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A B S T R A C T

Visibility analysis plays a vital role in the design and placing of traffic signs in the urban street environment.
This work investigates the occlusion detection of traffic lights and traffic signs caused by vegetation. The
presented analysis method is built upon the inputs from the expected situation reflected by a highly detailed 3D
city model and the as-is situation captured by 3D Mobile Laser Scanning (MLS). The model contains the location
and orientation of streets, traffic lights, and traffic signs; the measurements add detail on irregular-shaped
and morphing objects such as vegetation, respectively. The analysis covers the visibility of traffic lights and
traffic signs by ray-tracing in an occupancy grid that is generated by the voxelization of the space. The voxels
facilitate the distinction between occupied and empty space. The identification of unknown volumes is added
and considered in the decision process, to cope with the regions invisible to the sensor. As output, we provide a
visibility metric and detailed 3D space descriptions on different levels of granularity, including the knowledge
of the semantic classes of traversed voxels. During the whole process, the awareness of unknown volumes is
added to an otherwise binary decision between visible and invisible targets. Experiments are conducted on
the TUM-MLS-2016 dataset. Results demonstrate that the proposed method is feasible for the detection of
occlusions by vegetation in the street scenario, and reveal that the identification of unknown volumes proves
necessary for a reliable interpretation of the measurements.
1. Introduction

Urban planning and city management are undergoing rapid de-
velopment in the frame of enhancing digitization and availability of
information. The digital twin city is a key element in the frame of smart
cities (Deng et al., 2021). Integrating multiple information sources into
one common frame, it enables status assessment, functionality mainte-
nance, and urban planning to be steered based on one system. Whereas
classically, most planning information is based on two-dimensional
maps and registers of the displayed objects, three-dimensional (3D) city
models are gaining importance (Biljecki et al., 2015). Some objects,
however, are irregularly shaped and not easily modeled—especially
vegetation such as urban trees is challenging in terms of modeling and
can profit from in-situ observations (Rutzinger et al., 2011; Weinmann
et al., 2017; Wu et al., 2018). A way to capture the real world is
by measurement of dense Light Detection and Ranging (LiDAR) point
clouds (Beil et al., 2021). Such point clouds can be acquired by laser
scanners mounted on a vehicle as part of a Mobile Mapping System
(MMS) that captures the street environment. This way of data acqui-
sition is linked to the traffic space. It therefore especially emphasizes
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applications in the context of urban traffic, consequently covering
topics about mobility and safety.

In fact, urban traffic is a collection of a wide variety of partic-
ipants. The clash of bikers, pedestrians, car and truck drivers, and
other mobilized inhabitants in the narrow space of large cities involves
dangers, especially for unprotected road users. In addition, smooth
traffic flow can only be guaranteed by rational rules and appropriate
traffic management (Karami and Taleai, 2020); for instance, by visual
indicators like traffic signs and traffic lights. Both will be summarized
by the term traffic installations in the following text.

The visibility of these installations is a key responsibility of munici-
palities (Ma et al., 2022; Wu et al., 2015; Soilán et al., 2018). Conflicts
may arise especially due to urban trees that are slowly covering existing
traffic installations (Huang et al., 2017). The example in Fig. 1 shows
a driver approaching two traffic lights. In the beginning (position 𝑆1),
the upper traffic light 𝑇𝐿2 is occluded by a nearby tree. At position 𝑆2,
at least the lower part is visible. 𝑆3 suffers from the occlusion of traffic
light 𝑇𝐿1, this time not by vegetation, but by a traffic sign in front of it.
During the whole approach, both traffic lights are visible at position 𝑆4
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Fig. 1. Occlusion of traffic lights and traffic signs by vegetation. From the driver’s sight positions 𝑆𝑖, the traffic lights 𝑇𝐿𝑖 in front are not always visible. Only 𝑆4 provides full
visibility. The offsets 𝑠𝑦, 𝑠𝑧, and the distance 𝛥𝑠𝑥 are defined in a local coordinate system moving along the trajectory. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 2. Comparison of the detail in tree geometry between a parameterized tree in a 3D city model and a dense MLS point cloud. The views of the city model are from the
visualization tool presented by Beil et al. (2020). (a, b) Multiple trees next to a road. (c, d) Same tree marked in the model and isolated in the point cloud.
only. In that context, in situ measurements can provide a current and
detailed basis for necessary actions to be taken.

To this end, this article investigates the visibility of traffic signals
and traffic signs employing 3D Mobile Laser Scanning (MLS) mea-
surements. The analysis is built upon two kinds of inputs: One is the
expected situation which is reflected by a 3D city model containing
information on the location and orientation of streets and traffic instal-
lations. Another is the as-is situation captured by MLS. In particular, our
focus is set on vegetation. For visualization purposes, 3D city models
often contain coarse tree models. Yet in most cases, these tree models
reflect only the shape of the trees, but could not sufficiently be used
in the intended geometric analysis. As growth and change are to be
expected, the visibility analysis has to be based on up-to-date dense
data. Fig. 2 gives a comparison between parametric tree models often
found in city models and actual point clouds from MLS. The detailed
branch structure can only be depicted by the laser scanning data.
This is also of importance in other terms of geometric evaluation, as
2

our previous research on detailed change detection of urban trees has
shown (Hirt et al., 2021). Hence combining city models with in situ
measurements facilitates visibility analysis of existing structures as well
as optimization of planning in cases where the best positions for new
traffic signs have to be found.

Additionally, a thorough investigation has to go one step further:
To capture obstacles in the line of sight, we use LiDAR as the data
acquisition sensor. Once point clouds derived from that sensor are used,
it is usually assumed that the point clouds reflect the entire scene, and
visibility analysis is performed based on the 3D point data only. This
neglects the fact that a measurement system never covers all the volume
that is examined. Some parts of the environment are not reached by the
sensor due to occlusion or simply because the sensor never points in
that specific direction. Hence we have to distinguish between confirmed
empty volumes (i.e., volumes without points that have been passed
by a laser ray) and unknown volumes (i.e., volumes without points
that never were reached by any measurement). In the latter case, it
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cannot be decided whether the volume is indeed empty or whether a
solid object was omitted due to the lack of measurements. This fact
will be taken into account when performing the visibility analysis. The
distinct evaluation based on occupied, empty, and unknown volumes
can only be realized through a voxel grid, with each voxel containing
information on its occupation (Hebel et al., 2013). This comprehensive
status assessment of each voxel in the volume of interest is described
by an occupancy grid.

