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Adelina Bärligea

Scalability of Variational Quantum Optimization
in the Presence of Noise

ABSTRACT

Recent advancements in quantum hardware development have marked the beginning
of the Noisy Intermediate-Scale Quantum (NISQ) era, characterized by devices with a
limited number of qubits and significant noise. Variational Quantum Algorithms (VQAs)
have emerged as potential candidates for achieving quantum advantage in this noisy era,
particularly in the highly anticipated field of optimization. These hybrid algorithms
combine classical optimization with shallow, parameterized quantum circuits to min-
imize a loss function. Despite their promise, VQAs face significant challenges often
overshadowed by results based on small-scale toy problems and narrow testing setups,
leaving their practicality for real-world applications uncertain. This thesis provides a
systematic investigation of the scalability of VQAs in solving combinatorial optimiza-
tion problems. Through a comprehensive empirical study, it evaluates the performance
of state-of-the-art classical optimizers in minimizing well-behaved VQA loss functions
on random Quadratic Unconstrained Binary Optimization (QUBO) problem instances.
The study considers varying levels of Gaussian noise and increasing system sizes, with
an experimental setup thoroughly motivated throughout the work. The results demon-
strate that, for fixed system sizes, the ability of all tested optimizers to find optimal or
near-optimal solutions declines sharply once a critical noise threshold is surpassed. No-
tably, this threshold decreases on an exponential scale with increasing system sizes, far
exceeding the impact expected from the well-documented barren plateau phenomenon.
When translated into practical terms, such as error rates or measurement shot require-
ments, the findings indicate prohibitively high resource demands for solving problems
of practical relevance, even under the assumption of fault-tolerant hardware. These de-
mands starkly contrast with the efficiency of best-in-class classical solvers. This casts
serious doubt on the viability of achieving practical quantum advantage in optimization
with the variational approach. It, therefore, highlights the need to explore fundamen-
tally different algorithms and problem domains to realize near-term quantum utility.
The methodology presented in this thesis serves as a versatile framework for evaluating
the scalability and feasibility of any quantum optimization algorithm and contributes to
informed assessments of the limitations and potential of quantum computing in general.
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Chapter 1

Introduction

Since its initial proposal [1], quantum computing has attracted considerable attention as
a promising alternative for tackling computationally hard problems that are practically
unsolvable with classical computers. This hope has been fueled by advancements on
the algorithmic front, most famously with Shor’s algorithm for integer factorization [2],
which provides exponential speed-up over classical methods and might endanger most of
today’s cryptography. Other impactful quantum algorithms include Grover’s database
search [3] with quadratic speed-up, quantum simulation techniques [4], and a quantum
solver for linear systems of equations [5]. Alongside these theoretical advancements, con-
siderable progress has been made in the physical realization of quantum computers using
superconducting circuits [6], trapped ions [7], neutral atom systems [8], and photonic
processors [9].

Despite these advancements, current quantum systems remain in their early stages,
with yet a long way to go before scalable, fault-tolerant quantum computing becomes
a reality. Preskill [10] coined the term Noisy Intermediate-Scale Quantum (NISQ) era
to describe these early-stage devices, expressing cautious optimism about their poten-
tial to achieve practically relevant quantum advantage. Among the most anticipated
applications, and arguably one of the most industrially relevant, is optimization, for
which much of the hope lies in quantum approximation algorithms and heuristics [11].
A particularly interesting framework within this class are Variational Quantum Algo-
rithms (VQAs) [12–14], which are often regarded as the leading candidates to provide
near-term quantum advantage for practical applications.

VQAs are hybrid schemes that delegate the main computational workload of optimiz-
ing parameters to the classical processor, while the quantum device focuses on evaluating
the loss function using shallow, parametrized quantum circuits (the ansatz). This hybrid
architecture makes them especially suited for near-term hardware; some researchers even
describe them as noise-resilient [13, 15, 16].

However, in light of widespread optimism and high expectations, it is equally impor-
tant to rigorously assess and understand the limitations of such approaches. Establishing
the boundaries between genuinely promising advancements and appealing but unproven
claims is a crucial step for the field’s near-term progress.

Hoefler et al. [17] has pointed out that most proposed NISQ algorithms offer, at best,
polynomial speed-up, with crossover times to the best classical algorithms potentially
stretching to days, months, or even years. Even with theoretically super-quadratic speed-
ups, achieving practical performance gains may remain out of reach given current and
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Chapter 1 Introduction

foreseeable quantum hardware limitations [18]. A growing body of research underscores
the detrimental effects of noise [19–24], as well as other fundamental challenges [25–27] on
these algorithms’ viability. This may help explain why, to date, no quantum advantage
has been demonstrated for practically meaningful optimization problems with VQAs
on near-term devices. Thus, a critical question remains: is quantum practicality at all
possible, given the unavoidable presence of stochastic errors?

Rather than directly addressing this question, such as in the complexity-theoretic
approach by Chen et al. [28], new heuristic quantum algorithms continue to emerge,
often labeled “promising” based on limited testing with small toy problems and idealized,
noise-free simulations. Such setups, however, often overestimate an algorithm’s true
potential. As a result, it largely remains unclear whether these schemes can be scaled
up effectively or still perform reliably in the presence of realistic noise; and how to even
tackle these problems.

This thesis addresses the question of how promising VQAs truly are for solving practi-
cally relevant optimization problems. To explore this, it examines the scaling behavior of
the classical component within the variational pipeline – namely, parameter optimizers
– when applied to noisy loss functions across increasing system sizes. This investigation
takes an empirical approach1, providing experimental results that enhance the under-
standing and clearly demonstrate the practical limitations of VQAs. By implementing a
scalable Gaussian error model on a well-behaved loss function of a representative VQA
ansatz for typical optimization problems and applying this to a suite of state-of-the-art
optimizers, this study conducts systematic experiments to analyze the scaling behavior
of problem solvability across two dimensions: error level and system size. This allows for
the identification of a boundary line beyond which problems become unsolvable, which
holds significant implications for the general practicality of VQAs for solving real-world
problems even beyond the constraints of near-term devices.

Therefore, this thesis’s contributions extend beyond a detailed study of the scaling
behavior and limitations of VQAs, providing a robust and generalizable methodology for
evaluating the potential and viability of quantum optimization algorithms in general.

To this end, the thesis is structured as follows: Chapter 2 provides the theoretical
background for the relevant topics, including the basics of quantum computing, the for-
mulation of combinatorial optimization problems, and a more comprehensive introduc-
tion to the VQA framework. Chapter 3 describes the methodology used in the numerical
experiments and defines key measures for evaluation. In Chapter 4, the sources of errors
and other challenges arising in VQAs are discussed, and their impact is experimentally
analyzed across three representative algorithms. Chapter 5 presents the main findings
of this work, including not only the results of systematic optimizer studies but also a
thorough discussion of their broader implications. Finally, Chapter 6 summarizes these
insights, and Chapter 7 suggests interesting directions for future research.

1A theoretical counterpart to this work, similarly addressing the capabilities of classical optimizers, was
recently published by Kungurtsev et al. [29], offering insights from a more analytical perspective.
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Chapter 2

Theoretical Background

The following chapter provides a summary of essential background from the literature
necessary for understanding the experiments and results presented in Chapters 4 and 5.
It begins with an introduction to quantum computing, covering foundational concepts,
current device capabilities, and definitions of quantum advantage (see Section 2.1). Next,
it introduces combinatorial optimization problems – a well-established and promising ap-
plication area for quantum computing (see Section 2.2). Finally, variational quantum
algorithms, a leading approach for addressing these problems, are explained and dis-
cussed in detail (see Section 2.3).

2.1 Quantum Computing
Quantum computers harness the principles of quantum mechanics to manipulate quan-
tum states, enabling them to potentially solve certain problems far more efficiently than
classical computers [30]. One of the first practical demonstrations of this potential was
Shor’s integer factoring algorithm [2], which is super-polynomially faster than any known
classical algorithm, for which the problem was generally considered intractable. The
promise of quantum computing is partly rooted in its ability to explore exponentially
large state spaces that are fundamentally beyond classical simulation capabilities. To
provide a foundation for understanding these concepts, this section provides an overview
of the basic working principles and current topics of quantum computing, with more de-
tailed explanations provided by Nielsen and Chuang [31].

2.1.1 Working Principles
Quantum computers are composed of qubits (i.e., quantum bits), represented by the
quantum state

|ψ⟩ = α |0⟩+ β |1⟩ with ⟨ψ|ψ⟩ = |α|2 + |β|2 = 1, (2.1)

which generally defines the superposition of the two basis states |0⟩ = ( 1
0 ) and |1⟩ = ( 0

1 )
of the two-dimensional Hilbert space. Using the normalization condition in Equa-
tion (2.1) and ignoring global phases, one can find ϑ and φ such that α = cos ϑ2 and
β = eiφ sin ϑ

2 represent the qubit state by a vector in the Bloch sphere (unit sphere
spanned by ϑ, φ). The time evolution of a quantum state is governed by gates, repre-
sented by unitary matrices U ∈ Cn×n (with U†U = UU† = I). The most elementary
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Chapter 2 Theoretical Background

single-qubit operations are the Pauli gates

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
(2.2)

which anti-commute, i.e., [X,Z] = −[Z,X]. Another relevant single-qubit gate realizes
a rotation about an axis v⃗ ∈ R3 (with ∥v⃗∥ = 1) by any angle ϑ,

Rv⃗(ϑ) = exp
(
−i ϑ2 v⃗ · σ⃗

)
= cos

(
ϑ

2

)
I− i sin

(
ϑ

2

)
v⃗ · σ⃗, (2.3)

with σ⃗ = (X,Y,Z)⊤. For a universal set of quantum gates1, a multi-qubit gate is needed.
The most important two-qubit gate in quantum computing is the controlled-not (CNOT)
gate

CX |a⟩ ⊗ |b⟩ = (|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗X) |a⟩ ⊗ |b⟩ , (2.4)

which flips the target qubit |b⟩ if and only if the control qubit |a⟩ is in state |1⟩. This,
or other controlled operations2, can be used to create entangled states, such as the Bell
state |ψBell⟩ = 1√

2(|00⟩+ |11⟩). To graphically represent the evolution of an initial state
|Ψ⟩ (usually ⊗n

i=1 |0⟩) defined by some n × n unitary U (i.e., a quantum algorithm),
circuit diagrams are used. Table 2.1 provides the circuit and matrix representation of a
selection of practically relevant gates.

Finally, to retrieve any information from a quantum circuit, measurements must be
conducted. A measurement is defined by a Hermitian operator Mm, satisfying complete-
ness ∑m M†

mMm = I with respect to all outcomes m. The probability for outcome m
is defined as

p(m) = ⟨ψ|M†
mMm |ψ⟩ = ∥Mm |ψ⟩∥2, (2.5)

leaving the state after measurement as |ψ′⟩ = Mm |ψ⟩ /∥Mm |ψ⟩∥. For example, apply-
ing the measurement operators M0 = |0⟩ ⟨0| and M1 = |1⟩ ⟨1| to the single-qubit state
(2.1) gives a probability of |α|2 to measure “0”, and |β|2 to measure “1”, leaving the
system in state |0⟩ or |1⟩. Lastly, note that any quantum system may also be described
by a Hermitian, positive semidefinite density operator ρ with unit trace, most generally
defined as

ρ =
∑
i

pi |Ψi⟩ ⟨Ψi| , (2.6)

representing an ensemble of quantum states {pi, |Ψi⟩}. After applying a unitary U to
the system, the corresponding density operator becomes ρ′ = UρU†.

1This means that any unitary operation (i.e., a quantum circuit) can be expressed as a finite sequence
of gates from this universal set.

2The two-qubit entangling gate, native to many of IBM’s quantum processors, is the ECR gate:

UECR = 1√
2 (I ⊗ X − X ⊗ Y) = 1√

2

(
0 1 0 i
1 0 −i 0
0 i 0 1

−i 0 1 0

)
.
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Chapter 2 Theoretical Background

Name Circuit Diagram Matrix Representation

Hadamard gate H H = 1√
2
( 1 1

1 −1
)

RY gate RY(ϑ) RY(ϑ) =
(

cos ϑ
2 − sin ϑ

2
sin ϑ

2 cos ϑ
2

)
CNOT gate CX =

( 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

)

SX gate √
¬

√
X = 1

2

(
1+i 1−i
1−i 1+i

)
Table 2.1: Circuit Diagrams and Matrix Representation of Selected Quantum
Gates. From top to bottom: the Hadamard gate changes the basis of a qubit from |0⟩, |1⟩
to |+⟩ = |0⟩+|1⟩√

2 , |−⟩ = |0⟩−|1⟩√
2 , which are called equal superposition states. The RY gate is

often used when preparing parametrized quantum ansatzes (see Section 2.3.2), as it rotates
single qubits about the y-axis by any given angle ϑ (see Equation (2.3)). The CNOT gate
is used for entangling two qubits, with a dot marking the control and a cross marking the
target qubit. The SX gate realizes the square root of X, which is often included in the native
gate sets of IBM quantum hardware (see Appendix B.1).

2.1.2 NISQ Hardware
After the original proposal of quantum computers by Feynman [1], their physical realiza-
tion remained elusive for many years, leaving them as theoretical constructs. Today, we
have entered what Preskill [10] termed the Noisy Intermediate-Scale Quantum (NISQ)
era of quantum computing. This era is characterized by the development of small quan-
tum computing devices, particularly those based on trapped ions and superconducting
circuits, each reaching scales in the order of approximately 100 qubits. Preskill’s term
“NISQ”, however, not only highlights the limited qubit counts of these early devices but,
more critically, draws attention to the inherent noise in current quantum systems, which
causes imperfect computations.

One of the most significant types of noise is caused by the depolarizing error, mathe-
matically described by the channel3

E(ρ) = (1− λ)ρ+ λ tr(ρ) I
2n (2.7)

for a system of n qubits, where λ ∈ [0, 1] is the error parameter. For λ = 1, the
depolarization turns the system into a totally mixed state. Furthermore, there is the
amplitude damping channel

E(ρ) = E0ρE†
0 + E1ρE†

1 (2.8)
3Quantum channels are linear maps that are both trace-preserving and completely positive, used to

describe the physical processes affecting a quantum system, including its evolution and interactions
with the (noisy) environment.
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Chapter 2 Theoretical Background

with the Kraus operators E0 = |0⟩ ⟨0| +
√

1− λAD |1⟩ ⟨1|, corresponding to an absence
of decay, and E1 =

√
λAD |0⟩ ⟨1|, corresponding to the decay event. The error parameter

λAD ∈ [0, 1] again adjusts the strength of the damping with λAD = 1 turning the
single-qubit system into its ground state |0⟩. The phase damping channel has the same
form as Equation (2.8), but with the Kraus operators E0 = |0⟩ ⟨0| +

√
1− λPD |1⟩ ⟨1|,

and E1 =
√
λPD |1⟩ ⟨1|. The thermal relaxation error in Qiskit [32] – IBM’s software

package for simulating and running quantum circuits – combines these two channels, by
relating the parameters,

λAD = 1− e− t
T1 and λAD = 1− e− 2T1+T2

T1T2
t
, (2.9)

to the hardware-specific relaxation times T1 (thermal decoherence time) and T2 (dephas-
ing time). Generally, superconducting qubits exhibit shorter T1 and T2 times, which,
while limiting coherence, enable faster gate operations. In contrast, ion traps benefit
from significantly longer relaxation times but also have longer gate operation times.

Another critical error source in quantum computation is the readout error, which
introduces a measurement inaccuracy with probability λ. This is caused by the fact
that measuring a qubit takes significantly longer than performing a unitary operation
on it, leaving a non-negligible probability of the state changing mid-measurement due
to the abovementioned errors. An overview of typical values for all error parameters on
currently available IBM quantum backends is provided in Appendix B.1.

2.1.3 Quantum Advantage
A central objective in quantum algorithm design is to attain a speed-up over the most
advanced classical methods, often viewed as the core of quantum advantage. However,
achieving computational speedups that are practically relevant may be challenging, as
these advantages often manifest in impractically large system sizes or long runtimes [17].
As a result, alternative definitions of quantum advantage have emerged, which are well
summarized by Ezratty [18]:

• space – if the storage space of an n-qubit register, scaling as 2n, exceeds the
memory capacity of classical computers

• quality – if the quality of a solution provided by a quantum algorithm surpasses
that of the classical counterpart by any chosen metric

• energy – if the fully-burdened quantum computation consumes less total energy
than the best classical equivalent for the same problem

• cost – if the total cost of the quantum solution is lower than that of the best-in-
class classical solution

As Ezratty [18] suspects, real business benefits from quantum computing must come
from a favorable balance across all these factors. However, as Grumbling and Horowitz
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Chapter 2 Theoretical Background

[33] point out, no application of commercial interest has yet demonstrated a clear advan-
tage using the near-term systems outlined in Section 2.1.2. Consequently, current efforts
are placed on both the hardware side, aiming to scale up qubit numbers and reduce error
rates, and on the software side, developing algorithms and identifying applications that
may offer such benefits.

2.2 Combinatorial Optimization
One of the most anticipated applications of quantum computing is optimization. This
is because optimization problems are prevalent across various sectors such as finance,
logistics, and life sciences, such that any improvement in state-of-the-art solutions could
have a great impact [11]. In fact, in 2023, McKinsey & Company [34] projected that
this impact would be disruptive in the long term for some of these fields. This optimism
is driven by the hope that quantum computers, with their ability to explore exponen-
tially large state spaces and entanglement capability, will enable some sort of quantum
advantage, as described in Section 2.1.3. The focus is, therefore, often on combinatorial
optimization problems [35], which are inherently difficult due to the exponential “explo-
sion” of possible solutions with respect to problem size, classifying many as NP-hard4

according to complexity theory [36]. It is, however, important to recognize that these
optimization problems are inherently classical: While quantum problems involve find-
ing the ground state of a quantum mechanical system, many classical problems can be
mapped onto an Ising Hamiltonian [37], where the ground state corresponds to a classi-
cal bit-string. As a result, the potential for quantum advantage is far more intuitive for
the simulation of quantum systems [1, 4], whereas it remains a subject of significant de-
bate for classical optimization problems [17, 19, 38]. Yet, their solvability with quantum
devices is extensively studied in the literature [11, 39–42].

2.2.1 QUBO and Ising Problems
The established connection between NP-hard optimization problems and the statistical
physics of Ising spin glasses [43] provides a foundation for representing many classically
significant yet notoriously challenging optimization problems as an Ising Hamiltonian.

The Ising Hamiltonian of an n ∈ N spin particle system is described by the 2n × 2n
Hermitian operator

C =
n∑
i=1
CiiZi +

∑
i<j

CijZiZj . (2.10)

Here, Zi denotes the Pauli-Z operator with eigenvalues ±1 acting on the ith particle,
and Cij corresponds to the interaction energy between particles i and j. If the system
is in the basis state |q⟩ = ⊗n

i=1 |qi⟩ with qi ∈ {0, 1}, the total energy ⟨C⟩ := ⟨q|C|q⟩ is

4Note that while it is not widely expected that quantum computers will be able to solve NP-hard
problem instances, some believe that they will be able to find better approximate solutions or find
such approximate solutions faster [10, 11, 14].
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Chapter 2 Theoretical Background

given by

⟨C⟩ =
n∑
i=1

(−1)qi Cii +
∑
i<j

(−1)qi+qj Cij . (2.11)

The resulting problem of finding the ground state |q∗⟩ of the system is equivalent to
minimizing the expectation value of Equation (2.11) with respect to |q⟩, which is known
as the Ising problem. Note that when setting all self-connections Cii = 0, this corresponds
to the weighted Maximum Cut Problem (MaxCut). Lucas [37] demonstrated how many
NP-hard combinatorial optimization problems of practical relevance – from partitioning
and covering to satisfiability – can be described within this formalism.

At around the same time, a mathematically equivalent formulation gained popularity:
the Quadratic Unconstrained Binary Optimization (QUBO) problem. This formulation,
like the Ising model, can represent a wide variety of important combinatorial optimiza-
tion problems [44–47]. The QUBO problem is described by

min
x

x⊤Q x, (2.12)

where x ∈ {0, 1}n are binary decision variables x ∈ {0, 1}n, and it is fully defined by the
matrix Q. To convert this formulation into its Ising equivalent, the binary variables x
are transformed into spin variables z, resulting in the following cost operator:

C =
∑
i<j

Qij
2 ZiZj +

n∑
i=1

 n∑
j=1

Qij
2

Zi + const. (2.13)

The constant offset can be disregarded during a minimization process. A full derivation
of this mapping is provided in Appendix A.1.

The equivalence between the QUBO and Ising models is why QUBO has become a key
focus in quantum optimization research and experimentation, particularly with quantum
annealers [48, 49], such as those implemented by D-Wave systems.

2.2.2 Example: Traveling Salesperson Problem
The Traveling Salesperson Problem (TSP) is a famous NP-hard problem in combina-
torial optimization [50], with numerous practically relevant applications even beyond
logistics and routing. Despite its extensive study, classical approximation algorithms
have yet to meet the problem’s theoretical inapproximability bounds5, leaving hope for
quantum algorithms to close the gap [11]. But even besides these complexity-theoretic
considerations, the TSP and its variants have become a paradigmatic benchmark for
quantum computing [56–61].

