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ABSTRACT

This paper presents a bi-level optimization framework to compute the maximum-distance stint and
charging strategies for a fully electric endurance race car. Thereby, the lower level computes the
minimum-stint-time Powertrain Operation (PO) for a given battery energy budget and stint length, whilst
the upper level leverages that information to jointly optimize the stint length, charge time and number of
pit stops, in order to maximize the driven distance in the course of a fixed-time endurance race. Specifi-
cally, we first extend a convex lap time optimization framework to capture multiple laps and force-based
electric motor models, and use it to create a map linking the charge time and stint length to the achiev-
able stint time. Second, we leverage the map to frame the maximum-race-distance problem as a mixed-
integer second order conic program that can be efficiently solved to the global optimum with off-the-
shelf optimization algorithms. Finally, we showcase our framework on a 6h race around the Zandvoort
circuit. Our results show that a flat-out strategy can be extremely detrimental, and that, compared to
when the stints are optimized for a fixed number of pit stops, jointly optimizing the stints and number
of pit stops can increase the driven distance of several laps.

© 2022 The Authors. Published by Elsevier Ltd on behalf of European Control Association.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The electrification of race cars has been increasing in popularity
over the last years, owing to the adven of hybrid electric Formula
1 cars and Le Mans Hypercars, and battery electric vehicles in
Formula E. In a setting where every millisecond counts, it is of
paramount importance to profit the most of the energy stored on-
board via optimized Energy Management Strategy (EMS). In this
context, the possibility of recharging the battery in the course of
the race further complicates the problem, requiring race engineers
to strike the best trade-off between reducing consumptions and
pit-stops at the cost of lap-time, or driving faster with more pit-
stops. This conflict becomes particularly imminent in endurance
racing, where the objective is to maximize the driven distance
in a fixed amount of time, which can range up to 24h [1]. In
this setting, the car has to be strategically recharged during pit
stops in order to maintain a competitive performance, maximizing
the distance driven. This calls for algorithms to compute the
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maximum-distance race strategies that provide the number of
pit stops during the race, the number of laps driven per stint
(referred to as stint lengths) and charge time (which is directly
correlated to charge energy), whilst accounting for the optimal
energy management strategies and Powertrain Operation (PO).
Against this backdrop, this paper presents a bi-level optimization
framework to compute the maximum-distance race strategies with
global optimality guarantees.

1.0.1. Related literature

This work pertains to two main research streams: single-lap op-
timization of the EMSs jointly with the vehicle trajectory or for a
given race line, and full-race optimization via simulations.

Several authors optimized the minimum-lap-time race line for
a single race lap using both direct and indirect optimization meth-
ods [2-8]. Some of these studies also include a maximum energy
consumption per lap to approach racing conditions [9]. Similar ap-
proaches extend the minimum-lap-time problems to minimum-
race-time problems. They consider temperature dynamics, and op-
timize for multiple consecutive race laps to enable a variable
amount of energy consumed per lap, but formulate the optimiza-
tion problem in space domain for an a priori known number of
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laps [10,11]. Finally, considering the race line to be fixed, multi-
lap EMSs are optimized, leveraging nonlinear optimization tech-
niques [12] or artificial neural networks [13]. However, these pa-
pers lack global optimality guarantees.

Against this backdrop, assuming the race line to be available
in the form of a maximum speed profile, convex optimization
has been successfully leveraged to compute the globally optimal
EMSs for hybrid and fully electric race vehicles [14,15], also in-
cluding gear shift strategies [16], different transmission technolo-
gies [17] and thermal limitations [18]. Yet these methods are fo-
cused on single-lap problems and do not capture pit-stops and
recharging processes.

A final relevant research stream involves race simulations, in
which entire races are optimized on a per lap basis [19,20]. How-
ever, these studies mainly focus on optimal tire strategies by mod-
eling their degradation as a lap time increase and do not capture
the charging and PO strategies. In conclusion, to the best of the
authors’ knowledge, there are no methods specifically focusing on
race strategies in endurance scenarios, whereby the PO within a
stint and the stints themselves are jointly optimized.