In summary, we introduce two major innovations:

• Combining a street environment model with actual MLS mea-
surements of vegetation, hence taking into account that realistic
volumetric modeling of trees is often not present in city models

• Including information on volumes not covered by measurements,
hence giving the analysis an additional level of confidence de-
pending on lines of sight traveling through space of unknown
occupation

For the remaining part of this article, after embedding our work
thematically and methodologically (Section 2), Section 3 covers the
novel approach for visibility analysis with consideration of unknown
volumes. Using various ways of visibility representations, we examine
exemplary traffic scenarios (Section 4). Section 5 then features the
results of visibility analysis. Finally, we will discuss the quality (Sec-
tion 6) and consider future extensions to a comprehensive analysis and
planning framework (Section 7).

2. Related work

The proposed combination of models and measurements leads to
the involvement of several research fields. From the view of applica-
tions, the visibility of traffic installations has been discussed for point
cloud data or modeled environments (Section 2.1). In this context, the
rasterization of 3D space into voxel grids is a primary aspect. Sec-
tion 2.2 provides a basis for this occupancy grid-based approach. Since
we combine real-world measurements with model data, Section 2.3
additionally summarizes ways of traffic environment modeling and
introduces the featured format CityGML.

2.1. Visibility of traffic installations

Up to now and to the best of our knowledge, only visibility analyses
from point cloud data alone or from a model perspective alone have
been examined for this application. The first case includes work using
point clouds to extract traffic signs from the measurements before
analyzing the situation (Soilán et al., 2018; Huang et al., 2017). This
captures the needed detail, yet does not offer the flexibility to change
the position of traffic signs in case of planning new positions. The latter
case, only using 3D city models, lacks the geometric detail and variety
of actual 3D measurements in the context of vegetation.

Based on point clouds only, Soilán et al. (2018) evaluates the
safety of pedestrian crossings in urban traffic examining the visibility
of pedestrians to drivers. Occlusion in this case is defined as a point
lying inside a cylinder of 0.5m diameter around the line of sight
from driver to target. Traffic lights are identified by classification. The
line of sight operates on the point cloud data alone, neglecting the
volume indeed covered by the sensor. The idea of ray tracing is also
used by Voelsen et al. (2021) to identify static and dynamic objects,
which will be discussed in the next section. More complex methods
contain different approaches to the evaluation of visibility. Using the
Hidden Point Removal (HPR) algorithm (Katz et al., 2007), Huang
et al. (2017) analyzes occlusions based on visual perception: A field
of view for an observer traveling on a trajectory is defined, similar to
clipping approaches in computer graphics. By spherical inversion, all
visible points are projected onto the surface of a sphere, while occluded
points are identified in a separate point set. Comparison of these point
sets leads to an occlusion degree and occlusion gradient. Simulating a
3

human observer can be achieved similarly by projecting the points in
a certain field of view onto an artificial retina (Zhang et al., 2019).
Having generated a 2D visibility field, Zhang et al. (2019) propose a
Traffic Sign Visual Recognizability Evaluation Model (TSVREM) con-
sisting of several influencing factors like geometry, occlusion, and
sight line deviation. Combined with the identification of lane markings
and simulation of viewpoints, a so-called recognizability field can be
computed for complete roads, also taking into account different lanes.
Occluding points are identified in the MLS point cloud.

Similar to that, the general visibility of traffic signs can be evaluated
by combining camera images with 3D point clouds (Wu et al., 2015).
After detecting the traffic signs from the point cloud and—using 3D
to 2D projection—in the image, a visibility value is derived from a
vector of features in the 2D and 3D domains. This approach assesses
the visibility of a traffic sign in a single scene captured by a mobile
mapping system. The image data serves as validation for volumes not
captured by the LiDAR scan.

Visibility evaluation is also possible based on a modeled environ-
ment. The advantages are the defined features of all used objects, the
straightforward possibility of varying the environment model, and the
absence of measurement noise or disturbing objects. Against this back-
ground, the combination of 3D and 2D space is proposed by Karami and
Taleai (2020). In the context of traffic flow simulation, the visibility
of highway traffic signs is evaluated based on models. The authors
examine several indices for visibility, including their own index. It
evaluates the projection of 3D obstacles along the line of sight onto the
2D plane of the traffic signs. Simulating different traffic participants,
velocities, and sign positions, optimal locations for highway signs are
identified. In terms of planning, this model-based approach is ideal for
traffic environments that are to be constructed. For already existing
scenarios, it is hard to model all real-world objects and to realistically
analyze the placement of new objects. Hence planning the placement
of new traffic signs in existing urban environments can prove difficult.
Additionally, in the case of projecting occluding points onto a target
surface, important knowledge is lost: where along the projection ray the
occlusions occur and whether multiple occluding objects are present.

For the evaluation of general visibility in public spaces, the data
structure of voxels is proposed by Aleksandrov et al. (2019). Voxels
allow to not only represent existing objects but also to define empty
space. Voxelization can be applied to predefined models or irregular
real-world data like vegetation points, making it computationally more
feasible while retaining realism. Aleksandrov et al. (2019) analyzes
the voxel space seen by agents. An agent in that frame is considered
an entity with a certain field of view. Raycasting is used to find all
voxels inside the field of view not being occluded by objects. Agents
are also used by Ma et al. (2022), this time in a dynamic real-time
environment. The study deals with the inter-visibility between several
agents to avoid crashes at intersections. The environment is given as
a 3D point cloud, the traffic participants are simulated. For the line
of sight analysis, the point cloud data is transferred to a voxel grid
called occupancy matrix in that case. The paper provides extensive
analyses with real-time trajectories, different traffic participants and
use cases. The various simulations are depicted thoroughly and promise
great potential in the optimization of traffic safety. However, it has to
be noted that the entire analysis is based on the assumption that the
point cloud completely reflects the real environment. Again, areas not
covered by the sensor are not taken into account and there is no distinc-
tion between empty space and unknown space, which underlines the
contribution of the work presented in this article. Finally, a summary
of different techniques for occlusion detection, including Hidden Point
Removal, occupancy grids, and ray tracing, is given by Alsadik et al.
(2014).