5This specifically refers to the metric TSP, which belongs to a class of problems with polynomial-
time approximation schemes (PTAS) [36, 51]. These are polynomial-time algorithms that can find
an approximate solution within a factor of (1 + ϵ) of the optimum. Inapproximability bounds are
theoretically derived limits of how closely this solution can approximate the optimal solution, as
established for the metric TSP [52]. Classical approximation algorithms have yet to reach these
bounds [53, 54]. For more background on the TSP, see Korte and Vygen [35], and for more details
on complexity theory, refer to Ausiello et al. [36], Michael R. Garey, David S. Johnson [55].
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The TSP is typically defined on a fully connected, undirected graph G = (V, E),
where V denotes the set of n nodes, and E refers to the set of weighted edges, each
associated with a “distance” ωij between the ith and jth nodes. The objective is to find
a Hamiltonian cycle with the minimum total distance, visiting each node exactly once.
When fixing the starting position, the number of possible distinct cycles is therefore
given by (n−1)!

2 , which grows worse than exponentially with the problem size n.
An established QUBO formulation for this problem proposed by Lucas [37] is

C =
n∑

i,j=1
ωij

n∑
α=1

xαi x
α+1
j + P

n∑
i=1

(
1−

n∑
α=1

xαi

)2

+ P
n∑

α=1

(
1−

n∑
i=1

xαi

)2

, (2.14)

where the paths are described by n2 binary decision variables xαi , marking whether node
i is visited at time step α. This corresponds to a one-hot encoding of the equivalent
integer problem, where the two permutational constraints

• ∑
i x

α
i = 1 ∀ α = 1, . . . , n

(at each step, only one node can be visited)

• ∑
α x

α
i = 1 ∀ i = 1, . . . , n

(each node should be visited only once in the cycle)

are included as quadratic penalty terms with the penalty factor P , as suggested by Glover
et al. [46]. The length of the chosen path is calculated in the first term of Equation (2.14).
To ensure feasible solutions, P must be larger than a minimum threshold Pmin, which
is known to be lower-bounded by max(ωij) [37]. A suitable choice for P can follow
Qiskit’s default strategy, which is based on the absolute value range of the unconstrained
quadratic cost function in Equation (2.12). Since the product of any two binary variables
xαi in the first term of Equation (2.14) ranges between 0 and 1, the penalty factor can
be chosen as P = n ·

∑
i,j ωij . Moreover, note that the TSP can be reduced to (n− 1)2

variables by fixing the starting point of each cycle. This is done by setting x1
1 = 1,

xα1 = 0 for all α ̸= 1, and xii = 0 for all i ̸= 1, thereby eliminating the cyclic permutation
symmetry inherent in the problem.

2.3 Variational Quantum Algorithms
Until fault-tolerant quantum computing becomes a reality, variational quantum algo-
rithms (VQAs) have emerged as the leading heuristic for tackling computationally hard
problems in the near term, such as combinatorial optimization (see Section 2.2), as well
as various other applications [12–14]. In the rapidly growing body of literature, VQAs
are predominantly described as the most promising candidates for achieving real-world
quantum advantage. Despite these optimistic projections, no concrete evidence of any
advantage for solving practically useful problems has been demonstrated yet.

9



Chapter 2 Theoretical Background

2.3.1 Theory
VQAs are hybrid methods relying on both quantum and classical computing. The clas-
sical computers handle the optimization process, while the quantum computers evaluate
the loss function – a task assumed to be inefficient on classical machines [13]. The
quantum component consists of a parameterized quantum circuit that prepares a candi-
date state |Ψ(θ)⟩. Given a Hermitian operator C, the quantum computer calculates the
expectation value ⟨C⟩ with respect to the prepared state. The corresponding classical
minimization problem is formulated as:

min
θ
L(θ) with L(θ) := ⟨Ψ(θ)|C|Ψ(θ)⟩. (2.15)

For the optimal parameters θ∗, the state |Ψ(θ∗)⟩ approximates the true ground state
|q∗⟩. This is based on the variational principle, which asserts that the expectation
value ⟨ψ|C|ψ⟩ of a given Hamiltonian C for an arbitrary state |ψ⟩ is lower bounded
by the ground state energy E0 of the corresponding system [12]. The typical workflow
of VQAs is depicted in Figure 2.1. This variational paradigm offers a convenient way
to transform discrete problems — where a single change in the input parameters can
lead to a dramatically different energy — into smoother problems with continuous loss
functions.

Loss Evaluation

Expectation Value

ℒ 𝜽 = ⟨𝝍 𝜽 𝐂 𝝍 𝜽 ⟩

Classical 
Optimization

ℒ 𝜽𝒊

𝜽𝒊+𝟏

𝐔 𝜽

parametrized

quantum circuit

𝝍 𝜽 = 𝐔 𝜽 𝟎

|0⟩

|0⟩

|0⟩

measurement

w.r.t. operator 𝐂

Problem Hamiltonian 𝐂
Initial Parameters 𝜽0 

Initialization

Approximate Result

𝜽∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝜽 ℒ 𝜽

Ground State 

𝝍 𝜽∗

Ground State Energy

෩𝑬0 = ⟨𝝍 𝜽∗ 𝐂 𝝍 𝜽∗ ⟩

Figure 2.1: Representative Illustration of the VQA workflow. The algorithm
is initialized by the set of parameters θ0 and a Hamiltonian C encoding the loss of the
optimization problem. The loss value is evaluated using a parametrized quantum circuit
U(θ) (the ansatz) and measurements with respect to the operator C. This routine becomes
the input of a classical optimizer, which iteratively searches for an optimal set of parameters
θ∗ that minimizes the loss function L(θ). Using the final result, one can approximate the
ground state and ground state energy of the given problem C.
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2.3.2 Prominent Examples: VQE and QAOA
The two most prominent and extensively studied examples for VQAs are the Variational
Quantum Eigensolver (VQE) [62] and the Quantum Approximate Optimization Algo-
rithm (QAOA) [63]. Originally, VQE was introduced for solving quantum chemistry
problems, while QAOA was explicitly designed for combinatorial optimization. How-
ever, both algorithms are now widely recognized and established for optimization tasks
and have been extensively studied in this context [64–67].

The general framework of VQE involves selecting a suitable parametrized ansatz
circuit, represented by the unitary U(θ), which prepares the trial state as |Ψ(θ)⟩ =
U(θ) |0⟩. Various different ansatzes have been proposed in the literature [66], such that
a common classification distinguishes between hardware-efficient ansatzes and problem-
inspired ones. For instance, a widely adopted ansatz of the first kind are two-local
circuits. These typically alternate between rotational layers, where single-qubit gates
are applied to all qubits, and entanglement layers, where two-qubit gates create entan-
glement between the qubits, as is illustrated in Figure 2.2.

rotational
layer

entangling
layer

. . .

. . .

. . .

. . .

...
...

...

|0⟩ RY(ϑ1)

|0⟩ RY(ϑ2) Z

|0⟩ RY(ϑ3) Z

|0⟩ RY(ϑ4) Z
...

Figure 2.2: Circuit Representation of a Two-Local Ansatz for VQE. All qubits
are initialized to |0⟩, followed by an alternating set of layers of single-qubit rotations and
entangling operations. The rotational layer consists of RY(ϑ) gates applied to each qubit,
where ϑ represents distinct parameters. The entangling layer features a linear arrangement
of controlled-Z gates, facilitating qubit entanglement. These layers are repeated until a final
global measurement is performed to evaluate the circuit’s output.

As a representative example used in the experiments of this thesis, a two-local ansatz
consisting of a single layer of RY rotations followed by a linear entanglement layer of
controlled-Z gates was employed. After running the circuit, the qubits are measured
with respect to a given Hermitian cost operator to obtain the loss value indicated in
Equation (2.15).

The QAOA can be viewed as a specific ansatz in the VQE framework, inspired by
Adiabatic Quantum Computing (AQC) [68]. AQC is based on the adiabatic theorem,
which states that if a system is initialized in the known ground state |Ψ0⟩ of a (trial)
Hamiltonian HM, and is evolved slowly enough towards a problem Hamiltonian HP, the
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system will remain in its ground state throughout the evolution. After a sufficiently long
time T , the final state |ΨT ⟩ will therefore have a high overlap with the actual ground
state of HP, representing the solution to the problem.

QAOA implements a discretized (Trotterized) version of this evolution, defining the
two unitaries:

• mixing operator6: UM(β) = e−iβHM with HM = ∑n
i=1 Xi

• phase shift operator: UP(γ) = e−iγHP with HP = C

The resulting ansatz circuit (see Figure 2.3) combines these operators in p layers, parametrized
by the 2p angles γ = {γi}pi=1 and β = {βi}pi=1, as follows:

U(γ,β) = UM (βp) UP (γp) . . .UM (β1) UP (γ1) (2.16)

It can be shown that for p→∞, the final state U(γ∗,β∗) |+⟩ with optimized param-
eters γ∗,β∗, becomes the true ground state of the system [63]. However, since such high
values of p are computationally infeasible – particularly for the low-depth requirements
of NISQ devices, for which this algorithm was designed – research is largely focused on
enabling quantum advantage even with a very limited number of layers [67].

Layer 1

phase shift mixing

Layer p

. . .

. . .

...
...

...
...

. . .

|0⟩ H

e−
iγ

1
C

RX(2β1)

e−
iγ

p
C

RX(2βp)

|0⟩ H RX(2β1) RX(2βp)
...
|0⟩ H RX(2β1) RX(2βp)

Figure 2.3: Circuit Representation of the QAOA Ansatz. All qubits are first
initialized to the equal superposition state |+⟩ using Hadamard gates. Then, p alternating
layers of phase shift and mixing operators are applied, as defined in Equation (2.16). Finally,
a global measurement is performed to evaluate the circuit’s output.

2.3.3 Recent Proposal: BENQO
Another ansatz was proposed in a recent paper [69], which presented the so-called “uni-
versal quantum algorithm” for Ising problems as a new hybrid quantum-classical opti-
mization method. Later, this was picked up again by Bärligea et al. [70], who called it
the Block Encoding Quantum Optimizer (BENQO), establishing it as a general VQA

6Note that the specific mixing Hamiltonian used here is a convenient default choice. However, in
practice, any Hamiltonian can be chosen provided that its ground state is known.
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framework. Its claim of promising results and specialization toward solving Ising prob-
lems made it an interesting candidate for the comparative investigations (see Chapters 4
and 5) of this thesis. The following theory is taken from Kuete Meli et al. [69].

The authors propose to encode the Ising cost operator of Equation (2.10) into a unitary,
by embedding the sin(Ĉ) into the larger 2n+1 × 2n+1 unitary matrix

U :=
[

sin(Ĉ) cos(Ĉ)
cos(Ĉ) − sin(Ĉ)

]
with Ĉ := C/K, (2.17)

where K is a constant scaling factor. This technique is commonly referred to as “block-
encoding” [71], as one can retrieve the upper left block in (2.17) by setting the ad-
ditional qubit to the state |0⟩. The expectation of U with respect to the basis state
|0, q⟩ := |0⟩ ⊗ |q⟩ therefore becomes7

⟨U⟩ := ⟨0, q|U |0, q⟩ ≡ sin⟨Ĉ⟩. (2.18)

By choosing K such that it scales the entries of Ĉ to lie within [−π
2 ,

π
2 ], one can assure

that the sin-function is strictly increasing, making U a monotone, bijective mapping of
the cost C. Kuete Meli et al. [69] choose K = 2

π · Cmax := 2
π ·
∑

1≤i<j≤n |Cij |, which is
adapted in this thesis. The exact cost value can then be retrieved as ⟨C⟩ = K arcsin⟨U⟩.

Using trigonometric and rotational identities and inserting the expectation of the cost
function (2.11), the unitary matrix (2.17) can eventually be written as

U(Ĉ) =
n∏
i=1

Xqi RY
(
−2Ĉii

)
Xqi︸ ︷︷ ︸

unary terms

·
∏

1≤i<j≤n
Xqi+qj RY

(
−2Ĉij

)
Xqi+qj︸ ︷︷ ︸

quadratic terms

· X⊗ I⊗n. (2.19)

For a proper derivation of this formulation, see Appendix A.2. As the above equation
represents a product of simple unitary transformations, it can be easily implemented on
a gate-based quantum computer (see Figure 2.4).

Since C is Hermitian, the same holds for U, and therefore, it works not only as a
quantum operator but also as a measurement observable. However, as the number of
individual Pauli observables in U increases exponentially in system size n, the authors
instead propose the use of a “Hadamard test” – based on the principle of implicit mea-
surement [31, chapter 4.4] – to measure the expectation value of U. The circuit displayed
in Figure 2.5 illustrates the procedure: After the simple ansatz |ψ(θ)⟩ = ⊗n

i=1 RY(θi)|0⟩
with parameters θ ∈ Rn is applied, the quantum system is in the initial state

|0⟩a ⊗ |Ψin⟩ = |0⟩a ⊗ |0⟩c ⊗ |ψ(θ)⟩ , (2.20)

including an ancillary qubit. With the Hadamard test, one can then project the entire
system onto the eigenspace of U via the projectors P± = (In ±U)/2. The resulting
state is

|ψout⟩ = |0⟩a ⊗ (P+|Ψin⟩) + |1⟩a ⊗ (P−|Ψin⟩) . (2.21)

7The last equality arises from the fact that C is a diagonal matrix and |q⟩ one of the computational
basis states of the system.
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unary terms quadratic terms

X |0⟩ RY
(
−2Ĉii

)
RY

(
−2Ĉij

)
|·⟩qi

|·⟩qj

Figure 2.4: Circuit Representation of U. The unitary of Equation (2.19) is repre-
sented by a sequence of unary and quadratic terms. The coupling weights Cij between nodes
qi and qj each cause a rotation by RY(±2Ĉij) if their qubits are in opposite (+) or the same
(-) states8. The procedure for applying the self-weights Cii is analog.

This allows to “measure the operator” – by measuring the ancillary qubit – in terms of
the probabilities p0 = ∥P+|ψin⟩∥2 and p1 = ∥P−|ψin⟩∥2. The desired expectation value
is then simply ⟨U⟩ ≡ p0 − p1, leading to a cost value of

⟨C⟩ = K arcsin(p0 − p1). (2.22)

.

ancillary qubit

cost qubit

working qubits n

|0⟩a H H ⟨U⟩

|0⟩c
U(Ĉ)

|0⟩⊗n RY(θ)

|0⟩a ⊗ |ψin⟩ |ψout⟩

Figure 2.5: Hadamard Test for Measuring ⟨U⟩. This circuit illustrates BENQO’s
measurement procedure. After applying a Hadamard gate onto the ancillary qubit initialized
as |0⟩a, the controlled-U operation projects the eigenspace of U onto the system. Thus,
⟨U⟩ can be determined using p0 and p1, which are revealed by the measurement.

2.3.4 Parameter Optimization
Now that it is clear how the loss function L(θ) for a given problem can be evaluated on a
quantum computer, the remaining challenge is how to minimize it (see Equation (2.15)).
As mentioned earlier, this task is delegated to classical parameter optimizers within
the variational framework. While in recent years, some methods have been developed
specifically for the optimization of “quantum loss functions” [72], most state-of-the-art

8using that X · RY(−2Ĉij) · X ≡ RY
(
+2Ĉij

)
.
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algorithms used today were already established decades ago [73]. Generally, all local
optimizers can be classified into two categories: gradient-based and gradient-free al-
gorithms. Gradient-based methods are often preferred for their favorable convergence
properties, but calculating derivatives can be computationally expensive or even infea-
sible, making gradient-free methods more suitable in other situations.

Gradient-based methods generally follow a straightforward iterative procedure:

1. Start with an initial guess θ0.

2. Update θk+1 ← θk − αk dk until a convergence criterion is satisfied.

In this process, αk represents the step size, which may vary with each iteration k, and
dk is the search direction, determined by the gradient (and possibly the Hessian) of
the loss function. The main goal in algorithm design is, therefore, to make a smart
choice of α and d. For example, in standard gradient descent, α is chosen as a constant
hyperparameter, and the gradient itself serves as the search direction d.

For computing the analytical gradient∇θL(θ) = (∂θ1L(θ), . . . , ∂θnL(θ))⊤ of a parametrized
quantum circuit, the parameter-shift rule was proposed [74, 75]. It is given by

∂

∂θi
L(θ) = L(θi,+)− L(θi,−)

2 (2.23)

where θi,± := (. . . , θi± π
2 , . . . ). Using this exact calculation method requires 2n function

evaluations, where n is the number of parameters.
An interesting method, proposed as such by Kuete Meli et al. [69], is the normalized

gradient descent (NGD) [76, 77], which uses a normalized gradient d = ∇θL/∥∇θL∥2
as the search direction and an exponentially decaying step size, defined as

αk =
√
π

2 n · exp
(
− 4k2

k2
max

)
, (2.24)

where the only hyperparameter is the number of total steps kmax. This is the only
algorithm examined in this thesis that is not part of the standard suite of local optimizers
in Qiskit [32] or Scipy [78]. Its inclusion here is motivated by its promising performance
shown in related works [69, 70, 77].

Among the other methods studied, ADAM [79] and AMSGrad [80] rely on adaptive
learning rates, using estimates of the first and second moments of the gradient, with
bias correction influencing the search direction in each iteration. BFGS [81], on the
other hand, employs an approximation of the inverse Hessian matrix combined with the
exact gradient to determine the search direction, and uses line search to find the step
size. The CG (conjugate gradient) method [82] equally uses a line search procedure for
the step sizes, but transforms the gradients into conjugate directions for the direction
updates. Both TNC [83] and SLSQP [84] tackle quadratic subproblems in each iteration
to compute optimal search directions.

Lastly, as the SPSA method [85] plays a significant role in later discussions, it is
worth highlighting its details. SPSA, while categorized as a gradient-based method, only
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estimates the gradient using stochastic information based on simultaneous perturbation,

dk = (d1,k, . . . , dn,k)⊤ with di,k = L(θk + ck∆k)− L(θk − ck∆k)
2ck∆i,k

, (2.25)

where ∆k = (∆1,k, . . . ,∆n,k)⊤ is a random perturbation vector, and ck is a hyperparam-
eter controlling the perturbation magnitude, decreasing as k increases. Notably, SPSA
only requires two function evaluations per iteration, a significant improvement over the
parameter-shift rule (2.23), which requires 2n function calls.

Gradient-free methods operate quite differently than the presented gradient-based
scheme. Powell’s method [86] uses an iterative series of line searches along a set of
mutually conjugate directions in the multidimensional parameters space, thereby mini-
mizing the function without relying on gradients. The Nelder-Mead algorithm [87] uses
a simplex (an n dimensional geometric shape with n − 1 vertices) to navigate the pa-
rameter space. By iteratively replacing the vertex with the highest function value with
a new point, the simplex continuously adapts to the local landscape of the loss func-
tion, eventually contracting around the minimum. COBYLA [88] is another widely used
method, where a series of linear approximations to the objective function, formed using
the vertices of a simplex, are minimized iteratively in a sequential approach.

Specifically designed for quantum circuits, the NFT method [72] leverages the insight
that the cost function for a single parameter resembles a sinusoidal curve and is, there-
fore, exactly minimizable. Using this fact, the problem can be split into a sequence of
sinusoidal subproblems and solved iteratively. Another recently proposed optimizer is
UMDA [89], a type of Estimation of Distribution Algorithm (EDA). UMDA samples
solution candidates from univariate normal distributions, which are iteratively updated
using the best-performing candidates from previous rounds.

For further details on the precise update mechanisms of some of these optimizers –
both gradient-based and gradient-free – refer to Appendix A.3.

2.3.5 Limitations and Challenges
Despite the promise of the variational paradigm, reports of significant challenges and
limitations continue to accumulate, with some of the most critical issues arising from
the noise inherent in NISQ devices [19–22]. Notably, in comprehensive reviews of both
VQE [66] and QAOA [67], the adverse effects of noise on algorithm performance are
only briefly discussed towards the end. This thesis will address this issue in more detail.
However, also other factors have been shown to limit the trainability of these algorithms
[26, 27], with the most imminent one being the phenomenon of Barren Plateaus (BPs).

A VQA – representing a loss function L(θ) – exhibits a probabilistic BP if the variance

Varθ[L(θ)] ∈ O
( 1
bn

)
or Varθi

[∂θi
L(θ)] ∈ O

( 1
bn

)
for some θi ∈ θ (2.26)

for some b > 1, which implies that the loss function or its gradients concentrate expo-
nentially around their mean as the number of qubits n increases. This behavior indicates
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that resolving variations in the loss landscape for larger systems demands exponentially
more resources, rendering training highly inefficient and practically infeasible. Loss land-
scapes with probabilistic BPs are generally flat and featureless, with occasional fertile
valleys [90]. However, if

|L(θ)− Eθ(L(θ))| ∈ O
( 1
bn

)
for all θ, (2.27)

the plateau is termed deterministic, lacking any well-separated extrema and therefore
presenting even more severe challenges. Detection of either BP type in a specific VQA
requires analytical methods, well-summarized by Larocca et al. [91]. Causes of BPs
are diverse and occur in nearly all known architectures. However, mitigation strategies
remain limited, with recent work by Cerezo et al. [92] linking mitigation efforts to classical
simulability, suggesting that solutions may be fundamentally constrained – with the
most promising one being alternative initialization strategies. Due to this apparent
intractability of the BP problem, it will be revisited in later studies.

