 0.0000 0.9632 3.3380 - 0.9882
2019-2021 Market Index 0.0010 —0.1721 - 0.0000 0.9082 2.3145 - 0.9936
ESG Index A 0.0011 - - 0.0000 0.9243 2.3366 - 0.9917
ESG Index B 0.0012 - —0.1727 0.0000 0.9027 24773 - 0.9929
ESG Index C 0.0010 - - 0.0000 0.9451 2.2379 - 0.9911
ESG Index D 0.0010 - - 0.00008 0.9484 3.4061 0.7275 -
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