1.0.2. Statement of contributions

This paper presents a bi-level mixed-integer convex opti-
mization framework to efficiently compute the globally optimal,
maximum-distance endurance race strategies and the correspond-
ing PO in the individual stints. Our low-level algorithm computes
the optimal stint time for a given number of laps and different
levels of recharged battery energy. To preserve convexity, we de-
scribe the EM efficiency by using speed-dependent in- and out-
put forces. Subsequently, we fit the relationship between the stint
length, the charged energy, and the achievable stint time as a
second-order conic constraint, which we leverage in the high-level
algorithm. Thereby we frame the maximum-distance race problem
as a mixed-integer second-order conic program which jointly op-
timizes the stint length, the charge time—i.e., the charge energy—
and the number of pit stops. The resulting problem can be rapidly
solved with off-the-shelf numerical solvers with global optimality
guarantees. Finally, we showcase our framework on the Zandvoort
circuit for the vehicle shown in Fig. 1, highlighting the importance
of jointly optimizing the number of pit stops with the stint lengths
and charging strategies.

1.0.3. Organization

The remainder of this paper is structured as follows: Section 2
presents the minimum-stint-time control problem, after which
Section 3 frames the maximum-race-distance control problem.
We showcase our framework for a 6h race in Section 5. Finally,
Section 6 draws the conclusions and provides an outlook on future
research.

2. Low-level stint optimization

This section illustrates the minimum-stint-time control problem
in space domain, since minimizing the stint time given a fixed dis-
tance represents the dual problem of maximizing distance within a
fixed time period. We extend an existing convex framework [17] to
allow multi-lap optimization, whilst improving the EM model ac-
curacy by considering a pre-defined fixed-gear transmission ratio.
Thereby we separate the EM and inverter model to allow future
extensions to temperature models. From the time-optimal con-
trol problem, we obtain the minimum stint time for a given stint
length and available battery energy (which can be equivalently ex-
pressed in terms of charging time).

Fig. 2 shows a schematic representation of the powertrain
topology of the electric race car. The EM propels the rear wheels
through a fixed Final Drive (FD), while receiving energy from the
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Fig. 1. InMotion’s fully electric endurance race car.
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Fig. 2. Schematic layout of the electric race car powertrain topology consisting of
a battery (BAT), inverter (INV), electric machine (EM) and final drive (FD). The ar-
rows indicate positive power flows of the auxiliary power Py, the electrical inverter
power Py, the electrical electric motor(EM) input power P, and mechanical output
power Py, and the propulsion power P,.

battery pack via the inverter. As with most electric vehicles, the
EM can also operate as a generator, thus we account for a bi-
directional energy flow between the battery and the wheels. In
addition, we consider auxiliary components that are powered from
the main battery as a uni-directional energy flow.

In reality, the driver controls the EM torque through the accel-
erator pedal and as such we define the mechanical EM power Py
as the input variable. As state variables, we choose the battery en-
ergy E, and the kinetic energy of the vehicle Ey;,. The remaining
energy flows between the powertrain components are the propul-
sion power By, electrical EM power Py, electrical inverter power Py
and auxiliary supply Paux. Since we formulate the control problem
in space domain, we ultimately define the model in terms of forces
rather than power. Thus we divide power by the vehicle velocity,
since the space-derivative of energy is defined with respect to the
vehicle.

2.1. Objective and longitudinal dynamics

In racing, the objective is to minimize the lap times over the
entire race. Since we only consider a stint in the low-level control
problem, the objective is to minimize the stint time tg;,,, which is
defined as

. . Sstint ¢
min tgpine = mm/ —(s) ds, (1)
0 ds
where Sy, is the stint length in terms of distance and %(s) is the
lethargy, which is the inverse of the vehicle velocity v(s) > 0. To
implement the lethargy as a convex constraint, we define

dt 1
E(S) = @,

which is a convex relaxation that holds with equality in case of an
optimal solution [14].