There are also other fields for applying visibility analysis: Peng
et al. (2022) from the domain of landscape architecture uses voxelized
point clouds in combination with GIS information to analyze the design

principles regarding visibility in a historic garden. In contrast to our
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proposed work, no specific targets are evaluated, the focus lies on the
distribution of view sheds over a certain larger area and the visual
concept for a surrounding path. On the other hand, Barros-Ribademar
et al. (2022) share our area of application—the public street space—yet
concentrate on the occlusions in the point cloud data itself, targeting
facades and street surfaces.

2.2. Description of space occupancy by voxel grids

One pivotal concept for occupancy analysis is the rasterization of
3D space by voxels, which also is the basis for the method introduced
in this work. In that context, Aleksandrov et al. (2021) presents a
review of the data structures and algorithms. Xu and Stilla (2021)
and Xu et al. (2021) provide more general overviews on handling point
clouds of urban infrastructure, discussing different sensors and data
structures, including voxels. In the context of the visibility analysis, the
approach of modeling three-dimensional space as a grid of voxels has
been proven (Aleksandrov et al., 2019; Ma et al., 2022; Voelsen et al.,
2021). In general, voxelization is useful when it comes to the analysis
of complete volumes, be it in terms of change detection (Hebel et al.,
2013), in other contexts like landscape architecture (Peng et al., 2022),
or the modeling of empty spaces (Gorte et al., 2019). In the specific
frame of mobile mapping, occupancy grids are used for applications like
occlusion detection on facades and street surfaces (Barros-Ribademar
et al., 2022), the detection of moving objects (Gehrung et al., 2017),
change detection of urban environments in general (Gehrung et al.,
2018), or with a focus on urban trees (Hirt et al., 2021). By including
the position of the sensor, the path of the laser beams can be defined for
each point measurement. Voxels passed by the beam are then regarded
as empty. Based on that work, the occupancy grids in this article are
constructed (Section 3.2), allowing distinction between empty space
and space not covered by the sensor.

Voelsen et al. (2021) presents voxel grids in a different application:
to classify a scene into static and non-static objects. Semantic segmenta-
tion followed by a change detection over several measurement epochs
is combined with ray-tracing-based visibility analysis. The aim is to
generate a static reference map while discarding moving objects like
cars and pedestrians. Similarly in our case, dynamic objects have to be
ignored too when checking the general visibility of traffic signs.

2.3. 3D modeling of urban space

Besides measuring the street environment, model information can
be used as well, enabling extended ways of analysis. A variety of data
standards and formats exist for traffic space modeling (Schwab and
Kolbe, 2019). In the frame of autonomous driving, High Definition
(HD) maps containing all traffic elements at a high level of detail are
gaining importance (Seif and Hu, 2016), for instance, based on the
OpenDRIVE standard. High accuracy and exact depiction of lanes and
traffic signals can be expected when using HD maps; however, their
public availability is still limited. On the other hand, 3D city models
aim at constructing all elements of an urban environment, including
the traffic space. In that context, the Geographic Markup Language
(GML) is expanded to the CityGML standard (Biljecki et al., 2015).
With its current development, CityGML is also able to include detailed
lane information, different types of traffic areas, and geometrically
modeled traffic installations. As introduced by Beil et al. (2020), the
latest version of CityGML 3.0 (Kolbe et al., 2021) will enable volumetric
traffic space modeling. On that basis, clearance space above roads can
be defined and included in a clearance check.
4

3. Methodology

The proposed method consists of two major stages: static scene
simulation and dynamic agent-based visibility analysis. Fig. 3 illustrates
the relations between these elements. Concerning the scene simulation,
we distinguish between the expected traffic environment from a 3D
city model (Section 3.1) and the actual, sensed environment from 3D
measurements (Section 3.2). The occupancy grid derived from MLS
is constructed with specific consideration of volumes not covered by
the sensor, hence remaining unknown in the constructed scene. Into
the scene, an agent is placed moving along a user-definable trajectory
(Section 3.3). Finally, Section 3.4 elaborates on the visibility analysis
based on the line-of-sight from the agent to traffic installations.

3.1. Static traffic environment

For the selected scene, we use a 3D city model encoded in CityGML.
CityGML provides all the necessary information, including objects for
each lane, sidewalk, etc., and objects for traffic installations and their
fixtures. Especially, in the latest version of CityGML (i.e., V3.0), this
will also include clearance volumes (Beil et al., 2020). To correctly
define the target areas for the line of sight analysis, the model must
contain objects of the type City Furniture with associated geometry
escriptions. This description can be a detailed, realistic 3D model of
lements like the traffic light body, or a bounding box representation.
he indispensable features needed for analysis are spatial extent and
nowledge about which face is the front. The presented approach will
erive a spatial rectangle from the bounding box information, which is
efined by three points. As the order of those points is given—upper
eft, lower left, lower right corner—it defines the orientation of the
ront.

For the possible trajectories, separate lanes need to be defined. This
ncludes sidewalks and bike lanes. As these are vector trajectories, a
eference line can describe them. Additional attributes like width or
urvature radius can be added, as well as the clearance space above,
aking them volumetric traffic spaces.