For a thorough overview of these challenges and their implications, the NISQ review
by Ezratty [18] is a recommended resource.
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Methodology

As outlined in the previous chapter, while variational quantum algorithms (VQAs) hold
significant promise, they also come with various challenges. These include the inherent
complexity of their loss landscapes [26, 27], the exponential concentration of loss values
[91, 93], and stochastic noise [19, 20]. This noise is introduced not only at the circuit
level by quantum devices (see Section 2.1.2) but also through the finite number of mea-
surement samples that quantum computing inherently relies on, making it unavoidable
in practice. Despite these obstacles, many comparative analyses – often included in new
algorithmic proposals – report promising results based on narrowly defined testing setups
that do not properly address these critical issues. This chapter introduces a systematic
and generalizable methodology to evaluate the performance of VQAs, incorporating the
unique challenges they face during the Noisy Intermediate-Scale Quantum (NISQ) era
and beyond.

As Lavrijsen et al. [15] pointed out, the exact mechanisms of how noise impacts the
results of a VQA remain an area of active research, and the same holds for the other
challenges mentioned above. Figure 3.1 summarizes the VQA pipeline by schematically
illustrating its three main components. Each of them can be changed or improved
individually, making it intuitive that they may be affected by the stated challenges, such
as stochastic noise, in distinct ways. Individually evaluating each part should, therefore,
result in a clearer picture of the origins of any observed advantages or limitations in
algorithm performance.

Some studies focus on opportunities in problem encoding [94–98], demonstrating that
reformulating problems and applying constraints in different ways can effectively alter the
size of feasible subspaces and reduce the number of required variables or qubits. While
these methods can enhance performance and mitigate some scaling challenges, the most
pressing obstacles arise in the two other parts of the VQA pipeline. An increasing body
of theoretical research, therefore, examines the impacts of noise and other issues on the
trainability of parametrized quantum ansatzes.

For example, Wang et al. [20] showed that noise can cause vanishing gradients in the
training landscape of VQAs, imposing serious limitations on VQA performance even
beyond the barren plateaus discussed in Section 2.3.5. Similarly, Stilck França and
Garćıa-Patrón [19] demonstrated that noise fundamentally restricts the potential for
quantum computational advantage, regardless of substantial increases in qubit numbers.
González-Garćıa et al. [21] further highlighted that the single-qubit error rate necessary
for achieving quantum advantage scales with the inverse of the product of circuit depth
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Quantum Part

Loss Evaluation 

via estimation of expectation

ℒ 𝜽 = ⟨𝝍 𝜽 |𝐂|𝝍 𝜽 ⟩

Classical Part

Parameter Optimization 

via iterative procedure for

𝜽∗ = 𝐚𝐫𝐠𝐦𝐢𝐧𝜽 ℒ 𝜽

Problem Input

ℒ 𝜽𝒊

𝜽𝒊+𝟏
Encoding

of combinatorial problem

into qubit Hamiltonian 𝐂

𝐂

|𝝍 𝜽∗ ⟩

Figure 3.1: Components of the Performance Assessment of a VQA. First, the
optimization problem is encoded into a Hamiltonian C, which is embedded into a quantum
circuit. Then, the circuit outputs the expectation value of C with respect to a prepared
quantum state |ψ(θ⟩), implementing the loss function L(θ). A classical optimization method
iteratively adjusts the parameters θ to find the set θ∗ which minimizes the loss. Finally,
the state |ψ(θ∗)⟩ is used to derive the classical solution to the original problem. Each
component (problem encoding, loss evaluation, and parameter optimization) can be modified
independently and should be investigated as such.

and width, severely constraining algorithm design. Additionally, Wang et al. [99] showed
that even with error mitigation, the trainability of VQAs remains limited and requires
exponential resources for effective parameter optimization.

Beyond noise, these algorithms also face intrinsic challenges. Bittel and Kliesch [26]
showed that the classical optimization problem of VQAs is NP-hard, as their loss land-
scape can have many persistent local minima far from the global optimum, which was
also brought up by Anschuetz and Kiani [27].

The key question is how all these findings related to the quantum side of the vari-
ational pipeline impact the classical part – the parameter optimization, which is often
regarded as the main computational driver in variational quantum computing. Given the
present challenges, classical optimizers may experience early converging, miss the global
minimum, become trapped in noise-induced local minima, or fail to converge altogether
[15]. This thesis adopts a systematic approach to empirically demonstrate how these
substantial challenges translate to performance limits of classical optimizers, directly
affecting the viability of variational quantum optimization.

To this end, Chapter 4 presents a comparative investigation of two prominent VQA
ansatzes – VQE and QAOA (see Section 2.3.2) – along with a new proposal, BENQO (see
Section 2.3.2). By comparing circuit resources, testing hardware noise, investigating the
statistical error of finite sampling, and the general loss landscapes, Chapter 4 highlights
the various challenges these algorithms face even beyond the NISQ era. Its analyses
particularly demonstrate how the total errors accumulated in those algorithms may, in
worst-case scenarios, be effectively modeled as additive Gaussian noise. This noise model
has the advantage of being well suited for testing and simulation.

Therefore, in Chapter 5, this simulated noise setting is applied to a suite of state-of-
the-art optimizers available in Qiskit [32]. From extensive numerical studies with the
BENQO algorithm, the scaling properties of problem solvability are examined across
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both the total noise level and system size. This allows for the derivation of a boundary
line, after which finding high-quality solutions becomes infeasible. The resulting perfor-
mance limits are compared against both the actual noise conditions in current hardware
and the statistical shot noise remaining in fault tolerance, revealing key insights into the
general usefulness of variational quantum computing for classical problems of practical
interest.

All experiments in this work were conducted using simulators, as access to real hard-
ware was beyond the scope of this thesis.

3.1 Problem Instances
A wide variety of combinatorial optimization problems can be described by the Quadratic
Unconstrained Binary Optimization (QUBO) formulation [45, 46], as outlined in Sec-
tion 2.2.1. Rather than focussing on a particular graph problem, such as the TSP, and
mapping it to its Ising equivalent [37], this study uses random problem instances for the
experiments. Each instance is created with a unique seed by sampling all entries of the
n× n QUBO-matrix Q from a discrete, uniform distribution in the interval [1, 10]. The
exact magnitude or precision of the weights is not critical, as the resulting loss values are
normalized across all experiments. By starting the sampling range at 1 instead of 0, the
QUBO matrix represents a fully-connected graph problem, including self-connections.
Since many practically relevant problems involve constraints that translate to quadratic
penalty terms (see Section 2.2.2) – often leading to negative diagonal terms in Q – the
diagonal of the random matrix is similarly multiplied by −1 to reflect the structure of
realistic problems. To give an example, Figure 3.2 visualizes such a QUBO matrix and
its corresponding problem graph for a system of size n = 10.

3.2 Statistical Measures
This section introduces the notation and definitions of the key statistical measures used
in Chapter 4. Given the loss function L(θ), the total range of loss values (the difference
between the maximum and minimum) across the landscape θ ∈ [−2π, 2π]n increases
with the system size n. To enable quantitative comparison across different system sizes,
the loss function must be normalized (cf. Larocca et al. [100]). The formulation

L̂(θ) = L(θ)
|L(θ)|max

with |L(θ)|max = max
θ∈Rn

|L(θ)| (3.1)

is therefore used in the following, as it guarantees that across the loss landscape |L(θ)| ≤ 1
independent of the problem size n. Any variance or error off the loss function is thus
computed with respect to the normalized loss L̂.

Generally, the variance of a random variable X is given by Var[X] = E[(X −E[X])2],
corresponding to the dispersion of X around its mean E[X]. However, unless the exact
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Random 10x10 QUBO Matrix Fully-Connected Graph Problem 
with negative self-weights

Figure 3.2: Example of a General QUBO Problem. The entries of the QUBO
matrix Q are sampled uniformly within [1, 10] (on the off-diagonals) and [−10− 1] (on the
diagonal). Q can be translated to the weights of the corresponding Ising problem using
Equation (2.13), which is visualized as a fully-connected graph with negatively weighted
self-connections. Many practically relevant problems have this form.

probability distribution of X is known, the variance can only be estimated via the so-
called sample variance

s2 = 1
N − 1

N∑
i=1

(xi − x)2 (3.2)

of a given sample {x1, ..., xN} of size N around its sample mean x. As sample mean,
variance and the corresponding standard deviation s are often used in the following
analyses, note that their statistical uncertainties are given by ∆x = s/

√
N for the mean,

and ∆s2 =
√

2
N−1s

2 for the variance [101]. Furthermore, the mean absolute deviation
(MAD) is defined as

dmad = 1
N

N∑
i=1
|xi − x| (3.3)

which is related to the sample standard deviation via dmad =
√

2
π s. A closely related

measure is the mean squared error (MSE)

dmse = 1
N

N∑
i=1

(xi − x)2 (3.4)

which can be used as a goodness-of-fit measure.
When it comes to quantifying errors in the loss function, L̃ generally defines an erro-

neous normalized loss function, such that δL(θ) = L̂(θ)−L̃(θ) gives the total error at a
certain point in parameter space. For a sample of loss values at N different points, one
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can investigate the relative absolute error (RAE)

ϵ(L, L̃) =
∑N
i=1 |L̃(θi)− L(θi)|∑N
i=1 |L(θi)− L|

(3.5)

with L being the sample mean. The RAE can be seen as an absolute error measure
normalized by the mean absolute deviation of the values. This means that an ϵ = 1
indicates that the total range of the error is the exact same as the range of the loss values
themselves. Note that as this is a relative measure, the normalization of L̃ becomes
obsolete, such that one might as well use the loss value L in the original scale for
comparison. Further, to quantify the linear correlation between two sets of samples (e.g.
noisy and exact loss values), the Pearson correlation coefficient (PCC) of a sample of
paired points {(x1, y1), ..., (xN , yN )} is defined as

ρ(x, y) =
∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
∈ [−1, 1], (3.6)

for which a PCC of +1 (or −1) represents a perfectly linear (or antilinear) relationship.

3.3 Benchmark Metrics
The main results of this thesis concern the behavior of the classical side of the opti-
mization part of variational quantum optimization (see Chapter 5). An evaluation of
optimizer performance on a given problem crucially depends on the chosen benchmark
metrics. Meaningful metrics should enable a fair comparison of resource cost, run time,
solution quality, or problem complexity between different solver settings [11]. Instead of
fixing the desired solution quality and investigating the scaling of the resource cost and
run time, as was done by Lavrijsen et al. [15], Sung et al. [102], the following analysis
will focus on the scope of the achievable quality of the quantum solutions to instead
make a statement of the general scaling behavior of VQAs’ performance.

The solution of a variational optimization task is given by the n-dimensional parameter
vector

θ∗ = argmin
θ
L(θ), (3.7)

which (approximately) minimizes the quantum loss function L(θ), such that |ψ∗⟩ = |ψ(θ∗)⟩
is considered the proposed solution state of the respective VQA. A widely established
measure to evaluate such a solution is the approximation ratio (AR)

QAR(|ψ∗⟩) = ⟨ψ
∗|C|ψ∗⟩ − Cmax
Cmin − Cmax

∈ [0, 1], (3.8)

which expresses how far the discovered solution |ψ∗⟩ differs from the optimal state, |q∗⟩,
in terms of the energy of the underlying quantum system. Here, C is the Hamilto-
nian cost operator (i.e., Equation (2.10)) and the minimum energy is given by Cmin =
⟨q∗|C|q∗⟩. For the system sizes discussed later, all terms in Equation (3.8), including
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the expectation value of the resulting cost, can be determined classically. In itself, the
AR is a more meaningful measure than merely observing the loss value L∗ = L(θ∗) or
the absolute energy difference ∆L = Cmin − L∗.

However, the AR is still not very representative of the quality of quantum state
solutions, as even the uniform superposition |ϕ⟩ = 1√

2n

∑2n

i=1 |qi⟩ of all basis states
{|qi⟩}i=1,...,2n , which can be considered a worst-case solution, will achieve ARs way above
01, such that any experimentally measured QAR will effectively fall within [QAR(|ϕ⟩), 1].
One should, therefore, rather look at a normalized approximation ratio (NAR)

QNAR(|ψ∗⟩) = ⟨ψ
∗|C|ψ∗⟩ − ⟨ϕ|C|ϕ⟩
Cmin − ⟨ϕ|C|ϕ⟩

∈ [0, 1], (3.9)

as a measure to distinguish the solution from a totally mixed quantum state.
Another issue with ARs is that for classical optimization problems, the optimal state
|q∗⟩ is actually a computational basis state of the system, meaning that it can be written
as a binary string. Therefore, the most probable basis state |ψmax⟩ = argmaxψi

|⟨ψ∗|ψi⟩|2
of the full quantum output |ψ∗⟩ should be considered the actual solution proposal of a
VQA, instead of |ψ∗⟩ which is evaluated by the AR. One can monitor the probability of
this basis state within |ψ∗⟩ via

c(|ψmax⟩) = |⟨ψmax|ψ∗⟩|2 (3.10)

which is named “confidence” here, as it measures how confident the resulting classical
solution is within the optimized quantum state.

These considerations give way to a more representative performance indicator, the
approximation index xt, which marks whether the AR of |ψmax⟩ lies above a given
threshold t ∈ [0, 1]:

xt(|ψmax⟩) =

1, if |⟨ψmax|C|ψmax⟩−Cmax|
|Cmin−Cmax| ≥ t

0, otherwise
(3.11)

This means, x1 = 1, if and only if the most probable basis state |ψmax⟩ is the optimal
solution |q∗⟩. Using this index, one can estimate the success probability of finding an
optimal (or near-optimal) solution by

p̂t = 1
N

N∑
i=0

xt(|ψmax⟩i) ∈ [0, 1], (3.12)

corresponding to the measured proportion of “successful” solutions out of a sample size
N . In the classical optimizer studies presented in Chapter 5, the probability of optimal
solutions p1 is monitored as p̂opt, and solutions within a 5% and 1% margin of the

1This argument will be revisited and explained in more detail at the end of Section 5.4, where Figure 5.8
illustrates the respective distribution of possible loss values.
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optimal are monitored as p̂95% and p̂99%. Note, that the standard error for the estimated
proportion in Equation (3.12) is given by

σ(p̂(t)) =

√
p̂(t)(1− p̂(t))

N
, (3.13)

using the normal approximation for a binomial distribution, which is valid for large N .
Further, one can investigate the total running time t, the classical part needs to execute

the optimization. As the performance of computing systems may vary largely, Scriva
et al. [24] proposed to instead monitor a general lower bound for t, given by

t < nshots · ncalls ·D · tgate. (3.14)

Here, ncalls are the number of calls to the quantum function L(θ), measured using nshots,
D corresponds to the circuit depth, and tgate is a hardware-specific measure for the time
it takes to execute a gate in the circuit. Note, that ncalls does not necessarily correspond
to the number of iterations niter used by an optimizer, as one iteration might need not
only an evaluation of the loss function itself but also of its gradient, which adds overhead
(e.g., 2n calls for a gradient calculated via the parameter-shift rule (2.23)). Finally, Scriva
et al. [24] pointed out, that even an optimal combination of nshots · ncalls must strictly
stay below 2n in order to avoid quantum disadvantage, without even accounting for tgate.
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Chapter 4

Quantum-Inherent Challenges and Errors

In an effort to examine the performance limitations of the quantum and classical parts
of variational quantum algorithms (VQAs) separately, this section begins with a demon-
strative investigation of the challenges inherent to the quantum part. Therefore, all its
results are solely based on the quantum loss function L(θ), describing general QUBO
(Quadratic Unconstrained Binary Optimization) problem instances as in Section 3.1,
calculated with a parametrized quantum circuit ansatz. For a VQA to be called NISQ-
friendly, one has to show its relative robustness against hardware-specific challenges,
such as its resource cost or the errors arising from finite sampling and hardware noise
(see Section 2.1.2). At the same time, the general “optimizabiblity” of the parameters
θ in the quantum loss function should be investigated, as some quantum architectures
are more prone to lead to infeasible loss landscapes [26, 91].

In the following analyses, three representative Variational Quantum Algorithms are
compared regarding the aforementioned aspects: The well-established Variational Quan-
tum Eigensolver (VQE) [62], Quantum Approximate Optimization Algorithm (QAOA)
[63] (outlined in Section 2.3.2), and the newer proposal of a Block Encoding Quan-
tum Optimizer (BENQO) [69, 70], described in Section 2.3.3. Their theoretical and
hardware-specific circuit requirements are analyzed in Section 4.1, which holds impor-
tant implications for their noise susceptibility when executed on real quantum hardware.
Section 4.2 then examines the effect of modeled hardware errors on the algorithms’ out-
puts and characterizes the resulting error distribution. The analysis is repeated for the
statistical errors introduced by finite measurement sampling in Section 4.3. Finally, the
structure of the loss functions is explored in Section 4.4, offering insights into each algo-
rithm’s general optimizability. This broad comparison not only highlights the potential
strengths and weaknesses of each method but also motivates the experimental approach
behind the results presented in Chapter 5.

4.1 Circuit Resources
As errors in the execution of quantum circuits increase significantly with circuit depth
[21], any proposed VQA must operate within a regime where the circuit depth D and
number of qubits n (i.e., width) are kept sufficiently low. González-Garćıa et al. [21]
estimated that quantum advantage in variational quantum optimization requires at least
a single-qubit error rate of 1/nD. Given that for the problem encoding described in
Section 2.2.1, the number of required qubits corresponds directly to the problem size
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(i.e., the number of nodes in a graph), the depth of the parametrized quantum circuit
would need to scale sublinearly in depth relative to problem size to stay feasible for
larger instances.

Table 4.1 compares the number of different basis gates required by each algorithm to
represent the loss function of the QUBO problem described in Section 3.1, which assumes
a fully-connected graph with n nodes and m connections. To ensure a fair comparison,
the setup of all three algorithms was configured to have the same number of parameters
n, fixing the number of dimensions in the loss landscape.

VQE QAOA BENQO

# qubits n n n+ 2
# CNOT gates n− 1 p(n2 − n) 3n2 + 2n
# single-qubit rotations n p(n2 + 3n)/2 n2 + 2n
# Hadamard gates 2n− 2 n 2
# measurement bases n(n+ 1)/2 n(n+ 1)/2 1

qubit connectivity 1 dim.
nearest neighbor graph-dependent one-to-all

Table 4.1: Comparison of Quantum Resources of three VQAs. A hardware-
efficient VQE-ansatz, a conventional QAOA ansatz with p layers, and BENQO (all as de-
scribed in Sections 2.3.2 and 2.3.3) are compared. The values are computed for Ising cost
functions defined on a fully connected, undirected graph G = (V, E), with n ≡ ∥V∥ the num-
ber of nodes, and m ≡ ∥E∥ = n(n+ 1)/2 the number of edges (including self-connections).
For better comparability, all entries are given in terms of n.

The hardware-efficient VQE ansatz consists of a single layer of rotational gates, fol-
lowed by a linear entangling layer of controlled-Z gates (i.e., a two-local ansatz, see
Section 2.3.2). The controlled-Z gates are decomposed using the identity Z = HXH,
which yields an additional 2(n− 1) Hadamard gates.

For the conventional QAOA ansatz to have the same number of parameters as qubits,
p = n/2 layers must be used, which requires an even number of qubits. The state
is first initialized to a uniform superposition by Hadamard gates. In every layer, the
mixing operator is applied to the qubit as n single-qubit X-rotations, while the phase
operator applies two CNOTs and one rotation per connection among the m edges. For
self-connections, the two CNOT gates cancel out, leading to a total of p(2m − 2n) CNOT
gates and p(n+m) single-qubit rotations.

To construct the unitary operator in Equation (2.19) for the BENQO algorithm,
4m− 2n CNOT gates and n single-qubit rotations are required (see Figure 2.4). For the
measurement in Figure 2.5, a controlled version of the operator U needs to be imple-
mented. For this, Equation (2.19) can be expressed as a product of CNOTs and controlled
rotations, which can generally be decomposed as [RY(θ)]a = Xa ·RY(−θ/2)·Xa ·RY(θ/2)
where a is the value of the control qubit [69]. This decomposition doubles the number
of single-qubit rotations for each connection and adds 2m additional CNOT gates. The
remaining n rotation gates come from the single-layer ansatz structure of BENQO. In
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a fully-connected graph, there are m = n(n + 1)/2 edges including self-connections,
ultimately giving the values listed in Table 4.1.

Clearly, the circuit resources, which directly translate to circuit depth, vary signifi-
cantly across the three algorithms. While the number of CNOT gates scales linearly with
the number of qubits n in VQE, it scales quadratically for BENQO and even cubically
for QAOA, since p ∝ n. However, BENQO requires measuring in only a single basis,
thanks to the use of the Hadamard test. In contrast, VQE and QAOA must measure all
m Pauli terms of the observable cost operator (2.10) individually.

Implementing these circuits on actual quantum hardware requires catering to its con-
nectivity, which can further increase the effective circuit depth. For instance, on IBM’s
hardware based on superconducting qubits, nearest-neighbor connections (as required by
the VQE ansatz) are more suitable than the one-to-all connectivity needed for BENQO,
where ion trap architectures might be a better fit.