Since the goal of this paper is to study the optimal race strat-
egy and PO rather than studying the effect of vehicle dynamics,
we model the vehicle as a point mass, for which the longitudinal
dynamics are written as

S Fin®) = B(S) B ~ Frge ). 3)

where F,(s) is the propulsion force, Fy(s) is the drag force and
Fyrake (S) is the force from the mechanical brakes. The drag force is
defined as the sum of the aerodynamic drag, the rolling resistance
and the gravitational force as

(2)
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Cq-Af-
Fi(s) = detp - Exin(8) + Cr - (Meor - g+ c0s(0(5))+
(0]

Fiown ($)) + Mot - g sin(0(s)).  (4)

where my is the total mass of the vehicle, ¢4 is the air drag coef-
ficient, Af is the frontal area of the vehicle, p is the air density, c;
is the rolling resistance coefficient, g is the gravitational constant,
0 (s) is the inclination of the track and Fy,,,(s) is the aerodynamic
downforce defined by

a-Ar-p
Fdown(s) = El(in(s)v (5)
Mot
where ¢ is the aerodynamic lift coefficient. To account for the
losses in the final drive under bi-directional power flow, we write
(3) as two inequality constraints according to

S Bn(®) = Fn®) - 11~ FaS) ~ Foae9). ®)
d E <k ! F 7
a l(in(s) = m(S) : % - d(s) - ﬁ)rake(s)v ( )

where Fy(s) is the mechanical output force from the EM and ngy
is the efficiency of the final drive, assumed constant. Due to the
objective (1), in case of traction, (6) will hold with equality, whilst
in case of regenerative braking, (7) will hold with equality, thus
capturing the bi-directional power flow.

The relation between the kinetic energy and velocity of the ve-
hicle is defined by a convex relaxation as

3 Mox - 1(5) = Fgn(5) = 5 - Mot - Vg 5), (8)
where vmax () is the maximum velocity possible without exceed-
ing the tire grip limitations on the race track. This maximum ve-
locity profile can be pre-computed according to the method shown
in [17].

In contrast to single-lap scenarios, a stint is represented by the
vehicle starting and stopping at the pit box with a certain number
of flying laps in between. However, since we are working in space
domain, the lethargy would diverge to infinity for zero velocity. To
solve this issue, we define a minimal velocity v, close to stand-
still and enforce this value to the initial and final velocity with

1
Eyin (0) = Exin (Sstint) = 5 Mot - Viin- (9)

When driving through the pit lane, the vehicle should adhere
to a strict speed limit, of which the exact value is track-dependent.
Therefore, we define an upper bound v max on the vehicle veloc-
ity when the vehicle is exiting or entering the pit as
Egin(s) < % - Mot - vﬁit.max Vs e Spits (10)
where Sp;; is the set of distance-based positions that are part of
the pit lane. Finally, we have to consider the maximum decelera-
tion of the vehicle whenever the maximum velocity profile is not
an active constraint, e.g., during braking before the pit entry. As-
suming straight line braking, we can express the maximum decel-
eration as a lower bound on the kinetic energy with

dEyin
ds
where pu is the friction coefficient of the tires.

(S) = _Fd(s)_:u'(mtot'g'i'Fdown(S))’ (11)

2.2. Electric machine

This section derives a convex representation of the operating
limits and power losses of the EM. In general, we can distinguish
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Fig. 3. A speed- and torque-dependent model of the EM. The normalized root-
mean-square error (RMSE) of the model is 1.49% w.r.t. the maximum motor input
force Fi.

between a maximum torque and maximum power operating re-
gion for an EM. Translating this to constraints in space domain re-
sults in a lower and upper bound on the mechanical output force
of the EM for the maximum torque region as

Fin(s) [ - g Tmmec Vi ] (12)

T'w T'w

where T max is the maximum torque the EM can deliver, ygq is the
final drive ratio and ry, is the radius of the rear wheels. Note that
we include the final drive ratio, as we define the space-derivatives
with respect to the vehicle reference frame. Similarly, the mechan-
ical output force of the EM within the maximum power region is
bounded as

Fn(s) € |:—Pm,max : %(S)spm,max : gi(s)} (13)

where Py max is the maximum power the EM can deliver.