.2. Mobile LiDAR for voxel-based occupancy grid generation

For describing a complete volume of interest, an occupancy grid is
mployed to assign each volume element a certain status of occupancy.
his is derived from the MLS data and includes the knowledge of
mpty and unknown space. To achieve this, we revert to the voxel
rid concept as presented by Hirt et al. (2021). Each voxel holds the
ttribute variables occupied and empty. At initialization, both values are

set to 0, and the occupancy of the voxel is unknown. To determine these
values for each voxel, we need the sensor position for each point in
the point cloud. Thus reconstructing the measurement ray from start
to end point, each voxel traversed by the beam increases its empty
attribute by 1. Each voxel containing a measured point increments the
occupied attribute by 1. Regarding voxels containing a sensor position,
an additional attribute sensor is introduced. It can later be used to
recover the sensor’s positions in the voxel space. Fig. 4 sketches an
example of the voxel occupancy determination.

This approach leads to an occupancy grid with the status of each
voxel not being fixed, but being represented by the tuple:

𝑉 = (𝑒𝑚𝑝𝑡𝑦, 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑), with 𝑒𝑚𝑝𝑡𝑦, 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 ∈ N, (1)

and thus being open for interpretation in the following steps. Here, we
identify two ideal cases: a voxel 𝑉𝑒 = (𝑛, 0) with 𝑛 > 0 representing
empty space, and a voxel 𝑉𝑜 = (0, 𝑛) with 𝑛 > 0 representing occupied
space. All voxels 𝑉𝑢 = (0, 0) neither contain measured points nor were
traversed by measurement rays. Due to the lack of information, the
status of the occupancy cell is hence called unknown. The conflict case
𝑉𝑐 = (𝑛, 𝑚) with 𝑛 > 0, 𝑚 > 0 is caused by the borders of objects or
noise. Mostly, it can be expected that either 𝑛 ≫ 𝑚 or 𝑚 ≫ 𝑛, yet
more problematic proportions have to be taken into account as well.
The handling of these cases during the evaluation will be discussed in
Section 3.4.
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Fig. 3. Relationship between static scene and dynamic visibility analysis. Images of the model environment were taken from the online viewer presented by Beil et al. (2020).
Fig. 4. Voxel status determination by ray-casting from the sensor (red square) to the
measured point (red dot) (Hirt et al., 2021). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

3.3. Agent definition

The static scene as described in Section 3.1 is populated by traffic
participants which are modeled by agents. Their ability to observe
certain important traffic installations shall be evaluated. Possible agent
types are car, truck, or bus drivers, cyclists, or pedestrians. To keep the
definition as flexible as possible, an agent is defined by three inputs:
(i) The main reference is a complete or partial path element from the
city model, for example, a lane on a street, a bike lane, or a sidewalk.
(ii) The offset to the left or right in the direction of travel is defined. In
the trajectory coordinate system, this is denoted by 𝑠𝑦 (cf. Fig. 1). This
reflects a driver’s position not being exactly in the middle of a lane.
(iii) At last, the eye-height 𝑠𝑧 is added as a distance above the height
level on which the lane is defined. With these three parameters and the
direction of travel, a trajectory for the driver’s head can be derived. The
points on the trajectory are the origins of the lines of sight that will be
checked for occlusions.

3.4. Line of sight analysis

We define test cases to perform the analysis. A test case consists
of an agent who is traveling along a predefined trajectory, and a set
5

of traffic control elements to be checked for visibility. These elements
are drawn from the static model and can be traffic lights, traffic signs,
or other objects of interest. They must have one main face that can be
described as a spatial plane, with its normal vector being perpendicular
to the side that contains the information: the text or symbols on traffic
signs, the color on a traffic light, etc. The line of sight to a raster of
points on that surface can then be checked for occlusions (Sections
3.4.1 & 3.4.2). Section 4.4 introduces the different levels of output
information.

3.4.1. Line of sight and occupancy decision
Before evaluating the Line of Sight (LoS), we need to define the

resolution of the computations during analysis. The traffic sign is
described by a spatial plane with its corners. Within that area, we define
a grid of points on which the analysis will be executed. Furthermore,
the agent’s trajectory is split into several viewpoints, with the distance
𝛥𝑠𝑥 between each other. By adjusting the grid width and the viewpoints
separation, we define the complexity of the analysis steps.

As a result, we obtain the set of viewpoints 𝑃𝑉 and target points per
target 𝑇 , respectively. Now the visibility of each target point 𝑃𝑇 ,𝑖 from
each viewpoint 𝑃𝑉 can be calculated by tracing the line of sight. Fig. 5
illustrates the decision process. If the angle between the LoS and the
normal vector of the spatial plane describing the target is greater than
80°, the target point is assumed as invisible and the visibility indicator
𝜉vis,𝑖 ∈ {0, 1} for that point is set to 0. If the angle is ≤80°, the LoS is
analyzed.

By tracing the LoS from 𝑃𝑉 to 𝑃𝑇 ,𝑖, we obtain the amount of
occupied and unknown voxels intersected by this line. Based on their
value, the decision on the visibility of 𝑃𝑇 ,𝑖 is made. If the amount
of occupied voxels is greater than 0, the target point is assumed as
invisible and the visibility indicator 𝜉vis,𝑖 is set to 0. If there are no
occupied voxels within the line of sight, 𝜉vis,𝑖 is set to 1. Furthermore,
we define an unknown-indicator 𝜉u ∈ {−1, 1} which is initialized as 1
and changed to −1 if any clear LoS from one viewpoint to any of the
points 𝑃𝑇 ,𝑖 within the target 𝑇 includes an unknown voxel. Finally, the
result is a vector containing two coefficient sets for each viewpoint:



International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103017P.-R. Hirt et al.

t
c
t

v

t
s
e
d
t

3

o
r
s
e
a
a
i
a
o
i
w
c
v
t
s
i
a

4

t
p
i

4

M
t
t
m
d
H
s
c
i
s
p
v
f
T
a
f
F
A
A
o

p
e
f
m
1
m
p

4

t
t

Fig. 5. Delineation of the visibility degree 𝛽𝑇 . Inputs are the Line of Sight (LoS) from
viewpoint to the target point and the normal vector of the target. This process is
executed for the lines of sight from each viewpoint 𝑃𝑉 to each target point 𝑃𝑇 ,𝑖.

he visibility indicators 𝜉vis,𝑖 for all target points 𝑃𝑇 ,𝑖 and one unknown-
oefficient 𝜉u indicating whether any of the clear lines of sight from 𝑃𝑉
o 𝑃𝑇 ,𝑖 contains unknown voxels. The visibility degree 𝛽𝑇 for one target

is a percentage of the visible target area, computed via the mean of all
visibility indicators 𝜉vis:

𝛽𝑇 = 𝜉u 𝜉vis . (2)

Multiplying by 𝜉u sets the visibility degree negative in case unknown
oxels are involved, indicating unreliable data for that target.