Figure 4.1 summarizes these considerations and highlights the consequences of super-
linear scaling combined with weakly connected hardware. Although the original proposal
of BENQO [69] suggested that BENQO becomes more gate-efficient than QAOA when
p ≥ 3 (or n ≥ 6) (cf. Table 4.1), this advantage diminishes once their circuits are trans-
piled to superconducting hardware. Furthermore, considering the connection between
circuit width, depth, and required error rates made by González-Garćıa et al. [21], it be-
comes evident that none of the compared architectures meet the ambitious requirements
for quantum advantage, yet. For example, for a 10-qubit system, BENQO’s depth in
Figure 4.1 is approximately 8000, necessitating a single-qubit error rate on the order of
O(10−5), which is already an order of magnitude below current hardware capabilities
(see Appendix B.1).
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Figure 4.1: Comparison of Circuit Depths of three VQAs. Dashed lines represent
the circuit depth D of the algorithms before transpilation1 to specific backends (in this case,
ibm sherbrooke; see Appendix B.1 for details) as a function of system size n. Solid lines
show the effective depth after transpilation to actual hardware.

1Transpilation was performed using Qiskit [32] with an optimization level of 2, which corresponds
to a medium level of layout and routing optimization.
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4.2 Hardware Noise
Noise is the primary constraint on algorithm executability imposed by NISQ hardware.
This section examines how exactly this noise impacts the output of quantum algorithms,
directly linking to the discussion on circuit resource constraints in the previous section.
Since access to real quantum hardware was outside the scope of this thesis, noise models
sampled from IBM quantum devices available through Qiskit [32, version 0.46.2] are
used instead. These models account for the following types of errors:

• single-qubit gate errors,
including single-qubit depolarization and thermal relaxation errors,

• two-qubit gate errors,
including two-qubit depolarization and single-qubit thermal relaxation errors, and

• single-qubit readout errors.

Each error type reflects the hardware specifications of the chosen devices. For a brief
overview of how these errors are defined and where they come from, refer to Sec-
tion 2.1.2. The results presented in this section are based on the hardware models
of the ibm brisbane, ibm kyoto, and ibm sherbrooke backends (see Appendix B.1 for
further details). Using simulated noise models to calculate the output of parametrized
quantum circuits allows separating the effects of hardware noise and finite sampling
errors, the latter being discussed in Section 4.3.

Figure 4.2 provides a graphical summary of the empirical behavior of hardware noise
for the different modeled backends on all three algorithms under consideration. The
errors are quantified using three key metrics: the relative absolute error (RAE) ϵ(L, L̃)
(see Equation (3.5)) between the exact loss values L and the noisy values L̃; the sample
standard deviation s[δL] (see Equation (3.2)) of the total absolute error δL = L̂−L̃ with
respect to the normalized loss value L̂; and the Pearson correlation coefficient (PCC)
ρ(L, L̃) (see Equation (3.6)), which quantifies the linear correlation between exact and
noisy values.

The RAE of all loss functions increases as expected with system size, given the analysis
of circuit depths in the previous section. However, for both VQE and BENQO, the
RAE tends to converge toward a constant value across all three backends. In contrast, it
appears unbounded for QAOA. This behavior must be linked to changes in the absolute
deviation of the loss function with increasing system size, as explored in more detail in
Section 4.4. A constant RAE suggests that any changes in the absolute magnitude of
error (numerator of the RAE), which is represented by s[δL] in Figure 4.2, is compensated
by the changes in the overall deviation of loss values (denominator of the RAE).

The behavior of the PCC in Figure 4.2 with increasing system size is also distinct across
all three VQAs. While VQE maintains a nearly perfect linear relationship between noisy
and exact loss values, even as n grows, both QAOA and BENQO show a rapid decline
in PCC, eventually approaching zero. This indicates the complete breakdown of any
linear correlation between noisy and exact loss values, which is likely tied to the larger
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Figure 4.2: Comparison of Hardware-Induced Errors in the Loss Functions of
three VQAs. a) illustrates the evolution of the RAE ϵ across varying system sizes (number
of qubits) for each algorithm, using simulated noise models from three representative quan-
tum backends (by IBM). b) displays the corresponding standard deviation s of the total
absolute (normalized) errors, and c) shows the Pearson correlation coefficient between the
exact and noisy loss values. All metrics are based on 1000 noisy loss evaluations at uniformly
sampled parameters θ ∈ [−2π, 2π]n for system sizes n ∈ [2, 12]. Note the logarithmic y-axes
for ϵ and s.

circuit depths for increasing system size for those algorithms (refer again to Figure 4.1).
As the circuit depth increases, the relationship between gate errors and the final output
becomes more complex and nonlinear [21].

To bridge the gap to the main experiments of this thesis, described in Chapter 5, it is
essential to characterize how these hardware-induced errors are distributed across each
point of loss evaluation in the parameter space. Figure 4.3 illustrates that these errors,
resulting from the hardware model, approximately follow a normal distribution at each
evaluation point. However, this noise is not centered around zero. This is because sys-
tematic hardware noise sources often introduce bias – for example, a single qubit tends
to relax towards the ground state (i.e., decay from |1⟩ to |0⟩) due to thermal relaxation.
Additionally, gate errors accumulate in a consistent manner, gradually shifting the out-
put values, which reduces the probability of measuring the correct state. Rather than
being symmetrically distributed, these errors tend to shift the measurement outcomes in
a specific direction. Furthermore, single-qubit readout errors may also introduce bias, as
the probability of misreading a |1⟩ as |0⟩ is not necessarily equal to the reverse. Despite
this localized bias in the noise at each point of the loss landscape, the global distribution
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of noise, aggregated across the entire parameter space, is approximately centered around
zero (see Appendix B.2). This property will be leveraged in later discussions.
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Figure 4.3: Distribution of Hardware-Induced Error Across Loss Landscape. a)
shows the standard deviation of the errors of 1000 sample loss evaluations done with the
ibm sherbrooke2 backend model at 100 randomly selected points across the loss landscape
of a n = 6 problem instance against the normalized loss value at those points. Linear fits
show the relationship between the loss value and the overall magnitude of the error for each of
the three algorithms. b) are the probability density histograms of 1000 absolute normalized
errors for one of these points, including the theoretic curves of a normal distribution with
the same mean and standard deviation.

Figure 4.3 also shows the relationship between the overall magnitude of errors, s[δL],
and the loss value at each evaluation point. These plots can help to determine whether
modelled hardware noise is additive or multiplicative. To this end, linear fits of the
sample standard deviations provide the optimal values for the slope m and y-intercept t
of the lines. If m≪ t, the noise at an arbitrary point in parameter space is predominantly
additive, whereas if m≫ t, the error behaves in a multiplicative manner.

Only for BENQO, the y-intercept is significantly larger than the slope, thus m becomes
negligible. Hence, the error introduced by hardware in BENQO’s loss evaluation is
predominantly modeled by an additive random variable. This is not the case for the other
two algorithms, suggesting their errors are likely a combination of both multiplicative
and additive noise. Nevertheless, as will be discussed in Section 4.4, additive errors tend
to affect the loss landscape more severely than multiplicative ones3. Therefore, when
modeling total hardware-induced errors, a worst-case scenario can always be represented
by simply adding Gaussian noise to the loss function.

2This particular backend was chosen as a representative example, as the other two demonstrated com-
parable behavior, leading to identical conclusions.

3To understand why this is intuitive, refer to the next section, in particular Figure 4.7.
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4.3 Finite Sampling Error
Even if fault-tolerant quantum computing became feasible in the near term, one per-
sistent source of statistical error remains: finite sampling. To extract any information
from a quantum computer’s calculation, measurements must be performed. The number
of measurement “shots”4 N directly affects the precision of the estimated expectation
EN [C] relative to the true loss value ⟨C⟩.

For the measurement of a single qubit with N shots, the count of “0” outcomes (k0)
(and analogously for “1”) follows a binomial distribution. According to the central limit
theorem [103], as N →∞, this distribution approaches a normal distribution with mean
µ(k0) = Np0 and standard deviation σ(k0) =

√
Np0(1− p0), where p0 is the probability

of measuring “0”. For the measured propability p̂0 = k0
N , the standard error is given by

σ(p̂0) =

√
p0(1− p0)

N
. (4.1)

Recalling that BENQO’s loss value is described by Equation (2.22), it can be estimated
as EN [C] = K arcsin(p̂0 − p̂1), where the approximate statistical uncertainty is

σBENQO(EN [C]) ≈ K

2
√
N

(4.2)

(see Appendix B.3 for details). This demonstrates that the size of the statistical error
in BENQO’s loss evaluation critically depends on the choice of K, which itself is linked
to the system size n (see Section 2.3.3).

In the usual measurement paradigm for VQAs, such as VQE and QAOA, the cost
operator – a linear combination of Pauli terms5, such as C = ∑m

i=1 αi Pi – is directly
used as the measurement observable. Therefore, the expectation value ⟨C⟩ becomes a
weighted sum of the expectation values of individual Pauli terms, which can be written as
⟨Pi⟩ = ∑2n

j=1 pj ⟨qj |Pi|qj⟩, where pj = |⟨ψ(θ)|qj⟩|2 represents the probability of finding
the system |ψ(θ)⟩ in the basis state |qj⟩. These probabilities can only be estimated on a
quantum device, with the measurement counts of the basis states following a multinomial
distribution. Each measured proportion p̂j still carries a standard error, as described
in Equation (4.1). Using the same error propagation formula as before, the statistical
uncertainty of the estimated loss value is given by

σVQE(EN [C]) ≈=

√√√√ 2n∑
j=1

( m∑
i=1

αi ⟨qj |Pi|qj⟩
)2
σ(p̂j)2. (4.3)

Since the two analytical expressions depend on the loss value itself, which varies across
the three algorithms, they do not allow for a straightforward general comparison. There-
fore, experimental studies were conducted to provide an empirical comparison. Figure 4.4

4Note, that the notation for measurement shots in Chapter 3 is nshots. Instead, N is used here for
better readibility.

5This refers to a tensor product of Pauli matrices (X, Y, Z, and I) acting on different qubits (see
Section 2.1.1).
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illustrates the behavior of the RAE (3.5) for each VQA under consideration, as a func-
tion of the number of shots N (at a fixed system size) and the system size n (at a fixed
number of shots). As expected, the error decreases6 proportional to 1/

√
N for fixed n.

Interestingly, although the errors of VQE and QAOA are described by the same formula
(see Equation (4.3)), their RAE for increasing shots differ by orders of magnitude in
both visualizations. This discrepancy stems from the mean absolute deviation (MAD)
(3.3), which is related to the variance of the algorithms’ loss functions – the denominator
in Equation (3.5). The smaller the variance of a loss function, the larger the RAE will
be when influenced by an error source.
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Figure 4.4: Comparison of Finite Sampling Errors of three VQAs. The relative
absolute error arising from finite sampling of the loss function is plotted on a logarithmic
scale. a) shows the RAE with varying numbers of shots N for n = 10, with their correspond-
ing 1/

√
N -fit functions. b) displays the RAE for increasing system sizes n at N = 1024

shots (which is a default in many experimental computations). The vertical dotted lines
indicate the region of overlap between the plots. All displayed RAE values are calculated
from 1000 loss evaluations of a particular problem instance (for each n), sampled uniformly
across the full parameter space.

While the scaling of the error in N can be derived directly from the analytical ex-
pressions in Equations (4.2) and (4.3), the scaling with respect to system size n is more
intricate (see right plot in Figure 4.4). The errors increase linearly for all algorithms,
with QAOA’s loss function exhibiting the largest finite sampling error. However, as this
is a semi-log plot, the linear curves actually indicate an exponential increase in statisti-
cal error given a fixed number of shots as system size grows. This sharp increase likely
stems from the behavior of the loss function itself, particularly its underlying MAD. For
a quantitative analysis of how the mean absolute deviation scales with system size across
the three algorithms explaining this behavior, see Section 4.4. This exponential scaling
and its detrimental effects will be revisited in Section 5.5.2.

Again, it is crucial to characterize how the statistical error is distributed at each point
of loss evaluation in parameter space. Figure 4.5 shows the distribution of the absolute
normalized errors δL when sampling the loss at a randomly chosen point θ ∈ Rn for

6For a log-log-plot like Figure 4.4, lines represent power-law functions, such as f(N) ∝ N−1/2.

32



Chapter 4 Quantum-Inherent Challenges and Errors

an example system of size n = 6 with N = 1024 shots, across all three VQAs. These
distributions are compared graphically to a normal distribution with a mean of zero
and the same standard deviation as the data. The close visual agreement between the
histogram and the theoretical curve validates the central limit theorem, which predicts
that for a sufficiently large number of shots, the binomial (or multinomial) distribution
from finite sampling approaches a normal distribution.
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Figure 4.5: Distribution of Finite Sampling Errors Across Loss Landscape. a)
shows the standard deviation of the errors of 1000 sample loss evaluations done with 1024
measurement shots for 100 randomly selected points across the loss landscape of a n = 6
problem instance against the normalized loss value at those points. Linear fits indicate
the relationship between the loss value and the overall magnitude of the finite sampling
error for each of the three algorithms. b) are the probability density histograms of 1000
absolute normalized errors for one of these points, including the theoretic curves of a normal
distribution around 0 with the same standard deviation.

The remaining question is whether this approximately Gaussian error behaves in an
additive or multiplicative manner. Analogous to the approach of the previous section, the
standard deviation of the absolute normalized errors δL (over 1000 trials) was calculated
for 100 points across the loss landscape and plotted against the corresponding exact
normalized loss values L̂ at the same points, as shown in Figure 4.5. For both VQE and
QAOA, the relationship between the error magnitude and the underlying loss value is
predominantly multiplicative, as the slope of the fitted line is larger than the y-intercept.
This observation aligns with the analytical expression of the error in Equation (4.3),
which explicitly indicates proportionality between the loss at a given point and the
resulting statistical error.

In contrast, BENQO exhibits an additive error pattern, as the magnitude of its errors
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(reflected in s[δL]) remains nearly constant across the entire7 range of loss values. This
additive nature is also supported by the analytical formulation in Equation (4.2), which
depends only on K, a constant that is independent of the evaluation point. It is intuitive
that additive errors will likely cause greater distortion to the exact loss landscape than
multiplicative errors. This point is revisited and illustrated visually in the next section.

In conclusion, this analysis suggests that the statistical error in the loss value arising
from finite sampling (inherent in quantum evaluations) can, for a realistic worst-case
scenario, be reasonably modeled by additive Gaussian noise.

4.4 Loss Landscapes
The optimizability of a variational quantum algorithm, which is the focus of the next
chapter, is fundamentally tied to the underlying loss landscape – a topic that has been
extensively explored in the literature [20, 27, 93, 104, 105]. While this section does not
seek to provide the same level of depth as these works, its aim is to offer an intuition into
the optimization challenges posed by VQAs, emphasizing that their difficulties extend
beyond merely managing noise.

Figure 4.6 shows illustrative examples of loss landscapes of the three algorithms for
different problem sizes n. For these visualizations, the loss L(θ) was plotted along two
random orthonormal directions, v1 and v2, projected onto the parameter space θ ∈ Rn,
like

θ(ϑ1, ϑ2) = θ0 + ϑ1v1 + ϑ2v2, (4.4)

with the origin chosen as the base point θ0. Note that for the particular plots in Fig-
ure 4.6, the overall parameter space of θ was restricted to the range8 [−4π, 4π]n and
the loss value L(ϑ1, ϑ2) was calculated at about 10 000 points (ϑ1, ϑ2). Note that the
same technique has been employed in prior studies [27, 59, 106], with the advantage of
offering a way to examine the general structure of the landscape without bias from the
underlying parameter relationships compared to PCA9.

When examining the plots in Figure 4.6, several observations can be made: First, all
landscapes exhibit point-symmetry around the origin. This symmetry is intuitive, as
the parameter values in VQAs represent angles of rotational gates, which are based on
trigonometric functions that are inherently periodic. This periodicity naturally intro-
duces symmetry and leads to the degeneracy of local extrema. Additionally, one can
observe that the landscapes of VQE and BENQO are nearly identical in their structure,
though their underlying loss ranges differ. This similarity stems from the role of ansatz
parameters in the loss evaluation, which is the same for both algorithms (cf. Sections 2.3.2
and 2.3.3). In contrast, the QAOA loss landscape appears way less structured, to the

7Note that, since only 100 points were investigated for this proof-of-concept experiment, the observable
range is smaller. If this were the full range, the normalized loss values L̂ would extend up to 1.

8This extended range, centered around the origin, was chosen, such that possible symmetries in the
landscape would be more clearly visible.

9PCA (principal component analysis) is a dimensionality reduction technique that reduces the param-
eter space to the directions of maximum variance.
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point where it is difficult to visually identify any distinct local minima. This chaotic
landscape has been noted in other studies [100, 105, 107], highlighting the challenges
QAOA faces in optimization. Lastly, note that although these plots range from n = 4
to n = 10, the landscapes of different system sizes are not directly comparable. This
is because each plot corresponds to a different problem instance and is projected onto
distinct axes within the respective parameter spaces. However, there are proposals on
how to conduct a statistical analysis of the structural changes in loss landscapes that
arise as the parameter space (or system size) increases [105]. Such an analysis, though
relevant, was beyond the scope of this thesis.
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Figure 4.6: Illustrative Loss Landscapes of three VQAs Contour plots of the loss
values along two randomly chosen orthonormal axes in parameter space are shown for ran-
dom Ising problem instances of size n. Light tones represent higher values, while darker
tones indicate lower values. Each column uses the same problem instance and the same
orthonormal axes through the parameter space, to enable a direct comparison between the
algorithms. Note that the scale of the colorbar is specific to each plot.10

In the previous two sections, it was explored how noise from hardware (see Section 4.2)
and finite sampling (see Section 4.3) affects the output of a variational quantum algo-
rithm. Both analyses distinguished between multiplicative and additive Gaussian noise.

10This decision was made due to the significantly different distributions of loss values across the three
algorithms. A shared color scale would have obscured many subtle contours in QAOA. Each plot,
therefore, has its own colorbar, ranging from the minimum to maximum possible loss value within
its respective space. For a quantitative comparison of the loss values, refer to the end of this section.
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To better understand these two representations of noise, Figure 4.7 illustrates their
differing effects on an exemplary loss landscape. From this visualization, it becomes im-
mediately clear that Gaussian noise with the same standard deviation σ has a far greater
impact when added directly than when applied multiplicatively. This makes sense, as
the effect of multiplicative noise depends on the loss value itself; when the loss value is
zero, the noise has no impact. However, this characteristic might make multiplicative
noise less realistic or representative, as was previously argued.

4 2 0 2 4
1

4

2

0

2

4

2

ideal = 0.01 = 0.1
additive Gaussian noise

= 1.0

= 0.01 = 0.1
multiplicative Gaussian noise

= 1.0

( 1, 2)

0.32
0.24
0.16
0.08

0.00
0.08
0.16
0.24
0.32
0.40

Figure 4.7: Illustrative Loss Landscape with Two Representations of Noise. The
left plot corresponds to the exactly calculated normalized loss values L̂ along the two random
orthonormal axes, as outputted by the 10-qubit BENQO of an arbitrary Ising problem (cf.
Figure 4.6). On the right side, Gaussian noise ∼ N (0, σ) is applied at different scales σ. In
the upper part, the noise is directly added to the exact loss values, while in the lower part,
the noise is first added to 1 and then multiplied with the exact values.

Finally, it is not only the structure of the landscape that can hinder optimization,
but also the total range of values, which can negatively impact the optimizability of the
underlying parameters. As comprehensively reviewed by Larocca et al. [91], the Barren
Plateau (BP) phenomenon (see Section 2.3.5), describing the exponential concentration
of the loss function and its gradient, is a significant challenge in variational quantum
architectures. Several methods exist for analyzing the variance of a quantum loss func-
tion to detect a BP [91], with the simplest approach being an empirical study of how
the sample variance of the function and its gradient scales with the number of qubits,
as demonstrated by McClean et al. [93], Larocca et al. [100]. Given a BPs detrimental
impact on the trainability of parameterized quantum circuits, this heuristic analysis was
also applied to the algorithms under scrutiny.

Figure 4.8 presents the results of this examination for the three individual loss func-
tions. For consistency with Chapter 5, the MAD (see Equation (3.3)) was chosen for
the depiction, rather than the sample variance (3.2). Both an exponential and a power-
law function were fitted to the data to assess the decay behavior of the MAD values:

• fexp(n, k, γ) = k · e−γ·n

• fpl(n, k, γ) = k · n−γ
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To confirm the presence of a BP in a loss function, both the loss and its partial deriva-
tives should exhibit an exponential concentration with increasing system size (cf. Sec-
tion 2.3.5).
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Figure 4.8: Mean Absolute Deviation of Loss Values over System Size. a) shows
the MAD dmad (as defined in Equation (3.3)) of the normalized loss values L̂(θ) across 10 000
different parameters sets θ, uniformly sampled within [−2π, 2π]n, for increasing system sizes
n. b) shows the mean MAD values over all n partial derivatives ∂θL̂(θ), calculated as in
Equation (2.23), at the same 10 000 points. Both plots include fitted theoretical curves
representing exponential and power-law decay. On the right, the data for n ≥ 8 is treated
separately, where the fitted theoretical curves align more closely with the observed data.

Table 4.2 shows the mean squared error (MSE) (3.4) of the corresponding fits, provid-
ing a quantitative comparison between exponential and power-law decays. Interestingly,
a slight change in decay rate can be observed for system sizes n ≥ 8 in Figure 4.8. When
applying separate fits for the two regions, the underlying curve is therefore captured more
effectively (see also MSE-values in Table 4.2). This shift could be related to the nature
of the loss function or the characteristics of the problem at larger sizes. The potentially
slower decay for larger n (see also Table 4.3) could be more favorable for optimization.
Both sets of fit parameters will therefore be discussed further in Section 5.5.