We model the EM force losses Fy, os5(S) rather than the power
losses as a function of the vehicle velocity and force of the EM.
In general, an EM efficiency map shows large losses at low rota-
tional velocities. Therefore, we want to include a term in our losses
fit that is inversely proportional to the vehicle velocity. To ensure
convexity, we model the EM losses as

Fm,loss (S) = XL (S)mem (S)v (14)
T

_ 1 Fn (s) ; : _

where Xy (s) = [ o) V(s) —T(s)] and Qn is a symmetric pos

itive semi-definite matrix of coefficients, of which the values are
determined through semi-definite programming. Fig. 3 shows the
EM input force as a function of the EM output force and vehicle
speed for the convex model and for the reference data. To imple-
ment the losses in a convex manner, we take the relation of the
electrical EM input force Fyc(s) to the mechanical output force as

Eac(s) :Fm(s)'i'Fm.loss(s)ﬂ (15)

substitute the loss model, relax it and rewrite to a convex relax-
ation as

(Fic(s) = En(5)) - U(5) = ¥1(5) Q¥ (5). (16)
where ym(s) = [1 () Fn(s)]".

2.3. Inverter

In this section, we derive a quadratic model for the inverter
losses. We apply the general quadratic power loss model of the
form

Pic(s) = o - P() + Pac(S). (17)
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where « is an efficiency parameter, subject to identification. Con-
verting this constraint to forces, rewriting and relaxing results in

(Fac(s) ~ Fue(s)) - - (5) = o - E2(5), (18)

where Fy.(s) is the force equivalent to the electrical inverter input
power.

2.4. Battery

This section derives a model for the battery efficiency and the
power-split between the electrical inverter power and the auxiliary
component power. The latter can be observed from Fig. 2 and is
written as

By(s) = Pac(S) + Paux, (19)

where PB,(s) is the battery power at the terminals. Here, the
auxiliary component supply is assumed to be constant and uni-
directional, while the other powers are bi-directional. Converting
(19) to forces results in

() = Fae(S) + Pa - 5. (20)

where F,(s) is the force equivalent of the battery power at the ter-
minals.
The battery efficiency is mostly determined by its internal resis-

tance Ry and open-circuit voltage V,c. We derive the battery losses
from a Thévenin model [21] as

1

B(s) = R “P2(s) + By (s), (21)
N

where Py = ‘,/%ZOC is the short-circuit power [22], which can be ob-

tained from manufacturer data and which we assume to be con-
stant. B,(s) is the power at the battery terminals and P (s) is the
internal battery power, which ultimately dictates a change in bat-
tery energy. Translating (21) to forces and relaxing results in

(BS) ~Fy(s) - () Pe = FX(), (22)

where F(s) is the internal battery force and F,(s) is the battery
force at the terminals.
The energy consumption of the battery is modeled as

d

—E = —F(s). 2

s i(s) (23)
We constrain the battery energy as

Ey(0) = Ep o, (24)

Eb,min fEb(S) = Eb,max’ (25)

where Ep is the initial battery energy. Furthermore, Ey ,;, and
E, max correspond to the battery energy at the lower and upper
State of Energy (SOE) bound, respectively. We leverage a lookup
table with input charge time tq, and output Ey,q for a given
charging profile during pre-processing.

2.5. Low-level optimization problem

This section presents the minimum-stint-time control problem
of the electric race car. Given a predefined stint length and charge
time we formulate the control problem using the state variables
X = (Eyin, Ep) and the control variables u = (Fyn, Fyrake) as follows:

Problem 1 (Minimum-stint-time Control Strategy). The minimum-
stint-time control strategies are the solution of

. Sstint dt
min /0 e (s)ds,
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s.t. (2), (4) — (13), (16), (18),
(20), (22) — (25).

Since the constraint set and the cost function are convex, the
low-level control problem is fully convex and therefore we can
compute the globally optimal solution with standard nonlinear
programming methods.

3. High-level race optimization

In this section, we present the high-level maximum-race-
distance control problem. First, we formulate the maximum-race-
distance control problem that optimizes the stint length and
charge time for a pre-defined number of pit stops. Second, we
model the minimum stint time by leveraging the low-level control
problem and optimizing for various combinations of stint length
and initial battery energy. Finally, we extend the maximum-race-
distance control problem to allow joint optimization of the stint
length, charge time, and number of pit stops.