As discussed in Section 3.2, the occupation status is ambiguous in
he conflicting case that both 𝑛 and 𝑚 are larger than 0 for the voxel
tatus 𝑉 = (𝑛, 𝑚). To avoid false negatives—occupied voxels marked as
mpty—and hence increasing the sensitivity of visibility analysis, we
efine a voxel as occupied as soon as 𝑛 is greater than 0, regardless of
6

he empty value 𝑚. o
.4.2. Including semantic knowledge
Relying on measurement data always includes static and dynamic

bjects. For analyzing the street environment, only static objects like
oad furniture or urban trees are of interest, while cars and pedestrians
hould not be considered in terms of visibility evaluation (Voelsen
t al., 2021). Semantic segmentation of the measured data can be
chieved by baseline labeling methods as presented by Zhu et al. (2020)
nd Xu et al. (2020). It results in point clouds like the one shown
n Fig. 8 where a class label like street, building, vegetation, etc. is
ssigned to each point. With semantic knowledge available for the area
f interest, we can consider it during ray tracing. If a traversed voxel is
dentified as occupied, its nearest neighbor in the labeled point cloud
ill then be checked. If the distance between the voxel center and the

orresponding labeled point is inside realistic limits (e.g., 1.5 times the
oxel size), the voxel is regarded to be of that class. When the class of
he occupied voxel is a dynamic one like car or measurement noise, the
tatus of the voxel is set back to empty, as we assume it to be empty
n general. Moreover, the class of each occupied voxel is recorded and
histogram visualizes the classes causing occlusion.

. Experiments

The application of the different evaluation levels is shown by several
est scenarios on a publicly available benchmark data set. Besides the
ure visibility analysis, the optional inclusion of semantic knowledge
s also evaluated in Section 4.3.

.1. Data set TUM-MLS-2016

The experiments are performed on the benchmark data set TUM-
LS-2016 (Gehrung et al., 2017; Zhu et al., 2020). This data set fulfills

he requirements needed to evaluate our method: Scanner data with
he viewpoints for each recorded point, and coverage of an area where
odel data of traffic installations is available. TUM-MLS-2016 contains
ata from April 2016, recorded by an MLS system. Two Velodyne
LD-64E scanners are mounted at the front corners of a vehicle,

lightly tilted outwards. The sensor configuration allows for dense point
loud acquisition of the street environment. The exact geo-reference
s provided by an Applanix POS-LV integrated navigation system. The
canners are rotating 360°, with 64 range measuring units acquiring
oints simultaneously. In addition, the Ladybug 360°-camera provides
isual information on the surroundings. The forward-facing images
rom the Ladybug include parts of the sensors and the vehicle roof.
he examined test area TUM City Campus is located in the downtown
rea of Munich, Germany (48.1493° N, 11.5685° E), and mainly contains
our streets around the quarter of the Technical University of Munich.
or the evaluation of our approach, we chose two junctions at the
rcisstraße. On one side of that street, the park-like area around the
lte Pinakothek museum contains many tall trees that partly can cause
cclusions on the nearby street in leaf-on season.

As discussed in previous work (Hirt et al., 2021), the absolute
oint accuracy as the combination of measurement and geo-reference
rrors reaches several centimeters. In addition, especially the volume
illed by branches will have different appearances throughout repeated
easurements caused by leaves and wind. A sampling in cubic voxels of
0 cm is considered sufficient for capturing significant structures while
aintaining efficient processing. A test for edge cases in voxel size is
erformed in Section 5.3 to validate that assumption.

.2. Test scenarios

As discussed in Section 3.4, a test scenario is defined by an agent
raveling on a trajectory and a set of traffic installations. To evaluate
he whole functionality, we define four test scenarios. Fig. 6 gives an

verview of the examined junctions and roads.
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Fig. 6. Streets and junctions in the test area (not true to scale). The small arrows indicate the driving direction. Contains the trajectories of the featured agents.
We structure the scenarios by junction, a set of traffic installation
objects, and agents. We chose the rather exotic agent riding a recum-
bent bike as from the lying position of the rider and the resulting
unusually low eye height, interesting viewing configurations can be
expected.

(1) Arcisstraße to junction with Theresienstraße
Target set: {Traffic light; no parking sign on opposite side}
(Figs. 7(a), (b))

(a) Car driver, on right lane, eye height 𝑠𝑧 = 1.50m
(b) Recumbent bike rider, on bike lane, 𝑠𝑧 = 0.50m

(2) T-junction from parking lot into Arcisstraße
Target set: {No entrance sign} (Figs. 7(c), (d))

(a) Car driver, on right lane, 𝑠𝑧 = 1.50m
(b) Recumbent bike rider, on bike lane, 𝑠𝑧 = 0.50m

(3) Arcisstraße to junction with Theresienstraße
Target set: {Pedestrian light ahead, pedestrian light to the left}
(Figs. 7(e), (f))

(a) Pedestrian, on sidewalk, 𝑠𝑧 = 1.80m

(4) Theresienstraße to junction with Arcisstraße
Target set: {Priority sign, One-way sign on opposite side}
(Figs. 7(g), (h))

(a) Car driver, on right lane, 𝑠𝑧 = 1.50m

The traffic installation objects are given in the CityGML format
based on data from the city administration of Munich, containing the
3D outline of the installations. Up to now, this data is not openly
available.