As evident from Table 4.2, the power-law curve consistently results in smaller fit
residuals than the exponential for nearly all VQAs. The only exception is the QAOA for
system sizes n ≥ 8, where the exponential curve provides a better fit. This observation
holds for both the MAD of the loss values and the mean MAD of the partial derivative
values. Consequently, it is not possible to conclusively demonstrate the presence of
a barren plateau for any of the circuit architectures tested. However, based on their
structural design and the summary of BP causes provided by Larocca et al. [91], it
is highly likely that the quantum loss functions of all considered algorithms exhibit
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BENQO VQE QAOA
curve all n n ≥ 8 all n n ≥ 8 all n n ≥ 8

exp 1.8× 10−4 2.6× 10−6 0.9× 10−4 0.8× 10−6 1.5× 10−6 5.5× 10−9
L̂

pl 3.7× 10−5 1.6× 10−6 2.2× 10−5 4.6× 10−7 2.3× 10−7 5.9× 10−9

exp 5.9× 10−5 3.7× 10−7 2.0× 10−5 1.2× 10−7 5.7× 10−7 4.2× 10−10
∂L̂

pl 3.0× 10−5 1.1× 10−7 5.1× 10−6 3.2× 10−8 3.7× 10−8 1.3× 10−9

Table 4.2: Mean Squared Error of Fitted MAD Decay Curves. The table summa-
rizes the mean squared error (MSE) for both the exponential (exp) and power-law (pl) fits,
as presented in Figure 4.8. The results are shown for the full data set and the separated
scenario (n ≥ 8), across all three VQAs. The goodness-of-fit measure is reported for both
the decay of the loss values and the partial derivatives.

exponential concentrations as the system size n increases.

BENQO VQE QAOA
all n n ≥ 8 all n n ≥ 8 all n n ≥ 8

exponential 0.07(1) 0.04 0.09(1) 0.04 0.48(3) 0.36(1)
power-law 0.55(3) 0.41(2) 0.65(4) 0.46(2) 2.65(7) 3.49(9)

Table 4.3: MAD Decay Parameters of Different Theory Curves. The γ parameters
of both fitted theory functions, fexp(n, k, γ) and fpl(n, k, γ) are shown with their respective
uncertainties. The results are shown for the fits on the full data set and the separated
scenario (n ≥ 8), across all three VQAs.

Regardless of this, the decay parameters for L̂, summarized in Table 4.3, are notewor-
thy. Among the algorithms, BENQO demonstrates the most favorable behavior with
respect to the variance of its loss values across parameter space, even as the system size
grows. Conversely, QAOA shows the worst loss concentration.

4.5 Preliminary Conclusions
This chapter explored the error sources and general behavior of loss functions produced
by three representative variational quantum algorithms. Through extensive simulations,
the impact of both hardware noise models and finite sampling errors was investigated,
enabling not only a direct comparison of the considered VQAs, but also providing in-
sights into an efficient way to model the total error in a quantum loss function. Before
proceeding to the main chapter of this thesis, the key results and findings of these anal-
yses are summarized:

Hardware errors are often biased, resulting in approximately Gaussian distributions
that are not centered around zero for each point in parameter space. It turned out
that these errors tend to have a higher multiplicative component; however, for some
algorithms, such as BENQO, the additive component clearly dominated.
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In realistic scenarios, the statistical error from finite sampling must also be accounted
for. It was argued and shown experimentally that this error can be well-approximated by
a Gaussian distribution with zero mean. Particularly for the loss function of BENQO, the
total error remained predominantly additive. Given the trend of hardware improvements
towards reducing error rates, it can be argued that in the fault-tolerant future, finite
sampling error should dominate all other noise sources. Thus, modeling the total error
as additive Gaussian noise becomes a realistic approach, which should well capture the
severity of errors for the performance of classical optimizers when faced with a noisy
quantum loss function.

While the examination of quantum resources through the comparison of circuit com-
plexities showed that BENQO might not be an efficient algorithm in practice (especially
not on superconducting hardware), the investigation of quantum loss landscapes revealed
that BENQO has the most favorable landscape characteristics for classical optimization.
It exhibits the highest variance and slowest decay in the variance of its loss function
among the algorithms studied, making it the best choice for the classical optimizer stud-
ies presented in Chapter 5.

Finally, the methodology applied in this chapter provided a general framework for
comparing multiple VQAs. If neither the quantum loss landscape nor its resilience to
noise exhibits favorable characteristics, it raises the fundamental question of whether
such algorithms can be expected to perform well on complex problems. Understanding
this early on is crucial to avoid unnecessary comparisons of algorithms that are unlikely
to yield meaningful results for practical applications.
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Chapter 5

Limitations of Classical Optimizer
Performance

This chapter presents the main contribution of this thesis: a detailed investigation into
the scaling behavior of the performance of classical optimizers within the variational
pipeline (cf. Figure 3.1) with respect to system solvability. Building on the analysis of
quantum-inherent challenges and errors in the previous chapter, it was demonstrated
that the total error in variational quantum loss functions can – to account for worst-case
scenarios – be modeled effectively as additive Gaussian noise. Now, the focus shifts
to the performance of classical optimizers when confronted with such noisy functions.
This study uses the well-behaving quantum loss function generated by BENQO (see
Section 2.3.3) as was motivated in Section 4.5.

To frame this investigation, Section 5.1 provides a brief overview of related research,
identifying a key gap that this work addresses: the lack of dynamic, scaling-focused
analyses under varying conditions. Rather than simply comparing different classical
optimizers under a fixed setup, here, the solvability of problems is examined across the
two critical dimensions: noise level (in Section 5.3) and system size (in Section 5.4).
This two-fold analysis leads to the identification of a threshold beyond which classical
optimizers become unable to find the minimum. Finally, Section 5.5 explores the broader
implications of this threshold, considering both the current state of quantum hardware
and the capabilities of classical optimization techniques.

5.1 Related Work
This section demonstrates a gap in the current body of research. Most studies on the
classical side of variational quantum optimization focus on comparing various param-
eter optimizers based on their performance in solving specific optimization problems.
Table 5.1 provides an overview of these studies, emphasizing their testing setup.

Nakanishi et al. [72] proposed a new hyperparameter-free optimization method specif-
ically designed for VQAs (see also Section 2.3.4), claiming it converges quickly and is
robust against statistical errors. To support this claim, they compared its convergence
against five other state-of-the-art optimizers, testing across 1024, 2048, 4096, and 8192
measurement shots for a 5-qubit VQE. However, while one can observe a clear decline in
convergence capabilities as statistical errors increased (with fewer measurement shots),
this effect was not quantified.
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Noise Tested
Reference VQA Problem n N FS GL HM RH Metrics

Nakanishi
et al. (2020)

VQE ground state 5 100 ✓ ✗ ✗ ✗ L∗, ∆L

Sung
et al. (2020)

QAOA MaxCut, Ising 8 50 ✓ ✓ ✗ ✗ t, p̂

Lavrijsen
et al. (2020)

VQE ground state 4, 8 100 ✗ ✓ ✗ ✗ niter, ∆L

Pellow-Jarman
et al. (2021)

VQLS linear system 3-5 100 ✓ ✗ ✓ ✗ L∗

Soloviev
et al. (2022)

QAOA MaxCut 10 25 ✗ ✗ ✗ ✗ L∗, t

Singh
et al. (2023)

VQE ground state 2-10 100 ✓ ✗ ✓ ✗ niter, ∆L

Palackal
et al. (2023)

VQE TSP 9, 16,
25

50 ✗ ✗ ✗ ✓ L∗, ncalls

Bonet-Monroig
et al. (2023)

VQE ground state 8 15 ✓ ✗ ✗ ✗ QAR, ∆L

Pellow-Jarman
et al. (2024)

QAOA vertex cover 5 100 ✓ ✗ ✓ ✗ QAR

Table 5.1: Summary of Related Optimizer Studies. Overview of research papers
that include comparisons of standard Qiskit and Scipy optimizers regarding their perfor-
mance within a VQA for a system of n qubits in different error scenarios (with FS: finite
sampling error, GL: errors on gate-level, HM: hardware-models, and RH: real-hardware).
The rightmost column indicates the main measures of performance analyzed in each study
(see Section 3.3 for explanations), and N refers to the number of experimental trials.

Similarly, Sung et al. [102] introduced two new surrogate-model-based optimization
methods, comparing their performance in the presence of statistical errors (from fi-
nite sampling) and gate errors1 using an 8-qubit QAOA problem. Each optimizer was
fine-tuned with varying resources (e.g., different numbers of measurement shots) and
compared based on their convergence to the optimal energy within a target precision.
Although this study considered the upscaling of gate errors, it did not specifically address
or analyze the common qualitative convergence behavior across all optimizers.

In contrast, Lavrijsen et al. [15] focused directly on the effects of quantum noise
on the classical optimizers by examining the noise-affected optimization surfaces for
4- and 8-qubit ground state problems. Their results underscored the weaknesses of
certain methods in the presence of noise and emphasized the importance of selecting an
appropriate classical optimizer for each task. However, they did not assess the resulting

1In their analysis, gate error was modeled by a Gaussian random variable added to each evaluation
point in parameter space, with the standard deviation as a tuning parameter.
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limitations of these methods, instead suggesting that the overall performance of VQAs
is likely rather constrained by the quantum part.

Pellow-Jarman et al. [108] provided another comparison of relevant optimizers for spe-
cific noisy 3- to 5-qubit problems with the Variational Quantum Linear Solver (VQLS),
focussing on loss values. These tests were later extended to a 5-qubit QAOA, where
the approximation index was used as a key performance measure [111]. Both studies
concluded that the choice of classical optimizer has a significant impact on a VQA’s
performance, but neither quantified this effect nor provided limiting conclusions based
on the observed deficiencies. This pattern is also evident in a comparative analysis by
Palackal et al. [59], which evaluated the VQE on real noisy hardware, or Bonet-Monroig
et al. [110] who tested 8-qubit ground state problems with finite sampling noise.

Finally, Singh et al. [109] presented a comprehensive benchmark study of optimizers
for VQE applications in quantum chemistry, comparing their performance in noisy and
ideal settings. Their conclusion suggested that the challenges posed by noise could be
mitigated either by employing error correction methods or by developing a new suite of
classical optimizers altogether.

As evident from this summary, numerous efforts have been made to analyze the perfor-
mance of different classical optimizers within the VQA pipeline. However, these studies
remain largely static, examining solution methods under fixed conditions. Consequently,
none are able to provide a quantitative analysis of how the chosen performance metrics
scale with varying error levels or system sizes – both of which are often limited in scope.
Note that without a focus on scaling, there is also no way to infer potential limitations
of the classical optimization process. Additionally, due to the diverse types of errors
considered, the results often lack generalizability, making it difficult to apply them to
other error scenarios.

To address these gaps, this thesis tries to give a systematic evaluation of the behavior
of well-established classical optimizers when dealing with noisy quantum loss functions
of general QUBO problems. In contrast to the static setup of most related research, this
thesis introduces a two-fold scaling analysis that includes both the level of error and the
size of the system to be solved to quantify the effects on the solution-finding capabilities
of the optimizers. The details of the experimental setup are described in the following
section.

5.2 Experimental Setup
In this study, noise is introduced as a post-processing step before the loss function is
passed to the classical optimizers, leaving the original, simulated, and exact quantum
evaluation unchanged. Note that this is different from approaches that model errors
on a gate level (see GL in Table 5.1), for which the total error of the output loss will
highly depend on the chosen quantum ansatz. Instead, consider the exact quantum loss
function L(θ) for an arbitrary QUBO problem of size n, as defined in Section 3.1 and
produced by BENQO, which is parameterized by θ ∈ Rn. Since the optimizer responds
only to the total error magnitude, regardless of its source, it is reasonable to model
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the combination of arbitrary error types by additive Gaussian noise, as was motivated
in Chapter 4. The normalized loss function L̂(θ), defined in Equation (3.1), is hence
disturbed as follows:

L̃σ(θ) = L̂(θ) + λσ with λσ ∼ N (0, σ), (5.1)

In this formulation, the random variable λσ is drawn from a normal distribution with
mean 0 and standard deviation σ. For example, with σ = 0.1, more than 95% of the
sampled values will lie within the range [−0.2, 0.2].

While this method does not capture error propagation at the hardware or circuit level,
as explored by studies like Lavrijsen et al. [15], González-Garćıa et al. [21], Sung et al.
[102], it offers several advantages. It is not only easily scalable but also provides a highly
generalizable evaluation by collapsing all potential sources of error into a single noise
term. This way, other studies can approximately map their findings to a noise level σ by
calculating the standard deviation of their total error, independent of the used hardware
or noise model.

For the classical part, an initial screening of 13 state-of-the-art local optimizers avail-
able in Qiskit (see Appendix C.1 for reference) was conducted, along with the nor-
malized gradient descent method [69, 77] (as described in Section 2.3.4). They were
evaluated based on their performance in solving a specific problem instance, consider-
ing both the number of function evaluations required for convergence and their success
probability. As a result, five optimizers were deemed unfit for further analysis due to
their comparatively bad performance in one of these categories. The remaining eight
optimizers – established in both Qiskit [32] and SciPy [78] – were selected for system-
atic assessment in optimizing the noisy loss function defined in Equation (5.1). These
chosen optimizers, representative of various methodical paradigms, are summarized in
Table 5.2.

Name Description in Qiskit
NGD normalized gradient descent custom
BFGS Broyden-Fletcher-Goldfarb-Shannon algorithm L BFGS B
CG Conjugate Gradient method CG
SLSQP Sequential Least Squares Programming SLSQP
SPSA Simultaneous Perturbation Stochastic Approximation SPSA
COBYLA Constrained Optimization By Linear Approximation COBYLA
NFT Nakanishi-Fuji-Todo algorithm NFT
Powell conjugate direction method POWELL

Table 5.2: Overview of Tested Qiskit Optimizers. Eight classical parameter optimiz-
ers were filtered in an initial screening to be used in the main experiments. Their respective
class names in Qiskit are shown in the right column.

To ensure a fair evaluation, the available resources for these optimizers were kept
fixed2, using the default settings provided in Qiskit (version 0.46.2). For the NGD

2For an alternative analysis focused on resource requirements for achieving a fixed target precision,
refer to Sung et al. [102].
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optimizer, the number of steps was set to 20, as recommended by Kuete Meli et al.
[69]. The initial parameters for each run were sampled from a multivariate standard
normal distribution centered at 0 ∈ Rn, which has proven effective in previous analyses
[69, 70]. Each experiment – comprising one optimization run with a fixed optimizer,
noise level σ, and system size n – was repeated N = 100 times using different random
problem instances. The primary performance metric used in this study is the probability
of success, as in Equation (3.12), which provides direct insights into system solvability.

5.3 Scaling of Solvability under Additive Gaussian Noise
All the experiments described in the following were conducted for system sizes n ∈ [3, 10]
and error levels σ ∈ (10−3, 101). For illustrative reasons, all results shown in this section
are based on problems of the fixed system size n = 6. Section 5.4 later completes these
findings with the corresponding scaling analysis in n.

Figure 5.1 displays the behavior of success proportions, p̂opt, p̂99%, and p̂95% (cf.
Equations (3.12) and (3.13)), over varying levels of noise σ added to the respective cost
function (cf. Equation (5.1)). Note that BFGS and CG are not displayed in Figure 5.1,
as they did not find a single optimal solution when faced with noise (even at low levels
of σ ∼ 10−3 around 0). Also, SLSQP did not perform well in any of the tested noise
settings, so in the following analyses, the results for these optimizers are often not
displayed. Interestingly, all the excluded optimizers are gradient-based. The smaller
noise resilience of optimizers relying on exact gradients will be revisited and explained
in later discussions in Section 5.4.

For the remaining optimizers in Figure 5.1, one can visually identify – using a logarith-
mic scale on the noise level – that the curves resemble sigmoidal functions constrained
by a pair of horizontal asymptotes (as log(σ) → ±∞). A typical example of such a
sigmoidal function is the hyperbolic tangent tanh(x) = ex−e−x

ex+e−x , which was used to fit3

the measured curves via

pfit(σ, pu, pl, b, c) = pu − pl
2 tanh (−b log(σ) + c) + pu + pl

2 . (5.2)

This formulation allows estimating the upper and lower limits of performance via the
parameters pu and pl, as they correspond to the asymptotes

lim
σ→+∞

pfit(σ) = pl, lim
σ→0

pfit(σ) = pu, (5.3)

while the parameters b and c quantify the gradient and location of decrease on the
logarithmic scale.

To validate the goodness of these tanh-fits, Figure 5.2 shows the distribution of resid-
uals p̂(σ)− pfit(σ) aggregated across all n ∈ [3, 10] (upper half) and their corresponding
normal probability plot4 (lower half), commonly used as a graphical test for normality.

3It must be noted that as COBYLA’s drop seemed to start much earlier than for the other optimizers,
noise levels down to σ ∼ 10−5 were added for its fit to derive more reliable parameters.

4A normal probability plot compares the theoretical percentiles of the normal distribution versus the
sample percentiles, ideally aligning on a straight line.

44



Chapter 5 Limitations of Classical Optimizer Performance

0.0

0.2

0.4

0.6

0.8

1.0

p o
pt

p 9
9%

p 9
5%

10 2 100
0.0

0.2

0.4

0.6

0.8

1.0

p o
pt

tanh-fits

10 2 100

p 9
9%

tanh-fits

10 2 100

p 9
5%

tanh-fits

0.0 0.2 0.4 0.6 0.8 1.0

Noise Level 

0.0

0.2

0.4

0.6

0.8

1.0
NGD SLSQP NFT COBYLA Powell SPSA
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Both visualizations suggest that the residuals exhibit near-normal behavior, with no
significant anomalies visible. It must be noted, though, that for the NFT and SPSA
optimizers, the curve of p̂ does not strictly follow a sigmoidal function. Instead, both
optimizers display a clear peak in performance before the decline (see Figure 5.1), indi-
cating that a small level of noise actually enhanced their ability to find optimal solutions.
In this context, noise can be seen as a beneficial feature rather than an obstacle. Conse-
quently, even though pfit(0) = pu, it is possible that pu is larger than the estimated p̂(0).
This deviation from the expected no-noise scenario was also observed for the Powell and
NGD optimizer, suggesting that this phenomenon is not unique to specific local opti-
mizers. In fact, some noise may be able to assist in escaping local minima during the
optimization process, as also reported by Branke and Schmidt [113], Stich and Harsh-
vardhan [114], which is why certain algorithms, like SPSA [115], intentionally introduce
noise as part of their procedure.
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Figure 5.3: Visualization of Important Fit-Parameters. Exemplary tanh-fit of p̂opt
of the Powell optimizer with the parameters of Equations (5.4) to (5.8) indicated.

To quantify the scaling behavior of the solvability measure p̂, several measures can be
derived from the fit parameters defined in Equation (5.2) (illustrated in Figure 5.3):

• upper fixed point : pfix,u = pu (5.4)

• lower fixed point : pfix,l = pl (5.5)

• point of steepest descent : σ∗ = exp c
b

(5.6)

• slope at steepest descent : m∗ = b(pl − pu)
2 exp

(
−c
b

)
(5.7)

• point of resilience : σres = p−1
fit (0.9 pu) (5.8)

The lower asymptote pfix,l does not necessarily have to be zero. Even in a uniform
superposition state, a random basis state (with the highest probability) could be the
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optimal solution. However, the likelihood of this is decreasing as 1/2n with the system
size n, as also discussed in Section 5.4. The point and slope of the steepest descent,
σ∗ and m∗, quantify the position and severity of the performance drop. The slope m∗

thereby corresponds to the derivative of pfit(σ) evaluated at σ = σ∗. Additionally, the
point of resilience, σres, is introduced as an optimizer-specific performance indicator. It
specifies the amount of noise an optimizer can tolerate before its performance drops to
90% of the no-noise level pfix,u, marking the onset of performance degradation5. Finally,
the uncertainty of any such quantity ζ, which depends on the underlying fit parame-
ters pu, pl, b, c, is approximated by the Gaussian error propagation formula6 of the fit
uncertainties ∆pu,∆pl,∆b,∆c as

∆ζ =
√(

∂ζ

∂pu
∆pu

)2
+
(
∂ζ

∂pl
∆pl

)2
+
(
∂ζ

∂b
∆b
)2

+
(
∂ζ

∂c
∆c
)2
. (5.9)

For n = 6, these quantities of all optimizers for the tanh-fits of p̂opt can be found
in Table 5.3. The results for pfix,l are not listed due to the high uncertainties of p̂-
values near zero. Even though the exact values vary over different problem sizes and
when considering p̂99% or p̂95% instead (see Section 5.4), this allows for a qualitative
comparison of the optimizers which is valid across all variables. Generally, with the
hyperparameter settings considered, the NGD and NFT optimizers seem most resilient
to noise, having their drop in performance almost an entire order of magnitude of σ
later than the rest. While COBYLA starts with the highest success rates in the no-noise
limit, its performance drops most rapidly7.

pfix,u σ∗ m∗ σres

NGD 0.63± 0.05 (1.2± 0.5)× 10−1 −2.7± 0.9 (4.8± 2.4)× 10−2

SPSA 0.58± 0.05 (4.7± 3.8)× 10−2 −5.8± 4.0 (1.6± 1.6)× 10−2

COBYLA 0.79± 0.04 (7.0± 3.3)× 10−3 −35.7± 15.0 (1.2± 0.7)× 10−3

NFT 0.72± 0.04 (1.1± 0.5)× 10−1 −3.6± 1.2 (4.3± 2.3)× 10−2

Powell 0.60± 0.05 (3.6± 1.4)× 10−2 −8.24± 2.7 (1.2± 0.6)× 10−2

Table 5.3: Relevant Fit Quantities for p̂opt. The values of pfix,u, σ∗, m∗, and σres (see
Equations (5.4) to (5.8)), retrieved from the corresponding tanh-fits of p̂opt, are listed for
all optimizers. The “best” values of each column are marked in green.