3.1. Mixed-integer control problem

We define the high-level control problem for a pre-defined
number of pit stops in stint domain, so that we have a fixed and
finite optimization horizon. Here, each index in the optimization
variables represents a stint. The goal is then to maximize the
driven distance as the sum of all completed laps during the stints
as

Nitops
Max Srace = Max Z Stap - Niaps (k), (26)
k=0

where Space is the total race distance, Nsops is the pre-defined num-
ber of pit stops, Njaps (k) € N, V k e [0, <.+, Nstops — 1] is the stint
length and N the set of natural numbers, and Sy, is the length of
one lap. Since the vehicle starts and stops at the pit box, the stint
length should be an integer number of laps. As it is unlikely that
the vehicle is exactly at the finish line when the race time limit is
reached, we allow the final stint length to be a non-integer number
of laps. This way, we have Nstops + 1 stints for Nstops pit stops and
thus we have Nsiops integer stint lengths and one final non-integer
stint length.

The race can be divided into the car driving a stint and recharg-
ing the battery during pit-stops. Given the total race time tyace, We
can link it to the time to complete the stint tg;, (k) > 0 and the
time spent charging tearge (k) > 0 as

Ns[ops Nstops
trace = Z tstint(k) + Z tcharge (k) (27)
k=0 k=1

We then decompose the total race into blocks consisting of a
pit stop followed by a stint. By assuming that a stint is always
energy limited, the charge time uniquely defines the initial bat-
tery energy for the subsequent stint and is not influenced by prior
stints. To ensure that the battery is not overcharged, we apply an
upper bound on the charge time through

tcharge (k) = tcharge.maw (28)

where tharge max 1S the maximum charge time corresponding to a
full battery, assuming that the battery is always charged starting
from the lower energy bound. Since we start the race with a full
battery, we set tcharge (0) = teharge, max @nd do not count it in the ob-
jective. Finally, the time to complete the stint is obtained by solv-
ing the low-level control problem, which we explain in the subse-
quent section.
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Fig. 4. Fit of optimization data for a combination of stint lengths and charge times.
The normalized RMSE of the fit is 0.80% w.r.t. the maximum stint time.

3.2. Stint time model

In this section, we derive a method for modeling the stint time
as a function of the stint length and charge time during the pit
stop prior to the stint. We solve the low-level control Problem 1 for
a combination of stint lengths and initial battery energy to ob-
tain the respective achievable minimum stint time. This way, we
can create the lookup table with stint time as a function of stint
length and charge time, as shown in Fig. 4. Thereby the charge
time and initial battery energy are linked through a pre-defined
charging current profile, cf. Section 2.4. As the stint time increases
for larger stint lengths and shorter charge times, similar to the EM
loss fit in Section 2.2 above, we approximate the low-level opti-
mization results via the continuous function

tsine (k) = x{ (k) Qsxs (k). (29)
_ 1 Nlaps(k) T s _

where xs(k) = [%/W V/tcharge (k) Torage®© and Qs is a sym

metric positive semi-definite matrix of coefficients. The result of

the fit is shown in Fig. 4. For a convex implementation, we relax
and rewrite (29) to

tstint(k) . tcharge(k) =Ys (k)T@yS (k), (30)

where ys(k) = [1 teharge (k) Niaps (k)]T, and convert this relaxation
to a conic constraint [23] as

2-zs(k)
tstint(k) - tcharge (k) 2’
where zs = Gys(k) with G being the Cholesky factorization of

Qs [23]. Since it is optimal to minimize stint time, this constraint
will hold with equality at the optimum.

Estine (K) + Leharge (k) = (31)

3.3. Optimal pit stop strategy

In the previous sections, we introduced the objective and con-
straints for the high-level control problem when optimizing the
race strategy for a pre-defined number of pit stops. In this section,
we apply some modifications in order to jointly optimize the stint
lengths, charge times and number of pit stops, thereby removing
the need to search over a large space of pre-defined number of pit
stops.