4.3. Inclusion of semantic knowledge

For consideration of static and dynamic occluding objects (Sec-
tion 3.4.2), class labels are introduced. A manually labeled ground
truth is given for parts of the test data set (Zhu et al., 2020). The
available classes are: Unlabeled (usually measurement noise), Artificial
Terrain, Natural Terrain, High Vegetation, Low Vegetation, Building,
Hardscape, Artifact, and Vehicle. We use the available labels at the
resolution of a 20 cm voxel grid. Association of an occupied voxel with
a class from ground truth is performed for the nearest point inside
a radius of 30 cm. As not the complete area of interest is labeled,
the case of unknown classification has to be considered as well. If
no classification is available, we assume a static object and hence an
7

occlusion.
Fig. 8 gives a bird’s eye view of the area of our examinations. It is
generated from the labeled point cloud. The visible classes are depicted
in different colors as shown by the figure’s legend.

4.4. Decision output and evaluation metric

The result of the visibility analysis can be delivered in different
levels of granularity. A single test case checks the visibility of one sign
for one agent on a predefined trajectory. Table 1 gives an overview of
the possible outputs.

The basic level of output is derived by a simple yes/no question,
namely whether occlusions have been detected at any of the viewpoints
along the trajectory or not. Moreover, another indicator states whether
any voxels of unknown occupation have been traversed during the
analysis. To derive one single metric for comparing different settings,
we compute the mean visibility degree 𝛽𝑇 of the target along the tra-
jectory. In a similar way, the percentage of viewpoints where unknown
voxels are in the lines of sight (unreliable viewpoints) can be used
for comparison. If any conflict is detected, then more detailed spatial
information is given as 3D point clouds.

As a basis for any decision on further measures, the output of Level
1 provides information on the compromised viewpoints and occluding
objects. The agent’s trajectory is given as discrete viewpoints along a
line, with each viewpoint holding the visibility degree of the target.
The visibility degree 𝛽𝑇 is defined as the percentage of the target
surface visible from that viewpoint (Eq. (2)). If that value comes to
be 0, the traffic sign or signal is not visible to the agent. Negative
values indicate unknown volumes along the line of sight, hence a
reliable visibility degree cannot be given. If semantic knowledge is
available, occlusions by car or noise points—dynamic occlusions—do
not negatively influence the visibility degree.

With those trajectory points indicating problematic positions, a
point cloud of the occluding voxels shows where the occlusions can
be resolved. The points are labeled according to their semantic classes,
so it can easily be seen where for instance trees have to be pruned to
ensure good visibility.

The output of Level 2 reflects the information basis available to the
analysis algorithm. From each viewpoint, the lines of sight to discrete
points on the target’s surface are encoded as a point cloud. Each point
is a voxel traversed by the ray. It holds an intensity value. For one
output case, this intensity value is the index of the viewpoint, if the
voxel is empty—so at perfect visibility conditions, these values will
increase from one viewpoint to the other. Only once a voxel is identified
as occlusion, this value becomes 0. This description allows for easy
identification of how many and which occlusions are present from an

individual viewpoint. In the second output configuration, this intensity
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Fig. 7. Locations of the target traffic installations. (a, c, e, g) In the point clouds, a labeled scene is given for orientation (color coding as in Fig. 8). The traffic signs are framed
in blue, traffic lights in yellow. (b, d, f, h) For validation, the front-facing images from the panoramic camera are included, too. (h) only contains the one-way traffic sign. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 1
Outputs of visibility analysis at different levels of detail.

Level Output format Conveyed information Encoding

0 Boolean Occlusion detected Yes/No
0 Boolean Unknown voxels included Yes/No
0 Percent Mean visibility degree 0 − 100%
0 Percent Amount of unreliable viewpoints along trajectory 0 − 100%

1 3D trajectory Visibility degree from viewpoint Percentage of visible object area (−1-0)/(0-1)
1 3D point cloud Occluding voxels 3D points with class labels of disturbing objects

2 3D ray bundle Lines of sight (LoS) from each viewpoint 3D points, intensity 0 if occlusion detected
2 3D ray bundle LoS with occupancy and uncertainty information 3D points, intensity is occupancy value (0-255), −1 if unknown
8
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Fig. 8. View on the labeled point cloud from above. Colors encode the semantic classes. The main street is Arcisstraße, with the junctions to Gabelsberger Straße (South) and
Theresienstraße (North, cf. Fig. 6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
value ranges from 0 to 255, reflecting the occupancy value of that
voxel. An intensity of −1 identifies voxels of unknown status. This
output hence shows the exact decision basis of occlusion and reliability
analysis.

5. Results

The previously presented output formats offer different possibilities
for analysis. To focus on the most interesting findings, some exemplary
results are shown in this section. The outline follows the scenarios de-
scribed in Section 4.2 and the output categories (Table 1). As the main
result, Table 2 gives for each scenario the most definite information:
whether a visibility conflict has been detected and whether unknown
voxels were involved.

5.1. 3D output for detailed analysis

In the spatial domain, the trajectories colored by visibility degree
are the next stage of analysis. In the figures, the background scene is
9

always a labeled point cloud, using the color scheme as presented in
Fig. 8. We computed the normals for high-rising objects for visualiza-
tion so that the trees get a more plastic appearance. Fig. 9 shows these
trajectories for the first scenario, with the agents being car driver and
recumbent bike rider. The car driver (Fig. 9(a)) gets clear visibility on
the traffic light, except for positions distant to the junction or behind
the traffic light (red color). Only the trajectory points far away from
the junctions suffer from bad visibility with occlusions caused by tree
branches (Fig. 10).

As for the recumbent bike rider (Fig. 9(b)), unknown voxels were
detected: some visibility degrees are negative. To analyze the reason for
that, Fig. 11 gives further details. In Fig. 11(a), the voxels identified as
unknown are colored in blue. In combination with the lines of sight
(Fig. 11(b)), this gives a clear picture of which viewpoints are affected
by unknown voxels.