At last, an explanation for the scaling behavior of the success rates p̂, representative
for the solvability of these systems, is derived. With increasing σ, every loss evaluation
of L̃(θ) (including those needed to calculate gradients) becomes more and more noisy,
such that at a certain level the original loss landscape of the VQA becomes unsolvable.

5Note that this is an arbitrary threshold set by the author of this thesis.
6Note that Gaussian error propagation assumes uncorrelated errors, which is not necessarily given for

the fit parameters. It is instead used as an estimation for the overall magnitude of error.
7Note, that COBYLA is only compared to the other four well-performing optimizers here. In general,

BFGS, CG and SLSQP must have had the main performance drop for way smaller noise levels, such
that no statement about the slope of their descents can be made.

47



Chapter 5 Limitations of Classical Optimizer Performance

As soon as the standard deviation of the random error λσ is higher than that of the loss
function itself, any “optimized” result state must correspond to a random guess.
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Figure 5.4: Mean Approximation Ratio and Confidence over Error Level. a)
displays the mean normalized approximation ratio QNAR(|ψ∗⟩) (3.9) of the optimizers for
increasing noise σ (for n = 6) over 100 runs. The zero-level of the NAR, corresponding
to the uniform superposition solution |ϕ⟩, is marked by a dashed line. b) shows the mean
confidence c(|ψmax⟩) (3.10), respectively. The highest probability of any basis state in |ϕ⟩
is 1/26 ≈ 0.016, which is marked as a lower bound. Note that the curve of BFGS is hidden
behind that of the CG method in both plots.

Figure 5.4 displays the normalized approximation ratio (NAR) of all optimizers’ final
solutions |ψ∗⟩ for increasing noise levels σ and the respective confidence c (see Equa-
tion (3.10)) of the proposed classical solution |ψmax⟩, which corresponds to the sample
probability of the most probable basis state. The ratioQNAR(|ψ∗⟩) is decreasing similarly
to the success probabilities (cf. Figure 5.1), but it is less steep, due to the superposition
of various solutions going into the calculation of an AR. While CG, BFGS, COBYLA,
and SPSA all seem to have NARs, which converge into some fixed point in the loss
landscape, the other optimizers seem to find more and more random solutions. Intu-
itively, one might expect this to come from uniform superposition states |ϕ⟩, which have
equal probabilities for every basis state, and therefore a confidence of c(ψmax⟩) = 1/2n.
However, Figure 5.4 shows, that instead of converging to a probability of 1/2n, which
is approximately 0.016 for n = 6, the confidence of most of the optimizers converges
to the value 0.303 ± 0.002 in the noisy limit. This is because these solutions actually
converge to a random parameter state instead of |ϕ⟩. Remembering that any solution
state |ψ∗⟩ is parametrized by the n independent variables θ∗ ∈ Rn, one easily sees that
the randomness does not come from sampling the probabilities {|⟨qi|ψ∗⟩|2}i=1,...,2n it-
self, but from uniformly sampling random angles for θ∗. This results in a confidence
limit of

(
0.5 + 1

π

)n
(mean maximum state probability), which is approximately 0.3 for

n = 6, matching the empirical finding. For a derivation of this analytical expression, see
Appendix C.2.
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5.4 Scaling of Solvability with System Size
In this section, the results of solvability with increasing noise levels are extended to the
full set of tested system sizes n ∈ [3, 10]. Figure 5.5 shows a summary of the united results
in form of two-dimensional grids with the experimentally measured success probabilities,
p̂opt, p̂99%, and p̂95% applied as contours. These visualizations reveal not only the large
differences in the behavior of classical optimizers, but also the common trends among
all of them: The areas in which finding optimal solutions is feasible and the areas in
which this probability rapidly falls to nearly 0 seem to be divided by a diagonal line.
This separating line represents the change in position of the point of steepest descent
σ∗ across different system sizes n. While for p̂opt, even for low noise levels, the success
rates are decreasing with growing system sizes, for p̂99% and especially for p̂95%, these
seem to be improving slightly for larger n. This phenomenon will be explored in greater
detail later in this section.

First, the transition line dividing the solvable from the unsolvable region is investi-
gated. Instead of taking the values at the discrete measurement points, the parameters
derived from the tanh-fits (see Section 5.3) are used to be able to quantify the behavior
more exactly. Figure 5.6 shows how the point of steepest descent σ∗, its slope m∗ and
the point of resilience σres (cf. Figure 5.3) behave over increasing system sizes. Together,
they measure the noise resilience of each optimizer, therefore the visualization allows
for a clear ranking regarding their ability to handle noise. NGD and NFT still share
the first place, followed by SPSA, Powell, and finally COBYLA (cf. Table 5.3). Such
findings on the noise resilience of the optimizers8 can also be found in related work
[59, 72, 108, 109]. Interestingly, though the NGD and SPSA optimizers are based on
gradient information, their way of calculating the derivatives is more resilient to noise
than the other gradient-based methods. While the most noise-susceptible methods9 rely
on exact gradient information, SPSA merely calculates a stochastic gradient and NGD
uses a normalized version (see Section 2.3.4). Both seemed to somehow make the algo-
rithms more robust to noise in the loss landscape. For a detailed ranking of the tested
optimizers, see Appendix C.3.

Instead of merely ranking the various classical optimizers, a more meaningful analysis
concerns their general scaling behavior. As visible in Figure 5.6, this is not only common
across all methods, but also was very similar along the different fits of p̂opt, p̂99%, and
p̂99%, which is why only the results of the former are shown. The point of steepest
descent σ∗ and the point of resilience σres should scale equally10, as both are specific
x-positions of the same tanh-curve. All metrics, including the slope of the descent’s
tangent line m∗, are clearly decreasing with system size. The remaining question is to
determine the nature of this decay, i.e., whether it follows an exponential or power-law
pattern. This distinction is crucial, as each decay type carries significant implications for

8Except for NGD, which is a custom implementation based on Kuete Meli et al. [69], and therefore not
publically available on SciPy or Qiskit

9Here: CG, BFGS, and SLSQP.
10Note that σ∗ marks the point at which p = 0.5 pu, while σres is defined as the point where p = 0.9 pu,

which should clarify their similarity.
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fits of p̂opt (see Section 5.3) are plotted for the experimentally tested system sizes n. Note
the logarithmic y-axes of all plots.

the general feasibility of solving relevant problems with VQAs on near-term hardware
and beyond (see Figure 5.10).

However, eight data points are generally not enough to make a statement on the exact
scaling of a curve, especially not about the asymptotic behavior. It is however possible to
compare how well different decay curves fit the measured data. In the following analysis,
the behavior of σ∗ was chosen as the representative for the fit experiments. Based on
the observation of Figure 5.6, three types of decaying functions were tested:

• exponential decay: fexp(n, k, γ) = k · exp(−γ · n)

• power-law decay: fpl(n, k, γ) = k · n−γ

• logarithmic decay: flog(n, k, γ) = k · log(n)−γ

As a measure of the goodness of fit, the mean squared error (MSE) (see Equation (3.4))
between the measured σ∗(n) and the fitted f(n) over all n is calculated. Table 5.4
presents the results of these experiments (see Appendix C.4 for the corresponding fig-
ures). Unfortunately, as the MSE is inconclusive for each optimizer and the suitability
also changes between the optimizers, this does not allow for a final statement on the
decay of noise resilience with system size11. This may mean that the different optimiza-
tion methods inherently behave differently regarding their noise susceptibility, but more
data (possible with yet more optimizers) would be needed to confirm that. The only
conclusion that this data allows, is that no matter the type of decay, it is rapid. For
this, regard the sizable γ-parameters which are describing the speed of decay, which were
γexp ∈ (0.53, 0.99), γpl ∈ (2.2, 3.8), and γlog ∈ (2.9, 5.0) considering all optimizers.

11For this reason, the experiment was also not repeated for m∗ and σres.
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NGD NFT COBYLA Powell SPSA
exponential 1.0× 10−4 1.1× 10−3 5.0× 10−6 2.8× 10−5 1.6× 10−4

power-law 6.7× 10−4 1.3× 10−4 4.1× 10−7 5.6× 10−6 1.5× 10−5

logarithmic 1.6× 10−3 8.4× 10−5 8.8× 10−7 5.5× 10−5 1.3× 10−5

Table 5.4: Mean Squared Error from the Fit of Decay Curves. The MSE from the
fits of various theory curves (left column) are presented for each optimizer’s noise resilience,
measured in σ∗. The lowest value in each column is marked for better comparability.

A potential cause for the observed drop in noise resilience with increasing system size is
the corresponding decrease in the variance of the loss function (cf. Section 4.4). However,
this is not the only factor. Even after normalizing the noise level’s σ parameter to account
for the shrinking standard deviation of the loss function across the full parameter space
– by using the relative absolute error (RAE) (see Equation (3.5), and the discussion in
Section 5.5) – this decline in resilience persists. This becomes evident when comparing
the γ parameters from Table 4.3, which are nearly an order of magnitude smaller than
those derived here. Therefore, the shrinking variance alone is not the sole factor lowering
the noise resilience of classical optimizers:

For instance, Fontana et al. [116] demonstrated that quantum noise can disrupt param-
eter symmetries, thereby eliminating degeneracies in the loss landscape. Additionally,
Wang et al. [20] highlighted the phenomenon of noise-induced barren plateaus, which
severely limit the trainability of VQAs. Other factors, such as the growing number of
local minima as system size increases in variational loss landscapes [105], and the issue
of overparameterization [104], may also play a role. Generally, Leymann and Barzen [25]
provide a summary of the challenges associated with the trainability of VQAs, beyond
the issue of barren plateaus.

Finally, the scaling behavior of the performance limits of BENQO’s problem solvabil-
ity, derived from the parameters pfix,u and pfix,l, is discussed. To this end, Figure 5.7
displays the curves of both fitted fixed points pu and pl, as well as the measured zero-
noise success proportions p̂(0) for (near) optimal solutions. This form of presentation
allows for a quantitative analysis expanding on the qualitative arguments from Fig-
ure 5.5. Interestingly, three of the best-performing optimizers in the zero-noise scenario
(i.e., BFGS, SLSQP, and CG) are failing when even a minor amount of noise is added to
the loss function12. Apart from the apparent deviation of p̂(0) and pfix,u for SPSA (as
discussed in Section 5.3), both the fitted noiseless limit and the noiseless experimental
results are qualitatively behaving the same. The proportion of optimal solutions p̂opt
seems to decrease approximately linearly, meaning that not only a constant rate of decay
α can be derived from these curves, but also the maximal system size nmax, after which
finding the optimal solution becomes infeasible.

The resulting linear fit parameters can be found in Table 5.5. Notice that considering
the uncertainty, the biggest system possibly solvable even with exactly simulated noise

12This apparent trade-off between noise-resilience and no-noise performance is further discussed in Ap-
pendix C.3.
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depicts the theoretical behavior of 1/2n, corresponding to random guessing.

values is at n = 31 (using the NFT optimizer). This rapid decay can be explained by the
exponentially increasing search space the optimizer has to explore to find the minimum.
Despite the visual hints for a linear decay, one may still argue that the true asymptotic
behavior of these curves is not linear but that they instead converge towards a constant
value for even larger system sizes, as it was demonstrated for related experiment with
the VQE solver [117]. However, in the study by Dı́ez-Valle et al. [117], the number of
quantum function evaluations was not fixed, but instead grew exponentially with system
size to achieve convergence.

In contrast to this behavior of exact solvability in the no-noise limit, the success
probabilities p̂99% and p̂95% seem to be increasing with n for some of the optimizers (see
Figure 5.7). A possible explanation of this behavior is the following: Without noise,
each of these optimizers should converge exactly to a local minimum of the underlying
loss landscape. The question is whether this minimum is in the vicinity of the global
minimum. For the chosen normalization of loss values, the maximum always remains 1,
while the rest of the loss values concentrate (possibly exponentially) around the mean,
which is zero (see discussion in Section 4.4). This concentration has the effect, that most
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NGD BFGS∗ SLSQP∗ NFT COBYLA Powell SPSA CG∗

−α · 102 5.9(6) 4.7(4) 5.1(5) 3.6(6) 3.7(4) 4.0(10) 7.5(2) 4.6(8)
nmax 17(2) 21(2) 20(2) 26(5) 26(3) 21(5) 13(1) 21(4)

Table 5.5: Linear Fit Parameters of No-Noise Solvability with System Size. The
upper row displays the percentage decrease of optimal solutions found for each unit increase
in n, along with the associated uncertainties. The lower row represents the x-axis intercepts
of the linear fits, rounded down to the nearest integer, with uncertainties. Optimizers with
an asterisk (∗) were fitted using p̂opt(0), while the rest are based on pfix,u (see center left
plot of Figure 5.7).

minima in the landscape will likewise get closer to each other as the system increases,
moving most (if not all) of them towards the vicinity of the global optimum, according
to Equation (3.11). This argument is revisited shortly.

Lastly, the behavior of the lower performance limit pfix,l in Figure 5.7 is examined. As
already detailed in the previous section, in the case where the level of noise exceeds the
loss function’s own variance, any solution path should correspond to random guessing.
The black dashed line in Figure 5.7 depicts the probability of finding an optimal solution
state when drawing randomly from the 2n sized solution space. One immediately notices
that COBYLA’s points are significantly lower than that threshold. This means that,
instead of random guessing, it must have converged to a fixed point in parameter space,
which is neither optimal nor in the immediate vicinity of optimality. This is confirmed
when reviewing Figure 5.4. All other optimizers, however, lie slightly above the given
threshold. This is likely due to uncertainties in the tanh-fits, as the modeled noise levels
remained strictly below 101, which does not necessarily capture the behavior at infinite
noise levels, even though it is already way above s(L̂) (see Section 4.4).
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Figure 5.8: Distribution of the Optimality of Solution States. On the left, the
mean percentage pt of solutions resulting in cost values in a relative threshold of t percent
near the optimal across system sizes n is depicted as contours. The right shows violin plots
representing the distribution of the 2n possible solution states across the normalized loss
landscape L̂. The loss value corresponding to a 95% threshold is marked for each n.

The higher thresholds visible for the lower limits of p̂99%, and p̂95% can be explained
by the distribution of solutions regarding their cost value, depicted in Figure 5.8. The
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data used for these plots resulted from the same 100 problem instances that were used
in the optimizer studies. The left figure shows the percentage of solutions pt for different
thresholds t (cf. Equation (3.11)) near the optimum, calculated as in Equation (3.12),
within all 2n possible classical solution states. Interestingly, this percentage seems to
converge for system sizes larger than 7 or 8. More importantly, though, is the finding
that almost 20% of all possible (classical) solution states still produce solutions in the
90% vicinity of the optimal cost value. This is due to the distribution of their cost values
in between Cmax and Cmin, of which a normalized version is shown in the right figure.
Here, as well, the normalized cost distribution over all basis states seems to converge to
a fixed shape, which is left skewed towards the minimum. This non-uniform, non-normal
distribution explains why solutions above high t values are more likely (than expected
from a normal distribution). This explains the behavior of p̂99%, and p̂95% in the infinite
noise limit.

However, this also raises the question of how practically useful such 99% or 95% op-
timal solutions truly are and, correspondingly, whether there is a more effective way
to define the “success probability” of an optimizer than what was proposed in Equa-
tion (3.12). Instead of the true approximation ratio of the most probable solution string,
which is used for the success index in Equation (3.11), one may, for example, rather use
the normalized version of Equation (3.9) which takes the energy of a totally mixed state
as the lower limit. This may already help to lift the meaning of the threshold t. Such
considerations will be discussed further in Section 5.5.3.

5.5 Implications and Discussion
In recent years, numerous significant findings have been published regarding the practical
limitations of variational quantum algorithms [16, 19–21, 24, 26, 27, 118]. However, in
many cases, the task of fully demonstrating the implications of these findings is often
left to the reader or deferred to future research. This section, therefore, aims to not only
discuss the key insights of this chapter but also illustrate their practical relevance.

5.5.1 Hardware Development
In 2018, Preskill [10] introduced the concept of Noisy Intermediate-Scale Quantum
(NISQ) computers and highlighted their potential to solve “real-world” problems with
commercial value faster than conventional computers. While significant progress has
been made since then, five years later, Ezratty [18] reviewed the current state of quan-
tum devices and emphasized the persistent critical limitations and challenges. To date,
no practical use case demonstrating quantum advantage with a NISQ device has been
successfully implemented. Despite these hurdles, many researchers and companies still
hold onto the belief in the potential of quantum advantage for optimization problems,
when using NISQ solutions like variational quantum algorithms.

This chapter has demonstrated how the optimization of VQAs can deal with less
and less noise when scaling up the system size. This decreasing noise resilience was
quantified in terms of the standard deviation of the total error on the loss function,
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after which the optimizer’s performance dropped to less than 50% of its ideal no-noise
performance. Among the tested optimizers, the NGD (normalized gradient descent)
algorithm, described in Section 2.3.4, was found to be the most noise-resilient.

To generalize these findings, the relative absolute error (RAE) (see Equation (3.5))
is used as an error measure in this section, as it also accounts for the growing concen-
tration of loss values with system size. For the following analysis, the results of the
best-performing optimizer, NGD, are considered as the best-case scenario for problem
solvability. Figure 5.9 showcases, where the noise produced by IBM hardware models13

lies in this respect. According to this graph, problems of more than 6 nodes may already
be unsolvable14 with current hardware. Note, that the error produced by other qubit
technologies, such as trapped ions, may be lower for the algorithm under consideration
(as discussed in Table 4.1). Nevertheless, the implications of near-exponential scaling
in the required precision of loss values are evident: Increasing the number of available
qubits is not always the solution; instead, a drastic reduction of error rates would be
required. This critical relationship between system size and noise levels was previously
highlighted by Stilck França and Garćıa-Patrón [19].
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Figure 5.9: Exemplary Hardware Error and Regions of Problem Solvability.
The solid line in the middle represents the exponential fit of the critical error threshold σ∗

for the most noise-resilient optimizer, NGD (see Section 5.4), converted into the RAE metric
ϵ based on the measurements presented in Section 4.4. Above this line, the probability of
the classical optimizer finding an optimal solution becomes highly unlikely or effectively
impossible. The dashed line indicates the empirically measured hardware error obtained
using the ibm sherbrooke backend (refer to Figure 4.2).

According to IBM’s Development & Innovation Roadmap [119], the Starling processor,
13Note, that the noise produced by such a model only captures a very limited amount of error sources.

Real hardware may produce even higher errors.
14In this context, “unsolvable” refers to the classical optimizer consistently finding significantly fewer

optimal solutions – less than half of those it would identify in an idealized, noise-free setting. Note
that every other threshold would have resulted in the same scaling behavior.
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set for release in 2029, is expected to be error-corrected with 200 logical qubits. Similarly,
Quantinuum’s roadmap projects a nearly fault-tolerant quantum computer with 1000
logical qubits by 2030 [120]. Similar goals have been outlined by companies such as
IonQ, IQM, and Google. This raises the question of whether fault-tolerant hardware
will be sufficient to overcome the challenges posed by the scaling relationships and noise
constraints discussed in this chapter.

5.5.2 The Curse of Finite Sampling
As pointed out several times, and examined in more detail in Section 4.3, the error pro-
duced by finite sampling is unavoidable when using quantum computing architectures.
The question is, how do the error boundaries to problem solvability translate to the
required number of measurement shots, and what implications this scaling has on the
realization of any quantum speed-up? In the following, the results of all previous scaling
analyses will be combined, using the most optimistic, best-case scenarios to highlight
the detrimental implications these findings have on the feasibility of achieving quantum
advantage with variational quantum optimization.

Based on the experiments of Section 5.4, the decline in an optimizer’s noise resilience
as the system size n increases, denoted by σ∗(n), may follow an exponential, logarithmic,
or power-law trend (see again Figure 5.6 and Appendix C.4). To convert the standard
deviation σ∗ of the most optimistically performing optimizer, NGD, into the general
measure of the RAE (3.5), it needs to be normalized by the mean absolute deviation
(MAD) of the loss function, measured in Section 4.4 for the BENQO algorithm. The
most optimistic scaling for the MAD, which yet provided a good fit, followed a power-
law decay at n ≥ 8, which was less steep compared to when smaller system sizes were
included. Using the fitted parameter from Table 4.3, the maximum RAE ϵ∗(n) an
optimizer can handle for a given system size n depends on the scaling law:

ϵ∗(n) =

√
2
π σ

∗(n)
dmad(n) ≈


8.5 · n0.4 · exp(−0.5 n) for exponential scaling
22.0 · n−1.8 for power-law scaling
2.5 · n0.4 · log(n)−3.2 for logarithmic scaling

(5.10)

These results, though based on the combination of uncertain numerical fits, emphasize
that the drop in noise resilience can not merely be due to the decay in the variance of
the loss function but is present regardless of how the empirical data is fitted15.