We define a binary variable bp; (k) that indicates whether pit
stop and stint k is taken or skipped as

by (k) = 0, if stop and stint skipped
PR = 11, if stop and stint taken,

and include it in (29) via the big-M formulation [24]
stint (k) = X5 (k) TQsxs (k) — M - (1 = bpic(k)), (33)

(32)
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where M > tgine max- This way, we obtain the original constraint if
bpit(k) = 1 and we obtain a negative lower bound when by (k) = 0
which, together with tg;,¢(k) > 0, will push the k-th stint time to
zero, hence skipping the stint. We convert (33) to a cone as

M- (1 - bpit(k)) + tstint (k) + tcharge (k) =
2-z5(k)
M- (1 - bpit(k)) + tstint(k) - tcharge(k) . (34)

2

Hence, whenever a stint is skipped, the corresponding stint
time and charge time will be zero if an optimal solution is ob-
tained. To prevent the stint length from diverging to infinity when-
ever the stint is actually skipped, i.e., by (k) = 0, we define an up-
per bound on stint length as

Nlaps (k) = Nlaps,max : bpit(k)7 (35)

where Njgps max IS the maximum stint length that was used to
obtain the lookup table. This will ensure Nips(k) =0 whenever
bpit(k) = 0. Finally, we enforce b;(0) =1 since the first stint at
the start of the race is always taken, and place driven stints first
as

bpic(k + 1) = byie(k),  Vk € [1, Ntops ] (36)

3.4. High-level optimization problem

This section presents the maximum-race-distance control prob-
lem of the electric race car. Given a predefined race time
we formulate the control problem using the control variables
(tcharge> Miaps» bpit) as follows:

Problem 2 (Maximum-race-distance Strategies). The maximum-
race-distance strategies are the solution of

Nistops

max Z Slap 'Nlaps (k).
k=0

s.t. (27), (28), (34) — (36).

Since Problem 2 can be solved with mixed-integer second-order
conic programming solvers, we can guarantee global optimality
upon convergence.

4. Discussion

A few comments are in order. First, we assume that endurance
racing tires do not degrade significantly and can be changed ev-
ery stint due to the long pit stop time. Yet the high-level control
problem can be readily extended to capture these dynamics if the
lookup table is devised accounting for tire degradation. Second, we
assume that the time gained from starting the race from the grid
compared to the pit lane is negligible on a full endurance race.
Thus we do not separately optimize the first stint. Similarly, we do
not separately optimize the final stint, since we assume that the
vehicle can push the SoE below the lower limit to complete the fi-
nal lap of the race, as battery degradation would no longer be an
issue. Third, we assume that the cooling system can cope with the
requested power from the battery and EM and devote temperature
modeling to future research. Yet again, the high-level control prob-
lem can capture temperature effects if the map is devised account-
ing for the temperatures and by assuming that the temperatures at
the start of the stint are always the same. Finally, it might occur
that the vehicle can recuperate more energy, compared to what is
needed to drive to the pit box, during braking before pit entry. Yet
this amount of energy can be neglected, since it does not affect the
PO and stint time.
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Fig. 5. Velocity, EM power and battery SoE trajectories per lap for a 10 lap stint.
The battery energy is an active constraint, thus the stint is energy limited. The EM
power shows a gradual decrease at high velocities, thus indicating energy manage-
ment. The zoom window corresponds to the final 500 m of the stint.

5. Results

This section presents numerical results for both the low- and
high-level control problem. We base our use case on the electric
endurance race car of InMotion [25], shown in Fig. 1, perform-
ing a 10 lap stint at the Zandvoort circuit for the low-level con-
trol problem and a 6h race at the same circuit for the high-level
control problem. First, we discuss the numerical solutions for both
control problems. Second, we validate the high-level control prob-
lem by comparing the optimal race strategy against fixed-pit-stop-
number strategies and calculate the theoretical optimal combina-
tions of stint length and charge time.