The treatment of the incidence angle is visualized in Scenario 2,
with a no entrance sign parallel to the street and a car driving by
(Fig. 12). The visibility degrees indicate good visibility in general
(Fig. 12(a)), yet at a certain distance to the sign, the viewing angle
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Fig. 9. Agent trajectory colored by visibility degrees for Scenario 1. (a) Agent car driver. (b) Agent recumbent bike rider. As (b) contains points from which unknown voxels are
involved, the negative visibility degrees are depicted by grey values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 10. Occluding voxels for the car driver approaching the traffic light (marked yellow). The occluding voxels (dark purple) belong to the class high vegetation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
becomes too shallow, rendering the sign invisible. This explains the
red-colored viewpoints in the upper left part of Fig. 12(a). For the
short range of viewpoints with bad visibility before the sign is passed,
Fig. 12(b) gives the reason. The occluding element is depicted by the
turquoise voxels. Labeled as an artifact, the object is indeed a ticket
machine, which in that case occludes the target sign on a small interval
of the trajectory.

The former cases dealt with analyses of agents traveling along a
similar trajectory as the measurement system. Scenario 4 describes an
agent coming from another street into the acquired area. The visibility
10
of a one-way sign is examined in Fig. 13. We obtain negative visibility
degrees along the first part of the trajectory (grey trajectory voxels in
Fig. 13(a)) while entering the area of interest. As the measurements
did not cover the complete volume around the trajectory, a definite
statement of visibility cannot be obtained on the first part of the
trajectory.

Besides that, visibility is good except for one conflicting case. A
voxel is identified as occlusion directly in front of the sign (Fig. 13(b)).
In the resolution of the voxel grid, it is associated with an artifact
label (indicating that it is part of another traffic sign or traffic light).
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Fig. 11. Visibility of the traffic light (Scenario 1) for a recumbent bike rider. (a) The unknown voxels are marked in blue. (b) Additional lines of sight from each viewpoint to
the target. The LoS are colored by their originating viewpoint, from red following the rainbow to blue. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Table 2
Level 0 results: Indicators on visibility conflicts and the existence of unknown voxels
in the lines of sight.

Scenario Visibility conflict Unknown voxels

1: Traffic light
(a) Yes No
(b) Yes Yes
1: No parking sign
(a) Yes No
(b) Yes No

2: No entrance sign
(a) Yes No
(b) Yes No

3: Pedestrian light ahead
(a) Yes No
3: Pedestrian light to the left
(a) Yes No

4: Priority sign
(a) Yes Yes
4: One-way sign
(a) Yes Yes

Comparison to the image data in Fig. 13(c) proves that, although an

occlusion by the pedestrian light seems rather unlikely. We will give a

possible explanation in the discussion section (Section 6).
11
5.2. Distribution of occluding semantic classes

The spatial output formats in Levels 1–3 include semantic knowl-
edge of occluding voxels. In the following, the types of occlusion voxels
are depicted by a class histogram to illustrate the working principle.
Each histogram evaluates the trajectory of one agent in terms of the
visibility of different targets. In that way, characteristic occlusion can-
didates can be identified for the individual traffic participant. Fig. 14
exemplarily shows the class histograms for a car and a recumbent bike
driving along Arcisstraße. With the targets being a traffic light and
traffic sign at the junction ahead (Scenario 1) and a traffic sign beside
the street (Scenario 2), different viewing geometries are included. For
the two installations in front of the car, high vegetation is the main
occluding factor. This has also been shown by the occluding voxels in
Fig. 10. In addition, the low eye height of the recumbent bike rider
causes the lines of sight to traverse through parked cars (Fig. 14(b)).
As described in Section 3.4.2, dynamic classes such as car and noise are
ignored in the following decision process.

5.3. Variation of voxel sizes

One key parameter is the size of the voxels forming the under-
lying occupancy grid. Our choice for 10 cm was first motivated by
the expected absolute point accuracy in combination with reasonably
expected variations of branch positions during the season. We validate
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Fig. 12. Scenario 2: A car driving by a sign parallel to the street. (a) Visibility of the sign (colored blue) described by the visibility degrees. (b) Occluding voxels labeled according
to their semantic class (green: high vegetation; turquoise: artifact). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Table 3
Mean visibility value and rate of viewpoints containing unknown voxels for each trajectory, depending on the chosen voxel size for the occupancy grid.

Scn. Agent Target Unknown @ 7.5 cm Unknown @ 10 cm Unknown @ 20 cm MeanVis @ 7.5 cm MeanVis @ 10 cm MeanVis @ 20 cm

1a.1 Car Traffic light ahead 0.0% 0.0% 0.0% 67.7% 60.7% 69.0%
1a.2 Car No parking far ahead 0.0% 0.0% 0.0% 35.9% 35.6% 42.5%
1b.1 Rec. bike Traffic light ahead 48.1% 44.4% 0.5% 74.9% 73.2% 74.2%
1b.2 Rec. bike No parking far ahead 11.1% 9.1% 0.5% 37.2% 36.8% 43.6%
2a Car No entrance drive-by 0.0% 0.0% 0.0% 28.8% 30.9% 76.9%
2b Rec. bike No entrance drive-by 0.0% 0.0% 0.0% 34.0% 33.8% 76.9%
3a.1 Pedestrian Ped. light ahead 0.0% 0.0% 0.0% 12.8% 13.1% 91.1%
3a.2 Pedestrian Ped. light left 0.0% 0.0% 0.0% 72.9% 72.5% 53.6%
4a.1 Car Priority sign 20.0% 20.0% 0.0% 56.7% 56.0% 100.0%
4a.2 Car One-way sign 100.0% 15.0% 0.0% 98.6% 99.0% 100.0%
that choice by additionally processing all scenarios at a voxel size of
7.5 cm and 20 cm.

Table 3 compares the main metrics of mean visibility value and rate
of unreliable viewpoints for each trajectory. Between the voxel sizes
7.5 cm and 10 cm, the largest difference in visibility are 7 percentage
points (Scenario 1a.1). The largest percentage difference of viewpoints
with unknown voxels in their lines of sight is 85 percentage points
(Scenario 4a.2, caused by the sparsity of the point cloud), whereas in
the other scenarios that number is always less than 4 percentage points.