Next, one has to derive the number of shots nshots needed for each system size n to
achieve an error as small as ϵ∗(n) for an otherwise error-free quantum computer, which
would assure the successful performance of a classical parameter optimizer. Based on
the calculations and experiments made in Section 4.3, the RAE of finite sampling at

15The only scenario where – based on the experimental data – the classical optimizers would become more
noise-resilient with increasing system size n, would be if the MAD of BENQO decreased exponentially
with n, while the noise resilience σ∗ did not – a speculative outcome. However, even this scenario
would not alter the overall conclusions of this section.
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fixed n behaves as
ϵFS(n = 10, nshots) ≈

5.8
√
nshots

, (5.11)

while the error for a fixed number of shots increases exponentially (cf. Figure 4.4) as

ϵFS(n, nshots = 1024) ≈ 0.1 · exp(0.04 n). (5.12)

Assuming that this general scaling behavior is consistent across all sampling rates and
system sizes, and defining ϵfix as the error at (n = 10, nshots = 1024), where both
experimental curves meet, one can derive a function for the RAE in the loss function,
that is caused by sampling with nshots at a system size of n:

ϵFS(n, nshots) ≈ ϵFS(n = 10, nshots)
ϵFS(n, nshots = 1024)

ϵfix

≈ 4.0 · exp(0.04 n)
√
nshots

.

(5.13)

Note, that while the parameters in this equation are only rough estimates and depend
on the reference point ϵfix, the general scaling trend is representative. For a sufficiently
small error in the loss values outputted by a VQA – in this case BENQO –, the condition
ϵFS(n, nshots) < ϵ∗(n) should hold across all n. By substituting Equation (5.10) and
Equation (5.13), it becomes clear that the required number of shots, for a problem to
be solvable with a VQA, grows exponentially with system size. Specifically,

nshots(n) >
(

4.0 e0.04 n

ϵ∗(n)

)2

(5.14)

is always O(kn) for some k > 1, regardless of the true scaling of Equation (5.10). Similar
findings of an exponential scaling of the required resources are reported in the literature
[24, 99, 121].

As pointed out at the end of Section 3.3, the number of shots multiplied by the number
of quantum function calls required for one optimization run must remain strictly below
2n to avoid quantum disadvantage – i.e., the point where classical brute-force solving
becomes faster than using a quantum device. The NGD, being a highly resource-efficient
optimizer, requires only 20 iterations regardless of n, with each iteration involving one
quantum call to evaluate the loss function and 2n calls to evaluate the gradient (see
Equation (2.23)). For the NGD, the maximum number of allowed shots before encoun-
tering quantum disadvantage is therefore given by:

nshots(n) < 2n
40n+ 20 . (5.15)

This means that for problem sizes below 9, a quantum speed-up is impossible, as brute-
force solutions are always faster. Figure 5.10 graphically summarizes all these findings
for system sizes ≥ 10.
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Figure 5.10: Number of Required Shots for Reliably Solving a QUBO Problem
of Size n. The minimum number of shots required to reach the three possible error bound-
aries for the NGD solver are plotted as solid lines (derived from the findings in Sections 4.4
and 5.4). For any value above these theory curves, finding an optimal solution to a QUBO
problem of size n with the BENQO solver is feasible. In the shaded area, however, the
number of measurement samples exceeds that of brute-force trials, making the quantum
solution more inefficient than the worst classical solver.

The figure clearly demonstrates that if the boundary lines identified in Figure 5.6 of
Section 5.4 were to follow an exponential drop, the number of shots required for the opti-
mizers to reliably find a solution would grow faster than the number of brute-force trails
needed to solve the problem classically. This would suggest that quantum advantage
may be fundamentally unattainable for optimization tasks using variational quantum
algorithms. In the other two cases (with non-exponential scaling), there remains a nar-
row window below the critical curve of 2n for sizes n ≥ 20 (for the logarithmic boundary)
and n ≥ 25 (for the power-law boundary). This indicates that some sort of advantage
is theoretically possible but likely unpractical, considering the exponentially large re-
sources needed to produce it. Considering Equation (5.14), any potential advantage
would, at most, represent a polynomial speedup, which only starts at specific system
sizes n. Considering the noise-free performance scaling presented in Figure 5.7, these
system sizes may already not be solvable by classical optimization methods. One must
note that this discussion already holds for a scaling comparison to the worst classical
algorithm, without even mentioning actual runtime comparisons between quantum and
classical methods or including the resource requirements of the best classical methods,
which are well below the 2n-curve. Such analyses may paint an even darker picture of
the practical feasibility of quantum computational speed-ups.

Lastly, it could be argued that these findings are based on only a limited testing setup,
which does not allow for such general conclusions, as all the scaling results presented
in this chapter are derived solely from the BENQO algorithm. However, the empirical
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results of Chapter 4 demonstrate consistent scaling behavior across all the quantum
algorithms considered, which are representative of the class of VQAs that many still
regard as promising. Moreover, some of the observed behavior has already been reported
in the literature for QAOA and VQE [24, 102]. For those who remain optimistic about
the potential of variational quantum optimization, this may serve as a robust, empirical
method to critically evaluate and potentially rule out new VQA proposals, even if they
perform well in small-scale, noise-free simulations.

5.5.3 Relevant Classical Problems
If no leeway exists in improving the classical or quantum side of the variational frame-
work, the problem formulation becomes the next logical frontier of investigation, as illus-
trated in Figure 3.1. In this thesis, random QUBO instances, as detailed in Section 3.1,
were used in the investigations, as this formulation – equivalent to Ising problems [37, 44]
– encompasses a broad range of relevant combinatorial optimization problems [46]. How-
ever, in the QUBO encoding, the problem size often directly translates to the number
of binary variables to solve it, or, in the case of the Traveling Salesperson Problem
(TSP), it even scales quadratically. As identified in this chapter, the solvability limits of
variational quantum algorithms may be around n ∼ O(10), while industrially relevant
problem sizes are orders of magnitude larger. For example, the Concorde solver for sym-
metrical TSP instances [122] can find optimal solutions for routing problems involving
up to 85 900 cities [123]. In the one-hot-encoding of TSP instances described in Sec-
tion 2.2.2, this would correspond to a system size of O(109) – far beyond the solvability
limits identified here16. However, one should note that some general classical solvers
for quadratic programming problems, including QUBO, are benchmarked for problems
with only up to O(100) binary variables [124]. Still, this underscores the considerable
power of classical state-of-the-art solvers – which are already available – for industrially
relevant problems. It highlights the substantial gap quantum devices would need to
bridge in optimization, making the true prospects of quantum advantage using VQAs
highly questionable. Chapter 7 therefore includes a brief discussion on research efforts
into alternative quantum optimization approaches.

Another point of discussion concerning the problem side is the performance metric,
which was used to evaluate solvability. In this thesis, the chosen measure for this was the
empirically observed success rate of finding a solution within the t-vicinity of the optimal
energy (see Equation (3.12)), with thresholds set at t = 100%, 99%, and 95%. A natural
question –raised at the end of Section 5.4 – is how practically useful solutions meeting
such thresholds are, as it could be argued that the poor scaling behavior reported in
this chapter might only apply to such high thresholds. After all, one might contend
that approximate solutions, even those slightly further from optimality, could still be
sufficient for many practical applications.

To demonstratively counter this conjecture, the TSP is used as a representative ex-
ample problem. As described in Section 2.2.2 in order to find feasible solution states,

16This holds even under the noise-free limits conjectured in Table 5.5.
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constraints are added as quadratic penalty terms with a corresponding penalty factor
in Equation (2.14) into the QUBO formulation. Depending on the absolute size of this
factor, the corresponding loss range can be enlarged substantially as the maximum loss
value Cmax often reaches values which are orders of magnitude larger than the uncon-
strained loss evaluation. Consequently, |Cmax| ≫ |Cmin|, causing the approximation
ratio used in Equation (3.11) to approach 1. This shifts the energy thresholds at which
feasible solutions can be identified to significantly higher levels, sometimes even exceed-
ing the 99% threshold applied here [58, 59]. One solution for this would be choosing
alternative encodings with higher ratios of feasible solutions [98].

61



Chapter 6

Conclusions

The potential of variational quantum algorithms (VQAs) – still widely regarded as the
leading candidate for achieving near-term quantum advantage in optimization – critically
depends on their ability to address the challenges posed by Noisy Intermediate-Scale
Quantum (NISQ) hardware. The most pressing among these is noise, arising both from
hardware imperfections and finite sampling errors, the latter of which will persist even
in fault-tolerant systems. Although some studies have analytically examined the impact
of noise on the performance of VQAs [16, 19–21, 24], only few have addressed how
this impact scales with growing system sizes. This thesis contributes to filling this gap
through a systematic numerical investigation into how classical optimizers – the main
computational engine of VQAs – are affected by noise when applied to increasingly large
quantum systems. Instead of theoretical conjectures or speculative hints, the findings
provided clear, empirical evidence on how noise fundamentally limits the optimizability
of variational quantum ansatzes, even in an idealized fault-tolerant setting.

To achieve this, the sources of error and their effects on the loss functions of three
representative algorithms – the Variational Quantum Eigensolver (VQE) [62], Quantum
Approximate Optimization Algorithm (QAOA) [63], and Block Encoding Quantum Op-
timizer (BENQO) [69, 70] – were quantitatively and qualitatively analyzed in Chapter 4.
One key finding was that, under conditions anticipating continuous hardware improve-
ments up to full error correction, the total error in a quantum loss evaluation could
be effectively modeled as an additive Gaussian random variable dominated by statisti-
cal sampling errors. Given the decay in the variance of the loss functions among the
algorithms studied, BENQO was found to have the most favorable loss landscape char-
acteristics, posing it a best-case scenario for the classical optimizer studies in Chapter 5.

In these studies, a suite of state-of-the-art classical optimization methods was tested
on BENQO’s loss function with varying noise levels (scaled by the standard deviation
of the associated Gaussian error) and system sizes. For a fixed system size, the prob-
ability of finding high-quality solutions1 decreased in a sigmoidal pattern relative to
the logarithmic noise level. This indicated a sharp drop in performance at a critical
noise threshold, which, however, differed significantly among the tested optimizers (see
Section 5.3). Using tanh-fits, these thresholds – after which the optimizers’ success prob-
ability resembled that of random guessing – were extracted for system sizes n ∈ [3, 10],
which revealed a common scaling behavior across all optimizers: their noise resilience
exhibited a rapid, potentially exponential, decline with increasing system size. Interest-

1This includes both optimal solutions and those within the 99% and 95% energy vicinity of the optimum.
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ingly, this drop was found to be steeper than could be explained by the corresponding
decay in loss variance (barren plateaus) alone (see Section 5.4), and even in a theoretical
noise-free limit2, performance declined with system size, confirming that larger systems
inherently present a more challenging loss landscape.

While it was discussed that current hardware error rates far exceed what would be
needed to tackle classically relevant problems (see Section 5.5.1), it was also indicated
that the influence of the finite sampling error imposes even stricter limitations (see
Section 5.5.2). Extrapolating the observed decrease in the optimizer’s noise resilience
showed that, to meet the loss accuracy requirements for system solvability, the number of
shots scales exponentially with system size, leaving only minimal leeway before exceeding
the resources of classical brute-force sampling, which may already be impractical. These
insights raise significant questions regarding the promise of VQAs for optimization.

The contributions of this thesis are multifold. First, a general methodology was es-
tablished to systematically evaluate and compare the performance of VQAs, providing
a foundational framework to assess their potential and viability. Additionally, this work
offers, to the best of the author’s knowledge, the first comprehensive and highly gen-
eralizable study on the scaling behavior of classical optimizers when applied to noisy
variational quantum loss functions for random QUBO (quadratic unconstrained binary
optimization) problem instances of increasing size. The experimental results established
a clear boundary regarding noise level and system size, beyond which classical optimizers
fail to find optimal or near-optimal solutions. This empirical demonstration highlighted
how stochastic errors – even when caused by the finite sampling of measurements alone
– fundamentally limit the practical viability of VQAs. In fact, translating the com-
bined scaling observations into practical terms hinted toward a general unfeasibility of
achieving any quantum advantage in variational quantum optimization. Alongside these
significant implications, the study also provided a general performance comparison of
state-of-the-art classical optimizers, which revealed the effectiveness of a newer method,
normalized gradient descent with an exponentially decaying step size [69]. This algo-
rithm, though not yet included in Qiskit’s suite, demonstrated superior noise resilience,
outperforming all other optimizers tested in this context.

Despite these contributions, there may be limitations to the proposed approach and re-
sults. One could argue that the observed critical behavior is only due to unlucky choices
in the experimental setup, such as specific optimizers, hyperparameter settings, initial-
ization strategies, quantum ansatzes, error modeling, or problem formulations. However,
all these choices were carefully justified in this work with mostly best-case instances, and
similar findings from other studies further support their generalizability. Nevertheless,
additional steps for rigorous validation of these results are outlined in Chapter 7. It
should further be noted that this thesis does not address optimization on fundamentally
different platforms, such as Quantum Boson Sampling [125, 126] or Quantum Annealing
[48, 49]. However, given the hybrid nature of these approaches, which also rely on clas-
sical optimization routines, it is likely that the noise-related challenges identified here
would impact these systems as well.

2Note that this is unachievable in practice due to finite sampling errors.
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Ultimately, this thesis serves as a framework for rigorously investigating the limitations
and scaling behavior of VQAs and other quantum algorithms for solving optimization
problems. It should encourage researchers – especially those skeptical of the findings’
generality – to replicate these experiments using alternative setups, whether by testing
different quantum ansatzes, optimizers, problem instances, or even other hardware. If
any inspired investigation of how problem solvability scales with system size and noise
levels would yield qualitatively distinct results, those would be exciting insights for
the community and provide promising new research directions. However, if the scaling
behavior observed here proves to be universal and intrinsic to the classical optimization
problem inherent to hybrid architectures, such as VQAs, it would strongly suggest that
achieving quantum advantage through variational quantum algorithms in optimization
may not be realistic. In fact, it seems that the challenges facing VQAs – both in the
NISQ and fault-tolerant era – are much more fundamental than what can be overcome
by simply improving hardware, finding better classical optimizers or tuning the ansatz.
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Outlook

To validate the observed scaling behavior and assess the broader applicability of this
thesis’ findings, future studies could replicate the experiments with alternative quantum
ansatzes. Since the loss function experiments in Chapter 4 already include analyses
with both the Variational Quantum Eigensolver (VQE) and the Quantum Approximate
Optimization Algorithm (QAOA) (see Section 2.3.2), it would be sufficient to repeat
the optimizer studies presented in Chapter 5 using one of these algorithms to test the
generality of the results. Another validation approach could involve directly using finite
measurement shots rather than the simplified Gaussian error models, aiming to replicate
the findings of Figure 5.10. Likewise, empirical tests on actual quantum hardware could
directly confirm the performance limits outlined in Section 5.5.1. More broadly, as
discussed in the last chapter, this thesis provides a flexible framework for evaluating
near-term quantum optimization, with each component open to modification in the
search for improved performance scaling.

Beyond validation, future research could also enhance the presented analyses by in-
corporating a runtime comparison with best-in-class classical devices, providing further
insights into the practicality of these optimization algorithms. Additionally, while this
thesis references several studies on noise-induced performance boundaries and scalabil-
ity challenges, no existing work collectively synthesizes these findings yet. A systematic
review integrating all research on the theoretical and practical limitations of variational
quantum algorithms could offer conclusive insights into their true potential.

However, given the already concerning nature of current findings, future research
may benefit more from exploring strategies to mitigate or possibly overcome the known
limitations rather than focusing solely on further validation or expansion of these scaling
analyses. If quantum advantage in optimization remains the goal – especially in the near
term – efforts should be directed toward identifying solutions (or problem domains) that
can circumvent the barriers demonstrated in this thesis.

One popular direction for addressing the poor scaling with system size is through
improved problem encoding, which can effectively reduce the number of required qubits
and, therefore, mitigate some of the adverse effects of increasing system sizes discussed
here. For example, Sciorilli et al. [96] proposed a variational solver for combinatorial
optimizations over m = O(nk) binary variables using only n qubits for a tunable k > 1,
leading to a super-polynomial mitigation of barren plateaus. While they experimen-
tally achieved highly competitive approximation ratios for MaxCut problems of up to
7000 vertices using only 17 trapped-ion qubits, the scaling of the required measurement
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samples for the successful application of this method remains unexplored.
Another approach, introduced by Bermejo and Orús [127], significantly reduces qubit

requirements in variational quantum optimization by mapping classical variable config-
urations to non-orthogonal quantum states in the quantum register, with state recovery
achievable via quantum state tomography. While this method offers potential efficiency
gains, it remains heuristic, lacking performance guarantees and empirical validation of
its performance in larger, noise-exposed scenarios.

An even larger reduction of required qubits can be achieved by the multi-level ap-
proach, proposed by Maciejewski et al. [128], which can solve large-scale QUBO prob-
lems using current quantum devices. Their strategy is inspired by classical multigrid
methods, where a large target problem is iteratively condensed, and the global solu-
tion is constructed from multiple small-scale optimization runs. Combining two recent
quantum methods and an additional classical preprocessing step, their method achieved
competitive solution qualities on QUBO problems with up to 27 000 variables, compared
to the same method using classical subsolvers. Although further analysis is needed,
such problem decomposition techniques could be an interesting pathway for tackling
larger-scale problems.

While these advancements suggest potential solutions to address the resource lim-
itations of near-term quantum devices, each method still faces unresolved questions
regarding their scaling, noise resilience, or practical feasibility. Moreover, given that the
challenges identified in this thesis may be intrinsic to the hybrid nature of these algo-
rithms, which rely on classical optimization, it may be more promising to explore fully
alternative optimization approaches outside the variational paradigm. Recent works
by Bennett et al. [129] and Sankar et al. [42] have begun exploring such alternatives,
and this shift away from hybrid frameworks can be similarly observed in the quantum
machine learning community [130].

Finally, rather than focusing solely on solution strategies, it may be worth reconsider-
ing the selection of problems when targeting near-term quantum practicality. As briefly
discussed in Section 2.2, instead of tackling intrinsically classical problems like Ising spin
glasses, much research effort is also focussing on quantum-native optimization problems
– such as simulating quantum mechanical systems [1, 4] – for which genuine exponential
speed-up is expected. In fact, the real-world economic impact of these applications is
almost equally prominent, as they hold significant potential in areas such as modern ma-
terials science and chemistry. These fields are highly relevant for emerging technologies
such as battery development, industrial catalysis, and nitrogen fixation, all of which may
hold substantial economic and environmental benefits. For insights into recent progress
in quantum simulation, see reviews by Daley et al. [131] and Fauseweh [132].
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A.1 Mapping QUBO to Ising Problems
To translate the general QUBO form

f(x) = x⊤Qx =
n∑
i=1

n∑
j=1

Qij xi xj (A.1)

into the Ising form of Equation (2.10), one can apply the mapping xi = zi+1
2 between

the binary variables xi ∈ {0, 1} and the spin variables zi ∈ {−1,+1} as follows:

g(z) =
n∑
i=1

n∑
j=1

Qij

(
zi + 1

2

)(
zj + 1

2

)

=
n∑
i=1

n∑
j=1

Qij
4 (zizj + zi + zj + 1)

=
n∑
i=1

n∑
j=1

Qij
2 zizj +

n∑
i=1

n∑
j=1

Qij
4 zi +

n∑
i=1

n∑
j=1

Qij
4 zj +

n∑
i=1

n∑
j=1

Qij
4︸ ︷︷ ︸

constant offset

=
∑
i=j

Qij
4︸ ︷︷ ︸

constant offset

+
∑
i<j

Qij
4 zizj +

n∑
i=1

 n∑
j=1

Qij
4 +

n∑
j=1

Qji
4

 zi

(A.2)

Assuming that Q is a symmetric matrix, and by replacing the spin variables z with
Pauli-Z operators, the final operator form becomes Equation (2.13). Generally, this
reformulation means that the Ising weight matrix C = {Cij} can be retrieved from the
QUBO matrix Q = {Qij} as follows:

• off-diagonal elements: Cij = Qij/2

• diagonal elements: Cii = ∑n
j=1Qij/2

A similar mapping between the QUBO and MaxCut formulation was derived by Bara-
hona et al. [133]. Lastly, note that this transformation is not unique. An alternative
equivalent formulation can be obtained by applying the mapping xi = 1−zi

2 , which trans-
forms the binary variables x ∈ {0, 1} into the spin variables z ∈ {+1,−1}. This leads
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to an Ising form with a negative sign for the diagonal terms. In this formulation, the
ground state configuration would have 0s where the original formulation had 1s, and
vice versa. Thus, this mapping would result in an inverted ground state compared to
the initial transformation.

A.2 Derivation of BENQO’s Operator Representation
In this section, it is shown how to derive the unitary product representation in Equa-
tion (2.19) originally proposed by Kuete Meli et al. [69].

Due to C being a diagonal matrix, the encoding matrix U from Equation (2.17) might
as well be understood as the 2× 2 operator

U2×2 :=
[

sin⟨Ĉ⟩ cos⟨Ĉ⟩
cos⟨Ĉ⟩ − sin⟨Ĉ⟩

]
(A.3)

applied to the cost qubit in state |0⟩. This allows to re-formulate the original matrix as

U(C,K) ≡ U2×2 ⊗ I⊗n

≡ RY[2 arccos(sin⟨Ĉ⟩)] · Z ⊗ I⊗n ∗1
≡ RY[π − 2⟨Ĉ⟩] · Z ⊗ I⊗n ∗2
≡ RY(−2⟨Ĉ⟩) ·X ⊗ I⊗n ∗3

(A.4)

using the following three identities:

∗1: RY(2ϑ) · Z =
[

cos(ϑ) sin(ϑ)
sin(ϑ) − cos(ϑ)

]
with cos(ϑ) != sin⟨Ĉ⟩ exactly when

ϑ = arccos(sin⟨Ĉ⟩) up to a phase factor.