For the discretization of the model, we apply the Euler For-
ward method except for the lethargy, where we apply the trape-
zoidal method, with a fixed step-size of As=4m. We parse the
low-level control problem with CasADi [26] and solve it using
IPOPT [27] combined with the MA57 linear solver [28], whilst we
parse the high-level control problem with YALMIP [29] and solve it
using MOSEK [30]. We perform the numerical optimization on an
Intel Core i7-4710MQ 2.5 GHz processor and 8 GB of RAM. Thereby,
the computation time for solving the low-level problem was about
4.6s of parsing and 25 s of solving, whereas the high-level problem
needed 0.04s of parsing and 0.57 s of solving.

5.1. Low-level optimization

In this section, we compute the optimal trajectories for a stint
of 10laps around the Zandvoort circuit. We set the initial battery
capacity to the upper bound corresponding to a 7.5min charge
time. The total stint time is about 946 s with an average flying lap
time of 93s.

The velocity profile together with the EM power and SoE per
lap is shown in Fig. 5. First, we observe that the velocity profiles
of consecutive free-flow laps are equivalent, as there are no lap-
dependent dynamics. Second, the EM power decreases gradually
before the vehicle reaches a corner and full regenerative braking
is applied, which defines the optimal PO. Finally, we observe that
the pit lane speed limit is adhered to, but the power at pit exit
and pit entry are slightly different. From the lower plot, we notice
that the lower battery limit is reached before the end of the stint,
indicating that the recuperated energy during pit entry is larger
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Fig. 6. Evolution of the completed laps as a function of time for the optimal strat-
egy (black) and the strategies optimized for a fixed number of pit stops. The dashed
data show a baseline strategy and a repetition strategy of the global optimal stint.
The zoom window corresponds to the final 5min of the race and illustrates the
difference in race distance between the optimized strategies, showing that jointly
optimizing the number of stints can significantly outperform other strategies by
multiple laps.

than the required energy for driving through the pit lane. However,
this does not affect the stint time or the PO.

5.2. High-level optimization

This section presents the optimal race strategy in terms of num-
ber of pit stops, stint length and charge time, and we compare it
against the strategies optimized for a fixed number of pit stops. We
select a 6h race, yet longer races can be solved as well with our
approach, considering the very low computational times needed by
our high-level framework to converge. To link the initial battery
energy Ep o to the charge time ty,6, We apply constant current
charging starting from the lower limit.

Fig. 6 shows the evolution of the completed laps as a function
of time for various fixed-pit-stop-number strategies. We observe
that the optimal strategy of 11 stops results in the largest num-
ber of completed laps, thereby confirming that it is indeed op-
timal in terms of number of pit stops. The difference in covered
race length between the optimal and fixed-pit-stop-number strate-
gies can exceed multiple laps and hence significantly affect the fi-
nal race outcome in terms of finishing position, highlighting the
importance of jointly optimizing the number of pit stops. Further-
more, we compare the optimal race strategy against a strategy that
repeats the global optimal stint of 15laps and 7.5 min charging, un-
til the race ends. Although the stints used in this strategy are glob-
ally optimal from a stint perspective, it does not cover the largest
distance within the 6h time window, which makes the strategy
sub-optimal from a race perspective. This is because a pure rep-
etition of the optimal stint does not fit perfectly within the 6h
race. Instead, it is beneficial to slightly deviate from the optimal
stint, so that the stints fit better within the race, as done by the
optimal race strategy. This shows that the optimal race strategy is
not necessarily the same as the optimal stint, thereby highlight-
ing the importance of jointly optimizing the stint lengths, charge
times and number of pit stops. Lastly, to show the importance of
the bi-level approach, we compare the optimal strategy against a
baseline flat-out strategy whereby no energy management is ap-
plied to limit energy consumption, but the EMs are rather operated
at maximum power whenever possible. This results in 6lap stints
and a total race distance of 132laps, whilst the globally optimal
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Fig. 7. Optimal race strategy (black) in terms of stint length, charge time and stint
time with fcparge max = 7.5 min. For comparison, we show other optimal fixed pit
stops strategies together with the relaxed solution in gray. Stint length, charge- and
stint time are related and the optimal integer solution minimizes the differences to
the relaxed solution.

solution is about 172 laps, which is about 30% better compared to
the baseline.