Compared to these differences we now look at the metrics for voxel
size 20 cm. The mean visibility value can vary up to a difference of 88
percentage points (Scenario 3a.1), completely negating the conclusion
from the finer voxel sizes: The pedestrian light now seems to be almost
12
entirely visible. The same effect can be observed with the unknown

voxels, being almost always not detected.

From these comparisons, we deduct that at 20 cm too much granular-

ity of information is lost. On the other hand, increasing the sampling to

7.5 cm only leads to small differences in the metrics. Without sufficient

ground truth of space occupation, it cannot be stated whether the

values at 7.5 cm are more realistic; let alone the small variation in

comparison to 10 cm validates our assumption that the chosen voxel

size is adequate for this task.
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Fig. 13. Car passing a one-way sign along Theresienstraße. (a) Visibility degrees along the trajectory. (b) Single occluding point in turquoise in front of the sign. (c) Detail view
on the situation from camera footage.
Fig. 14. Distribution of semantic classes traversed by the lines of sight. (a) Agent car
driver. (b) Agent recumbent bike rider, as defined in Scenarios 1 and 2. One voxel can
be traversed multiple times from different viewpoints.
13
6. Discussion

This section discusses the outcomes based on visual interpreta-
tion, the performance of technical procedures, and the phenomenons
observed during our analysis.

The first discussion point is about the unknown car interior. The
examination of Scenario 1 for the recumbent bike riders resulted in
many unknown voxels. Fig. 11 reveals all of these voxels being on or
inside cars. This can be explained by the laser beam being reflected
away by car windows depending on incident angles, or the interior of
cars only being partially traversed by measurements. Hence, although
the occlusion effect of parked cars is filtered out by semantic infor-
mation, they are still responsible for unknown volumes. A possible
solution could be that we should use the labeled point cloud to further
exactly identify the whole volumes covered by parked cars. Then, these
volumes could be marked as dynamically occupied in the occupancy
grid.

The second discussion point is regarding the occlusion by one point.
Scenario 4 demonstrated a visibility conflict caused by one voxel, which
was classified as a pedestrian light (Fig. 13). From the perception of the
image data, an actual occlusion seems unlikely. The fact that we detect
a visibility conflict here might be caused by the effect of voxelization.
In other words, due to the process of mapping unordered points into
a grid structure, a point belonging to the pedestrian light might have
been associated with a voxel with its main part further above the actual
object. Thus, the extent of the pedestrian light was extended due to
rasterization, and a presumably false occlusion was caused.

At last, regarding the approach in general, the definition of voxel
occupation and the treatment of conflict cases needs to be discussed.
As explained in Section 3.2, each voxel holds a tuple 𝑉 (𝑛, 𝑚), where 𝑛
indicates the empty value and 𝑚 indicates the occupation value. The
cases 𝑛 = 0 or 𝑚 = 0 are clear, as is the decision where 𝑛 ≫ 𝑚 or 𝑚 ≫ 𝑛.
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Nevertheless, there is also a possible case that both 𝑛 and 𝑚 could be
larger than 0. An option to address this issue could be to count the
voxel as occupied only if the occupation value is greater than the empty
value, namely in the situation that 𝑛 > 𝑚. However, in our test cases this
approach resulted in several voxels marked as empty even though they
should be occupied. Therefore, we assume a voxel is occupied as soon
as 𝑛 > 0 (see Section 3.4.1). This might result in more false positives
(empty voxels marked as occupied), but by filtering noise artifacts and
introducing semantic knowledge, these influences can be minimized.

7. Conclusion

In this work, we carried out an analysis of the visibility of traffic
signs and traffic lights by ray-tracing in an occupancy grid in the
urban street environment. Both city models and MLS point clouds were
utilized as datasets for conducting this work, followed by voxelizing the
data into a 3D grid for structured and quantitative analysis. The gen-
erated voxels facilitated the distinction between occupied and empty
space. During the occlusion detection, the identification of unknown
volumes was added and considered in the decision process. For further
analysis, we provided detailed three-dimensional results on different
levels of granularity, including the knowledge of the semantic classes of
traversed voxels. Ultimately, the awareness of unknown volumes was
added to an otherwise binary decision between visible and invisible
targets.

In conclusion, our proposed method is feasible for occlusion detec-
tion in the street scenario, achieving promising results. Based on the
experiments, we particularly discussed difficulties with parked cars,
realizing that the idea of ignoring occlusions by dynamic objects was
contradicted by the inner space of cars not being covered by the sensor
and hence causing unknown voxels. A further step would be to include
parking spaces provided by the 3D city model, acknowledging that if
the model contains a parking space for cars, the whole volume above—
up to an average car height—can be expected to be occupied, whereas
driving cars on lanes are still ignored in visibility analysis. This opens
further possibilities for combining city models and mobile measure-
ments. Our experiments also reveal that the identification of unknown
volumes proves necessary for reliable interpretation of the measure-
ments, especially if the agents differ from the characteristics of the MLS
vehicle or its trajectory. However, identifying unknown volumes can
only be seen as an intermediate step. Following the identification of
problematic viewpoints, a final decision must be reached otherwise:
for instance by human interaction based on different output formats,
further in situ observations for selected cases, or by an extension of the
current analysis.

To deal with the above-mentioned issues, in the future, the used
dataset would have to go from semantically labeled point clouds to
actual volumetric car objects created from the labeled point cloud. This
would require segmentation and modeling of individual car instances.
Their complete volume could then be marked and ignored in visibility
analysis. In case traffic spaces do also model the clearance volume, this
volume can be included in the analysis. Vegetation protruding into that
clearance space can then be identified without causing actual visibility
conflicts. A general assessment of visibility can then be performed by
clearance checks, with the agent-based solution being a refinement at
especially dangerous points, or if changes to the existing environment
are planned. Thus, further research will offer different applications by
an extended environment model.
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