∗2: arccos(sin(ϑ)) = arccos(cos(π2 − ϑ)) = π
2 − ϑ for ϑ ∈ [−π

2 ,
π
2 ].

∗3: RY(ϑ1 + ϑ2) = RY(ϑ1) ·RY(ϑ2) and RY(π) · Z = X.

Lastly, using that RY(−ϑ) ≡ X ·RY(ϑ) ·X, one can easily insert the cost value ⟨C⟩
from Equation (2.11) into Equation (A.4) and arrive at the formulation (2.19) presented
in Section 2.3.3.

A.3 Algorithmic Details of Selected Optimizers
In Section 2.3.4, the main working principles of various gradient-based and gradient-free
optimizers were outlined. Here, the concept of the algorithmic details is provided for
some relevant optimizers investigated in Chapter 5:
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Algorithm 1 BFGS (Broyden-Fletcher-Goldfarb-Shanno) method
Initialize: θ0, H0
Iterate until convergence:
dk = −Hk∇kL ▷ Compute search direction
θk+1 ← θk + αkdk ▷ Update parameters (with αk from line search)
sk = θk+1 − θk
yk = ∇k+1L −∇kL
ρk = 1/y⊤

k sk ▷ Define scaling factor
Hk+1 ← (I− ρksky⊤

k )Hk(I− ρksky⊤
k ) + ρksks

⊤
k ▷ Update inverse Hessian approx.

Algorithm 2 CG (Conjugate Gradient) method
Initialize: θ0
s0 = −∇θL(θ0) ▷ Set first conjugate direction
α0 = argminα L(θ0 + α s0) ▷ Line search for first step length
θ1 = θ0 + α0 s0 ▷ Update parameters
Iterate until convergence:
yk = −∇θL(θk) ▷ Compute steepest direction
βk = y⊤

k (yk−yk−1
y⊤

k−1yk−1
▷ Compute Polak-Ribiere length

sk ← yk + βksk−1 ▷ Update conjugate direction
αk = argminα L(θk + α sk) ▷ Line search for step length
θk+1 ← θk + αk sk ▷ Update parameters

Algorithm 3 Powell (Conjugate Direction) method
Initialize: θ0
{ui}i=1,...,n = {ei}i=1,...,n ▷ Initalize set of directions to n basis vectors
Iterate until convergence:
For i = 1, . . . , n do:
λi = argminλ L(θi−1 + λ ui)
θi ← θi−1 + λi ui

ui ← ui+1 (for i = 1, . . . , n− 1) ▷ Update conjugate directions
un = θn − θ0
λk = argminλ L(θn + λ un) ▷ Line search for step length
θ0 ← θn + λun ▷ Update starting position

Algorithm 4 NFT (Nakashini-Fuji-Todo) method
Initialize: θ0
Iterate until convergence:
Randomly (or sequentially) choose an index jk ∈ 1, . . . , n
Compute L(. . . , θjk ± π

2 , . . . with a quantum device
Define al,k = L(. . . , θjk + λl, . . . ) for λ1 = 0, and λ2,3 = ±π

2
θjk ← argminθj

a1,k cos(θj − a2,k) + a3,k ▷ Update jk-th parameter
θj ← θj for j ̸= jk ▷ Keep all other parameters
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B.1 IBM Quantum Backends
In the following, a short summary of the device specifications of the used IBM backends
is given. IBM offers cloud access to an ever-growing pool of quantum processing units
through their SDK Qiskit [32]. Three of their backends, all based on the “Eagle”1

processor type, were chosen for the analysis in Section 4.2: ibm brisbane, ibm kyoto,
and ibm sherbrooke.

ibm brisbane ibm kyoto ibm sherbrooke

ECR error 7.943× 10−3 9.971× 10−3 7.095× 10−3

SX error 2.540× 10−4 3.480× 10−4 2.184× 10−4

readout error 1.390× 10−2 1.700× 10−2 1.270× 10−2

t1 223.77µs 217.84µs 280.82µs
t2 136.4µs 81.87µ 204.19µs

Table B.1: Specifications of three IBM Quantum Processing Units. All error
probabilities and times represent median values. For definitions of the gate error values and
the t1 and t2 times, refer to Section 2.1.2.

B.2 Distribution of Modelled Hardware Noise
In Section 4.2, it was noted that even though the noise on the loss value at each point
in parameter space – resulting from calculations using a simulated hardware model – is
biased and not centered around zero, the accumulated errors across the full landscape
have an approximate zero mean. Figure B.1 presents the distribution of total (normal-
ized) errors, δL = L̂ − L̃, for 1000 randomly selected points on the loss landscape of an
arbitrary Ising problem of size n = 6. For all algorithms and modeled backends under
consideration, these noise distributions have their means at zero. However, the density
histograms of BENQO and VQE exhibit are clear right-skew. This indicates that while
negative values (representing noisy loss values higher than their exact counterparts) are

1The Eagle processor family corresponds to a 127-qubit system by IBM that utilizes advanced multi-
layer chip technology to enable high-density I/O without compromising performance, having a quan-
tum volume of 128. Its native gates are: ECR, ID, RZ, SX, X (cf. Section 2.1.1).
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more probable, positive outliers are more frequent, as evidenced by the longer tail. This
can be explained by the distribution of loss values within their value range, and the fixed
point of the respective error channels used in the hardware noise model. For example,
the depolarizing error makes any quantum state converge to a totally mixed state, whose
loss value corresponds to zero (see Equation (2.10)) – the mean of all possible solution
states. Due to the asymmetric distribution of loss values, which is generally skewed
toward negative values (cf. Figure 5.8), however, the fixed point of this error channel
produces loss values which are larger than the majority of points, likewise causing an
asymmetry in the error distribution.

In contrast, QAOA shows no visible skewness but is markedly leptokurtic compared to
the corresponding Gaussian. This implies that the distribution of errors is more tightly
centered around zero, with fewer extreme deviations in both directions than a normal
distribution would exhibit. In this case, the Gaussian serves as a broader reference for
errors occurring in a noisy QAOA.
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Figure B.1: Distribution of Accumulated Hardware-Induced Errors Across Full
Loss Landscape. Density histograms of the errors of 1000 (normalized) loss evaluations,
done with simulated noise models from three representative quantum backends by IBM,
randomly sampled across the loss landscape of a n = 6 problem instance are shown, with
their mean indicated as vertical dashed lines. The bold lines represent normal distributions
with mean zero and the sample standard deviations of these errors.

B.3 Derivations for Statistical Error
The standard error of a measured proportion is given in Equation (4.1). BENQO’s loss
estimation can be written fully in terms of the measured counts p̂0 = k0/N via

EN [C] = K arcsin(2p̂0 − 1). (B.1)

71



Appendix B Supplementary Material for Chapter 4

The linear approximation for the propagation of uncertainties gives

σ(EN [C]) ≈ dEN [C]
dp̂0

∣∣∣∣
p̂0=p0

σ(p̂0)

= K√
1− (2p̂0 − 1)2

√
p0(1− p0)

N

= K√
4p0(1− p0)

√
p0(1− p0)

N
= K

2
√
N
.

(B.2)

For the loss evaluation of VQE and QAOA, the full quantum state |ψ(θ)⟩ of the n-qubit
system has to be measured. The estimated loss value derived from the measurement of
m individual Pauli observables Pi can be written as

EN [C] =
m∑
i=1

αi ⟨ψ(θ)|Pi|ψ(θ)⟩ =
m∑
i=1

αi

 2n∑
j=1

p̂j ⟨qj |Pi|qj⟩

 , (B.3)

where p̂j are the estimates of the overlap |⟨ψ(θ)|qj⟩|2, corresponding to the probability
of “finding” the quantum system in the basis state |qj⟩. The Ising cost function defined
by Equation (2.10) includes only Pauli strings that consist of Z and identity operators,
so the expectation value ⟨qj |Pi|qj⟩ will be either +1 or −1. By applying the linear
approximation from above and using the fact that the variances of multiple indepen-
dent2 variables combine in quadrature, one can derive the following expression for the
statistical uncertainty of the estimated expectation value:

σ(EN [C]) ≈

√√√√√ 2n∑
j=1

(
dEN [C]

dp̂j

∣∣∣∣
p̂j=pj

σ(p̂j)
)2

=

√√√√ 2n∑
j=1

( m∑
i=1

αi ⟨qj |Pi|qj⟩︸ ︷︷ ︸
=:Sj

)2
σ(p̂j)2

=

√√√√ 2n∑
j=1

S2
j

pj(1− pj)
N

.

(B.4)

Note that the sum, denoted as Sj , corresponds to the loss value evaluated at the j-th
basis state, which can be represented as a binary string of length n.

2While this is not true for the individual proportions p̂j for j = 1, ..., 2n, it provides a sufficiently
accurate approximation for large N .
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C.1 Local Qiskit Optimizers
Table C.1 presents a summary of state-of-the-art Qiskit optimizers used in the initial
screening of the classical optimizer studies. Out of those, eight with “promising” perfor-
mance were picked for the final evaluations based on their success probability on a trial
Ising problem and their required number of function evaluations.

Name Description Reference
gradient-based

ADAM Adaptive Moment Estimation Kingma and Ba [79]
AMSGrad ADAM improved for better convergence Reddi et al. [80]
AQGD Analytic Quantum Gradient Descent method Mitarai et al. [74]
BFGS Broyden-Fletcher-Goldfarb-Shanno optimizer Byrd et al. [81]
CG Conjugate Gradient method Fletcher [82]
SLSQP Sequential Least Squares Programming Kraft [84]
SPSA1 Simultaneous Perturbation Stochastic Approx. Spall [85, 115]
TNC Truncated Newton Optimizer Nash [83]

gradient-free
COBYLA Constrained Optimization By Linear Approx. Powell [73, 88]
Nelder-Mead simplex algorithm Nelder and Mead [87]
NFT Nakanishi-Fuji-Todo algorithm Nakanishi et al. [72]
Powell conjugate direction method Powell [86]
UMDA Univariate Marginal Distribution Algorithm Soloviev et al. [89]

Table C.1: Summary of local Qiskit Optimizers. The whole suite of gradient-based
(upper part) and gradient-free (lower-part) optimizers used for the experiments described
in Chapter 5 is listed along with the corresponding references.

1Note that the SPSA optimizer is sometimes listed as a gradient-free method since it does not rely
on exact gradient calculations. However, since it approximates the gradient, it is classified as a
gradient-based method here.
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C.2 Derivation of the Lower Confidence Limit
The quantum state solution of the BENQO algorithm is

|ψ∗⟩ = |ψ(θ)⟩ =
n⊗
i=1

RY(ϑ∗
i )|0⟩ =

n⊗
i=1

(
cos ϑ

∗
i

2 |0⟩+ sin ϑ
∗
i

2 |1⟩
)
, (C.1)

where θ∗ = (ϑ∗
1, ..., ϑ

∗
n)⊤ are the classically optimized parameters, and RY is the mathe-

matical operator of a RY gate (cf. Section 2.1.1). The overlap of an individual basis state
|q⟩ = (q1, ..., qn)⊤ with the full quantum state |ψ⟩ is given by

Pθ(|q⟩) = |⟨q|ψ(θ)⟩|2 =
n∏
i=1

(
cos

(
ϑi
2

)
δqi,0 + sin

(
ϑi
2

)
δqi,1

)2
(C.2)

with the binary variables qi ∈ {0, 1}. This formulation corresponds to the expected pro-
portion of finding the variational quantum system in state |q⟩ after measurement. Rel-
evant for classical optimization problems is the basis state |ψmax⟩ for which Pθ(|ψmax⟩)
is maximal. The so-called confidence defined in Equation (3.10) is the maximum prob-
ability

c (|ψmax⟩) = max
|q⟩

Pθ(|q⟩)

=
n∏
i=1

max
qi

(
cos

(
ϑi
2

)
δqi,0 + sin

(
ϑi
2

)
δqi,1

)2

=
n∏
i=1

cos2
(
ϑi
2

)
for ϑi ∈

[
0, π2

]
∪
[

3π
2 , 2π

]
sin2

(
ϑi
2

)
for ϑi ∈

[
π
2 ,

3π
2

]
(C.3)

still depending on the specific parameters θ. Finally, one can derive how the mean
confidence over a uniform distribution of the angles in the parameter space [0, 2π]n
behaves for varying system sizes n (to explain the empirical findings of Section 5.3) like

c̄ (|ψmax⟩) = Eθ [c (|ψmax⟩)]

=
( 1

2π

)n ∫ 2π

0
. . .

∫ 2π

0
dϑ1 . . . dϑn c (|ψmax⟩)

= 1
(2π)n

[∫ π/2

0
dϑ cos2

(
ϑ

2

)
︸ ︷︷ ︸

1
4 (2+π)

+
∫ 3π/2

π/2
dϑ sin2

(
ϑ

2

)
︸ ︷︷ ︸

1
2 (2+π)

+
∫ 2π

3π/2
dϑ cos2

(
ϑ

2

)
︸ ︷︷ ︸

1
4 (2+π)

]n

=
(2 + π

2π

)n
.

(C.4)
Figure C.1 visually summarizes these findings, displaying the experimentally found

probability distribution of c (|ψmax⟩) and the behavior of c̄ (|ψmax⟩) for increasing system
sizes n (as derived in Equation (C.4)).
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Figure C.1: Distribution of Confidence Values over System Size. The left plot
shows the range of data when taking the average of c (|ψmax⟩) over 1000 uniformly sampled
values of θ ∈ [0, 2π]n for various system sizes n, including the theory function derived
in Equation (C.4). Both curves are perfectly matching. On the right side, the kernel
distribution estimates are plotted for c (|ψmax⟩) across the full parameter space.

C.3 Ranking of Optimizers
Inspired by the work of Singh et al. [109], a summary of the optimizers’ performance
rankings is presented in Figure C.2. To provide a meaningful comparison with related
studies on classical optimizers, however in the context of the VQE algorithm, the results
from Singh et al. [109] are also included. Despite some differences in the details, several
common trends emerge: SPSA, Powell and NFT rank among the most noise-resilient
optimizers in both studies, whereas CG, SLSQP, and BFGS show poor performance
under noise. Furthermore, as noted in Section 5.4, there appears to be a trend along
the anti-diagonal in the left plot of Figure C.2, suggesting a trade-off between an op-
timizer’s performance in noisy and noise-free settings. Methods that perform well in
the idealized scenario were the most susceptible to noise, likely because they rely on ex-
act gradient information, which becomes unreliable in noisy environments. In contrast,
the noise-resilient optimizers don’t rely on precise or any gradient calculations: The
SPSA method, for example, uses stochastic parameter perturbations to approximate
a loss-minimizing direction [85]. Powell’s method iteratively performs one-dimensional
line searches along conjugate directions [86], resulting in only small dependencies on the
outcome of individual function evaluations. Likewise, the NFT method minimizes the
loss function with respect to one parameter at a time such that the impact of one noisy
loss evaluation may not be substantial [72]. Overall, this indicates that while gradient-
based optimizers excel in ideal conditions, they may not be well-suited for noisy settings,
where alternative strategies prove more robust – a finding also supported by other studies
[108, 109].

Furthermore, the right side of Figure C.2 investigates the relationship between solver
efficiency and noise resilience, with efficiency measured by comparing the mean runtimes
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Figure C.2: Performance Ranking of Classical Optimizers Under Consideration.
The left plot shows the rank of each optimizer’s performance in an ideal (noise-free) setting
(from Figure 5.7) versus in a noisy setting (from Figure 5.6). Transparent dots represent the
results reported by Singh et al. [109], plotted along the gray axes for better comparability.
The dashed diagonal line indicates a potential trend between both sets of results. The
right plot illustrated the relationship between the noise resilience of each optimizer and its
efficiency ranking, based on measurements of mean runtimes in the same noisy experiments.
No comparative studies were available for inclusion here.

across all conducted experiments, which are directly tied to the number of quantum
function calls. While no clear correlation or trend is immediately apparent from the
plot, one observation stands out: the most noise-resilient optimizers, NGD and NFT,
tend to be the least efficient in terms of runtime. On the other hand, optimizers such
as SPSA and COBYLA strike a better balance between efficiency and noise resilience,
emerging as the best overall choices in terms of this trade-off.

Lastly note, that this form of numerical presentation inspired by Singh et al. [109]
– considering discrete ranks instead of the actual continuous measures of performance
– may not be the most representative, as it does not capture the actual quantitative
performance differences between individual optimizers.

C.4 Investigation of Decay Type via Fitting Experiment
In an attempt to determine the type of decay of the noise resilience (representatively
given by the point of steepest descent of the performance σ∗) with increasing system size
n, several functions ffit were fitted to the experimental data in Section 5.4. The study of
the fit residuals σ∗(n)− ffit(n) and their MSE was used to derive the best fitting curve.
However, no curve had significantly smaller residuals, which is why the exact type of
decay remains a speculation, which might be cleared up with more experimental data.
These results are graphically summarized in Figure C.3.
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Figure C.3: Comparison of Different Fitting Functions. The decrease in noise
resilience σ∗ with system size n of the classical optimizers (described in Section 5.4) is fitted
to the experimental data. When comparing the final fit residuals (right column), it seems
that one of the three decay types stands out as the most suitable.
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[21] Guillermo González-Garćıa, Rahul Trivedi, and J. Ignacio Cirac. Error propagation
in NISQ devices for solving classical optimization problems. PRX Quantum, 3(4),
December 2022. ISSN 2691-3399. doi: 10.1103/prxquantum.3.040326.

[22] Yuguo Shao, Fuchuan Wei, Song Cheng, and Zhengwei Liu. Simulating noisy
variational quantum algorithms: A polynomial approach. Physical Review Letters,
133(12), September 2024. ISSN 1079-7114. doi: 10.1103/physrevlett.133.120603.

[23] E. M. Stoudenmire and Xavier Waintal. Opening the black box inside grover’s
algorithm. Physical Review X, 14(4), November 2024. ISSN 2160-3308. doi:
10.1103/physrevx.14.041029.

[24] Giuseppe Scriva, Nikita Astrakhantsev, Sebastiano Pilati, and Guglielmo Maz-
zola. Challenges of variational quantum optimization with measurement shot noise.
Physical Review A, 109(3), March 2024. ISSN 2469-9934. doi: 10.1103/physreva
.109.032408.

[25] Frank Leymann and Johanna Barzen. The bitter truth about gate-based quan-
tum algorithms in the NISQ era. Quantum Science and Technology, 5(4):044007,
September 2020. ISSN 2058-9565. doi: 10.1088/2058-9565/abae7d.

80

https://arxiv.org/abs/2305.09518
https://arxiv.org/abs/2305.09518


Bibliography

[26] Lennart Bittel and Martin Kliesch. Training variational quantum algorithms is
np-hard. Physical Review Letters, 127(12), September 2021. ISSN 1079-7114. doi:
10.1103/physrevlett.127.120502.

[27] Eric R. Anschuetz and Bobak T. Kiani. Quantum variational algorithms are
swamped with traps. Nature Communications, 13(1), December 2022. ISSN 2041-
1723. doi: 10.1038/s41467-022-35364-5.

[28] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. The complexity of
NISQ. Nature Communications, 14(1), September 2023. ISSN 2041-1723. doi:
10.1038/s41467-023-41217-6.

[29] Vyacheslav Kungurtsev, Georgios Korpas, Jakub Marecek, and Elton Yechao Zhu.
Iteration complexity of variational quantum algorithms. Quantum, 8:1495, October
2024. ISSN 2521-327X. doi: 10.22331/q-2024-10-10-1495.

[30] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. In Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, STOC ’93,
page 11–20. ACM Press, 1993. doi: 10.1145/167088.167097.

[31] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information. Cambridge University Press, Cambridge, 2016. ISBN 978-1-107-
00217-3.

[32] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake
Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W.
Cross, Blake R. Johnson, and Jay M. Gambetta. Quantum computing with qiskit,
2024. URL https://arxiv.org/abs/2405.08810.

[33] Emily Grumbling and Mark Horowitz, editors. Quantum Computing: Progress
and Prospects. National Academies Press, March 2019. ISBN 9780309479691. doi:
10.17226/25196.

[34] McKinsey & Company. Quantum Technology Monitor. Technical report, April
2023.

[35] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer Berlin Heidelberg, 2018. ISBN 9783662560396. doi:
10.1007/978-3-662-56039-6.

[36] Giorgio Ausiello, Alberto Marchetti-Spaccamela, Pierluigi Crescenzi, Giorgio Gam-
bosi, Marco Protasi, and Viggo Kann. Complexity and Approximation. Springer
Berlin Heidelberg, 1999. ISBN 9783642584121. doi: 10.1007/978-3-642-58412-1.

[37] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2,
2014. ISSN 2296-424X. doi: 10.3389/fphy.2014.00005.

81

https://arxiv.org/abs/2405.08810


Bibliography

[38] G. G. Guerreschi and A. Y. Matsuura. Qaoa for max-cut requires hundreds of
qubits for quantum speed-up. Scientific Reports, 9(1), May 2019. ISSN 2045-2322.
doi: 10.1038/s41598-019-43176-9.

[39] Alexey Bochkarev, Raoul Heese, Sven Jäger, Philine Schiewe, and Anita Schöbel.
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