Fig. 7 shows the individual stints in terms of length and charge
time, together with the relaxed non-integer solution. We can con-
clude that a constant stint length over the race is optimal, since all
stints in the relaxed solutions are equal, with the only exception
being the first stints. In this use case, the optimal integer solution
consists of the stint lengths that minimize the difference to the
relaxed solution, namely, of a stint length between 14 and 15 laps
together with a charge time of almost 7.5min and 11 pit stops in
total. For strategies with more stops, both the stint lengths and
charge times are reduced, thus showing that partly charging the
battery is optimal for more than 11 stops. For strategies with fewer
than 11 stops, the charge time is already maximized and no com-
pensation is possible for increasing stint lengths. From the afore-
mentioned observations, we conclude that the stint length, stint
time and charge time are closely related in the case of an optimal
solution. Thereby, all the stints consist of a unique and lap-wise
equal globally optimal PO.

5.3. Validation

In this section, we validate the numerical combinations of stint
length and charge time for the various strategies. To this end, we
calculate the average stint velocity Vg, (k) for every strategy as

Sstint(k) . Vk > 0. (37)
tcharge (k) + tstint(k)

Arguably, the globally optimal stint should maximize the aver-
age stint velocity. Fig. 8 shows the average stint velocity for all pos-
sible combinations of stint length and charge time together with
the theoretical optimal charge times that maximize the average
stint velocity for a given stint length, to which we refer as the op-
timal combinations. These optimal combinations show an almost
linear relation between charge time and stint length until the max-
imum charge time is reached. The globally optimal stint consists
of 15laps and 7.5min charging, which is the exact same combi-
nation that we obtained as the optimal strategy in the previous

vstint (k) =
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Fig. 8. The average stint velocity for a combination of stint length and charge time
together with the optimal combinations and actual numerical solutions. The opti-
mal combinations of stint length and charge time show a clear (linear) correlation,
to which the numerical solutions are aligned. The dashed circles indicate the first
stints for the 13 and 15 stop strategies.

section. Furthermore, we observe that the average stint velocity
decreases in sensitivity around the optimal combinations for in-
creasing stint length and charge time, until the maximum charge
time is reached. Thereby, increasing the stint length beyond 15 laps
quickly becomes less favorable, explaining why the 7stop strat-
egy is significantly worse than the others. Finally, we note that
the numerical solutions align well with the theoretically optimal
combinations. The outliers at 14laps and 7.5min charging corre-
spond to the first stints, for which the charge time is not part of
the race and thus the calculation of the stint velocity in (37) is not
valid.

6. Conclusion

In this paper, we devised a bi-level optimization framework
to efficiently solve the maximum-distance endurance race strat-
egy problem for a fully electric race car. In order to tackle the
large problem size stemming from the length of an endurance race,
we decomposed the problem into separate stints which we solved
by extending a minimum-lap-time convex optimization framework
that can rapidly deliver the globally optimal solution to account for
multiple laps and include more accurate force-based models. This
way, we were able to compute the optimal number of pit stops,
the charging time per stop and the individual stint lengths via
mixed-integer second-order conic programming with global opti-
mality guarantees. Our bi-level framework could solve the problem
of a 6h race around the Zandvoort circuit with low computation
times below 1s for the high-level framework. Our results showed
that, from a stint perspective, there is a clear correlation between
optimal stint length and charge time, which corresponds to the
maximization of the average stint velocity. Moreover, the optimal
race strategy showed a 30% increase in the overall race distance,
compared to a baseline flat-out strategy. Finally, we highlighted the
importance of optimizing both levels and that, compared to the
strategies optimized for a pre-defined number of pit stops, jointly
optimizing the number of pit stops can significantly increase the
total distance driven by multiple laps, hence considerably improve
the achievable race outcome.

This work opens the field for the following possible extensions:
First, we want to account for the temperature dynamics of the EM
and the battery during driving and charging, since they can play
an important role in endurance racing scenarios [10,18]. Second,
we want to study the impact of the vehicle dynamics [9,31] and
tire degradation on the achievable stint time and the resulting race
strategies.
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